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ABSTRACT

A new class of isomonodromy equations will be introduced and shown to admit Kac–Moody Weyl group sym-
metries. This puts into a general context some results of Okamoto on the 4th, 5th and 6th Painlevé equations, and shows
where such Kac–Moody Weyl groups and root systems occur “in nature”. A key point is that one may go beyond the class
of affine Kac–Moody root systems. As examples, by considering certain hyperbolic Kac–Moody Dynkin diagrams, we find
there is a sequence of higher order Painlevé systems lying over each of the classical Painlevé equations. This leads to a
conjecture about the Hilbert scheme of points on some Hitchin systems.
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1. Introduction

The aim of this article is to introduce and study a new system of isomonodromic
deformation equations. The best known isomonodromy equations are the Schlesinger
equations [55] controlling deformations of Fuchsian systems on the Riemann sphere.
Geometrically these equations constitute a nonlinear flat connection on a bundle

M∗ × B → B

over a space of parameters (the “times”) B ∼= Cm \ diagonals, where

M∗ ∼= (O1 × · · · × Om)//GLn(C)

is the symplectic quotient of a product of coadjoint orbits. This nonlinear connection
may be interpreted as a non-Abelian analogue of the Gauss–Manin connection (cf. [6]
Section 7) and admits degenerations into Hitchin-type integrable systems (cf. [23]). Thus
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in general one may view an “isomonodromy system” as a system of nonlinear differential
equations obtained by deforming a Hitchin integrable system (and whose solutions will
involve more complicated functions, such as the Painlevé transcendents, than the Abelian
or theta functions involved in solving such integrable systems).

The next simplest family of isomonodromy equations are due to Jimbo–Miwa–
Môri–Sato (JMMS [27]) and arose as equations for correlation functions of the quantum
nonlinear Schrödinger equation. The JMMS equations are the isomonodromic deforma-
tion equations for linear differential systems of the form

(1.1)
d

dz
−
(

T0 +
m∑
1

Ri

z − ti

)

(where T0 is a diagonal matrix) having an irregular singularity at z = ∞. A remarkable
feature of the JMMS equations is that there are now two sets of times: one may deform
the pole positions (the ti , as in the Fuchsian case) as well as the eigenvalues of T0 (the
“irregular times”). Further Harnad [26] has shown that the JMMS equations admit a
symmetry under which one may swap the roles of the two sets of times.

In this article we will write down and study the “next simplest” class of isomon-
odromy equations, which are even more symmetric: in effect the two set of times are
extended to k sets of times, all of which may be permuted, and Harnad’s discrete duality
is extended to an action of a continuous SL2(C) symmetry group. (Further, a Hamilto-
nian formulation will be given enabling the definition of new τ functions.)

One motivation to study such symmetric isomonodromy systems was to better un-
derstand and generalise the affine Weyl symmetry groups of the Painlevé equations. In
effect the Painlevé equations are the simplest examples of isomonodromy equations: they
are the second order nonlinear differential equations which arise as the explicit form of
the isomonodromy connection when the fibres have dimension two, i.e. dimC M∗ = 2.
Okamoto has shown that the six Painlevé equations admit certain affine Weyl symme-
try groups [45–48], and this is intriguing since the underlying root systems are not im-
mediately apparent from the geometry. For example the simplest nontrivial case of the
Schlesinger equations is equivalent to the Painlevé VI equation, which has symmetry
group the affine Weyl group of type D4. However no link to the loop group of SO8 is
manifest (one starts with a Fuchsian system with four poles on a rank two bundle). Simi-
larly Painlevé V has affine A3 symmetry group and Painlevé IV has affine A2 symmetry

FIG. 1. — Affine Dynkin diagrams for Painlevé equations IV, V and VI
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group, as indicated in Figure 1 (the other cases are not simply-laced and will be ignored
here for simplicity).

In the second part of this article (Section 9) we will single out a large class of
graphs which contains these three graphs, and attach an isomonodromy system to each
such graph (and some data on the graph), such that the corresponding Kac–Moody Weyl
group acts by symmetries, relating the corresponding isomonodromy systems. Thus any
such graph appears as a “Dynkin diagram” for an isomonodromy system. The class of
graphs for which this result holds contains all the complete k-partite graphs for any k (and
in particular all the complete graphs). For example one may ask why there is no second
order Painlevé equation attached to the pentagon (the affine A4 Dynkin diagram): from
our viewpoint this is because it is not a complete k-partite graph for any k, whereas the
triangle and the square are (as is the four-pointed star).

A simple corollary of this way of thinking is that we are able to canonically attach
an isomonodromy system of order 2n (i.e. dimC M∗ = 2n) to each of the six Painlevé
equations for each integer n = 1,2,3,4, . . . so that the n = 1 case is isomorphic to the
original Painlevé system. (These “higher Painlevé systems” look to be completely different
to the well-known “Painlevé hierarchies”).

In the remainder of this introduction we will recall more background, summarise
the main result, and describe the JMMS equations from our point of view, serving as the
main prototype for the extension we have in mind.

1.1. Further remarks and viewpoints. — (1) In 1981 a quite general isomonodromy
system was established by Jimbo–Miwa–Ueno [28], controlling isomonodromic deforma-
tions of linear differential systems whose most singular coefficient has distinct eigenvalues
at each pole. This work was revisited from a moduli theoretic viewpoint in [6] and the
symplectic nature of these (JMU) equations was established. More general moduli spaces
were then constructed, without the distinct eigenvalue condition, in [5] (in fact in arbi-
trary genus and with compatible parabolic structures and stability conditions) and shown
to be hyperkähler manifolds. The distinct eigenvalue condition implies that in general the
JMU equations are not symmetric, and so here we go back and generalise in a different
direction the earlier viewpoint of [27]. This is guided by the descriptions in [27, 26, 6]
of the moduli spaces involved as symplectic quotients, enabling us to see that some of
them are isomorphic to (Nakajima) quiver varieties, and thus how the graphs arise from

FIG. 2. — Dynkin diagrams for simply-laced higher Painlevé systems hPIV, hPV, hPVI
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the geometry (cf. [16] in the Fuchsian case and [11] Exercise 3 for early examples in
the irregular case). A new viewpoint we have found very useful here is to identify certain
quiver varieties (or twisted versions of them) as moduli spaces of presentations of modules
for the first Weyl algebra.

(2) Noumi–Yamada ([41] Problem 5.1) considered the problem of finding systems
of nonlinear differential equations for each affine root system (or more generally for each
generalised Cartan matrix) on which the corresponding Weyl group acts as Backlund
transformations. As an example in [42] (see also Noumi’s ICM talk [40]) they wrote
down a sequence of isomonodromy equations for each of the type A affine Weyl groups,
generalising the Painlevé IV and V equations. See also various articles of Y. Sasano such
as [54]. (Note they have also found [43] a direct link between PVI and SO(8).) Their work
is in a sense orthogonal to ours: although we consider a much larger class of Kac–Moody
root systems, whereas they only construct systems in certain affine Kac–Moody cases,
the intersection of the set of our graphs with theirs is amongst the usual second order
Painlevé equations. (I do not know if there is some common generalisation.)

(3) The graphs we are using give a reasonably efficient way to start to classify
some isomonodromy systems (or at least to tell when they might be isomorphic). Some
four dimensional examples were found in this way in [10] by looking amongst the hy-
perbolic Kac–Moody graphs (the next simplest class after the affine ones). Not every
isomonodromy system will be simply-laced though of course. Some other possible ap-
proaches to such questions are as follows. (i) Recall that Cosgrove (e.g. in [14]) has done
much work classifying higher order equations with the Painlevé property although his ap-
proach seems difficult for higher rank equations (e.g. sixth order). (ii) On the other hand
Malgrange [35] and Umemura [57] have introduced a nonlinear differential Galois the-
ory which one might hope would help with such classification, although it turns out that
the strength of their theory is its vast generality and present results suggest it does not
even distinguish amongst the six Painlevé equations themselves (when they have generic
parameters).1

(4) In essence we are associating what might be called a “wild non-Abelian Hodge
structure” to a certain class of graphs with some extra data on them. This structure con-
sists of a hyperkähler manifold M (as in [5]) which in one complex structure is a moduli
space of meromorphic connections and in another is a space of meromorphic Higgs
bundles. The isomonodromy system is naturally associated to this structure (it controls
the isomonodromic deformations of the meromorphic connections). It seems that the
work of S. Szabo [56] (interpreting certain Fourier–Laplace transforms as Nahm trans-
forms) can be extended to show that the full hyperkähler metric is also preserved by all
the Kac–Moody Weyl group symmetries.

1 One could see this attempt to classify such nonlinear algebraic differential equations as a basic step in “differential
algebraic geometry”—the extension of algebraic geometry obtained by allowing derivatives in the equations—the isomon-
odromy equations should form a basic class of objects to be studied, much as Abelian varieties or Calabi–Yau manifolds
are in classical algebraic geometry. On the other hand one can view this subject as a half-way step to “noncommutative
algebraic geometry”.
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FIG. 3. — Complete k-partite graphs from partitions of N ≤ 6 (omitting the stars G(1, n) and the totally disconnected
graphs G(n))

1.2. Summary of main result. — The main result involves a class of graphs that we
will call supernova graphs (cf. Definition 9.1), generalising the class of star-shaped graphs.
In brief Ĝ is a supernova graph with nodes Î if for some k there is a complete k-partite
subgraph G ⊂ Ĝ with nodes I ⊂ Î, and Ĝ is obtained from G by gluing on some legs. In
turn recall a complete k-partite graph is a graph whose nodes

I =
⊔
j∈J

Ij

are partitioned into parts parameterised by a set J with | J| = k, and two nodes of G are
joined by a single edge if and only if they are not in the same part.

Let Ĝ be a supernova graph and choose data d,λλλ,a, consisting of:

(1) An integer di ≥ 0 for each node i ∈ Î,
(2) A scalar λi ∈ C for each i ∈ Î, such that

∑
λidi = 0,

(3) A distinct point aj of the Riemann sphere for each part j ∈ J.

Theorem 1.1. — • There is an isomonodromy system

(1.2) M∗
st(λλλ,d,a) × B → B
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where the space of times is B ∼= ∏
j∈J(C

|Ij | \ diagonals). It controls isomonodromic deformations of

certain linear differential systems on bundles of rank

(1.3)
∑

i∈I\I∞

di,

where I∞ ⊂ I is the part with aj = ∞.

• If i ∈ Î is a node of Ĝ and λi 
= 0 then there is an isomorphism of isomonodromy systems

M∗
st(λλλ,d,a) × B ∼= M∗

st

(
ri(λλλ), si(d),a

)× B

where si, ri are the simple reflections (and dual simple reflections) generating the Weyl group of the Kac–

Moody root system attached to the graph Ĝ .

• If g ∈ SL2(C) then there is an isomorphism

M∗
st

(
λλλ,d, g(a)

)× B ∼= M∗
st(λλλ,d,a) × B

of isomonodromy systems, where g acts on a by diagonal Möbius transformations.

Also, in Section 10, precise criteria involving the Kac–Moody root system will be
established for when the spaces M∗

st are nonempty—this is an additive, irregular ana-
logue of the Deligne–Simpson problem. Notice in particular that the action of SL2(C)

enables us to change the ranks appearing in (1.3), by moving different points aj to ∞.
Once we have this possibility it is straightforward to obtain all the reflections geomet-
rically. (This extends the viewpoint of [8, 9] which derived the action of the Okamoto
symmetries of Painlevé VI on linear monodromy data from Harnad duality/Fourier–
Laplace.)

1.3. Prototype: The lifted JMMS equations. — By writing the (lifted) JMMS equations
in a slightly novel way we will show how graphs appear naturally. In particular we will
explain how the square (which Okamoto attached to Painlevé V) emerges from the view-
point of [27] Appendix 5. Our main result is obtained by extending this to include the
triangle.

Choose two finite dimensional complex vector spaces W0,W∞ and consider the
space M = Hom(W0,W∞) ⊕ Hom(W∞,W0). The (lifted) JMMS equations govern how
(P,Q) ∈ M should vary with respect to some times T0,T∞, and we will write these
equations in the following form:

(1.4)
dQ = QP̃Q + Q̃PQ + T0QdT∞ + dT0QT∞

−dP = PQ̃P + P̃QP + T∞PdT0 + dT∞PT0.

Here T0,T∞ are semisimple matrices T0 ∈ End(W0),T∞ ∈ End(W∞) which may
have repeated eigenvalues, but are restricted so that no further eigenvalues are allowed



SIMPLY-LACED ISOMONODROMY SYSTEMS 7

to coalesce, and the corresponding eigenspace decompositions of W0,W∞ are held con-
stant. The tilde operation appearing in (1.4) is defined as follows: if R ∈ End(Wi) then

R̃ := ad−1
Ti

[dTi,R]

which is a one-form with values in the image in End(Wi) of adTi
. (To see this makes sense

note that adTi
is invertible when restricted to its image.) These equations are known to

have the Painlevé property and special cases include the fifth and sixth Painlevé equations.
Indeed for example in a special case they imply the Schlesinger equations: if one restricts
to the case when T0 = 0 then (1.4) simplifies to

dQ = QP̃Q, dP = −P̃QP.

It follows immediately that if we write T∞ = ∑
tiIdi where Idi is the idempotent

for the ith eigenspace of T∞ and set Ri = QIdiP ∈ End(W0) then

dRi = −
∑
j 
=i

[Ri,Rj]d log(ti − tj)

which are the Schlesinger equations. They govern the isomonodromic deformations of
a logarithmic connection on the vector bundle W0 × P1 → P1. In general the JMMS
equations govern the isomonodromic deformations of a meromorphic connection (corre-
sponding to the differential system (1.1)) on the vector bundle W0 × P1 → P1 having an
irregular singularity of Poincaré rank one and arbitrarily many logarithmic singularities.
Although quite general nonlinear isomonodromy equations have been written down by
Jimbo–Miwa–Ueno [28], the JMMS equations are notable since they have the following
symmetry (now quite transparent in the way we are writing the equations):

Theorem 1.2 (Harnad duality [26]). — The permutation

(W0,W∞,P,Q,T0,T∞) �→ (W∞,W0,Q,−P,−T∞,T0)

preserves the JMMS equations.

This is remarkable since it implies that the same equations also control isomon-
odromic deformations of a connection on the vector bundle W∞ × P1 → P1, which of
course will in general have different rank.

Our basic aim is to show that the JMMS equations have a natural generalisation
that admits an enriched symmetry group. To describe the picture let us first describe the
combinatorics of Harnad’s duality in terms of graphs. First consider the graph with two
nodes labelled by 0 and ∞ connected by a single edge. We put the vector space Wj at the
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node j for j = 0,∞ and view the maps P,Q as maps in both directions along the edge.
At this level (up to a sign) Harnad duality simply flips over the graph.

The next step (which enables us to see the link to Dynkin graphs) is to refine the
above graph by splaying each node according to the eigenspaces of the times T0,T∞. In
other words suppose Wj = ⊕

i∈Ij
Vi is the eigenspace decomposition of Tj for j = 0,∞.

Then we break up the node corresponding to W0 into |I0| nodes and thereby splay the
graph (and similarly at the other node), as in the diagram below (for the case |I0| = 3,

|I∞| = 2):

Note that the class of refined graphs which arise in this way are precisely the complete

bipartite graphs. Now the fifth Painlevé equation is equivalent to a basic case of the JMMS
equations (appearing in the title of [27]): it occurs when both W0 and W∞ have dimension
two and each time Tj has two distinct eigenvalues. The crucial observation then is that in
this case the refined graph is a square, i.e. the affine Dynkin diagram A(1)

3 that Okamoto
associated to Painlevé V appears almost directly from the work of JMMS.

This is more than a coincidence since, as we will confirm, Harnad’s duality (and
the well-known Schlesinger/Backlund transformations) yield the Okamoto symmetries.
Moreover we see how to put this in a more general context since any complete bipartite
graph also appears in the same way.

The final step “reduction” (see Section 9) is to choose an adjoint orbit Ŏi ⊂
End(Vi) for each node of the refined graph and quotient by the symmetry group

FIG. 4. — How A(1)

3 appears in the graphical approach to the JMMS system
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GL(Vi). In terms of graphs this will correspond to gluing a leg (a type A Dynkin

graph) onto each node of the refined graph: the resulting graph is the Dynkin diagram of
the Kac–Moody root system whose Weyl group naturally acts on the nonlinear equations.

1.4. Generalisation. — The generalisation we have in mind involves replacing the
initial graph in the JMMS story above (the interval) by an arbitrary complete graph. (Recall
that the complete graph with k nodes has exactly one edge between any two vertices.)

Each node of the graph will be labelled by a distinct element aj ∈ C ∪ {∞} of the
Riemann sphere. Thus if J is the set of nodes we may view J as a subset of the Riemann
sphere. (We will see below that ∞ plays a distinguished role.) In the case of the JMMS
equations above we had J = {0,∞}. As above we attach a vector space Wj to each node
j ∈ J and consider a set of times which are semisimple elements Tj ∈ End(Wj) for each
j ∈ J. The set of unknown variables in the nonlinear equations, generalising (P,Q) above,
again consists of the linear maps in both directions along each edge:

Bij ∈ Hom(Wj,Wi), for all i 
= j ∈ J.

The integrable nonlinear equations we will find governing these then have the form:

dBij =
∑
k∈J

˜XikBkiBij + Bij
˜BjkXkj + dTiXikBkj + BikXkjdTj − XikdTkXkj/φij

plus some terms linear in Bij that we will neglect in the introduction, where φij is a com-
plex number depending only on the embedding J ↪→ C ∪ {∞} and Xij = φijBij . (Observe
that the three quadratic terms are absent in the original JMMS equations.)

The remainder of the story is then similar to above: we splay the nodes of the
complete graph according to the eigenspaces of the times Tj to obtain a refined graph.
(The class of graphs which arise in this way is exactly the class of complete k-partite
graphs.) Then we reduce as above, gluing on some legs, to obtain a graph whose Kac–
Moody Weyl group acts. The simplest case, with k = 3 and each Wj of dimension one,
is equivalent to the fourth Painlevé equation (and the refined graph, which in this case
equals the unrefined graph, is the triangle, agreeing with Okamoto).

FIG. 5. — The sequence of complete graphs
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2. Modules over the Weyl algebra

This section describes the class of modules over the first Weyl algebra that we wish
to consider. By taking this viewpoint, rather than just that of meromorphic connections,
more symmetries are apparent. (Appendix B explains how this generalises Harnad’s du-
ality.) Choose three n × n complex matrices α,β, γ and consider the matrix

M = α∂ + βz − γ

with values in the first Weyl algebra A1 = C〈z, ∂〉, where ∂ = d/dz.
We wish to study (local) systems of differential equations of the form

M(v̂) = 0

for a vector v̂ of holomorphic functions. This may be rephrased as the local system of
holomorphic solutions of the (left) A1-module N defined by the exact sequence

An
1

(·M)−→ An
1 → N → 0.

