SHIFTED SYMPLECTIC STRUCTURES

by Toxy PANTEV***, Berrraxo TOEN**, Micher. VAQUIE**, and
Gasriete VEZZOST™***

ABSTRACT

This is the first of a series of papers about quantization in the context of derived algebraic geometry. In this first part,
we introduce the notion of n-shifled symplectic structures (n-symplectic structures for short), a generalization of the notion of
symplectic structures on smooth varieties and schemes, meaningful in the setting of derived Artin zn-stacks (see Toén and
Vezzosi in Mem. Am. Math. Soc. 193, 2008 and Toén in Proc. Symp. Pure Math. 80:435-487, 2009). We prove that clas-
sifying stacks of reductive groups, as well as the derived stack of perfect complexes, carry canonical 2-symplectic structures.
Our main existence theorem states that for any derived Artin stack F equipped with an n-symplectic structure, the derived
mapping stack Map(X, I) is equipped with a canonical (n — d)-symplectic structure as soon a X satisfies a Calabi-Yau
condition in dimension d. These two results imply the existence of many examples of derived moduli stacks equipped with
n-symplectic structures, such as the derived moduli of perfect complexes on Calabi-Yau varieties, or the derived moduli
stack of perfect complexes of local systems on a compact and oriented topological manifold. We explain how the known
symplectic structures on smooth moduli spaces of simple objects (e.g. simple sheaves on Calabi-Yau surfaces, or simple
representations of 7r; of compact Riemann surfaces) can be recovered from our results, and that they extend canonically as
0-symplectic structures outside of the smooth locus of simple objects. We also deduce new existence statements, such as the
existence of a natural (—1)-symplectic structure (whose formal counterpart has been previously constructed in (Costello,
arXiv:1111.4234, 2001) and (Costello and Gwilliam, 2011) on the derived mapping scheme Map(E, T*X), for E an ellip-
tic curve and T*X is the total space of the cotangent bundle of a smooth scheme X. Canonical (—1)-symplectic structures
are also shown to exist on Lagrangian intersections, on moduli of sheaves (or complexes of sheaves) on Calabi-Yau 3-folds,
and on moduli of representations of 7, of compact topological 3-manifolds. More generally, the moduli sheaves on higher
dimensional varieties are shown to carry canonical shifted symplectic structures (with a shift depending on the dimension).
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Introduction

This 1s the first part of a series of papers about quantization in the context of derwed
algebraic geometry, and specifically about the construction of quantized versions of various
kinds of moduli spaces. In this article we start with the study of symplectic structures in the
derived setting by introducing the notion of shufled symplectic structures of degree n (or n-shifted
symplectic structures) where n € Z is an arbitrary integer. This is a direct and far reaching
generalization of the notion of symplectic structures on smooth algebraic varieties and
schemes (recovered when n = 0), to the setting of derived and higher derived Artin stacks
of [To-Ve-1, To2]. In this work we give a careful rigorous definition of n-shifted sym-
plectic structures on derived Artin stacks (see Definition 1.18), and prove three exustence
theorems (see Theorems 2.5, 2.9, 2.12) which provide powerful construction methods and
many examples. This notion is an extension of the usual notion of symplectic structures
on smooth schemes on the one hand to higher algebraic stacks and on the other hand to
derived schemes and derived stacks. Based on these results, we recover some known con-
structions, such as the symplectic structures on various types of moduli spaces of sheaves
on surfaces (see for instance [Mu, Hu-Le, In, In-Iw-Sa]) and the symmetric obstruc-
tion theories on moduli of sheaves on Calabi-Yau 3-folds (see [Be-Ia]), and prove new
existence results, by constructing natural n-shifted symplectic structures on many other
moduli spaces, including sheaves on higher dimensional varieties. These results may be
summarized as follows.

Theorem 0.1, —

1. Let X be a smooth and proper Calabi-Yau variety of dimension d. Then the derived moduli
stack of perfect complexes of quasi-coherent sheaves on X admits a canonical (2 — d)-shified
symplectic structure.

2. Let X be a smooth and proper varety of dimenswon d. Then, the derived moduli stack of
perfect complexes with flat connections on X admits a canonical 2(1 — d)-shified symplectic
Structure.