We will restrict to the case where α and β are commuting diagonalisable matrices
whose kernels intersect only at zero. This class of modules is clearly preserved under the
Fourier–Laplace transform, and in fact by more general symplectic transformations

(2.1) (∂, z) �→ (a∂ + bz, c∂ + dz)

where ad − bc = 1:

Lemma 2.1. — If α and β are two commuting semisimple matrices whose kernels intersect only

at zero, then so are

aα + cβ and bα + dβ

for any complex numbers a, b, c, d with ad − bc = 1.

Proof. — In each joint eigenspace the corresponding pair of eigenvalues (αi, βi) is
a nonzero point of C2. We are acting on this element of C2 by an invertible matrix so it
will remain nonzero. �

Thus such a module determines a finite number of points ai := [−βi : αi] ∈ P :=
P1(C) of the projective line (the minus sign appearing here will be useful later). We label
this sphere P (and call it the “Fourier sphere”) to avoid confusion later with the Riemann
sphere P1

z on which z is a local coordinate. Let J be the set of such points of P, and let
k = | J| be the number of points so obtained (which is in general less than the number of
joint eigenspaces, since two pairs of eigenvalues may differ by an overall scalar). For each



SIMPLY-LACED ISOMONODROMY SYSTEMS 11

point j ∈ J there is an associated subspace Wj ⊂ V := Cn (the joint eigenspaces having
pairs of eigenvalues lying over j), so that V =⊕

j∈J Wj .
We will further assume for each j that the component of γ in End(Wj) is semisim-

ple.
Let ∞ = [1 : 0] be the point of P where αi = 0, corresponding to the kernel of α

(we are not assuming ∞ ∈ J; this kernel may be trivial). Any other point of P corresponds
to a complex number (ai = −βi/αi ∈ C); we identify P with C ∪ {∞} in this way.

By multiplying M on the left by a constant invertible matrix, we may then nor-
malise M uniquely so it is of the form

(2.2) M =
(

0
1

)
∂ +

(
1 0
0 −A

)
z − γ ∈ End(W∞ ⊕ U∞) ⊗ A1

where Uj = V � Wj = ⊕
i∈J\{j} Wi. Here A = ∑

j 
=∞ ajIdj ∈ End(U∞) where Idj is the
idempotent for Wj ⊂ V. The decomposition of V allows us to decompose End(V) as

End(V) =
⊕
i 
=j∈J

Hom(Wi,Wj) ⊕
⊕

j∈J

End(Wj)

and so we may decompose

γ = γ ◦ + δ(γ )

with respect to this decomposition. We will also write (after normalisation)

(2.3) δ(γ ) = T̂ =
(

C
T

)
, γ ◦ = � =

(
0 P
Q B

)
∈ End(W∞ ⊕ U∞).

Thus α,β, γ determine linear maps B,T ∈ End(U∞),C ∈ End(W∞) and P : U∞ →
W∞ and Q : W∞ → U∞ and by assumption C and T are semisimple.

The corresponding system of differential equations then takes the form

(2.4) ∂v = (
Az + B + T + Q(z − C)−1P

)
v

for a holomorphic function v (with values in U∞). This system corresponds to the mero-
morphic connection on the trivial holomorphic bundle on P1 with fibre U∞ determined
by the matrix of meromorphic one-forms:

(2.5) A = (
Az + B + T + Q(z − C)−1P

)
dz.

In general this connection will have a pole of order three (irregular singularity of Poincaré
rank two) at z = ∞ and a simple pole (Fuchsian singularity) at each eigenvalue of C.

If instead we first perform a symplectic transform (2.1) before passing to the con-
nection (2.5) then a different connection will be obtained, usually on a different rank
bundle. Indeed if the transform moves j ∈ J to ∞ then the resulting bundle will have fibre
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Uj = V � Wj . On the other hand (after a generic symplectic transform) it will have fibre
V—if no points of J are at ∞. Thus in general connections will be obtained on k +1 bun-
dles of different ranks (and in fact on each of these bundles a whole family of connections
is obtained corresponding to the affine subgroup of SL2(C) stabilising ∞ ∈ P).

Our basic aim is to show that the isomonodromic deformations of such connec-
tions (on different rank bundles) are governed by the same system of nonlinear differential
equations when we vary T and C.

3. Symplectic vector spaces

Suppose (as above) we have a finite dimensional complex vector space V graded by
a finite set J, so that V =⊕

j∈J Wj for subspaces Wj . Consider the complex vector space

M := End(V)◦ =
⊕
i 
=j∈J

Hom(Wi,Wj)

of linear maps in both directions between each pair of distinct vector spaces Wj .
Now suppose we have an injective map a : J ↪→ P = C∪{∞} (as above) so we may

identify J with its image in P. Thus in effect we have a vector space Wp for each p ∈ P
(taking Wp = {0} if p /∈ J). We write ai = a(i) for the complex number corresponding to
i ∈ J \ {∞}. Then we may define a complex symplectic structure on M by the formula

ω = ωa =
∑

i 
=j∈J\{∞}

Tr(dBij ∧ dBji)

2(ai − aj)
+

∑
i∈J\{∞}

Tr(dBi∞ ∧ dB∞i)

where Bij ∈ Hom(Wj,Wi). We will sometimes write M = Ma when we think of it as a
complex symplectic manifold with the symplectic form ωa. If we define constants φij ∈ C
for i, j ∈ J so that φii = 0, φij = (ai − aj)

−1 if i, j 
= ∞ and φi∞ = 1 = −φ∞i then

ω = 1
2

∑
i,j∈J

φijTr(dBij ∧ dBji) = 1
2

∑
i,j∈J

Tr(dXij ∧ dBji)

where we have defined Xij = φijBij ∈ Hom(Wj,Wi) for all i, j ∈ J.
Now suppose we have matrices α,β, γ as above, and we normalise them as in (2.2).

Then for i 
= j ∈ J we will identify Bij above with the component of γ in Hom(Wj,Wi), so
that P has components B∞i , Q has components Bi∞ and the Hom(Wj,Wi) component
of B is Bij (for i 
= j ∈ J \ {∞}). In these terms

ω = Tr(dQ ∧ dP) + 1
2

Tr(dX ∧ dB)(3.1)

where X = ad−1
A (B) ∈ Im(adA) ⊂ End(U∞).
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Finally if we define 
 = φ(�) where φ : End(V) → End(V) is the linear map given
in components by (Bij) �→ (φijBij) (so that Xij is always the Hom(Wj,Wi) component of

) or in other words


 =
(

0 −P
Q X

)
, � =

(
0 P
Q B

)
∈ End(W∞ ⊕ U∞),

then the symplectic form is

ω = 1
2

Tr(d
 ∧ d�).(3.2)

Note the basic property of φ, that it is skew-adjoint: Tr(φ(E)F) = −Tr(Eφ(F)).
In particular this implies Tr(
�) = 0. The key fact about these symplectic forms is the
following:

Proposition 3.1. — The symplectic form ω on M is equivariant under the symplectic transfor-

mations (2.1) of M.

Said differently, given an injective map a : J → P and a symplectic matrix g ∈ SL2(C) we
obtain a map ϕ : Ma → Mg·a (by acting on M with g and renormalising). We are claiming
that ϕ is symplectic.

Proof. — The group SL2(C) is generated by (i) the scalings (∂, z) �→ (∂/c, cz) for
c ∈ C∗, (ii) the shearings (∂, z) �→ (∂ + cz, z) for c ∈ C, and (iii) the Fourier–Laplace
transform (∂, z) �→ (−z, ∂) (beware this convention is sometimes taken to be the inverse
Fourier–Laplace transform). Note that (i) and (ii) correspond (on the level of connections
(2.5)) respectively to scaling the coordinate z and to tensoring by the connection czdz on
the trivial line bundle.

For (i), the resulting action on � is

(
0 P
Q B

)
�→

(
0 P/c

cQ cB

)

and aj �→ c2aj for all j. Thus � becomes ε� where ε = diag(1/c, c) and in turn it follows
that 
 becomes 
ε−1. Thus from (3.2), this transformation leaves ω unchanged.

For (ii), γ is unchanged and each aj is replaced by aj − c, which again fixes ω.
For (iii) recall W0 is the kernel of A (or equivalently of β ), so we may write

(3.3) β =
⎛
⎝1

0
−Ar

⎞
⎠ , � =

⎛
⎝ 0 P0 Pr

Q0 0 B0r

Q r Br0 Brr

⎞
⎠ ∈ End

(
W∞ ⊕ W0 ⊕ Vr

)
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where Vr = ⊕
j 
=0,∞ Wj is the “rest of V”. After Fourier–Laplace and renormalising we

then find β,� become:

(3.4) β ′ =
⎛
⎝0

1
A−1

r

⎞
⎠ , �′ = ε�

where ε = diag(1,−1,−A−1
r ). Noting that the roles of W0 and W∞ have been swapped

(and ai �→ −1/ai ), we find directly that

Lemma 3.2. — Under the Fourier–Laplace transform 
 becomes 
′ = 
ε−1.

Thus ω in (3.2) is clearly preserved. �

In other words the above formulae define a symplectic action of SL2(C) on the
symplectic vector bundle M × P J \ (diagonals) (with fibres Ma) covering the standard
action (diagonal Möbius transformations) on the base P J \ (diagonals).

4. Invariance of spectral invariants

As is by now well known, isomonodromy systems have degenerations (dating back
at least to [23]) which are isospectral integrable systems (solvable by spectral curve meth-
ods i.e. in terms of Abelian functions). Here we will briefly touch on this in our context,
focusing on the results we will need elsewhere in this article (our main interest being the
isomonodromic system, requiring in general more complicated functions to solve them).
This extends some work of Adams–Harnad–Hurtubise [1].

Suppose we fix T̂ and A as above (except in this section we do not need to assume
T̂ is semisimple). Let I = I(T̂,A) denote the ring of functions on M generated by the
coefficients of the polynomial

P (λ, z) = det(z − C)det
(
λ − (

Az + B + T + Q(z − C)−1P
)) ∈ C[λ, z].

This is the ring of spectral invariants of the matrix (2.5) of meromorphic one-
forms.

Now if we perform a symplectic transformation (2.1) changing the matrix M then
the resulting matrix (2.5) (and T̂,A) will in general change. However it turns out that the
ring I is unchanged (as a ring of functions on M).

Lemma 4.1. — The equality

P (λ, z) = det(αλ + βz − γ )

holds, and so the symplectic transformation (2.1) (and more generally the corresponding GL2(C) action)

just changes the coordinates λ, z on C2, and thus preserves I .
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Proof. — Let N = αλ+βz −γ ∈ End(V)⊗C[λ, z] as in (2.2), (2.3). Now consider
the equation

N =
(

1 0
s 1

)(
x t

0 y

)
∈ End(W∞ ⊕ U∞) ⊗ C(λ, z).

This has unique solution:

t = −P, x = z − C, s = Q(C − z)−1,

y = λ − (
Az + B + T + Q(z − C)−1P

)
so we see that det(N) = det(x)det(y) = P (λ, z) as required. Thus under the transforma-
tion (and renormalising N) P just undergoes a coordinate change (and multiplication by
an invertible constant due to the renormalisation) so I is unchanged. �

In particular the corresponding spectral curves (cut out in C2 by P (λ, z)) are iso-
morphic (and the corresponding curves obtained by first clearing the factors of det(z−C)

are birational).
On the other hand we know for general reasons that I is a Poisson commutative sub-

ring of the ring of functions on the symplectic manifold M (with the symplectic form
ω determined by A). This follows for example from the Adler–Kostant–Symes theorem,
once we relate M via a moment map to an appropriate loop algebra. See Appendix A.
Moreover this approach immediately gives formulae for the (isospectral, time indepen-
dent) Hamiltonian vector fields determined by functions H ∈ I .

The case A = 0 (so B = 0 too) was studied in a sequence of papers by Adams–
Harnad–Hurtubise–Previato (starting with [2]) extending and answering questions in the
work of Moser [36]. In particular the isomorphisms above generalise the duality of [1]
which was used to explain a number of examples of integrable systems admitting different
Lax representations. Here we get more alternative Lax representations, even in the cases
considered in [1] (since we may always, using a more general symplectic transform, pass
to a system having just a pole of order three, on the trivial bundle with fibre V). Indeed
we now see the symmetric diagram in [1] p. 303, [50] p. 438 (which looks a little like two
pages of an open book, if we draw the spine vertically down the middle) has a natural
generalisation where the book has k + 1-pages, each page of which looks as follows (with
the spine on the left):
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Here Rat(U∞,C) is the Lie algebra of rational maps P1 → End(U∞) having poles
only at ∞ and at the eigenvalues of C = T∞, the top horizontal arrow is the map � �→
B = Az + B + T + Q(z − C)−1P (and is shown to be a moment map in Lemma A.1), G∞
is the subgroup of GL(U∞) centralising A and T (the subgroup of the group of global
gauge transformations of the bundle P1 ×U∞ → U∞ preserving the shape of B), and H∞
is the subgroup of GL(W∞) centralising C. The other ‘pages’ are obtained by performing
a transformation to move the points J ⊂ P, changing which point is at ∞ and thus the
spaces U∞,W∞. Note that the product G∞ × H∞ is the centraliser in

∏
GL(Wj) of T̂,

so does not change from page to page. As in the case of [1] the bottom horizontal map
is an injective Poisson map and (at least when T̂ is semisimple) all the quotients here are
manifolds when restricted to dense open subsets.

In other words our space M thus generalises the “generalised Moser space” M of
Adams et al.

5. Time-dependent Hamiltonians

We will first review precisely what we mean by a time-dependent Hamiltonian
system (with multiple times), since some strictly weaker notions have been used in the
context of isomonodromy recently. This formulation (which we view as standard—as in
[27]) enables us to see the link between the isomonodromy τ -function and the time-
dependent Hamiltonians.

Let M be a complex symplectic manifold with symplectic form ω, and let B be
another manifold (which will play the role of the space of times). Consider the trivial
symplectic fibre bundle

π : F := M × B → B

with base B and fibre M. In particular the tangent space to F at any point has a splitting
into horizontal and vertical subspaces (beware that F stands for ‘fibration’ and not for
‘fibre’ here).

Then a vector field X on B and a function H on F determine a vector field X̃ =
X+vH on F, by taking the horizontal component to equal X and the vertical component
to equal the Hamiltonian vector field vH of H, defined by dH = ω(·, vH). In the case
when B has dimension one, this is just the usual notion of a time-dependent Hamiltonian,
and the flows correspond to the differential equation dm/dt = −vH(m) for m ∈ M. In
other words if {mi} are local coordinates on M then the coordinates of a solution m(t)

evolve according to

dmi

dt
= {mi,H}

where the Poisson bracket of ω is defined as usual via {f , g} = ω(vf , vg), so that vH =
{H, ·}. Thus in general we would like a Hamiltonian function on F for each vector field
on the base.
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Definition 5.1. — A system of time-dependent Hamiltonians on π : F = M × B → B is

a global section � of the vector bundle π∗(T∗B) over F, i.e. it is a one-form on F whose vertical

component is zero.

Thus if we have a vector field X on B then we obtain a time-dependent Hamiltonian
function H = 〈�,X〉 on F. If we have some coordinates {ti} on B we may trivialise the
cotangent bundle and write

� =
∑

i

Hidti

and then Hi is the Hamiltonian function for the vector field ∂/∂ ti on B. The corre-
sponding differential equations may be written as dmi = {mi,� }, where d is the exterior
derivative on B.

Said differently � tells us how to modify the trivial connection on F to obtain a
new connection. This may be rephrased in terms of symplectic connections as follows.
First let ω̂ = π∗

1 ω be the two-form on F obtained by pulling back the form ω on M along
the projection π1 : F → M (coming from the fact that F is trivial as a fibration over B). In
general any two-form � on F which restricts to ω on each fibre determines a connection
on the bundle F → B: the field of horizontal subspaces is given by the orthocomplement
of the vertical subspace:

Hp = {
u ∈ TpF

∣∣�(u, v) = 0 for all v ∈ TpM
}

= Ker
(
TpF → T∗

p M; u �→ [
v �→ �(u, v)

])
for all p ∈ F, which is easily seen to be complementary to the vertical subspace. Taking
� = ω̂ defines the trivial connection on F. The connection given by some time-dependent
Hamiltonians � is given by the two-form

ω̂ − d�

on F. Note that by assumption this will again restrict to ω on each fibre. Thus from this
point of view the time-dependent Hamiltonians give the difference between the original
trivial connection and the new (interesting) one. It is a general fact about symplectic
connections (see [24] Theorem 4) that if � is closed then the local isomorphisms between
open subsets of the fibres obtained by integrating the connection, will be symplectic (and
in our situation ω̂ − d� is clearly closed).2

We are mainly interested in the case where the resulting symplectic connection
is integrable, i.e. that the vector fields Xi := ∂/∂ ti + {Hi, ·} on F commute (for local
coordinates ti on B). One may readily verify that

2 It is straightforward to check the two procedures to obtain a connection from � agree: e.g. in coordinates if
H = 〈�,∂/∂ t〉 and vH is the corresponding (vertical) Hamiltonian vector field, so that dH = ω(·, vH) on each fibre. We
should check that the vector field u = ∂/∂ t + vH on F (defined by the first recipe) does indeed satisfy �(u, v) = 0 for all
vertical v, where � = ω̂ − dH ∧ dt. But this is immediate as ω̂(u, v) = ω(vH, v).
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Lemma 5.2 (Cf. [25] (1.12)). — The Lie bracket [Xi,Xj] is the (vertical) Hamiltonian vector

field associated to the function

fij = ∂Hj

∂ ti
− ∂Hi

∂ tj
+ {Hi,Hj} = −�(Xi,Xj)

where � = ω̂ − d� .

Thus if the connection is integrable, each function fij is constant on each fibre M of F, so
is the pullback of a function on B. One may also demand the stronger condition (“strong
integrability”), that fij = {Hi,Hj} = 0. In that case, since ω̂(Xi,Xj) = {Hi,Hj} = 0, the
restriction of d� to each solution leaf is zero, i.e. � restricts to a closed one-form on
each solution leaf. Then, pulling back to the base, we may regard � as a flat connection
on the trivial line bundle on B, and locally define a holomorphic function τ on B as its
horizontal section (well defined upto a scalar multiple), so that

(5.1) d log τ = �.

This will be the case in our situation, so we will get new τ functions, analogous to those
of [27, 28].

For our purposes (with M = End(V)◦ and ω = Tr(d
 ∧ d�)/2) the following de-
scription of the Hamiltonian equations will be useful:

Lemma 5.3. — Suppose the Hamiltonian one-form � on F = M × B → B satisfies

dM� = Tr(E ∧ dM
)

for some M valued one-form E on F with vertical component zero. Then the corresponding nonlinear

differential equations (for local sections � of F) are given by

dB� = E .