3. Let M be a compact oriented topological manifold of dimension d. Then, the derived moduli
stack of perfect complexes of local systems on M admits a canonical (2 — d)-shifted symplectic
Structure.

Future parts of this work will be concerned with the dual notion of Poisson (and
n-Poisson) structures in derived algebraic geometry, formality (and n-formality) theorems,
and finally with quantization.

p-Forms, closed p-forms and symplectic forms in the derived setting

A symplectic form on a smooth scheme X (over some base ring £, of characteristic

zero), is the datum of a closed 2-form @ € H*(X, Q;’;ﬁc), which 1s moreover required to
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be non-degenerate, i.e. it induces an isomorphism ®,, : Tx/ =~ .Q;( Ik between the tan-
gent and cotangent bundles. In our context X will no longer be a scheme, but rather a
derived Artin stack in the sense of [To-Ve-1, To2], the typical example being an X that
is the solution to some derived moduli problem (e.g. of sheaves, or complexes of sheaves
on smooth and proper schemes, see [To-Va, Corollary 3.31], or of maps between proper
schemes as in [To-Ve-1, Corollary 2.2.6.14]). In this context, differential 1-forms are nat-
urally sections in a quasi-coherent complex L, called the cotangent complex (see [Il,
To2]), and the quasi-coherent complex of p-forms is defined to be A’Ly ;. The p-forms
on X are then naturally defined as sections of A’Lx, i.e. the set of p-forms on X is
defined to be the (hyper)cohomology group H*(X, A’Lx/;). More generally, elements in
H"(X, ALy ;) are called p-forms of degree n on X (see Definition 1.12 and Proposition 1.14).
The first main difficulty is to define the notion of closed p-forms and of closed p-forms of degree n
in a meaningful manner. The key idea of this work is to interpret p-forms, 1.e. sections of
ALy i, as functions on the derived loop stack £X of [To2, To-Ve-2, Ben-Nad] by means
of the HKR theorem of [To-Ve-3] (see also [Ben-Nad]), and to interpret closedness as
the condition of being S'-equivariant. One important aspect here is that S'-equivariance
must be understood in the sense of homotopy theory, and therefore the closedness de-
fined in this manner is not simply a property of a p-form but consists of an extra structure
(see Definition 1.10). This picture is accurate (see Remarks 1.9 and 1.16), but technically
difficult to work with." We have therefore chosen a different presentation, by introducing
local constructions for affine derived schemes, that are then glued over X to obtain global
definitions for any derived Artin stack X. With each commutative dg-algebra A over £,
we assoclate a graded complex, called the weighted negative cyclic complex of A over k, explic-
itly constructed using the derived de Rham complex of A. Elements of weight p and of
degree n — p of this complex are by definition closed p-forms of degree n on Spec A (Def-
inition 1.8). For a general derived Artin stack X, closed p-forms are defined by smooth
descent techniques (Definition 1.12). This definition of closed p-forms has a more ex-
plicit local nature, but can be shown to coincide with the original idea of S'-equivariant
functions on the loop stack £X (using, for instance, results from [To-Ve-3, Ben-Nad]).

By definition a closed p-form w of degree n on X has an underlying p-form of
degree n (as we already mentioned this underlying p-form does not determine the closed
p-form w, and several different closed p-form can have the same underlying p-form).
When p = 2 this underlying 2-form is an element in H*(X, A’Lx/;), and defines a natural
morphism in the derived category of quasi-coherent complexes on X

O, : TX/k — LX//{["],

where Tx/; 1s the tangent complex (i.e. the dual of Ly ;). With this notation in place, we
give the main definition of this paper:

! One of the difficulties lies in the fact that we need to consider only functions formally supported around the
constant loops X < £X, and this causes troubles because of the various completions involved.
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Defination 0.2, — An n-shifted symplectic form on a derwed Artin stack X s a closed
2-form w of degree n on X such that the corresponding morphism

O, : Tx/ —> Lxy[n]

is an isomorphism in the quasi-coherent derwed category D 4, (X) of X.

When n = 0 and X is a smooth k-scheme, the definition above recovers the usual no-
tion of a symplectic structure, and nothing more. Smooth schemes do not admit n-shifted
symplectic structures for n # 0, but there are many interesting examples of O-shifted
symplectic structures on derived Artin stacks (see Corollaries 2.6, 2.13; see also [Pe]).
Therefore, not only the above definition provides an extension of the notion of symplec-
tic structure by introducing the parameter n, but even for n = 0 the notion of 0-shifted
symplectic structure is a new way to extend the notion of symplectic structures on non-
smooth schemes.

An n-shifted symplectic form w can be thought of as the data consisting of a quasi-
isomorphism

O : Tx/ —> Lxlnl,

together with an entire hierarchy of higher coherences expressing some subtle relations
between @ and the differential geometry of X. The quasi-isomorphism ® can itself be
understood as a kind of duality between the stacky part of X, expressed in the non-negative
part of Tx, and the derived part of X, expressed in the non-positive part of L/ (this is
striking already when n = 0, and this picture has to be qualified when 7 is far away
from 0). In practice, when X is some moduli of sheaves on some space M, this duality
is often induced by a version of Poincaré duality (or Serre duality) on M, since tangent
complexes are then expressed in terms of the cohomology of M. It is tempting to view
n-shifted symplectic structures as a non-abelian incarnation of Poincaré¢ duality, which is
definitely a good way to think about them in the context of non-abelian cohomology (see
section Related works at the end of this Introduction).

Exustence results

In this paper we prove three existence results for n-shifted symplectic structures. To
start with, we show that classifying stacks BG, for reductive affine group schemes G, are
naturally endowed with 2-shifted symplectic structures. The underlying 2-form here is
clear, it is given by the degree 2 shift of a non-degenerate G-invariant quadratic form:

al1] A g[1] =~ Sym*(@)[2] — £[2],

where g is the Lie algebra of G over k. The fact that this 2-form can be naturally pro-
moted to a closed 2-form on BG follows from the simple observation that all 2-forms on
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BG are canonically closed—geometrically this is due to the fact that the space of functions
on LBG is discrete, and thus S' acts on it in a canonically trivial manner.
Our first existence result is the following

Theorem 0.3. — The derwved stack RPerf of perfect complexes of quasi-coherent sheaves s
equipped with a natural 2-shifted symplectic form.

The relation between the above theorem and the 2-shifted symplectic form on BG
is given by the canonical open embedding BGL, C RPerf, sending a vector bundle to
the corresponding perfect complex concentrated in degree 0: the 2-shifted symplectic
form on RPerf restricts to the one on BGL,. The proof of Theorem 0.3 uses the Chern
character for perfect complexes, with values in negative cyclic homology. The weight
2 part of the Chern character of the universal perfect complex on RPerf provides a
canonical 2-form of degree 2, which is non-degenerate by inspection.

The second existence theorem we prove in this paper is a transfer of n-shifted
symplectic structures on a given derived Artin stack F to the derived mapping stack
Map(X, F), under certain orentability condition on X. This statement can be viewed
as an algebraic version of the AKSZ-formalism (see [AKSZ] for the original reference),
further extended to the setting of derived Artin stacks.

Theorem 0.4. — Let X be a derived stack endowed with an O-orientation of dimension d, and
let (¥, ) be a derived Artin stack with an n-shifted symplectic structure . Then the derived mapping
stack Map(X, F) carries a natural (n — d)-shifted symplectic structure.

The condition of having an O-orientation of dimension d (see Definition 2.4) essen-
tially means that D,,,(X) satisfies the Calabi-Yau condition in dimension 4. The typical
example 1s of course when X is a smooth and proper Calabi-Yau scheme (or Deligne-
Mumford stack) of dimension  (relative to Spec k). Other interesting examples are given,
for instance, by de Rham or Dolbeault homotopy types (Ypz, Y, In the notation of [Sil])
of a smooth and proper scheme Y over £, for which Map(Ypg, F), or Map(Yp,, F),
should be understood as maps with flat connections, or with Higgs fields, from Y to F.
Theorems 0.3 and 0.4 provide many examples of n-shifted symplectic forms on moduli
spaces of perfect complexes on Calabi-Yau schemes, or flat perfect complexes, or perfect
complexes with Higgs fields, etc. The proof of Theorem 0.4 is rather natural, though the
details require some care. We use the evaluation morphism

X x Map(X, F) — T,

to pull-back the n-shifted symplectic form on F to a closed 2-form of degree n on
X x Map(X, F). This closed 2-form is then integrated along X, using the O-orientation
(this 1s a quasi-coherent integration, for which we need Serre duality), in order to get a
closed 2-form of degree (2 — d) on Map(X, F). Then, we observe that this last 2-form is
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non-degenerate. A large part of the argument consists of defining properly the integration
map (see Definition 2.3).