Proof. — Suppose there is just one time t and � = Hdt, so

Tr(E ∧ dM
) = dMH ∧ dt = ω(·, vH) ∧ dt

= −1
2
ιvHTr(dM
 ∧ dM�) ∧ dt

= · · · = Tr
(
dM
〈dM�,vH〉)∧ dt

where in the last line we use the skew-symmetry of φ. Thus since the trace pairing
is nondegenerate we deduce 〈dM�,vH〉dt = −E , which yields the differential equation
d�/dt = 〈E , d/dt〉, i.e. dB� = E . (For multiple times just repeat the above argument.) �

Now we will describe the time-dependent Hamiltonian system that is the central
focus of this article.
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5.1. The space of times. — Suppose we are in the situation of Section 3 with a vector
space V and normalised matrices α,β, γ ∈ End(V) determining J ⊂ P = C ∪ {∞} and a
J-grading

⊕
j∈J Wj of V etc. Define

T̂ = δ(γ ) ∈ End(V),

to be the block-diagonal part of γ and let Tj ∈ End(Wj) be the component of T̂ in
End(Wj). (Thus C = T∞ and T is the component of T̂ in End(U∞).)

By hypothesis T̂ is semisimple and so also each Tj is semisimple. (We do not make
any assumption of distinct eigenvalues—any multiplicities are permitted.) Thus each vec-
tor space Wj has a finer decomposition into the eigenspaces of Tj . Let Ij denote the set of
eigenspaces of Tj and let Vi ⊂ Wj be the corresponding eigenspace, for i ∈ Ij . Thus

(5.2) Wj =
⊕
i∈Ij

Vi so that V =
⊕

i∈I

Vi

where I = ⊔
j∈J Ij . The space of times B is the space of T̂ such that the decomposition

(5.2) does not change. Explicitly we may write

T̂ =
∑
i∈I

tiIdi

for some complex numbers ti , where Idi ∈ End(V) is the idempotent for Vi . Thus T̂ is
identified with a point {ti} of CI and the space of times with an open subset of CI:

B =
{

T̂ =
∑
i∈I

tiIdi

∣∣ ti ∈ C and if i, i′ ∈ Ij for some j ∈ J then ti 
= ti′

}
.

Thus B ∼= �j∈J(C|Ij | \ {diagonals}). In particular the fundamental group of B is a product
of Artin braid groups.

5.2. Hamiltonians. — The Hamiltonian one-form on F = M × B → B we are in-
terested in is given by the expression:

(5.3) � = �0 + �1

where

�0 = 1
2

Tr
(

̃�δ(
�)

)− Tr(
γ
dT̂),

�1 = Tr
(
X2TdT

)+ Tr(PAQT∞dT∞),

and 
̃� = ad−1
T̂ [dT̂,
�].
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This determines a symplectic connection ω̂ − d� and thus some nonlinear dif-
ferential equations for � as a function of the times T̂. These equations will be written
explicitly in Section 7 below. Our next aim is to establish the following, which is one of
the main results of this article.

Theorem 5.4. — The one-form � is invariant under all the symplectic transformations (2.1)
up to some simple global gauge transforms. These gauge transformations are tangent to the symmetries of

M and so the reduced equations are completely invariant.

Before proving this we will first discuss such gauge transformations. Suppose g :
B → GL(V) is a holomorphic map such that for each T̂ ∈ B the map � �→ g�g−1 is a
well-defined symplectic automorphism of M. Then there is a new connection on F whose
horizontal sections are � = g�0g−1 with �0 constant (and g varying over B). The gauge
transformations we will need are of this form where

(5.4) g(T̂) = exp
(
λT̂2/2

) ∈ GL(V)

for some constant λ ∈ End(V) of the form λ = ∑
j∈J λjIdj where λj ∈ C and Idj is the

idempotent for Wj ⊂ V. The horizontal sections of the new connection then satisfy dB� =
[θ,�] where θ = g−1dg = λT̂dT̂. In turn if follows from Lemma 5.3 that a two-form on
F for the new connection is

ω̂′ = ω̂ + Tr
(
d
[θ,�])= ω̂ + dTr(�
θ)

so the gauge transformation corresponds to a Hamiltonian term Tr(�
θ). Two examples
will cover the cases we need.

Example 5.5. — For example if λj = 0 for all j ∈ J\{∞} then the Hamiltonian term
is Tr(�
θ) = λ∞Tr(PQT∞dT∞).

Example 5.6. — As a second example suppose λj = a−1
j if j ∈ J \ {0,∞} and is

zero otherwise. Then using the notation of (3.3) the Hamiltonian term is Tr(�
θ) =
Tr((Br0X0r + BrrXrr − Q rPr)θr) where θr =∑

j∈J\{0,∞} TjdTj/aj = A−1
r TrdTr .

Proof (of Theorem 5.4). — From the discussion in Section 3 it is immediate that �0

is invariant under all the symplectic transformations (for example under the Fourier–
Laplace transform γ,�,
, T̂ become εγ, ε�,
ε−1, εT̂ respectively and the factors of ε

cancel each other, noting also that δ(
̃�) does not change when T̂ is replaced by εT̂). We
should check that the change in �1 may be compensated for by gauge transformations of
the symplectic fibration F → B. As before, we go through the subgroups generating the
symplectic group.

(i) For the scalings, each of Q,B and T is scaled by c ∈ C∗, A by c2 and P,T∞,X
by c−1 and so both terms of �1 are invariant.
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(ii) For the shearings, γ is unchanged and A becomes A− cId for a constant c ∈ C.
Thus X = ad−1

A B, and therefore the term Tr(X2TdT), is unchanged. However
from the final term we pick up an extra term −cTr(PQT∞dT∞). This may be
removed by the gauge transformations of Example 5.5 with λ∞ = c. Note that
in fact Example 5.5 computes the gauge transform of the trivial connection ω̂

whereas we are interested in the transform of ω̂− d� . However the difference
is the same in both cases since � is invariant under the action of g (and indeed
this holds for all transformations of the form (5.4)).

(iii) For the Fourier–Laplace transform, using the formulae (3.4) we find �1 minus
its transformed version is

Tr
((

Xr0X0r + X2
rr − Q rPrA−1

r − XrrArXrrA−1
r

)
TrdTr

)

which simplifies further to equal the term Tr(�
θ) in Example 5.6, appearing
from the gauge transformation by g = exp(A−1

r T2
r /2). �

5.3. Further properties of the Hamiltonians. —

Theorem 5.7. — Let � =∑
i∈I Hidti be the Hamiltonian one-form (5.3) so Hi is a function

on the total space F. Then for all i, j ∈ I:

(i) {Hi,Hj} = 0 as functions on any fibre M of F,

(ii) ∂Hi/∂ tj = ∂Hj/∂ ti

and consequently the nonlinear connection on F determined by � is integrable and the restriction of � to

each solution leaf is closed (so new τ functions may be defined by (5.1)).

Proof. — For the first property we will show that each Hi is in the subring I of the
functions on M defined in Section 4. The result then follows as I is Poisson commutative.
If i ∈ I∞ we claim that

Hi = 1
2

ResiTr(AB)

where B is the matrix valued rational function Az+B+T+Q(z−C)−1P on P1, A = Bdz

and Resi denotes the residue at ti (an eigenvalue of C = T∞). This shows that Hi is the
restriction of an invariant function on the loop algebra, and so Hi is in I by the Adler–
Kostant–Symes theorem (see Appendix A). The claim itself will be established in proof
of Theorem 5.9 below. If i ∈ Ij and j 
= ∞ then we can do a symplectic transform to
move j ∈ P to ∞ and repeat as above. However the Hamiltonians are not quite invariant
under the symplectic transformations: we need to check that when we twist by the gauge
transformations the result stays in I . It is sufficient to check that all the terms that modify
the Hamiltonians, induced by gauge transformations, are themselves in I . These terms
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are of the form Tr(�
θ) (where θ = λT̂dT̂). Expanding this out we see the Hamiltonian
terms are of the form

−
∑
i∈I

λiTr(Q iPi)tidti

for constants λi . Here Q i = � ◦ ιi : Vi → V and Pi = −πi ◦ 
 : V → Vi where ιi and πi

are the inclusion and projection for Vi ⊂ V =⊕
Vi . Thus (since ti is held constant in (i))

it is sufficient to verify the following.

Lemma 5.8. — For any i ∈ I the function Tr(Q iPi) on M is in I .

Proof. — For i ∈ I∞ this is clear since TrQ iPi is the residue of TrA at z = ti and this
is the restriction of an Ad-invariant function on the loop algebra, so the result follows from
the Adler–Kostant–Symes theorem. For i ∈ Ij, j 
= ∞ we may do a symplectic transform
to move j ∈ P to ∞: we may write Tr(Q iPi) = −Tr(�Idi
) = −Tr(Idi
�) where Idi

is the idempotent for Vi ⊂ V. From the results of Section 3, this expression Tr(Idi
�)

is invariant under the symplectic transformations, so again Tr(Q iPi) is the trace of a
residue and thus in I . �

Thus Hi ∈ I for all i and so they all Poisson commute. The second property is a
straightforward verification. The integrability now follows from Lemma 5.2. �

Note that we will see below in Section 9 that −PiQ i is a moment map for the
natural action of GL(Vi) on M, and so each of the functions Tr(Q iPi) is constant on
the reduced manifolds (the symplectic quotients of M)—i.e. the gauge transformations
only change the reduced Hamiltonians by constants and so will not change the reduced
differential equations.

Theorem 5.9. — The Hamiltonian one-form � in (5.3) equals �∞ +∑
i∈I∞ �i where

�i = 1
2

Resz=ti(TrAB)dti

and

�∞ = Res∞Tr
(
(dzĝ)ĝ

−1zdT
)

for any formal series ĝ = 1 + g1/z + · · · putting A into formal normal form at z = ∞.

Here A = Bdz, and ĝ is discussed fully in Appendix C.

Proof. — Computing the residues at finite distance yields

(5.5)
∑
i∈I∞

�i = Tr(PAQCdC) + Tr
(
P(B + T)QdC

)+ Tr(PQP̃Q)/2
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where C = T∞. At z = ∞, by writing ĝ = 1 + g1/z + g2/z2 + · · · we find

�∞ = −Res∞Tr(g1dTdz/z) = Tr(g1dT).

This is more difficult to compute explicitly. The result is

Tr(QT∞PdT) − Tr(XTXdT) + Tr
(
X2TdT

)
(5.6)

+ Tr
([X,QP]dT

)− Tr(XBXdT)

+ Tr
(
Q̃Pδ(QP)

)
/2 + Tr

(
Q̃Pδ(XB)

)+ Tr
(
X̃Bδ(XB)

)
/2.

See Appendix C for the details (where we also give the expression that arises if we
were working with other complex reductive groups). Finally we have the pleasant task
of showing that the sum of (5.5) and (5.6) equals the shorter expression (5.3) in terms of
�,
 ∈ End(V). Indeed the quartic terms equal 1

2Tr(
̃�δ(
�)), the cubic terms equal
−Tr(
�
dT̂), and the quadratic terms equal �1 − Tr(
T̂
dT̂). �

If all the simple poles are nonresonant (Q iPi has no eigenvalues differing by a
positive integer for i ∈ I∞) then there is a unique formal isomorphism ĝi ∈ G[[z − ti]] with
constant term 1, such that ĝi[A] = Q iPidz/(z − ti) = dzξi , where ξi = Q iPi log(z − ti).
Then since dBξi is minus the principal part of Bdti at z = ti it follows that

�i = Resz=ti Tr
(
(dzĝi)ĝ

−1
i dBξi

)

for all i ∈ I∞ (and similarly at z = ∞), and thus that � is an extension to our context of
the one-form of Jimbo–Miwa–Ueno [28] p. 311, that they used to define τ functions.3

6. Isomonodromy

So far we have written down a family of nonlinear connections and shown they
are integrable, and that they are invariant under the full SL2(C) group of symplectic
transformations, up to some simple gauge transformations. In this section we will show
that local solutions to these nonlinear equations yield isomonodromic families of linear
connections on the Riemann sphere. Performing symplectic transforms then shows that
the same equations control many different isomonodromic deformations (e.g. on different
rank bundles with different numbers of poles). Here we use the De Rham approach to
isomonodromy, in terms of integrable absolute connections (cf. [6] Section 7).

3 In [28] the connections are assumed to have regular semisimple leading coefficients at each irregular singularity:
this immediately implies that the connections only have one level, and that the blocks �i of the exponent of formal
monodromy are nonresonant; we are considering a multilevel case and allow �i to be resonant.
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6.1. Full connections. — Suppose that � ∈ M is a holomorphic function of T̂ ∈
B′ defined on some open subset B′ ⊂ B. Write V = W∞ ⊕ U∞ as usual. Consider the
following End(U∞)-valued meromorphic one-form on P1 × B′:

(6.1) � = (Az + B)dz + d(zT) + Qd log(z − T∞)P + [dT,X] + ˜δ(XB) + ˜δ(QP)

where d is the exterior derivative on P1 × B′, T ∈ End(U∞) denotes the restriction of
T̂, δ : End(U∞) → End(U∞) denotes the restriction of the map δ, where A,B,P,Q are
determined from α,β, γ by normalising and writing

α∂ + βz − γ =
(

z − T∞ −P
−Q ∂ − Az − B − T

)
∈ End(W∞ ⊕ U∞) ⊗ A1

as before, with T∞ = C. Here X = ad−1
A (B) ∈ End(U∞)◦ and, for any R ∈ End(U∞)

R̃ := ad−1
T

([dT,R]).
We will view � as a linear connection on the trivial vector bundle with fibre U∞ over the
product P1 × B′ (so local horizontal sections are maps v : U → U∞ satisfying dv = �v,
with U ⊂ P1 × B′). Note that the vertical component of � is

A : = 〈�,∂〉dz = (Az + B + T)dz + Q(z − T∞)−1Pdz(6.2)

= (Az + B + T)dz +
∑
i∈I∞

Q iPi

z − ti
dz(6.3)

as in (2.5) where U∞
Q i

�
Pi

Vi ⊂ W∞ are the components of P,Q.

The main result we will establish in this section is the following.

Theorem 6.1. — If the local section � of F is horizontal for the connection ω̂− d� determined

by the Hamiltonians (5.3) then � is flat.

In principle this is possible by direct algebraic computation, which we will leave to
the reader. Instead we will give a more conceptual approach.

Proof. — We need to see that d� = �2. Write � = Bdz +∑
i∈I Bidti so A = Bdz.

We should show that

∂B
∂ ti

− ∂Bi

∂z
+ [B, Bi] = 0

and

∂Bj

∂ ti
− ∂Bi

∂ tj
+ [Bj, Bi] = 0
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for all i, j ∈ I. The first set of equations give the ‘isomonodromic’ evolution of B with
respect to the times ti : ∂B

∂ ti
= ∂Bi

∂z
+ [Bi, B]. We should check that the right-hand side

coincides with the evolution determined by the nonlinear connection on F.
If i ∈ I∞ then as we saw in Section 5.3 the corresponding Hamiltonian is Hi =

ResiTr(AB)/2. The derivative of this is ResiTr(Bd A) so by Lemma A.3 the corre-
sponding Hamiltonian vector field at B is [B, B−] where B− is the singular part of B
at z = ti , i.e. B− = Q iPi/(z − ti). Now we observe, from the expression for �, that
Bi = −Q iPi/(z − ti) = −B−. Thus the tangent to B corresponding (under the map
γ �→ B) to the vector ∂/∂ ti + {Hi, ·} on F is

Q iPi

(z − ti)2
+ [B, B−]

where the first term is obtained by differentiating B with respect to its explicit ti-
dependence. In turn this is

∂Bi

∂z
+ [Bi, B]

as required.
If i ∈ Ij, j 
= ∞ then from Theorem 5.9 Hi is the coefficient of dti in

�∞ = Res∞Tr
(
(dzĝ)ĝ

−1zdT
)

where ĝ is a family of formal isomorphisms to normal forms, as in Appendix C. It is
straightforward to check that ĝ may be chosen so each coefficient depends holomorphi-
cally on the parameters (in the nonresonant case this is clear since ĝ is uniquely deter-
mined). This may be rewritten as Res∞Tr(ĝ−1(dzĝ)R) where R = zĝ−1dT ĝ. Now since
ĝ[A] = A0 := (Az + T + �̂/z)dz we have ĝ−1(dzĝ) = ĝ−1 A0ĝ − A so that Hi is the coeffi-
cient of dti in

−Res∞Tr(AR)

since Res∞Tr(A0zdT) = 0. Next we claim that the derivative of Hi is the coefficient of dti
in −Res∞Tr((d A)R). To see this note that

Res∞Tr(Ad R) = Res∞Tr
(

A
[

R, ĝ−1dĝ
])

= −Res∞Tr
(
ĝ−1dzĝ

[
R, ĝ−1dĝ

])
as A0 and dT commute

= Res∞Tr
([

dzĝĝ−1, dĝĝ−1
]
zdT

)
= 0 by looking at the possible degrees in z.

Thus by Lemma A.3 the Hamiltonian vector field of Hi at B is [Ri
−, B] where Ri is the

coefficient of dti in R and Ri
− is the polynomial part of Ri ∈ End(U∞)((z−1)). Thus to
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conclude we should check (i) that Ri
− = Bi (the dti component of �) and (ii) that ∂Bi/∂z

is the derivative of B with respect its explicit ti dependence.
Part (ii) is immediate (it only involves the term d(zT)). For (i) write ĝ = 1+g1/z+· · ·

so that

R− = (
zĝ−1dT ĝ

)
− = zdT + [dT, g1].

Then from Lemma C.1

[dT, g1] = [dT,X] + ˜δ(QP) + ˜δ(XB)

so (i) follows (comparing with the expression for �).
Finally it is straightforward check the ti–tj components commute. See e.g. [18]

Proposition 11.2.12 p. 198 for a streamlined direct algebraic approach, which extends
immediately to our context. �

Remark 6.2. — Note that it is possible (similarly to [28]) to view the eigenvalues
aj ∈ C of A as times as well (higher irregular times), although we will not do this here,
since it is the lowest irregular times T which are related under the SL2(C) action to the
pole positions ti . Also the Hamiltonian story is then more complicated (one runs into
the symplectic trivialisation problem of [6] Remark 7.1; the symplectic structure on M∗

depends on these times so one needs to choose an a priori symplectic trivialisation of F).
In general this problem does not arise if attention is restricted to the lowest irregular times
(i.e. the coefficients of the irregular type closest to the residue). (Note also that due to the
SL2(C) action, these higher times will only give something new if k = | J| ≥ 4.)

7. Nonlinear differential equations

In this section we will write down the nonlinear Hamiltonian equations in various
ways. Note that all the equations here are equivalent to the (simpler looking) “generic
equations” which appear when J ⊂ C (see (8.4) of Section 8.4).