Finally, our third and last existence statement concerns symplectic intersections
and symplectic forms induced on them. For this we introduce the notion of a Lagrangian
structure on a morphism L — X, where X is equipped with an n-shifted symplectic form;
this is a generalization of the notion of Lagrangian submanifolds (a closed immersion
L < X of smooth schemes possesses a Lagrangian structure if and only if L is Lagrangian
in X in the usual sense, and moreover this structure, if it exists, is unique).

Theorem 0.5. — Let (X, w) be a derwved Artin stack with an n-shifted symplectic form w, and
let

L—X, I —X

be two morphisms of derwved Artin stacks endowed with Lagrangian structures. Then, the derwved fiber
product 1. x* L. carries a natural (n — 1)-shifled symplectic form.

As a corollary, we see that the derived intersection of two Lagrangian smooth sub-
schemas L, L' C X, into a symplectic smooth scheme X, always carries a natural (—1)-
shifted symplectic structure.

Before going further we would like to mention here that the use of derived stacks
in Theorems 0.3, 0.4, 0.5 is crucial, and that the corresponding results do not hold in the
underived setting. The reason for this is that if a derived Artin stack F is endowed with
an n-shifted symplectic form w, then the pull-back of  to the truncation °(F) is a closed
2-form of degree n which is, in general, highly degenerate.

Examples and applications

The three Theorems 0.3, 0.4 and 0.5 listed above, imply the existence of many
interesting and geometrically relevant examples of n-shifted symplectic structures. For
instance, let Y be a smooth and proper Deligne-Mumford stack with connected geometric
fibers of relative dimension d.

1. The choice of a fundamental class [Y] € Hy(Y, O)? in de Rham cohomology

(relative to Spec ) determines a canonical 2(1 — @)-shifted symplectic form on
the derived stack

RPerf)z(Y) := Map(Y pr, RPerf)

of perfect complexes with flat connections on Y.

2 This stands for de Rham cohomology of Y with coefficients in the trivial flat bundle Oy. It can be computed as
usual, by taking hypercohomology of Y with coefficients in the de Rham complex.
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2. The choice of a fundamental class [Y] € H3/ (Y, O)*® in Dolbeault cohomology

(relative to Spec k) determines a canonical 2(1 — d)-shifted symplectic form on
the derived stack

RPerf),(Y) := Map(Y,, RPerf)

of perfect complexes with Higgs fields.
3. The choice of a trivialization (when it exists) wy; 2 Oy, determines a canonical
(2 — d)-shifted symplectic form on the derived stack

RPerf(Y) := Map(Y, RPerf)

of perfect complexes on Y.

4. If M is a compact, orientable topological manifold of dimension d, then a choice
of a fundamental class [M] € H;(M, k) determines a canonical (2 — d)-shifted
symplectic form on the derived stack

RPerf(M) := Map(M, RPerf)

of perfect complexes on M.*

We note here that the derived stack of perfect complexes of quasi-coherent sheaves
on Y considered above contains interesting open substacks, such as the stack of vector
bundles, or the stack of simple objects. We use this observation, and our existence the-
orems, to recover in a new and uniform way, some well known symplectic structures on
smooth moduli spaces of simple vector bundles (see [Mu, In]), and on character varieties
(see [Go, Je]). One corollary of our results states that these known symplectic structures
in fact extend to O-shifted symplectic structures on the ambient derived Artin stacks, and
this explains what is happening to the symplectic structures at the boundaries of these
smooth open substacks, 1.e. at bad points (vector bundles or representations with many
automorphisms, or with non-trivial obstruction map, etc.).

As another application of our existence results we present a construction of sym-
metric obstruction theories, in the sense of [Be-Fa], by showing that a (—1)-shifted symplectic
structure on a derived Artin stack X always endows the truncation 4°(X) with a natural
symmetric obstruction theory. This enables us to construct symmetric obstruction theo-
ries on the moduli stack of local systems on a compact topological 3-manifold, or on the
moduli stack of simple perfect complexes on a Calabi-Yau 3-fold. The latter result was
recently used by Brav-Bussi-Dupont-Joyce [Br-Bu-Du-Jo] to prove that the coarse mod-
uli space of simple perfect complexes of coherent sheaves, with fixed determinant, on a

% This stands for Dolbeault cohomology of Y with coefficients in the trivial Higgs bundle Oy. It can be computed
as usual, by taking hypercohomology of Y with coefficients in the Dolbeault complex.

* A perfect complex on M is by definition a complex of sheaves of £-modules locally quasi-isomorphic to a constant
and bounded complex of sheaves made of projective k-modules of finite type.
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Calabi-Yau 3-fold admits, locally for the analytic topology, a potential, 1.e. it is isomorphic
to the critical locus of a function. This was a longstanding problem in Donaldson-Thomas
theory. We remark that, as shown recently by Pandharipande-Thomas [Pa-Th], such a
result is false for a general symmetric obstruction theory. Hence the existence of a lo-
cal potential depends in a crucial way the existence of a global (—1)-shifted symplectic
structure on the derived moduli stack of simple perfect complexes on a Calabi-Yau 3-fold.
The results in [Br-Bu-Du-Jo] suggest that one should have general formal, local-analytic and
perhaps étale local versions of the Darboux theorem for (—1)-shifted—and maybe even for
general n-shifted—symplectic forms. It will be interesting to compare such formal (—1)-
shifted Darboux theorem with the formal potential defined in [Ko-So, Sect. 3.3]. Local
structure theorems of this type also hint at the existence of Donaldson-Thomas theory
for Calabi-Yau manifolds of higher dimensions. This is a completely unexplored terri-
tory with the first case being the case of 4-folds, where the corresponding derived moduli
space carries a (—2)-symplectic structure by Theorem 0.3.

Another interesting (—1)-shifted symplectic form whose existence follows from our
Theorem 0.4 1s the one obtained on Map(E, T*X), where E is an elliptic curve over
Spec k, X is a smooth A-scheme, and T*X 1s the total space of the cotangent bundle of X
(relative to k) equipped with its canonical symplectic structure. At the formal completion
level this (—1)-shifted symplectic form on Map(E, T*X) was constructed and studied
in [Co]. A nice feature of our construction is that it produces this symplectic structure
directly as a global form on the derived scheme Map(E, T*X). Specifically we have

Corollary 0.6. — Let £ be an orented elliptic curve over k with a fixed algebraic volume form,
and let X be a smooth k-scheme. Then the derived mapping scheme Map (E, T*X) carries a canonical
(—=1)-shufied symplectic structure.

Future works and open questions

In a sequel to this paper, we will study the dual notion of n-Pousson structures on
derived Artin stacks. This dual notion is technically more delicate to handle than the
n-shifted symplectic structures discussed in this paper. This is essentially due to the fact
that it is a much less local notion. Nevertheless we can follow the same reasoning and
extract the notion of an n-Poisson structure from the geometry of derived loop stacks and
higher loop stacks L®X := Map(S", X). As usual n-shifted symplectic structures give rise
to n-Poisson structures, and correspond precisely to the non-degenerate n-Poisson structures.
Without going into technical details one can say that an #-Poisson structure on a derived
Artin stack X consists of the data of a biwvector of degree —n

P € H"(X, A (Txulnl) [=2n]) = H™ (X, ¢/ (Tx0)),
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where
A (Tx/r) if n1s even,

¢, (Txyp) =~
T (T ifnis odd

together with higher coherences expressing a closedness conditions. Now, it turns out that
the complex