Proposition 7.1. — Horizontal sections of the connection ω̂ − d� on F → B are determined

by the differential equation:

d� = [
˜δ(
�),�

]+ (γ
dT̂ + dT̂
γ )◦ − φ−1(
dT̂
)

+
(

0 −T∞dT∞PA
AQT∞dT∞ −TdTX − XTdT

)

where φ−1 : End(V) → End(V) is defined in components by φ−1(Bij) = Bij/φij if i 
= j and 0 if

i = j , and in general R◦ = R − δ(R).
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Proof. — This follows from Lemma 5.3, and its analogue for the expression (3.1)
for ω. The calculation is simplified by noting the following, which is straightforward.

Lemma 7.2. — If R,F are a matrix valued function and one form respectively, then (recalling

that the commutator of matrices of one forms involves a plus sign):

(i) d(R̃) = −d̃R, and

(ii) Tr(̃FR) = −Tr(FR̃).

Then it is easy, using the fact that δ(
�) = −δ(�
), to verify that dTr(
̃�δ(
�))/2 =
Tr([ ˜δ(
�),�]d
) yielding the first term of the equation. Similarly the next two terms
arise from −Tr(
γ
dT̂), and the final terms from the two remaining terms of � . �

Expanding in terms of Q,P,B we obtain the equivalent equations:

dQ = QP̃Q + R̃Q + [dT,X]Q + (B + T)QdT∞

+ dTQT∞ + AQT∞dT∞,

−dP = P̃QP + PR̃ + P[dT,X] + dT∞P(B + T)

+ T∞PdT + T∞dT∞PA,

dB = [R̃,B] + [dT,QP] + BXdT + dTXB

+ [A,QdT∞P − XdTX] + [
T, [X, dT]]

(7.1)

where R = δ(QP + XB) and we tacitly apply (·)◦ to the right-hand side of the third equa-
tion, and as usual X = ad−1

A B and (̃·) = ad−1
t [dt, ·] (with t = Ti,T etc. as appropriate).

Alternatively one may rewrite the equations in terms of the components Bij ∈
Hom(Wj,Wi) of � (for i 
= j ∈ J) as follows:

dBij =
∑

k

˜XikBkiBij + Bij
˜BjkXkj(7.2)

+
∑

k

dTiXikBkj + BikXkjdTj − XikdTkXkj/φij

+ dTiXijTj + TiXijdTj −

⎧⎪⎨
⎪⎩

TidTiXij + XijTjdTj if i, j 
= ∞, or
T∞dT∞Bijaj if i = ∞, or
−aiBijT∞dT∞ if j = ∞

where Xij = φijBij are the components of 
, and we set Bii = 0.
Now suppose we choose j ∈ J and i ∈ Ij , so we have vector spaces Vi ⊂ Wj and

Uj = V � Wj . If i ∈ Ij we will also write Ui := Uj . The above equations may also be
rewritten in terms of maps between these vector spaces. To this end define

(7.3) Q i = � ◦ ιi : Vi → Ui, Pi = −πi ◦ 
 : Ui → Vi.
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Here πi and ιi are the projection and the inclusion between V and its summand Vi .
(Note that the image of Q i is indeed in Ui , and for Pi we tacitly restrict 
 to Ui .) Thus
all the data in � is contained in the set of maps {Q i} and also in the set of maps {Pi} as i

ranges over I. Note also that if j = ∞ and i ∈ I∞ then Q i,Pi are components of Q,P (i.e.
Q i = Q ◦ ιi , and Pi = πi ◦ P) so the notation (7.3) is consistent with that used earlier, and
now extends to all i ∈ I.

Proposition 7.3. — For all j ∈ J and i ∈ Ij there are one-forms �i on B (depending explicitly on

γ ) with values in End(Ui) such that the equations (7.2) are equivalent to the following overdetermined

system:

dQ i = �iQ i, dPi = −Pi�i

for all i ∈ I.

Note that just one of these two sets of equations is equivalent to the system (7.2). The
point to note is that the same �i appears in both equations.

Proof. — If i ∈ I∞ then �i is the restriction of the full connection � to the divi-
sor z = ti (along which it has a logarithmic singularity): �i = �|z=ti . Indeed from the
definition of the tilde operation it follows that

∑
j∈I∞\{i}

Q jPjQ i

dti − dtj

ti − tj
= QP̃Q ◦ ιi

and similarly for πi ◦ P̃QP. Thus from the first two equations in (7.1), we see that

(7.4) �i =
∑

j∈I∞\{i}
Q jPj

dti − dtj

ti − tj
+ R̃ + [dT,X] + d(Tti) + (Ati + B)dti = �|z=ti

where R = δ(QP + XB). For the other possible i ∈ I (say i ∈ Ik, k 
= ∞ ∈ J) this may be
shown by direct computation, from (7.2). One finds that

�i =
∑

j∈Ik\{i}
Q jPj

dti − dtj

ti − tj
+ prk

(
˜δ(
�) + (dT̂)


+ (
�dti − ϕ−1

k 
dT̂ + d(tiT̂) + Ci

)
ϕk

)

where prk : End(V) → End(Uk) is the projection, ϕk = Idk +∑
j∈J φjkIdj ∈ Aut(V) (where

Idj is the idempotent for Wj ) and Ci =
(

aiT∞dT∞
−ti dti−TdT

) ∈ End(W∞ ⊕ U∞). In fact the
same expression works also for k = ∞ provided we replace Ci by

( 0
Atidti

)
. �

Thus there is a direct geometric interpretation in the case when i ∈ I∞; the
full connection � has a logarithmic singularity along the divisor z = ti , with residue
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Ri = Q iPi ∈ End(U∞). The one-form �i should be interpreted as a connection and
as such is just the restriction of � to this divisor. Things have been arranged so that Q i

is then a (collection of) horizontal sections of �i , and Pi is then a (collection of) horizon-
tal sections of the dual connection, so the residue is a horizontal section of the adjoint
connection. The geometry behind �i for i ∈ Ij, j 
= ∞ is not so immediately transparent,
but it may be obtained by performing a symplectic transform to move aj ∈ P to ∞ and
then using the above interpretation (taking care to do the explicit gauge transformations
so the normalisations match up—this only involves the “constants” Ci ).

Corollary 7.4. — Let Ri := Q iPi ∈ End(Ui),�i := −PiQ i ∈ End(Vi). If � is a local

horizontal section then

dRi = [�i,Ri], d�i = 0

for all i ∈ I.

Thus the adjoint orbit of each residue Ri is preserved under the flow, for all i ∈ I.
Note these orbits are also preserved under the symplectic transformations:

Proposition 7.5. — Under the action of SL2(C) the orbit of Ri ∈ End(Ui) is preserved, and

the value of �i ∈ End(Vi) is preserved.

Proof. — This follows from the definition (7.3) of Pi,Q i together with the formu-
lae for the SL2(C) action on �,
 given in the proof of Proposition 3.1. For example if
(�,
) �→ (ε�,
ε−1) then ε cancels in the definition of �i , and acts to conjugate Ri . �

Finally note that the orbits of the elements �i ∈ End(Vi) cannot be assigned arbi-
trarily since �i = −PiQ i = πi
�ιi so that

(7.5)
∑
i∈I

Tr(�i) = Tr(
�) = 0

due to the skew-adjointness of the map φ. (If we project to meromorphic connections this
corresponds to the sum of the traces of the residues being zero.)

7.1. Projected equations. — Considering the projection � �→ A to the space of mero-
morphic connections it is easy to see that the nonlinear equations descend (to equations
on the coefficients of A), as follows. Recall that

A =
(

Az + B + T +
∑
i∈I∞

Ri

z − ti

)
dz
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on the trivial bundle U∞ × P1, where Ri = Q iPi ∈ End(U∞). The corresponding non-
linear equations are

(7.6)

{
the third equation in (7.1) for dB, and
the equations dRi = [�i,Ri] with i ∈ I∞

where �i is as in (7.4). (It is easy to see that these equations only depend on {Ri} and
not on their lifts Q,P; for example QdT∞P =∑

I∞ Ridti .) These are the equations which
arise as the condition for the vanishing of the curvature of the full connection

(7.7) � = (Az + B)dz + d(zT) +
∑
I∞

Ri

dz − dti

z − ti
+ [dT,X] + R̃

with R = δ(XB + ∑
I∞ Ri). The point is that by lifting up to M we see the symplectic

SL2(C) symmetry group which is not apparent at this (intermediate) reduced level. The
Hamiltonians also descend to this level as follows. Fix adjoint orbits Oi ⊂ End(U∞) for
i ∈ I∞ and define

M̃∗ = OB ×
∏
I∞

Oi

where OB = {(Az + T + B)dz | B ∈ Im(adA) ⊂ End(U∞)} is the coadjoint orbit through
(Az + T)dz under the group of jets at ∞ of gauge transformations tangent to the identity
(cf. Appendix A and [6] Section 2). Then observe that the Hamiltonians on F descend to
the total space of the trivial symplectic fibration

M̃∗ × B → B.

Indeed this follows from the expressions (5.5) and (5.6) noting e.g. that QT∞P =∑
I∞ Ri ti

and

Tr(PQP̃Q) =
∑

i 
=j∈I∞

Tr(RiRj)
dti − dtj

ti − tj
.

The space M̃∗ is a symplectic leaf of the quotient M/H∞ where H∞ = ∏
I∞ GL(Vi)

(cf. Lemma A.1). Basic example of these projected equations (7.6) are the Schlesinger
equations and the JMMS equations, as will be made explicit in the following section.

Note that we view the projected equations (7.6) as essentially equivalent to the full
equations of Proposition 7.1, since one may lift any solution of (7.6) by only solving linear
differential equations (as in [9] Proposition 15).



SIMPLY-LACED ISOMONODROMY SYSTEMS 31

8. Examples

8.1. JMMS. — Consider the case where J = {0,∞} ⊂ P so A = B = 0, and

� =
(

0 P
Q 0

)
, 
 =

(
0 −P
Q 0

)
,

T̂ =
(

T∞ 0
0 T0

)
∈ End(W∞ ⊕ W0).

The phase space M is {(P,Q)} = Hom(W0,W∞) ⊕ Hom(W∞,W0) with the symplectic
form Tr(d
 ∧ d�)/2 = Tr(dQ ∧ dP). The Hamiltonian one-form then is:

� = 1
2

Tr(QP̃QP) + 1
2

Tr(PQ̃PQ) + Tr(PT0QdT∞) + Tr(QT∞PdT0).

In this situation the full connection specialises to:

� = d(zT0) + Qd log(z − T∞)P + Q̃P

on the vector bundle W0 × P1 × B → P1 × B, where the space of times B is {T̂} ∼=
(C|I0| \ diagonals) × (C|I∞|\diagonals). The nonlinear differential equations (7.1) are:

(8.1)
dQ = QP̃Q + Q̃PQ + T0QdT∞ + dT0QT∞

−dP = PQ̃P + P̃QP + T∞PdT0 + dT∞PT0.

These are equivalent to the JMMS equations [27]; They may be rewritten as follows.
Let {Vi} be the eigenspaces of T∞ ∈ End(W∞) (labelled by i ∈ I∞). Let ιi : Vi → W∞,
πi : W∞ → Vi be the corresponding inclusions and projections. Write

Q i = Q ◦ ιi : Vi → W0, Pi = πi ◦ P : W0 → Vi

for the corresponding components of P and Q respectively. Proposition 7.3 then implies:

Corollary 8.1. — Equations (8.1) may be rewritten as:

dQ i = �iQ i, dPi = −Pi�i

for all i ∈ I∞, where �i = �|z=ti = d(tiT0) + Q̃P +∑
j 
=i∈I∞ Q jPjd log(ti − tj).

These equations are the lifted JMMS equations which appear in [27] (A.5.9). The JMMS
equations themselves ([27] 4.44 or A.5.1) correspond to our projected equations (7.6)
obtained by setting Ri = Q iPi, which in this case, since B = 0, are

dRi = [�i,Ri] where �i = d(tiT) + R̃ +
∑

j∈I∞\{i}
Rj

dti − dtj

ti − tj

and R =∑
I∞ Ri .
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Remark 8.2. — Strictly speaking [27] only considers Hamiltonians in the case
where T0 has distinct eigenvalues, although as they write “the general case is treated
with minor modifications”. Under this restriction Harnad’s symmetry only appears upon
restricting T∞ to also have distinct eigenvalues, so that the residues Q iPi are all rank
one matrices. This special case is highlighted on p. 155 of [27] and the symmetry of the
Hamiltonians may be seen (for this case) in [27] Equation (A.5.16).

8.2. Schlesinger. — Now suppose we are in the special case of the JMMS equations
where T0 = 0. Then the full connection specialises to:

� = Q�P

where � = d log(z − T∞), and the Hamiltonian one-form is � = Tr(PQP̃Q)/2. The
nonlinear differential equations are:

(8.2) dQ = QP̃Q, dP = −P̃QP.

These equations are equivalent to the Schlesinger equations—more precisely they are the
lifted Schlesinger equations, and imply the Schlesinger equations by projection as above.
Namely Equations (8.2) are equivalent to the equations

dQ i = �iQ i, dPi = −Pi�i

where �i = �|z=ti =
∑

j 
=i∈I∞ Q jPjd log(ti − tj), and so if we write Ri = Q iPi ∈ End(W0)

then

dRi = [�i,Ri] = −
∑
j 
=i

[Ri,Rj]d log(ti − tj)

which are the Schlesinger equations [55] p. 67.

8.3. Dual Schlesinger. — Suppose again we are in the situation of JMMS but instead
that T∞ = 0. Then the nonlinear differential equations are:

dQ = Q̃PQ, dP = −PQ̃P.

In this situation the full connection specialises to:

� = d(zT0) + QP
dz

z
+ Q̃P,

and the Hamiltonians are � = Tr(QPQ̃P)/2. Setting R = R0 = QP ∈ End(W0) the
projected equations are

dR = [R̃,R]
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i.e. dR = [ad−1
T [dT,R],R], with T = T0. Some special cases of these equations control

semisimple Frobenius manifolds [21] Equation (3.74). (By Harnad duality they are equiv-
alent to certain cases of Schlesinger’s equations—in fact they are within the special case
of rank one residues considered in [27] p. 155.) A generalisation of these dual Schlesinger
equations to arbitrary complex reductive groups G was studied in [7]—then the space of
times is the regular part of a Cartan subalgebra (whose fundamental group is the pure
G-braid group).

8.4. Generic equations. — Since the symplectic transformations enable us to move J
around in the Fourier sphere P by Möbius transformations, we see generically no point
of J will lie at ∞ ∈ P. In this case the full connection is

� = (Az + B)dz + d(zT) + [dT,X] + ˜δ(XB)

on the trivial bundle with fibre V (since W∞ = 0,U∞ = V—in effect P = Q = 0 and
T = T̂). Upon restriction to P1 this has just one pole of order three at z = ∞ and no
others. The Hamiltonians are

(8.3) � = 1
2

Tr
(
X̃Bδ(XB)

)− Tr(XBXdT) + Tr
(
X[X,T]dT

)

and the nonlinear equations are

(8.4) dB = [
˜δ(XB),B

]+ [[dT,X],B + T
]◦

.

These are the “master equations” in the sense that any of the other nonlinear equations
considered here are equivalent to equations of this form (by moving J ⊂ P so that ∞ 
∈ J).
Note that if A has distinct eigenvalues (as in the work [28] of Jimbo–Miwa–Ueno) then
˜δ(XB) = 0 and the equations are simpler.

For example if we consider the bipartite case with J = {0,1} ⊂ P \ ∞ so that V =
W0 ⊕ W1, then upon writing B = (

0 R
S 0

)
Equations (8.4) become

dS = SR̃S + S̃RS + T1SdT0 + dT1ST0 − (ST0dT0 + T1dT1S)

−dR = RS̃R + R̃SR + T0RdT1 + dT0RT1 − (RT1dT1 + T0dT0R).

The terms in parentheses can be gauged away, and we obtain the lifted JMMS equations
(8.1). In other words we have an alternative Lax pair for the JMMS equations, as control-
ling isomonodromic deformations of A = (Az +B+T)dz on V×P1 with V = W0 ⊕W1.
In turn by specialising (e.g. to T1 = 0) this gives a new Lax pair for the Schlesinger equa-
tions, and specialising further even for Painlevé VI (cf. Section 11.1).
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9. Reductions, moduli spaces and relation to graphs

In summary we have defined and studied a flat nonlinear connection on the bun-
dle F = M × B → B and shown that it is invariant under an action of SL2(C), up to
some simple explicit gauge transformations. It is also invariant under the natural action
of the group Ĥ =∏

GL(Vi). The aim of this section is to consider the reductions of the
nonlinear connection under this group of automorphisms Ĥ (rather than just the sub-
group H∞ ⊂ Ĥ considered in Section 7.1). In brief this amounts to replacing M by its
symplectic quotient

M∗ = M //
Ŏ

Ĥ

by Ĥ at a coadjoint orbit Ŏ. To make life simpler we will restrict to the subset of stable

points M∗
st ⊂ M∗ throughout this section.

The main results are that (1) the resulting nonlinear connection on M∗ × B → B
is (completely) invariant under the symplectic group of transformations, and (2) that after
reduction extra symmetries become apparent that, when combined with the symplectic
transforms, immediately give the desired action of a Kac–Moody Weyl group.

This Kac–Moody Weyl group action simultaneously generalises that of (1) Okamoto
[48] (in the theory of Painlevé equations, when dimC(M∗) = 2), and (2) Crawley–Boevey
[16] (in the case of Fuchsian systems, corresponding to star-shaped Kac–Moody Dynkin
graphs).

As we will explain, from the point of view of irregular connections this action is
not at all mysterious: it basically amounts to changing the possible choices of orderings of
the eigenvalues of the residues Ri for all i ∈ I. Of course at any given moment, only the
Ri with i ∈ I∞ will appear as residues at simple poles, and we should use the symplectic
transformations to realise the other Ri as residues.

First of all some basic definitions related to graphs will be given.

9.1. Representations of graphs. — Suppose G is a graph with nodes I (and edges G ).
Let G be the set of oriented edges of G , i.e. the set of pairs (e, o) such that e ∈ G is an
edge of G and o is a choice of one of the two possible orientations of e. Thus if a ∈ G is
an oriented edge, the head h(a) ∈ I and tail t(a) ∈ I nodes of a are well defined. For our
purposes it is convenient to define a representation of the graph G to be the following data

(1) an I-graded vector space V =⊕
i∈I Vi , and

(2) for each oriented edge a ∈ G , a linear map va : Vt(a) → Vh(a) between the vector
spaces at the tail and the head of a.