RI(X, Sym(Tx[—n— 11))[n + 2]

can be identified with the tangent complex of the deformation problem for the dg-
category L,,,(X) of quasi-coherent sheaves considered as an n-fold monoidal dg-category:’
n = 0 simply means as a dg-category, n = 1 as a monoidal dg-category, n = 2 as a braided
monoidal dg-category, and so on. A higher version of Kontsevich formality theorem implies
that an n-Poisson structure P defines an element in this tangent complex, satisfying a ho-
motopy version of the master equation, and thus a formal deformation of L,;(X) con-
sidered as an n-fold monoidal dg-category. This formal deformation is, by definition, the
quantization of X with respect to the n-Poisson structure P. As a consequence, if X is endowed
with an n-shifted symplectic structure, then it has a canonical quantization, which is, by
definition, a formal deformation of L,.,;(X) as an n-fold monoidal dg-category. This will
be our approach to construct quantizations of the derived moduli stacks on which, in this
paper, we have constructed n-shifted symplectic structures. At the moment, this program
is very much in progress, and two main difficulties remain. First of all the deformation
theory of dg-categories and n-fold monoidal dg-categories has not been fully worked out
in the literature. Even the case n = 0 1s not fully understood, as explained in [Ke-Lo] and
[Lu2, Remark 5.3.38]. We hope to make progress on this deformation theory by intro-
ducing the new machinery of tame homological algebra, and tame dg-categories. Ongoing work
(see the forthcoming [To-Va-Ve]) in that direction seems to provide a complete answer for
n = 0. We hope that similar ideas will also work for arbitrary n. The second issue concerns
the higher version of Kontsevich formality theorem mentioned above, which states that
the natural Lie bracket on the complex RI" (X, $ym(Tx/[—n — 1]))[n + 1] coming from
the fact that it is the tangent complex of the deformation problem of #-fold monoidal dg-
categories, 1s the natural one (i.e. equals an appropriate version of the Schouten bracket).
This higher version of the formality theorem is, at present, still a conjecture, even for the
case n =0 and X a general derived Artin stack (the only established case is # =0 and X
a smooth scheme).

Related works

There are many related works that should be mentioned here but for space reasons
we will only discuss a small selection of such works.

> We can make sense of this also for negative n, by shifting the formal deformation variable in degree —2n. Yor the
moment, we will assume 7 > 0 in order to simplify the presentation.
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To start with, our notion of 0-shifted symplectic structure generalizes the usual no-
tion of symplectic structures on smooth schemes to the setting of derived Artin stacks. In
this context the O-shifted symplectic structures provide a new point of view on symplectic
structures over non-smooth objects, and a comparison with the notion of symplectic sin-
gularities and symplectic resolutions [Kal, Kal-Le-So, Na, Ne-McG] would certainly be
interesting. We note however that O-shifted symplectic structures cannot exist on singular
schemes. This is due to the fact that for the cotangent complex to be its own dual we
need some non-trivial stacky structure. Therefore, O-shifted symplectic structures do not
bring anything new for singularities of schemes, but are surely interesting for singularities
appearing on some moduli stacks and on their coarse moduli spaces. As noted in [Fu,
Theorem 6.1], there exist coarse moduli spaces of sheaves on K3 surfaces having sym-
plectic singularities but with no symplectic resolution. However, these moduli spaces are
coarse moduli of natural derived Artin stacks, and according to our results these derived
stacks carry natural O-shifted symplectic structures. It is tempting to consider the derived
Artin stack itself as a symplectic resolution of its coarse moduli space.

We have explained how several well known symplectic structures can be recovered
from our existence theorem. Similar symplectic structures are known to exist on moduli
of certain sheaves on non Calabi-Yau manifolds (see for instance [Ku-Ma]). We believe
that these can also be recovered from a slight modification of our constructions, but we
will not pursue this direction in the present work.

Symplectic structures also appear in non-commutative geometry, in particular on
moduli spaces of sheaves on non-commutative Calabi-Yau varieties. More generally, our ex-
istence Theorem 2.12 has an extension to the case of the derived stack M of objects
in a Calabi-Yau dg-category T, constructed in [To-Va]: the derived stack M1 carries a
natural (2 — d)-shifted symplectic structure when T is a Calabi-Yau dg-category of di-
mension d. The proof of this non-commutative extension of Theorem 2.12 is very close
to the proof of our Theorem 2.5, but is not included in this work. In another direction,
we think that sheaves on non-commutative Calabi-Yau varieties of fractional dimension
should also carry a suitable version of shifted symplectic structures.