Thus the data in (2) amounts to choosing a linear map in both directions along
each edge of G . A subrepresentation of a representation V of G consists of an I-graded
subspace V′ ⊂ V which is preserved by the linear maps, i.e. such that va(V′

t(a)) ⊂ V′
h(a) for
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each oriented edge a ∈ G . A representation V is irreducible if it has no proper nontrivial
subrepresentations. Given an I-graded vector space V we may consider the set Rep(G,V)

of all representations of G on V. This is just the vector space

Rep(G,V) =
⊕
a∈G

Hom(Vt(a),Vh(a))

of all possible maps.

9.2. The Kac–Moody root system and Weyl group. — Let G be a graph with no edge
loops. Then one can define a (symmetric) Kac–Moody root system and Weyl group as
follows. Let I be the set of nodes and let n = |I| be the number of nodes. Define the n × n

(symmetric) Cartan matrix to be

C = 2 Id − A

where A is the adjacency matrix of G ; the i, j entry of A is the number of edges connecting
the nodes i and j. The root lattice ZI =⊕

i∈I Zεi inherits a bilinear form defined by

(9.1) (εi, εj) = Cij.

The simple reflections si, acting on the root lattice, are defined by the formula

si(β) := β − (β, εi)εi

for any i ∈ I. They satisfy (cf. [30] p. 41) the relations

s2
i = 1, sisj = sj si if Aij = 0, sisj si = sj sisj if Aij = 1.

By definition the Weyl group is the group generated by these simple reflections. There
are also dual reflections ri acting on the vector space CI by the formula

ri(λ) = λ − λiαi

where λ = ∑
i∈I λiεi ∈ CI with λi ∈ C and αi := ∑

j(εi, εj)εj ∈ CI. By construction one
has that si(β) · ri(λ) = β · λ, where the dot denotes the pairing given by εi · εj = δij .

The corresponding Kac–Moody root system is a subset of the root lattice ZI. It
may be defined as the union of the set of real roots and the set of imaginary roots, where

(1) The simple roots are εi for i ∈ I,
(2) The set of real roots is the Weyl group orbit of the set of simple roots,
(3) Define the fundamental region to be the set of nonzero β ∈ NI whose support is

a connected subgraph of G and such that (εi, β) ≤ 0 for all i ∈ I. The set of
imaginary roots is the union of the Weyl group orbit of the fundamental region
and the orbit of minus the fundamental region.
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This defines the root system (see [30] Chapter 5 for the fact that this description
does indeed give the roots of the corresponding Kac–Moody algebra). By definition a
root is positive if all its coefficients are ≥ 0. For example if G is an ADE Dynkin diagram
this gives the root system of the corresponding finite dimensional simple Lie algebra,
or if G is an extended/affine ADE Dynkin diagram then this is the root system of the
corresponding affine Kac–Moody Lie algebra (closely related to the corresponding loop
algebra), but of course there are many examples beyond these cases.

9.3. Complete k-partite graphs. — Let G be a graph with nodes I (and edges G ). Recall
that by definition G is a complete k-partite graph if there is a partition I = I1 � · · · � Ik of its
nodes (into k nonempty parts Ij ) such that two nodes are connected by a single edge if
and only if they are not in the same part. Thus there is a bijection between the set of
partitions with k parts, and the set of complete k-partite graphs. Let G(P) denote the
complete k-partite graph corresponding to a partition P (thought of equivalently either
as a Young diagram, or as a partition of a finite set, or as a partition of an integer, or
as a surjective map φ : I → J onto the set J of parts, so that Ij = φ−1(j) for all j ∈ J).
For example the graph G(1,1) corresponding to the partition 1 + 1 is just a single edge
connecting two nodes, and similarly G(1,1,1) is the triangle and G(2,2) is the square
(a complete bipartite graph). The star-shaped graph with n legs of length one, is the
bipartite graph G(1, n). The graphs G(n) have n nodes and no edges, and the graphs
G(1,1, . . . ,1) are the complete graphs (with every pair of nodes connected by a single
edge). See Figure 3 of the introduction.

Definition 9.1. — A (simply-laced) supernova graph is a graph obtained by gluing a single

leg (of arbitrary length ≥ 0) onto each node of a complete k-partite graph.

Here a “leg” of length l is just a Dynkin graph of type Al+1, with l edges. For
example any star-shaped graph (with arbitrary length legs) may be viewed as a supernova
graph with central subgraph of the form G(1, n). This motivated the name “supernova”,
as a star with more going on in the middle. (The not-necessarily simply-laced symmetric
supernova graphs are the graphs described in Appendix C of [10].)

In the next three subsections we will give different viewpoints on the symplectic
reduction of M. Each viewpoint is useful for different reasons and going between these
different viewpoints yields the Kac–Moody reflections.

9.4. Moduli of Weyl algebra module presentations. — The first viewpoint is as the sym-
plectic reductions of the space M of presentations of modules for the first Weyl al-
gebra. Here the data we need is as follows. Choose a finite set J and an embedding
a : J ↪→ P = C ∪ {∞}. Write aj = a(j) for j ∈ J. For each j ∈ J choose a finite set Ij and
write I = ⊔

Ij . Choose a finite dimensional complex vector space Vi for each i ∈ I, and
write Wj =⊕

i∈Ij
Vi,V =⊕

i∈I Vi. Finally choose an adjoint orbit Ŏi ⊂ End(Vi) for each
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i ∈ I and write Ŏ =∏
Ŏi . Note that we place no restriction on these orbits (for example

the eigenvalues may be integral or differ by integers). In particular this data determines
the symplectic manifold M as in Section 3.

Proposition 9.2. — The group Ĥ = ∏
GL(Vi) acts on M in a Hamiltonian fashion with

moment map

μ : M →
∏

End(Vi); � �→ (�i).

The induced action on F = M × B preserves the isomonodromy connection.

Proof. — Here End(Vi) is identified with the dual of the Lie algebra of GL(Vi)

by the trace pairing. The action is defined by g(�) = g�g−1 for g ∈ Ĥ ⊂ GL(V). The
nonlinear equations are invariant since this action commutes with φ : End(V) → End(V)

and clearly gT̂g−1 = T̂. The moment map computation is straightforward: for example
for any fixed i ∈ Ij we may split M symplectically as a product M′ ×T∗ Hom(Vi,Uj) (with
symplectic form Tr(dQ i ∧ dPi) on the cotangent bundle—cf. (3.1) in the case j = ∞ and
the general case is similar). Then g ∈ GL(Vi) acts trivially on M′ and the action on the
cotangent bundle is easily seen to have moment map �i = −PiQ i . �

Recall that the stable points of M for the action of Ĥ (in the sense of Mumford’s
geometric invariant theory) are those points whose Ĥ orbit is closed and of maximal
possible dimension. These points may be described in terms of graph representations as
follows. Let G be the complete k-partite graph with nodes I corresponding to the partition
I =⊔

Ij , so that k = | J|.
Proposition 9.3. — (1) The space M is isomorphic to the space Rep(G,V) of representations

of the graph G on the I-graded vector space V.

(2) The stable points of M for the action of Ĥ are the irreducible representations.

Proof. — (1) is straightforward: specifying a point of M is the same as the choice of
linear maps bij : Vj → Vi for all i, j ∈ I not in the same part. Then (2) is a special case of
a result of King [32] on quiver representations. �

Thus we may now perform the symplectic quotient of the stable part of M by Ĥ, at
the (co)adjoint orbit Ŏ of Ĥ. Namely we define the moduli space of stable Weyl algebra
module presentations to be

M∗
st = M∗

st(G, Ŏ) = {
stable points � ∈ M such that μ(�) ∈ Ŏ

}
/Ĥ

where μ is the moment map for the Ĥ action. We will see below in Proposition 9.8 and
Theorem 9.11 that this is a smooth (possibly empty) symplectic algebraic variety.
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Corollary 9.4. — The isomonodromy connection on F → B descends to define a nonlinear

connection on M∗
st × B → B, and this reduced connection is completely invariant under the symplectic

action of SL2(C).

Proof. — We have already shown the connection is Ĥ invariant, and so descends.
For the symplectic invariance, we have already shown the connection on F is invariant
up to some explicit gauge transformation. But these gauge transformations act within
the orbits of the Ĥ action, and so are trivial after reduction. Said differently once the
orbits of the elements �i are fixed then the gauge terms changing the isomonodromy
Hamiltonians are constant so that the (reduced) isomonodromy connections are the same
(with their Hamiltonians differing by constants). �

One consequence of stability that will be useful is the following. Recall that given
� ∈ M we have defined, for any i ∈ Ij , two linear maps Q i : Vi → Uj and Pi : Uj → Vi

(see (7.3)).

Lemma 9.5. — If � ∈ M is stable then Q i is injective and Pi is surjective, for all i ∈ I.

Proof. — Thinking in terms of representations of the complete k-partite graph G ,
Pi encodes all of the maps to Vi and Q i encodes all the maps from Vi . Thus if Pi was
not surjective, then we could replace Vi by the image Pi(Uj) ⊂ Vi to obtain a nontrivial
proper subrepresentation, contradicting stability. If Q i was not injective, then we could
choose a nonzero subspace K ⊂ Vi of its kernel to define a subrepresentation (taking the
zero vector space at all other nodes), again contradicting stability. �

Corollary 9.6. — If � ∈ M is stable then fixing the adjoint orbit of �i ∈ End(Vi) is equivalent

to fixing the adjoint orbit of Ri ∈ End(Ui).

Proof. — Since Ri = Q iPi and �i = −PiQ i , this follows from the injectiv-
ity/surjectivity conditions in Lemma 9.5. The exact relation between the orbits is sum-
marised in Appendix D. �

Remark 9.7. — One can also consider the naive symplectic quotient

M∗ = {
� ∈ M such that μ(�) ∈ Ŏ

}
/Ĥ.

Note that for sufficiently generic orbits Ŏ this coincides with M∗
st , since for any subrep-

resentation V′ ⊂ V one has

(9.2)
∑

Tr
(
�′

i

)= 0

(where �′
i ∈ End(V′

i) is the analogue of �i determined by the subrepresentation V′) and
the eigenvalues of �′

i will be a subset of the eigenvalues of �i , so that if Ŏ is sufficiently
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generic there will be no relation of the form (9.2) and thus no proper nontrivial subrep-
resentations. Thus in such cases M∗ itself is a smooth algebraic variety.

9.5. Representations of supernova graphs. — Now we will describe the above moduli
spaces in terms of representations of supernova graphs. In brief the choice of the orbits
Ŏi is replaced by the choice of a scalar on each node of the legs; describing the choices in
this way enables us to see the underlying Kac–Moody root system. In turn this enables us
to attach isomonodromy equations to representations of supernova graphs. (If the graph
is star-shaped the equations will be equivalent to the Schlesinger equations, and more
generally if the central part of the graph is bipartite, i.e. | J| = 2, then the equations will
be equivalent to the JMMS equations.)

Let Ĝ be a supernova graph with nodes Î, as defined in Section 9.3. Thus Ĝ consists
of a complete k-partite subgraph G ⊂ Ĝ with nodes I ⊂ Î and a ‘leg’ glued on to the ith
node for each i ∈ I. We will call G the core of Ĝ ; it is uniquely determined except in the
star-shaped case. Let I =⊔

j∈J Ij be the partition of I into parts Ij labelled by the set J, so
that k = | J|. Let li ∈ Z≥0 be the length of the ith leg for each i ∈ I.

The further data required to construct the desired spaces are as follows:

– a complex number λi ∈ C for each i ∈ Î,
– a distinct point of the Fourier sphere aj ∈ P for each part j ∈ J,
– an integer di ≥ 0 for each i ∈ Î.

Given such integers di define Vi = Cdi and thus a vector space V̂ = ⊕
i∈̂I Vi

graded by Î. The space of times for the corresponding isomonodromy equations is B =∏
j∈J(C

|Ij | \ diagonals) ⊂ CI. In other words B consists of the sequences {ti | i ∈ I} ∈ CI

such that ti 
= ti′ whenever i and i′ are in the same part of I, i.e. there is a time vari-
able ti ∈ C for each node of the core, and the times in the same part should be pairwise
distinct. Given such data let

M̂ = Rep(Ĝ, V̂)

be the space of representations of Ĝ on V̂. By dividing up the edges of Ĝ into those in the
core or in a leg there is a product decomposition:

M̂ = M × L

where M is as above (identified with the space of representations of G on V = ⊕
i∈I Vi )

and L =∏
i∈I Li where Li is the space of representations of the ith leg:

Li =
li∏

j=1

T∗ Hom(Vi,j,Vi,j+1)

where Vi,j ⊂ V̂ denotes the vector space on the jth node of the ith leg (labelled going down
the leg so that Vi,1 = Vi for all i ∈ I). Here we have identified Hom(V,W)⊕Hom(W,V)
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with the cotangent bundle T∗ Hom(V,W), thus giving each Li and therefore L a complex
symplectic structure (using the natural symplectic structure on the cotangent bundle).
Thus M̂ inherits a product symplectic structure from that on L and the (nonstandard)
symplectic form of Section 3 on M, depending on the chosen points aj ∈ P (and defining
Wj =⊕

i∈Ij
Vi to relate the definition of M in Section 3 to the present definition).

A point of Li will be denoted (pi,qi) with pi = (pi1, pi2, . . .),qi = (qi1, qi2, . . .) with
pij : Vi,j → Vi,j+1 and qij : Vi,j+1 → Vi,j for j = 1,2, . . . , li . The group

Ĝ =
∏
i∈̂I

GL(Vi)

acts naturally on M̂ via its action on the spaces Vi , and preserves the symplectic structure.
Moreover it is a Hamiltonian action with moment map as follows:

μ̂i = �i − qi1 ◦ pi1 ∈ End(Vi)

if i ∈ I, and

μ̂ij = pi(j−1) ◦ qi(j−1) − qij ◦ pij ∈ End(Vi,j)

for the jth node of the ith leg, for j > 1. Write

μ̂ : M̂ →
∏
i∈̂I

End(Vi)

for the resulting moment map, with components μ̂i and μ̂ij . (The right-hand side is iden-
tified with the dual of the Lie algebra of Ĝ using the trace pairing on each factor.)

Now identify the chosen complex number λi ∈ C with the scalar matrix λiIdVi
∈

End(Vi) for each i ∈ Î and denote this Î-tuple by λλλ ∈ ∏
End(Vi). Since λλλ is a central

element of the Lie algebra of Ĝ we can equally well view the point {λλλ} as a (co)adjoint
orbit of Ĝ. Then we may define the “twisted quiver variety” associated to this data to be

Q(Ĝ,λλλ,d) = M̂st //
λλλ

Ĝ = {
stable ρ ∈ M̂

∣∣ μ̂(ρ) =λλλ
}
/Ĝ

as the complex symplectic quotient of the subset of stable points of M̂ by the group Ĝ,
at the value λλλ of the moment map. Since M̂ is the space of representations of a graph
(and Ĝ is the full automorphism group), [32] again implies the stable points of M̂ are the
irreducible representations.

Proposition 9.8. — The twisted quiver variety Q(Ĝ,λλλ,d) is a smooth complex symplectic

algebraic variety, which is either empty or of dimension 2 − (d,d), where the inner product ( , ) on the

root lattice of Ĝ is defined in Section 9.2.
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Proof. — The group G = Ĝ/C∗ acts freely (since the stability condition implies the
stabiliser is finite, and it then follows in the quiver setting that the stabiliser is trivial, cf.
[13] p. 283). Smoothness follows as in [13] p. 270. The dimension computation is now
straightforward, since dim M̂ = d · Ad and dim(Ĝ) = d · d, where A is the adjacency
matrix of Ĝ , so that dim(Q) = d · Ad − 2(d · d − 1) = 2 − (d,d). �

Now we will relate these twisted quiver varieties to the moduli spaces M∗
st(G, Ŏ)

of Weyl module presentations of Section 9.4. The extra data needed to define an isomor-
phism from M∗

st(G, Ŏ) to a twisted quiver variety is a marking of each orbit Ŏi .

Definition 9.9. — Suppose O ⊂ gln(C) is an adjoint orbit. A ‘marking’ of O is a finite

ordered set (ξ1, ξ2, . . . , ξw) of complex numbers such that
∏w

1 (A − ξi) = 0 for any A ∈ O.

Equivalently a marking is the choice of a monic annihilating polynomial f ∈ C[x],
such that f (A) = 0 for all A ∈ O, together with a choice of ordering of the roots of f .
A marking will be said to be minimal if w = deg(f ) is minimal (so that f is the minimal
polynomial of A ∈ O). A marking is special if the first root is zero (ξ1 = 0). Given a marking
of O ⊂ gln(C), define complex numbers

(9.3) λi = ξi − ξi−1

(including λ1 = ξ1) and integers

di = rank(A − ξ1) · · · (A − ξi−1)

i = 1,2, . . . (for any A ∈ O) so that d1 = n. Then consider the type Aw Dynkin graph (a
leg) with w nodes and l := w − 1 edges, as in Figure 6.

Lemma 9.10 (Cf. [16]). — If {(pi, qi)} is a representation of this leg (type Aw Dynkin graph)

on the vector space V = ⊕w

1 Cdi such that each pi is surjective and each qi is injective and the moment

map conditions

� = q1p1 + λ1, p1q1 = q2p2 + λ2, . . . ,

pl−1ql−1 = qlpl + λl, plql = λw

hold, then � ∈ O.

FIG. 6. — Representation of a type Aw Dynkin graph
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Proof. — It is clear that the orbit of � is uniquely determined by these conditions
(cf. Proposition D.1). Thus we just need to check that the orbit determined in this way
is indeed the orbit O we started with. But if � is any element of O we may define a
representation satisfying these conditions by setting V1 = Cn and then inductively pi =
(� − ξi)|Vi

,Vi+1 = Im(pi) and taking qi to be the inclusion Vi+1 = ∏i

1(� − ξj)(V) ↪→∏i−1
1 (� − ξj)(V) = Vi . �

Now suppose we have data G,V, Ŏ,a used to define M∗
st as in Section 9.4. If we

choose a marking of each orbit Ŏi then we can define a supernova graph Ĝ by gluing the
first node of the leg corresponding to Ŏi onto the node i of G . Let Î be the set of nodes of
Ĝ , so the markings determine a parameter λi ∈ C and a dimension di ∈ Z≥0 for all i ∈ Î.

This determines the variety Q(Ĝ,λλλ,d).

Theorem 9.11. — The spaces M∗
st(G, Ŏ) and Q(Ĝ,λλλ,d) are isomorphic.

Proof. — The first step is to see there is a well-defined map μ̂−1(λλλ)st → μ−1(Ŏ)st

from the stable points of μ̂−1(λλλ) ⊂ M̂ to the stable points of μ−1(Ŏ) ⊂ M, given by re-

stricting to the subgraph G a representation ρ of Ĝ (on the vector space V̂ = ⊕
Î Vi ).

Indeed if ρ is stable then all the maps pij down the legs are surjective and all the
maps qij up the legs are injective. (For example if pi1 was not surjective, replace Vij by
V′

ij = pi(j−1) · · · pi1(Vi1) for j > 1 (and i fixed) to obtain a non-zero subrepresentation, con-
tradicting stability.) Then using the condition μ̂(ρ) = λλλ and Proposition D.1 repeatedly,
implies �i ∈ Ŏi as in Lemma 9.10. The resulting point of μ−1(Ŏ) is stable, since if it had
a proper subrepresentation V′, then we could extend it to a subrepresentation of V̂ as
above by setting V′

ij = pi(j−1) · · · pi1(V′
i1) for j > 1 and all i ∈ I. Thus the restriction map is

well-defined. It is surjective since (up to choosing bases) we may define pi1 = �i − ξi1 (and
identify Vi2 with its image, and qi2 with the inclusion of this image in Vi1), and then repeat
down each leg so pi2 = (�i − ξi2)|Vi2 etc. The resulting point is in μ̂−1(λλλ), and is clearly
stable. Further, since all the maps pij are surjective and the qij are injective, the fibres of
the restriction map are precisely the orbits of the action of the group

∏
Î\I GL(Vi). Finally

the restriction map is equivariant under the group Ĥ = ∏
I GL(Vi) so the two quotients

may be identified. �

In particular we may denote this common space as M∗
st(Ĝ,λλλ,d) or M∗

st(λλλ,d,a).

Corollary 9.12. — If i ∈ Î \ I is a node which is not in the core, and λi 
= 0 then the spaces

M∗
st(Ĝ,λλλ,d) and M∗

st(Ĝ, ri(λλλ), si(d)) are isomorphic (where ri, si are the reflections of Section 9.2).

Proof. — These reflections arise by changing the choice of marking. Thus both
spaces are isomorphic to the same space M∗

st(G, Ŏ) (which does not depend on the
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markings). Explicitly if i + 1 and i − 1 denote the nodes adjacent to i then under the
reflections d is unchanged except for the component

di �→ −di + di−1 + di+1

and λλλ is unchanged except the components

(λi−1, λi, λi+1) �→ (λi−1 + λi,−λi, λi+1 + λi)

which, via the definition (9.3) of λλλ, indeed corresponds to swapping the two ξ ’s occurring
in λi . �

To obtain the reflections corresponding to the core nodes in this way we need to
take a third viewpoint, that of meromorphic connections, and use the symplectic SL2(C)

transformations. This will be done in the next section.

Remark 9.13. — Note that by definition a representation of a graph is the same
thing as a representation of the double of any quiver obtained by choosing an orientation
of the graph, as appears for example in Nakajima’s theory of quiver varieties [38]. In
that theory the orientation of the graph is used to determine the symplectic structure on
the space of representations, but for us an orientation is unneeded (since we use a non-
standard symplectic structure determined by the choice of an embedding of J in P) and
indeed from our viewpoint choosing an orientation is unnatural and breaks the SL2(C)

symmetry.

9.6. Meromorphic connections on trivial bundles. — The third point of view is as moduli
spaces of meromorphic connections on a trivial vector bundle on P1. Since the setup is
similar to [6] Section 2 we will be brief. Fix G = GLr(C), let t ⊂ g = Lie(G) be the diag-
onal matrices and fix a compact Riemann surface �. In general specifying a (symplectic)
moduli space of meromorphic connections on vector bundles of rank r on � (with un-
ramified normal forms) involves specifying an effective divisor D =∑

ki(ti) on � and at
each point ti specifying the corresponding local data. The local data consists of an “ir-
regular type” and a residue orbit. Here an irregular type is an element Q ∈ t((z))/t[[z]],
where z is a local coordinate on � vanishing at ti , i.e. it is an element

Q =
ki−1∑

1

Aj

zj

with Aj ∈ t, so that dQ has a pole of order at most ki . Given an irregular type Q consider
the group H ⊂ G centralising Q, i.e. consisting of elements g ∈ G such that gAj g

−1 = Aj

for all j. Then the remaining choice (of residue orbit) is the choice of an adjoint orbit
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O ⊂ h = Lie(H). Given such local data (Q , O) (at ti ) we consider connections on vector
bundles over � which are locally holomorphically isomorphic at ti to

dQ + �
dz

z
+ holomorphic

for some � ∈ O (and similarly at the other points of D, for other choices of local data).
Note that if Q = 0 we are just fixing the adjoint orbit of the residue of a logarithmic
connection. We will say such a connection is nonresonant (at ti ) if ad� ∈ End(h) has no
eigenvalues which are nonzero integers. (In the nonresonant case fixing the local data is
equivalent to fixing the formal isomorphism class of the connection, but not in general.)

Given the divisor D and local data at each point ti of D there are several moduli
spaces one can consider (cf. the spaces M and their approximations M∗ in [6], and their
generalisations, the hyperkähler spaces of stable parabolic meromorphic connections in
[5]). Here we fix � = P1 and will consider some simple examples of moduli spaces of
connections with such fixed local data: we will consider meromorphic connections on
trivial vector bundles U × P1 → P1 which take the form

(9.4) A =
(

Az + B + T +
∑
I∞

Ri

z − ti

)
dz

as considered in (2.5) (so in particular A,T are semisimple). Such a connection will be
said to be stable if it admits no proper nontrivial subconnections. (Here we work in the
category of connections on trivial bundles so any subconnection should also be on a
trivial bundle.)

Lemma 9.14. — Specifying such a connection is equivalent to specifying the following data:

A finite dimensional complex vector space U,

A finite set I∞ and distinct ti ∈ C for each i ∈ I∞,

A grading U =⊕
I′ Vi of U by a finite set I′,

A partition I′ =⊔
j∈J′ Ij of I′,

Distinct complex numbers aj ∈ C for each j ∈ J′,
Complex numbers ti ∈ C for each i ∈ I′ such that ti 
= ti′ if i, i′ ∈ Ij for some j,

A linear map Bij ∈ Hom(Wj,Wi) for each i 
= j ∈ J′ where Wj =⊕
l∈Ij

Vl ,

Elements Ri ∈ End(U) for all i ∈ I∞.

Proof. — Given such data set A =∑
J′ ajIdj where Idj is the idempotent for Wj , and

set T = ∑
I′ tiIdi where Idi is the idempotent for Vi , and set B = ∑

Bij , to obtain all the
coefficients of A. The converse is straightforward. �

Given such data (or the corresponding connection A) let G ′ be the complete | J′|-
partite graph with nodes I′, corresponding to the partition I′ = ⊔

j∈J′ Ij . Specifying B is



SIMPLY-LACED ISOMONODROMY SYSTEMS 45

then equivalent to specifying a representation ρ of the graph G ′ on the I′-graded vector
space U. The following is an elementary exercise.

Lemma 9.15. — The connection A is stable if and only if there are no nontrivial proper

subrepresentations U′ ⊂ U of ρ such that Ri(U′) ⊂ U′ for all i ∈ I∞.

We wish to consider such connections with fixed local data. Thus, at the simple
poles, we fix adjoint orbits Oi ⊂ End(U) and require Ri ∈ Oi for each i ∈ I∞. At z = ∞
we fix an adjoint orbit ŎH ⊂ h, where h is the Lie algebra of H = ∏

i∈I′ GL(Vi) and
restrict to connections which are locally holomorphically isomorphic to connections of
the form (

Az + T + �

z
+ · · ·

)
dz

near z = ∞, for some � ∈ ŎH (i.e. we fix the orbit of the residue of the normal form).
Now, with the data A,T, {ti}, ŎH, {Oi} fixed, consider the space

Connst

(
ŎH, {Oi}

)
of isomorphism classes of such connections which are stable.

The aim is to identify this with a space M∗
st of stable Weyl algebra module presen-

tations. First we set up the required data to define M∗
st . For each i ∈ I∞ set di = rank(Ri)

for any Ri ∈ Oi and set Vi = Cdi . Then define

Ŏi ⊂ End(Vi)

to be the unique orbit with the following property (cf. Appendix D): if Ri ∈ Oi and Ri =
Q iPi for a surjective map Pi : U → Vi and an injective map Q i : Vi → U, then −PiQ i ∈
Ŏi . Define I = I′ � I∞ so that, since specifying ŎH amounts to specifying an orbit Ŏi ⊂
End(Vi) for each i ∈ I′, we now have Ŏi ⊂ End(Vi) for all i ∈ I.

Further define J = J′ ∪ {∞} (unless I∞ is empty, in which case we set J = J′). (Here
we have identified J′ with {aj | j ∈ J′} ⊂ C.) Then let G be the complete k-partite graph
with nodes I, corresponding to the partition I = ⊔

J Ij , where k = | J|. In particular we
have a subgraph G ′ ⊂ G .

Thus we now have all the data G,V, Ŏ,a necessary to define M∗
st(G, Ŏ) as in

Section 9.4.

Theorem 9.16. — The space Connst(ŎH, {Oi}) of isomorphism classes of stable connections

is isomorphic to M∗
st(G, Ŏ).

Proof. — Recall that M∗
st = μ−1(Ŏ)st/Ĥ where μ−1(Ŏ) ⊂ M. Thus suppose we

have a stable representation ρ of G in μ−1(Ŏ)st . By restricting to G ′ ⊂ G we obtain the
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coefficient B of A, and ρ determines the coefficients Ri = Q iPi as usual. By Lemma 9.5
and Proposition D.1 the stability of ρ and the fact that �i ∈ Ŏi implies Ri ∈ Oi for all i ∈
I∞. Next we need to check that fixing �i ∈ Ŏi for i ∈ I′ corresponds to fixing the residue
� of the normal form of A to be in ŎH. In other words (as the notation suggests) we need
to check that �i is indeed the ith component of �. But � is computed in Appendix C to
be πh(QP+[X,B]/2) = πh(QP+XB) where πh is the projection onto the h component,
and by definition the ith component of this is

πi(QP + XB)ιi = πi
 ◦ �ιi = −PiQ i = �i

as desired, for i ∈ I′. Finally one may check the resulting connection is stable, that all con-
nections with the given local data are obtained this way and that Ĥ orbits correspond to
isomorphism classes, all of which is now straightforward. (The natural symplectic struc-
tures also match up, cf. [6] Section 2, and Lemma A.1 below.) �

Thus we may also denote this space of stable connections as M∗
st(ŎH, {Oi}). Com-

bined with Theorem 9.11 it is thus also isomorphic to a twisted quiver variety for a su-
pernova graph.

Note that giving a marking of the orbit Ŏi is the same as giving a special marking
of Oi. Explicitly suppose �i = −PiQ i ∈ Ŏi and Ri = Q iPi ∈ Oi. Then if (ξi1, . . . , ξiw)

is a marking of Ŏi then (0,−ξi1, . . . ,−ξiw) is the corresponding special marking of Oi .
Indeed

Ri

w∏
l=1

(Ri + ξil) = (−1)wQ i

w∏
l=1

(�i − ξil)Pi = 0.

Thus the choices involved in identifying Connst(ŎH, {Oi}) as a twisted quiver variety
amount to choosing a marking of Ŏi for i ∈ I′ = I \ I∞ and a special marking of each
orbit Oi (for i ∈ I∞). Given such choices let Ĝ be the corresponding supernova graph and
let d,λλλ be the corresponding data, so that

(9.5) Connst

(
ŎH, {Oi}

)∼= Q(Ĝ,λλλ,d) ∼= M∗
st(Ĝ,λλλ,d).

One useful input of the viewpoint of meromorphic connections is that we may
perform the following scalar shifts. Choose constants ci ∈ C for each i ∈ I∞ and set c =∑

ci . Given orbits (ŎH, {Oi}) as above, consider the shifted orbits:

Ŏ′
H = ŎH + cIdU, O′

i = Oi + ciIdU.

Lemma 9.17. — The moduli spaces Connst(ŎH, {Oi}) and Connst(Ŏ′
H, {O′

i}) are iso-

morphic.
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Proof. — This is almost immediate from the expression (9.4) for the connections
A; the map is given by replacing each Ri by Ri + ci and leaving B unchanged. The orbit
ŎH is shifted as stated since � = πh(QP + XB) and QP =∑

Ri . �

It is clear from the projected equations (7.6) that this operation relates the corre-
sponding isomonodromy connections.

Finally we can deduce isomorphisms corresponding to the reflections at the nodes
i ∈ I of the core. Suppose that the support of d intersects at least two parts Ij ⊂ I of the
core nodes (i.e. that we are not in a trivial case with just one part).

Corollary 9.18. — If i ∈ I and λi 
= 0 then the space M∗
st(Ĝ,λλλ,d) is isomorphic to the space

M∗
st(Ĝ, ri(λλλ), si(d)) (where ri, si are the reflections of Section 9.2).

Proof. — We may suppose i ∈ I∞, since if i ∈ Ij and aj 
= ∞ then we may conjugate
by a symplectic SL2(C) transformation moving aj to ∞. Then in terms of connections
the idea is to first change the marking of the orbit Oi , swapping the order of the first two
eigenvalues. The resulting marking will not be special, so we then perform a scalar shift
to return to a special marking. This gives the desired reflection, as we will now verify in
detail. Suppose (ξj1, ξj2, . . .) is the marking of Ŏj for any j ∈ I, so that

(0,−ξi1,−ξi2, . . .)

is the marking of Oi. Let λλλ denote the corresponding set of parameters (so for example
λj1 = ξj1, λj2 = ξj2 − ξj1 on the first two nodes of the jth leg). After reordering, the marking
of Oi is changed to (−ξi1,0,−ξi2, . . .). Since this is not special we perform the scalar shift
by ci = c = ξi1, so Oi is replaced by O′

i = Oi + c which has the special marking (0, c, c −
ξi2, c−ξi3, . . .), and Ŏj is replaced by Ŏ′

j = Ŏj + c, which has marking (c+ξj1, c+ξj2, . . .),

for all j ∈ I′. The isomorphism Connst(ŎH, {Oj}) ∼= Connst(Ŏ′
H, {O′

j }) of Lemma 9.17
then yields the desired isomorphism Q(Ĝ,λλλ,d) ∼= Q(Ĝ, ri(λλλ), si(d)), once we pass from
connections to twisted quiver varieties using the chosen markings. Indeed computing the
parameters corresponding to the new markings yields

λi1 �→ −c = −ξi1 = −λi1,

λi2 �→ (ξi2 − c) − (−c) = ξi2 = λi2 + λi1,

λj1 �→ λj1 + c = λj1 + λi1

for all j ∈ I′, with all the other components unchanged; These are the components of
ri(λλλ). Considering the dimensions, di1 is the only component of d which is changed, and
the new value d ′

i1 may be computed in terms of d as follows:

di1 = rank(Ri) = dim(U) − dim Ker(Ri)
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d ′
i1 = rank(Ri + c) = dim(U) − dim Ker(Ri + c)

di2 = dim(U) − dim Ker(Ri) − dim Ker(Ri + c)

so that d ′
i1 = dim(U) + di2 − di1, which is the corresponding component of si(d), given

that dim(U) =∑
j∈I′ dj1. �

Note that these scalar shifts generalise those in [9] (e.g. bottom of p. 185, in the
case with just one simple pole, |I∞| = 1), whose origins lie in the twisted Fourier–Laplace
transform of [4]. They were used in [9] to better understand the Okamoto symmetries of
Painlevé VI (in particular the action on linear monodromy data was deduced using this
viewpoint in [9] Corollary 35—see also [8] Remark 4). Another approach is possible us-
ing the middle convolution operation [31], but this may be derived from Fourier–Laplace
(cf. [31] Section 2.10, [12] Diagram 1, [59]). The reflection isomorphisms constructed
here are analogous to those for Nakajima quiver varieties (cf. [11] Theorem 1 and ref-
erences therein), but it is not clear if they are actually equivalent; the moduli theoretic
approach here enables us to see the isomonodromy systems are preserved, and shows
that they will extend to the full hyperkähler wild non-Abelian Hodge moduli spaces (after
extending [56]).

10. Additive irregular Deligne–Simpson problems

Suppose we fix � = P1 to be the Riemann sphere and have an effective divisor
D = ∑

ki(ti) on �. If we fix local data (as in Section 9.6) consisting of an irregular type
and residue orbit at each point ti , then we may consider the moduli space Connst of
stable meromorphic connections on the trivial bundle over � with the given local data
at each point of D. The (unramified) additive irregular Deligne–Simpson problem is then to
characterise the local data for which Connst is nonempty (i.e. for which there exists such
stable connections on the trivial bundle). This is the natural extension of the usual ad-
ditive Deligne–Simpson problem to the irregular case. We will solve some cases of this
here using [15] (these results appeared in the preprint [10]). In the Fuchsian case (all ir-
regular types zero) Crawley–Boevey [16] established a precise criterion in terms of roots
of an associated Kac–Moody root system for a star-shaped graph. This was proved by
identifying the space of stable Fuchsian systems with the stable points of a quiver variety
and then using earlier results [15] characterising exactly when certain quiver varieties
have stable points. In Section 9 we have identified some more general spaces of mero-
morphic connections with (twisted) quiver varieties and so can again use [15] to give a
precise criterion for the existence of stable points, as follows. The setup is the same as in
Section 9.6:

Choose a complex vector space U = Cn, distinct points t1, . . . , tm ∈ C and diagonal
matrices A,T ∈ End(U). This determines the irregular type Q = Az2/2 + Tz at z = ∞.
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Consider connections on U × P1 → P1 with Fuchsian singularities at each point ti and
an irregular singularity at z = ∞ with irregular type Q. Fix adjoint orbits O1, . . . , Om ⊂
End(U) and ŎH ⊂ h where h ⊂ End(U) is the set of matrices that commute with both A
and T. The problem is to decide when there are stable connections of the form

A =
(

Az + B + T +
m∑
1

Ri

z − ti

)
dz

with Ri ∈ Oi and B ∈ Im(adA) ⊂ End(U) so that A is locally holomorphically isomorphic
to a connection of the form(

Az + T + �

z
+ holomorphic

)
dz

near z = ∞ for some � ∈ ŎH.
To answer this, choose markings as in Section 9.6 so a supernova graph Ĝ and data

λλλ,d are determined, and there is an isomorphism

Connst

(
ŎH, {Oi}

)∼= Q(Ĝ,λλλ,d)

as in (9.5), from the space of such stable connections to the corresponding twisted quiver

variety. In particular Ĝ determines a Kac–Moody root system as described in Section 9.2.

Corollary 10.1. — There are stable connections A with the given local data as above, if and

only if:

(1) d is a positive root,

(2) λλλ · d = 0, and

(3) If d = d1 + d2 + · · · is a nontrivial sum of positive roots such that λλλ · d1 = λλλ · d2 =
· · · = 0, then �(d) > �(d1) + �(d2) + · · · , where �(d) = 2 − (d,d).

Proof. — Since Theorems 9.11 and 9.16 show that such stable connections corre-
spond to stable points of a twisted quiver variety, and Crawley–Boevey [15] Theorem 1.2
has shown that these criteria characterise quiver varieties having stable points, it just
remains to show that our twisted quiver variety is isomorphic to an (untwisted) quiver
variety (or equivalently in the language of [15], that points of Q(Ĝ,λλλ,d) correspond to
simple representations of the deformed preprojective algebra). This boils down to prov-
ing the following lemma. Let G ⊂ Ĝ be the core of the graph Ĝ , with nodes I ⊂ Î, and
choose an orientation of G . This gives a map G ↪→ G to the set of oriented edges G of
G (cf. Section 9.1), so each edge e ∈ G has a well-defined head h(e) ∈ I and tail t(e) ∈ I.
Let M be the symplectic vector space of Section 3, which we identify with Rep(G,V)

as usual (see Proposition 9.3), with V = ⊕
I Vi,Vi = Cdi . Recall from Proposition 9.2
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that Ĥ =∏
I GL(Vi) acts on M with moment map � �→ (�i). On the other hand in the

theory of quiver varieties one identifies

(10.1) Rep(G,V) = T∗⊕
e∈G

Hom(Vt(e),Vh(e))

with the cotangent bundle of the space of maps along the edges following the given ori-

entation. In this symplectic structure a moment map for the action of Ĥ has End(Vi)

component taking ρ ∈ Rep(G,V) to
∑

e∈G,t(e)=i

ε(e)ρ(e)ρ(e)

where e is the edge e with the opposite orientation, and ε(e) = 1 if e ∈ G and ε(e) = −1 if
e ∈ G \ G .

Lemma 10.2. — The space M and the cotangent bundle (10.1) are isomorphic as Hamiltonian

Ĥ-spaces.

Proof. — Recall that �i = −PiQ i is the End(Vi) component of 
� ∈ End(V), so
that if ρ ∈ Rep(G,V) is the representation corresponding to � then

�i =
∑

e∈G,t(e)=i

φ(e)ρ(e)ρ(e)

where φ(e) := φjj′ if e is the edge from i ∈ Ij to i′ ∈ Ij′ . Thus if we define a linear map M →
M taking a representation ρ to the representation ρ ′ defined by ρ ′(e) = −φ(e)ρ(e)/ε(e)

if e ∈ G and ρ ′(e) = ρ(e) if e ∈ G \ G , then

φ(e)ρ(e)ρ(e) = ε(e)ρ ′(e)ρ ′(e)

for all e ∈ G , so the moment maps are intertwined as desired. Moreover, from Section 3,
the symplectic structure on M is given by

1
2

Tr(d
 ∧ d�) = 1
2

∑
e∈G

φ(e)Tr
(
dρ(e) ∧ dρ(e)

)

= 1
2

∑
e∈G

ε(e)Tr
(
dρ ′(e) ∧ dρ ′(e)

)

=
∑
e∈G

Tr
(
dρ ′(e) ∧ dρ ′(e)

)

which is the standard symplectic structure on the cotangent bundle (10.1). �
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Thus Q(Ĝ,λλλ,d) = M̂//λλλĜ is isomorphic to a quiver variety (since M̂ = M × L and we
already used the cotangent symplectic structure on the legs L), and so we may apply [15]
Theorem 1.2. �

11. Example reduced systems

Thus in summary we can now attach an isomonodromy system

(11.1) M∗
st × B → B

to the data Ĝ,λλλ,d,a as in Theorem 1.1 of the introduction. If nonempty then
dimC(M∗

st) = 2 − (d,d) by Proposition 9.8, and a precise criterion for nonemptiness
is given in Section 10. Thus if one chooses some local (or birational) coordinates on M∗

st

then the isomonodromy connection on (11.1) amounts to a system of nonlinear equa-
tions of order 2 − (d,d). If the core G of Ĝ is a complete k-partite graph then, by moving
a around in P using the symplectic transformations, this isomonodromy system controls
isomonodromic deformations of linear systems A on vector bundles with in general k + 1
different ranks (depending on which, if any, of the k elements of a is moved to ∞). In other
words there are k + 1 ways to read the graph in terms of connections (before considering
the reflections).

Since M∗
st is symplectic the simplest nontrivial case is dimension 2, when (d,d) =

0 (i.e. d is a null root). These cases correspond to affine Dynkin diagrams, and in turn
to the (known) second order Painlevé systems. The dimension vectors d for the super-
nova cases are as in the following diagram (d is the minimal imaginary root). (One may
also consider the type E affine Dynkin graphs but these are only of interest for Painlevé
difference equations, cf. [11]; they have no nontrivial isomonodromic deformations.)

These affine Dynkin cases are special since d is preserved by the reflections, and
only the parameters λλλ are moved. In each case one still has the choice of the parameters
a, and we will now illustrate in the case of Painlevé VI how to read the graphs to give
various equivalent Lax pairs for these Painlevé systems.

11.1. Painlevé VI. — Here it is simplest to view the affine D4 diagram as a super-
nova graph as in Figure 8 with just four nodes in the core, say I1 consists of three of the
feet and I2 consists of the central node. The three ways to read this graph are then as
follows.

FIG. 7. — Dimension vectors for PIV, PV, PVI
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FIG. 8. — Affine D4 as a supernova graph

(1) a1 = ∞, a2 = 0: This is the standard Lax pair as Fuchsian systems

A =
( 3∑

1

Ri

z − ti

)
dz

on rank two bundles with four poles on the Riemann sphere. (The three finite
poles correspond to |I1| = 3 and the rank two is the dimension on the central
node.)

(2) a1 = 0, a2 = ∞: This is Harnad’s dual Lax pair [26]; systems

A =
(

T0 + R
z

)
dz

on rank three bundles with a Fuchsian singularity and an irregular singularity
on the Riemann sphere. (The single finite Fuchsian singularity corresponds to
|I2| = 1 and the rank three is the sum of the dimensions of the nodes in I1.)

(3) a1 = 0, a2 = 1: This is the generic reading of this graph; as systems of the form

A = (Az + B + T)dz

on rank five bundles with just an irregular singularity at ∞ on the Riemann
sphere (and no others poles). (The rank five is the sum of the dimensions of the
nodes in I1 ∪ I2.) Explicitly the form of A specified by the graph is as follows:
A = diag(0,0,0,1,1),T = diag(t1, t2, t3, t4, t4) with |{t1, t2, t3}| = 3 and B =( 0 B12

B21 0

) ∈ End(C3 ⊕ C2). Fixing the orbit of the residue � of the normal form
at z = ∞ then corresponds to fixing the orbit of B21B12 ∈ End(C2) and the
diagonal part of B12B21 ∈ End(C3). The nonlinear equations are as in (8.4)
with X = ( 0 −B12

B21 0

)
.

If this graph is embedded in a larger graph, then performing reflections will give
infinitely many other Lax pairs. For example the graph in Figure 8 is the same as the
graph on the left in Figure 9 (obtained by adding a node with dimension zero). Then if
we perform three reflections working up the long leg from the toe, the diagram on the
right of Figure 9 is obtained. This graph may be read (as in (1) above) as Fuchsian systems
on rank three bundles with four poles on P1 such that the three residues at finite points
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FIG. 9. — Obtaining the 3 × 3 Fuchsian Lax pair for PVI

are rank one matrices. This is the alternative Fuchsian Lax pair for Painlevé VI used in
[9] to obtain new algebraic solutions of Painlevé VI (generalising that, for special values
of the parameters, in [21] Remark 3.9 and Appendix E).

11.2. Painlevé IV. — Similarly the triangle G(1,1,1) may be read in various ways.
If the dimension vector is (1,1,1) one reading is as connections with one pole of or-
der 3 and one pole of order 1 on a rank two bundle (this is the standard Lax pair for
Painlevé IV). The generic reading of this graph is as a space of connections on a rank
three bundle with a pole of order 3 and no others. (This generic reading appears in an
explicit form in [29].)

11.3. An infinite Weyl group orbit. — Consider the case A++
2 of the triangle with a leg

of length one attached, as on the right of Figure 10 (but we will use different dimension
vectors here). Then [22, 44] the index two ‘rotation subgroup’ of the corresponding Kac–
Moody Weyl group is PSL2(E) where E = Z[ω] is the ring of Eisenstein integers (where
ω3 = 1). For example if we label the nodes of A++

2 as 1,2,3,4 (with the 2 in the middle,
the 1 at the foot and 2,3,4 on the triangle) and take dimension vector d = (1,2,2,1)

and generic parameters, then the corresponding moduli space M∗
st(λλλ,d) has complex

dimension 2. Indeed performing the reflections s1s2s3 yields dimension vector (0,1,1,1)

so the variety is isomorphic to the space appearing in the case of Painlevé IV (which in
one reading is thus also isomorphic to a space of connections on a rank 3 bundle with 2
poles of order 1 and 3). On the other hand the Weyl group element (see [22] 4.20):

w = s1s4s1s2s4s1s3s1

has infinite order, realising the same space as a space of connections on bundles of arbi-
trarily high rank—indeed for n ≥ 1 the space with dimension vector wn(1,2,2,1) may
be read as a space of connections as above on bundles of rank n2 + (n − 1) + (n − 2)2.
This thus gives an infinite number of Lax pairs for Painlevé IV. (In general we view each
such realisation as a “representation” of the abstract Painlevé system, or more generally
of the corresponding non-Abelian Hodge structure.)

11.4. Higher Painlevé systems. — Recall that the next simplest class of Kac–Moody
algebras after the affine ones are the hyperbolic Kac–Moody algebras which, by defi-
nition, have Dynkin diagrams such that any proper subgraph is either a finite or affine
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Dynkin diagram. Since we know the lowest dimensional moduli spaces (those of dimen-
sion two) are related to affine Dynkin diagrams it is natural to look amongst the hyper-
bolic graphs to find the next simplest cases. This was taken up in [10] pp. 11–12, where
a computer search was done for dimension vectors for hyperbolic supernova graphs such
that 2 − (d,d) = 4, i.e., so that the corresponding moduli space has dimension 4 (or that
the corresponding isomonodromy system has fourth order). By looking at these examples
one sees there are several natural families of examples, which arise by “doubly extend-
ing” a finite Dynkin diagram (i.e. by adding another node next to the extending node
of an affine diagram), and that these examples generalise to give examples with dimen-
sion 2 − (d,d) = 2n for any n. Within the class of (simply-laced) supernova graphs this
includes the following three cases.

Proposition 11.1. — Let Ĝ be one of the supernova graphs of Figure 10 with the given dimension

vector d, and let λλλ be some generic parameters. Then M∗
st(Ĝ,λλλ,d) has dimension 2n.

Proof. — The dimension vector has the form d = nδ + e where δ is the mini-
mal imaginary root for the affine subdiagram (removing the extending node with di-
mension 1), and e is supported on the extending node, and so it is easy to compute
(d,d) = 2 − 2n. �

Note that for n = 1 these are in general isomorphic to the usual Painlevé systems,
since we may perform the reflection at the foot (the extending node) so the resulting
dimension vector is supported on the affine subdiagram.

We will now write down explicitly the simplest reading of each of these graphs
(for generic parameters λλλ). This enables us to spot the pattern and thereby describe Lax
pairs for other higher Painlevé systems (we will ignore the ramified cases for simplicity,
even though they present little difficulty except in notation). Recall that the moduli spaces
are determined by fixing the local data at each pole, consisting of the irregular type and
residue orbit.

Let U = C2n, and G = GL(U) with t ⊂ g = Lie(G) the diagonal matrices and fix
� = P1.

11.5. Higher Painlevé VI. — Here � has four marked points and all irregular types
zero. The local data consists of four semisimple orbits Oi ⊂ GL(U) for i = 1,2,3,4,

FIG. 10. — Dynkin diagrams for higher Painlevé systems hPn
VI, hPn

V, hPn
IV
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such that O1 has three eigenvalues with multiplicities n, n − 1,1 and each of the other
classes O2, O3, O4 has just two eigenvalues, each of multiplicity n. The resulting space
(O1 × · · · × O4)//G has dimension (2n2 + 2n − 2) + 3(2n2) − 2(4n2 − 1) = 2n.

11.6. Higher Painlevé V. — Here � has three marked points. Two of the marked
points are Fuchsian with local data given by semisimple orbits Oi ⊂ GL(U) for i = 1,2,
such that O1 has three eigenvalues with multiplicities n, n − 1,1 and O2 has just two
eigenvalues, each of multiplicity n. At the third singularity the irregular type is Q = A1/z

with A1 ∈ t having two eigenvalues each of multiplicity n. The residue orbit at this irreg-
ular singularity is specified by two orbits in gln(C); we take them both to be scalar orbits
(i.e. zero-dimensional). Thus the resulting space is of the form

(O1 × O2) //
ŎH

GLn(C) × GLn(C)

where ŎH is zero-dimensional and so, since O1 has dimension 2n2 + 2n − 2 and O2 has
dimension 2n2, the resulting space has dimension 4n2 + 2n − 2 − 2(2n2 − 1) = 2n.

11.7. Higher Painlevé IV. — Here � has two marked points. One of the marked
points is Fuchsian with local data given by a semisimple orbit O ⊂ GL(U) with three
eigenvalues with multiplicities n, n − 1,1. The other singularity has irregular type Q =
A2/z2 + A1/z with A2 ∈ t having two eigenvalues each of multiplicity n (and A1 ∈ t is
any element whose centraliser in G contains that of A2 so that the centraliser H of Q
is GLn(C) × GLn(C)). The orbit of the residue of the normal form at this irregular sin-
gularity is specified by two orbits in gln(C); we take them both to be scalar orbits (i.e.
zero-dimensional).

Remark 11.2. — Note that none of the readings of hPIV fall within the scope of
the JMU system for n ≥ 2, whereas they all fall within the scope of this article (this was
one of our original motivations). On the other hand, using the above readings, the hPVI

system is a special case of the Schlesinger system and hPV is a special case of the JMMS
system. (Note that the fourth order member of the hPVI family has recently been written
in explicit coordinates by Sakai [52] p. 20. The corresponding graph appears in both
[10] p. 12 and [49] p. 21.)

11.8. Higher Painlevé III. — Here � has two marked points, say at z = 0,∞. Both
marked points have irregular type of the same form Q0 = A0/z,Q∞ = A∞z where
A0,A∞ ∈ t each have two eigenvalues of multiplicity n. At each pole the residue orbit
is specified by two orbits in gln(C); we take them both to be scalar orbits (i.e. zero-
dimensional) at 0, and at ∞ we take one scalar orbit plus a semisimple orbit with two
eigenvalues of multiplicities 1, n − 1 respectively.
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11.9. Higher Painlevé II. — Here � has just one marked point. The irregular type
Q is of the form A3/z3 + A2/z2 + A1/z where A3 ∈ t has two eigenvalues each of multi-
plicity n (and A1,A2 ∈ t are any elements whose centraliser in G contains that of A3, so
that the centraliser H of Q is GLn(C) × GLn(C)). The residue orbit is specified by orbits
Ŏ1, Ŏ2 ⊂ gln(C); we take Ŏ1 to be a scalar orbit and Ŏ2 to be a semisimple orbit with
two eigenvalues of multiplicities 1, n − 1 respectively.

(The actual values of all the residue eigenvalues are chosen generically, subject to
the constraint that the sum of the traces is zero.) Similarly there are higher versions of the
Painlevé systems with ramified normal forms (this will be discussed in detail elsewhere).

Remark 11.3. — Note that in all the above cases, except that of Painlevé III, the
underlying two-dimensional Painlevé moduli space M∗

st is isomorphic to an ALE hyper-
kähler four manifold ([34]) and it turns out that the (fibre of the) corresponding higher
Painlevé system is diffeomorphic to the Hilbert scheme of n-points on the correspond-
ing ALE space [37, 39].4 Presumably this also holds in the case of Painlevé III (in this
case the underlying complex surface is a D2 ALF space). Further, presumably it should
hold also for the full moduli spaces M (as studied in [5]) and not just their approxima-
tions M∗ studied here. Said differently (changing complex structure) this suggests the
following conjecture: If MH is a two-dimensional (meromorphic) Hitchin system then
the Hilbert scheme of n-points on MH is again diffeomorphic to a meromorphic Hitchin
system, at least if the parameters involved are sufficiently generic. (Here we mean diffeo-
morphic on the nose, not just modulo a birational map.)5 Note that, using the graphs and
then extrapolating as above, we are thus able to predict exactly which higher dimensional
Hitchin systems to look at.
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Appendix A: Loop algebras and Adler–Kostant–Symes

Let z be a standard coordinate on P1 and let D = {∞}∪{ti | i ∈ I∞} ⊂ P1. Write zi = z− ti
and z∞ = 1/z, so we have a preferred local coordinate vanishing at each point of D.

Let g = gln(C) where n = dim(U∞) and consider the Lie algebra g(∗D) of rational
maps P1 → g with poles of arbitrary order on D (and nowhere else). Thus, subtracting
the principal parts at each ti to leave a g-valued polynomial, yields a vector space isomor-
phism

g(∗D) ∼= L− := L−
∞ ⊕

⊕
L−

i

where L−
i = z−1

i g[z−1
i ] and L−

∞ = g[z−1
∞ ] = g[z]. Of course L− has its own (product) Lie

algebra structure, and as such it is “half ” of the larger Lie algebra:

L = L∞ ⊕
⊕

Li

where Li = g((zi)) and L∞ = g((z∞)), i.e. there is a vector space decomposition L = L+ ⊕
L− into subalgebras where L+ = L+

∞ ⊕ ⊕
L+

i with L+
i = g[[zi]] and L+

∞ = z∞g[[z∞]].
(Beware that the convention for +/− is not uniform in the literature.) Now each Li

(including i = ∞) has a nondegenerate invariant bilinear form given by

(X,Y) = ResiTr(XYdz)

and together these determine a bilinear form on L. This identifies L− with the dual of the
Lie algebra L+ and so L− ∼= g(∗D) inherits a Poisson structure. The symplectic leaves
are finite dimensional and are the coadjoint orbits of the group G+ = B∞ × ∏

G[[zi]]
corresponding to L+, where B∞ ⊂ G[[z∞]] is the kernel of the map evaluating at z∞ = 0.

Lemma A.1. — The map

M → g(∗D); � �→ A = Az + B + T + Q(z − C)−1P

is a Poisson map, indeed it is the moment map for an action of G+ on M.

Lemma A.2 (Adler–Kostant–Symes, see e.g. [3] Theorem 3.1.). — The restriction to g(∗D) of

any pair of Ad-invariant functions on L are Poisson commuting (and hence so is their pull-back to M).

Lemma A.3. — Fix A ∈ g(∗D) and choose an element B ∈ Li for some i (or i = ∞).

Suppose that [B, A−]− = 0 ∈ L−
i (where A− ∈ L−

i is the projection of A). Then the Hamiltonian

vector field on g(∗D) at A ∈ g(∗D) corresponding to the one-form ResiTr(B d A)dz on g(∗D) is

[A, B−]g(∗D)

where B− ∈ L−
i ⊂ g(∗D) is the projection of B.
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Proof (of Lemma A.1). — Let OB denote the coadjoint orbit of B∞ through (Az +
T) ∈ L−

∞. Then we have OB = {(Az + T + B) | B ∈ Im(adA) ⊂ g}. The tangents to OB

are of the form Ḃ = [A,Y] for Y ∈ g and without loss of generality we may assume Y ∈
Im adA. The (KKS) symplectic structure on OB is, if we have a second tangent B′ = [A,Z]

ω
([A,Y], [A,Z])= Res∞Tr(Az + T + B)[Y/z,Z/z]dz = −TrA[Y,Z]

= TrYB′

so that ω = 1
2TrdX ∧ dB where dX = ad−1

A (dB), which appears in the expression (3.1)
for the symplectic structure on M. The other term Tr(dQ ∧ dP) in (3.1) is just the sym-
plectic form on the cotangent bundle T∗ Hom(W∞,U∞) which, breaking up W∞, de-
composes as

∑
i∈I∞ Tr(dQ i ∧ dPi) on

⊕
i∈I∞ T∗ Hom(Vi,U∞). Now G+

i = G[[zi]] acts on
T∗ Hom(Vi,U∞) via the projection G+

i → G (evaluating at ti ) and the action

g(Q i,Pi) = (
gQ i,Pig

−1
)

of G, which has moment map (Q i,Pi) �→ Q iPi/(z − ti) ∈ L−
i . Repeating for each i yields

the result, noting that Q(z − C)−1P =∑
Q iPi/(z − ti). �

Proof (of Lemma A.3). — The one-form at A on g(∗D) ∼= L− represents an element
X of L+. The minor subtlety here is that in the expression ResiTr(B d A)dz we are taking
the full Laurent expansion of d A at zi = 0, so by definition X ∈ L+ is such that

ResiTr(B dA)dz = (X, d A)

where on the right we take the various principal parts of d A. Thus if B = B+ + B− then
by the residue theorem X = B+ −∑

j 
=i πj(B−) ∈ L+ (where we include ∞ in the sum if
i 
= ∞, and πj : L−

i → L+
j is the map taking the Taylor expansion at j ). Thus using the

Poisson structure on g(∗D) the one-form yields the Hamiltonian vector ad∗
X A, which is

the L− component of [X, A]L ∈ L. This equals [A, B−]g(∗D) since (as one may readily
check) it has the same component in each L−

j . �

Appendix B: Harnad duality

By definition the Harnad dual of the rational differential operator

(B.1)
d

dz
− (

T0 + Q(z − T∞)−1P
)

is the differential operator

d

dz
+ (

T∞ + P(z − T0)
−1Q

)
.
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(These formulae may be extracted from [26] Equations (1.4), (2.23), (2.24), where we
have replaced the symbols F,GT,A,Y, λ by P,−Q,T∞,T0, z respectively.) This may be
obtained from the Fourier–Laplace transform as follows (this is “well-known”7), cf. [4, 9,
53]: A local solution v of the first operator may be written as:

dv

dz
= T0v + Qw, (z − T∞)w = Pv.

Then replacing d

dz
by z and z by − d

dz
yields

zv = T0v + Qw, −dw

dz
− T∞w = Pv

so dw

dz
+ T∞w + P(z − T0)

−1Qw, which says w is a solution of the Harnad dual operator.
(One may interpret this in terms of presentations of Weyl algebra modules, as we do in
the body of this article.) Isomonodromic deformations of such operators are governed
by the JMMS equations. If P,Q solve the JMMS equations (1.4) on B′ ⊂ B then the
connection

� = d(zT0) + Qd log(z − T∞)P + Q̃P

on W0 × (P1 × B′) is flat, and the ∂/∂z component of it is as in (B.1). Now consider the
permutation

(W0,W∞,P,Q,T0,T∞) �→ (W∞,W0,Q,−P,−T∞,T0)

of the data obtained from the Fourier–Laplace transform. This again constitutes a so-
lution of the JMMS equations (and this is one of the main points of [26]), and so the
connection

�′ = −d(zT∞) − Pd log(z − T0)Q − P̃Q

on W∞ × (P1 × B′) is also flat (and its vertical component is the Harnad dual of that
above), i.e. the same nonlinear equations govern the isomonodromic deformations of two
connections on different rank bundles. Note that other generalisations of Harnad duality
(different to ours) are studied in [58, 59] (see also [26] Section 4).

Appendix C: Leading term computation

At z = ∞ the connection A on P1 in (2.5) is formally isomorphic, via G[[z−1]], to a
connection of the form

(C.1)
(

Az + T + �̂

z

)
dz

7 In particular thanks are due to J. Harnad for telling me about [26] in Luminy in 1996, whilst I was trying to
understand the role of the Fourier–Laplace transform in Dubrovin’s work [21] on Frobenius manifolds.
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for some h = Lie(H) valued holomorphic map �̂ = � + A1/z + A2/z2 + · · · , where
H is the centraliser of A and T. We will say A is nonresonant (at ∞) if ad�|h ∈ End(h)

does not have any nonzero integer eigenvalues. If A is nonresonant then we may take
�̂ = � to be constant. For example if h is a Cartan subalgebra (as in the case considered
by Jimbo–Miwa–Ueno [28]) then this condition is empty: all of their connections are
nonresonant at each irregular singularity. In the general linear case (as in the body of the
text) h = ⊕

i∈I\I∞ End(Vi) and � has components �i ∈ End(Vi), and the nonresonance
condition is that each �i has no eigenvalues differing by a nonzero integer.

In this appendix we will suppose at first that �̂ = � is constant (which is possi-
ble for example if we are in the nonresonant case). Then we will show at the end (in
Corollary C.6) how to remove this assumption.

Thus suppose we have �̂ = �. Then note that the normal form (C.1) may be
written as dξ where ξ := Az2/2 + Tz + � log(z).

The aim of this appendix is to determine explicitly the first nontrivial term of any
formal isomorphism between (2.5) and the normal form (C.1). This is a formal series
ĝ = 1 + g1/z + g2/z2 + · · · such that

ĝ[A] =
(

Az + T + �

z

)
dz, A = (Az + B + T)dz + S(z)dz

where Sdz = (QP/z + S2/z2 + · · · )dz is the Laurent expansion at z = ∞ of Q(z −
T∞)−1Pdz, and the square brackets denote the gauge action; g[A] = gAg−1 + (dg)g−1.
In general such ĝ will not be unique. Our aim is to compute g1 and � in terms of
A,B, T̂,P,Q. The strategy is as follows.

Write g = End(U∞) and let g◦ = Im(adA) ⊂ g and let h1 = Ker(adA) so that, as
vector spaces

g = g
◦ ⊕ h1.

Then write h◦
1 = Im(adT|h1) ⊂ h1 and let h = Ker(adT|h1) so that

h1 = h
◦
1 ⊕ h,

and we have a nested sequence of Lie algebras g ⊃ h1 ⊃ h. Write δ : g → h1 for the
projection onto h1 along g◦ and write πh : h1 → h for the projection onto h along h◦

1.
We will find ĝ as a product

ĝ = ĝ3ĝ2ĝ1

where

ĝ3 = (· · · eh2/z2
eh1/z

)
, ĝ2 = (· · · eY2/z2

eY1/z
)
, ĝ1 = (· · · eX2/z2

eX1/z
)
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where Xi ∈ g◦,Yi ∈ h◦
1, hi ∈ h for all i, and where ĝ1 moves A into h1, ĝ2 moves the result

into h and then ĝ3 removes the remaining terms which are not singular at z = ∞. Note
that we will have

g1 = h1 + Y1 + X1.

To simplify notation we will write X = X1.

Lemma C.1. — The following formulae hold:

X = ad−1
A (B), (1 + ad�)h1 = L2,

� = πh(R), Y1 = ad−1
T (R − �), L2 = πh

(
R2 + [Y1,R]/2

)
,

R = δ
(
QP + [X,B]/2

)
,

πh(R2) = πh

(
QT∞P + [X,QP] + ad2

X(T)/2 + ad2
X(B)/3

)
.

This will be proved below. One application of these formulae is to write down the
contribution at infinity to the extension to our context of the Jimbo–Miwa–Ueno one-
form (used to define the τ function):

(C.2) �∞ = Res∞Tr
(

ĝ
∂(ĝ−1)

∂z
dTzdz

)
= −Res∞Tr(g1dTdz/z) = Tr(g1dT).

(Beware of the sign in the definition of T(∞) in [28] (2.17), also reflected in the sign after
(2.19).) Using the formulae, this is

Tr(h1dT) = Tr(L2dT) = Tr
(
R2 + [Y1,R]/2

)
dT

= Tr(QT∞PdT) + Tr
([X,QP]dT

)− Tr
([X,T][X, dT])/2

− Tr
([X,B][X, dT])/3 + Tr(R̃R)/2

where R̃ = ad−1
T ([dT,R]). If there are no simple poles, this expression remains valid for

any reductive structure group (replacing Tr(AB) by an invariant inner product 〈A,B〉
throughout). In the general linear case it may be rewritten as:

Tr(QT∞PdT) + Tr
([X,QP]dT

)− Tr(XTXdT)

+ Tr
(
X2TdT

)− Tr(XBXdT)

+ Tr
(
Q̃Pδ(QP)

)
/2 + Tr

(
Q̃Pδ(XB)

)+ Tr
(
X̃Bδ(XB)

)
/2.

After re-ordering the terms by degree this is (5.6). The only tricky parts in deriving this
are (1) to observe Tr(M̃N) = Tr(MÑ) in general, and (2) to note that

Tr
((

X2B + BX2
)
dT

)= Tr
((

X2[A,X] + [A,X]X2
)
dT

)
= Tr

((
X2AX − XAX2

)
dT

)



62 PHILIP BOALCH

as the remaining terms are [A,X3]dT which is traceless. In turn this is Tr(X[A,X]XdT) =
−Tr(XBXdT); this leads to the equality Tr[X,B][X, dT]/3 = TrXBXdT.

Proof (of Lemma C.1). — Suppose that

(ĝ2ĝ1)[A] =
(

Az + T +
∞∑
1

Liz
−i

)
dz

with Li ∈ h. (Define � = L1.)

Lemma C.2. — (1 + ad�)h1 = L2.

Proof. — Here and below the formula Adexp(X)Y = ∑∞
n=0 adn

X(Y)/n! will be very
useful. Thus

e(h1/z)
[∑

Liz
−i
]

= �/z + (
L2 + [h1,�] − h1

)
/z2 + O

(
1/z3

)
.

The desired formula then arises from the vanishing of the second term. �

Note that under the nonresonance conditions on � the operator (1 + ad�) is invertible
and so h1 is determined by L2. Now suppose that

ĝ1[A] =
(

Az + T +
∞∑
1

Riz
−i

)
dz

with Ri ∈ h1, and write R = R1 for the residue term.

Lemma C.3. — The elements Y1,�,L2 ∈ h are uniquely determined by R and πh(R2):

� = πh(R), Y1 = ad−1
T (R − �), L2 = πh

(
R2 + [Y1,R]/2

)
.

Proof. — We have

eY1/z[Az + T +
∑

Riz
−i]

= Az + T + (
R + [Y1,T])/z

+ (
R2 + [Y1,R] + [

Y1, [Y1,T]]/2 − Y1

)
/z2 + · · ·

so � is the h component of R and Y1 is defined so as to kill the rest of R (i.e. the com-
ponent in h◦

1). In turn Y2 will be defined to kill the h◦
1 component of the displayed coef-

ficient of z−2, so that L2 will be the h component. Given that [Y1,T] = � − R and that
πh[Y1,�] = πh(Y1) = 0 we obtain the stated formula for L2. �
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Thus we finally need to compute R ∈ h1 and πh(R2) from A. We will write X =
X1.

eX/z
[
Az + B + T +

∑
Siz

−i
]

= Az + (
B + T + [X,A])+ (

S1 + [X,B + T] + ad2
X(A)/2

)
/z

+ (
S2 + [X,S1] + ad2

X(B + T)/2 + ad3
X(A)/6 − X

)
/z2 + · · ·

Thus

X = ad−1
A (B)

and R will be the h1 component of the residue, which simplifies to

R = δ
(
QP + [X,B]/2

)
.

Applying eX2/z2[·] to the above expression for eX/z[A] just adds terms [X2,A]/z +
[X2,T]/z2 + · · · , and the h component of [X2,T] is zero so we deduce that

πh(R2) = πh

(
S2 + [X,QP] + ad2

X(B + T)/2 + ad3
X(A)/6

)
= πh

(
QT∞P + [X,QP] + ad2

X(T)/2 + ad2
X(B)/3

)
since S2 = QT∞P and [A,X] = B. This completes the derivation of the desired formu-
lae. �

Finally we will show that in fact the nonresonance conditions are unnecessary.

Lemma C.4. — There are formal transformations ĝ ∈ G[[1/z]] (with constant term 1) putting

A in the normal form

(
Az + T + � + A1/z + A2/z2 + · · ·

z

)
dz

with �,Ai ∈ h and [�s,Ai] = −iAi , where �s is the semisimple part of � (i.e. Ai is in the generalised

eigenspace of ad� in h with eigenvalue −i).

Proof. — We proceed as above to put the connection in h. Then it is effectively a
logarithmic connection (since A and T commute with everything in h), and so we can use
the usual Gantmacher–Levelt theory ([51] (2.20)). �

Now let ĝ = ĝ3ĝ2ĝ1 be any of these formal isomorphisms. Lemma C.2 is then mod-
ified to become

Lemma C.5. — (1 + ad�)h1 = L2 − A1.
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Proof. — As in Lemma C.2 we look at the coefficient (L2 + [h1,�] − h1) of 1/z2,
but in the resonant case we may not be able to choose h1 so that this vanishes. Rather, the
best that can be done is to decompose h into the generalised eigenspaces of � and define
A1 to be the component of L2 in the generalised eigenspace with eigenvalue −1, so that
L2 − A1 has no component in this subspace, and we may define

h1 = (1 + ad�)−1(L2 − A1),

since (1 + ad�) is invertible on the direct sum of all the other generalised eigenspaces. �

However this does not affect the expression (5.6) for the Hamiltonian one form:

Corollary C.6. — The expression for �∞ = Tr(g1dT) in terms of B,P,Q etc. is unchanged.

Proof. — As before it equals Tr(h1dT), and this is still equal to Tr(L2dT), since
Tr(A1dT) = 0. Indeed for example A1 = [A1,�

s] and �s commutes with dT. The rest of
the formulae are unchanged. �

Note that in the resonant case ξ is not so well defined, and so we work with the
expression zdT directly rather than “dBξ” in the expression (C.2) used to define the τ

function.

Appendix D: Relating orbits

Suppose P : U → V and Q : V → U are linear maps between two finite dimensional
complex vector spaces U,V such that P is surjective and Q is injective. In this appendix
we will recall the exact relation between the Jordan normal forms of QP ∈ End(U) and
PQ ∈ End(V). This is often used in the relation between graphs and orbits of matrices
(cf. e.g. [17, 33, 38]). Let O ⊂ End(U) be the orbit of elements conjugate to QP and let
Ŏ ⊂ End(V) be the orbit of PQ.

Recall that giving a Jordan form is equivalent to giving a partition (i.e. a Young
diagram) πs for each complex number s, so that πs specifies the sizes of the Jordan blocks
corresponding to the eigenvalue s ∈ C. For example the partition π0 = (2,2,1) specifies
the 5 × 5 rank 2 nilpotent matrix with three Jordan blocks of size 2,2 and 1 respectively
(and it corresponds to the Young diagram with three rows of lengths 2,2,1).

Proposition D.1. — Let {πs} be the partitions giving the Jordan form of O and let {π̆s} be the

partitions giving the Jordan form of Ŏ. Then π̆s = πs if s 
= 0, and π̆0 is obtained from π0 by deleting

the first (i.e. longest) column of π0. (In other words each part of π0 is decreased by one to obtain π̆0.)

Proof. — Decompose U = ⊕
Us,V = ⊕

Vs into the generalised eigenspaces of
QP,PQ respectively. Then it is easy to see P maps Us to Vs and Q maps Vs to Us and that
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these are isomorphisms if s 
= 0. This establishes the result for s 
= 0 and we can reduce
to the case where both QP,PQ are nilpotent. For the nilpotent case, let p1 ≥ p2 ≥ · · · ≥ 0
denote the lengths of the columns of π0 (i.e. the sizes of the parts of the partition dual to
π0). Then the relation between the orbit O of QP and these lengths is simply expressed
as

rank(QP)j =
∑
i>j

pi

for any j. In particular, as is well-known, these ranks determine π0. Then to determine
the partition π̆0 corresponding to PQ we just note:

rank(PQ)j = dim(PQ)j(V) = dim Q(PQ)j(V) as Q is injective

= dim Q(PQ)jP(U) as P is surjective

= dim(QP)j+1(U) = rank(QP)j+1.

Thus π̆0 has columns of lengths p2, p3, . . ., as expected. �

In particular, given U,V, the orbit Ŏ is uniquely determined by O, and O is
uniquely determined by Ŏ (one just adds a column of length dim(U) − dim(V) to the
Young diagram of π̆0 to obtain π0).

Appendix E: Notation summary

P = C ∪ {∞} “Fourier sphere”. J ⊂ P a finite subset.

V =
⊕

j∈J

Wj,

δ =
∑
j∈J

δj : End(V) →
⊕

j∈J

End(Wj) ⊂ End(V)

Uj = V � Wj :=
⊕
i∈J\{j}

Wj, so V = Wj ⊕ Uj for all j ∈ J.

Ui := Uj for any i ∈ Ij.

γ =
(

C P
Q B + T

)
, T̂ = δ(γ ) =

(
C

T

)
∈ End(W∞ ⊕ U∞)

Tj = δj(T̂) ∈ End(Wj) semisimple, T∞ = C

Wj =
⊕
i∈Ij

Vi, eigenspaces of Tj, I =
⊔

Ij, so V =
⊕

i∈I

Vi.
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T̂ =
∑
i∈I

tiIdi where ti ∈ C, Idi idempotent for Vi ⊂ V

� = γ ◦ = γ − δ(γ ) =
(

0 P
Q B

)
∈ End(W∞ ⊕ U∞)


 = φ(�) =
(

0 −P
Q X

)
∈ End(W∞ ⊕ U∞) where

X = ad−1
A (B) ∈ End(U∞)

M =
⊕
i 
=j∈J

Hom(Wi,Wj) = End(V)◦ symplectic space dependent on

a : J ↪→ P

Q i = � ◦ ιi : Vi → Ui, Pi = −πi ◦ 
 : Ui → Vi

Ri = Q iPi ∈ End(Ui), �i = −PiQ i ∈ End(Vi)
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