Many of the n-shifted symplectic structures we construct in this paper live on de-
rived moduli stacks of bundles (or complexes of bundles) with flat, or Higgs structures
(RLocpr(X), RLocp,(X), etc.). These are the moduli stacks appearing in non-abelian Hodge
theory, and 1in fact, the derived moduli of flat perfect complexes RPerf);(X) is used in
[Si2] to construct e universal non-abelian Hodge filtration. The n-shifted symplectic
forms on these moduli stacks reflects the Poincaré duality in de Rham (or Dolbeault, or
Betti) cohomology, and this should be thought of as an incarnation of Poincaré duality
in non-abelian cohomology. They give important additional structures on these moduli
stacks, and are expected to play an important role for the definition of polarizations in
non-abelian Hodge theory.

Our Theorem 0.4 should be viewed as an algebraic version of one of the main
construction in [AKSZ]. Similarly, some of the constructions and notions presented here
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are very close to constructions and notions introduced in [Co]. More precisely, our con-
struction and results about degree (—1) derived symplectic structures might be seen as a
globalization of Costello’s_formal derwved (in the sense of [Lu2]) approach. A complete com-
parison would require C* and complex analytic versions of derived algebraic geometry,
and a notion of n-shifted symplectic structures in such contexts. We are convinced that
most, if not all, the definitions and results we present in this work have C* and complex
analytic analogs. Derived differential and complex analytic geometries do exist thanks to
[Lu3], but going through the notions of forms, closed forms and symplectic structures in
these settings is not completely straightforward.

Finally, the reader will notice that most of the methods we give in this work provide
m-shifted symplectic structures starting from already existing n-shifted symplectic struc-
tures with n > m (e.g. Theorems 2.5 and 2.9). It would also be interesting to have con-
structions that crease the degree of symplectic structures. The 2-shifted symplectic forms
on BG and RPerf are of this kind, but it would be interesting to have general methods
for constructing n-shifted symplectic forms on quotients, dual to the one we have on fiber
products and on mapping stacks.

Notations and conventions

e ks a base commutative ring, noetherian and of residual characteristic zero.

e dg, is the category of dg-modules over £ (i.e. of complexes of £-modules). By
convention, the differential of an object in dg, wncreases degrees. For an object
E € dg,, we will sometimes use the notation

7:(E) :=H(E).

® cdga, 1s the category of commutative dg-algebras over £, and cdga” its full sub-
category of non-positively graded commutative dg-algebras.

e dg,, cdga, (respectively cdga’") are endowed with their natural model struc-
tures for which equivalences are quasi-isomorphisms, and fibrations are epimor-
phisms (respectively epimorphisms in strictly negative degrees).

o dAff, := (cdga")? is the category of derived affine -schemes.

e The expression co-category will always refer to (00, 1)-category (see [Ber]). To fix
ideas we will use Segal categories as models for oco-categories (see [Si3], and
[To-Ve-2, §1]).

e The oo-categories associated to the model categories dg,, ¢dga;’, dAff, are de-
noted by dg;, cdga>"’, dAff,.

e The oo-category of simplicial sets is denoted by S. It is also called the oo-
category of spaces, and space will be used to mean simplicial set.

e The oco-category of derived stacks over £, for the étale topology, is denoted by
dSt; (see [To2, To-Ve-1]). If X is a derived stack, the oco-category of derived
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stacks over X 1s denoted by dStx. The truncation of a derived stack X 1s de-
noted by #°(X). The derived mapping stack between X and Y is denoted by
RMap(X,Y).

We will use the expressions homotopy limits and co-lmuts interchangeably to refer
either to homotopy limits in an ambient model category, or to limits in an ambi-
ent 0o-category. The same convention will be used for colimits. Homotopy fiber
products will be denoted as usual by X x% Y.

The mapping space between two objects @ and 4 in an co-category A is denoted
by Map,(a, b). Points in Map, (a, b) will be called morphisms in A, and paths in
Map, (a, b) homotopies. A morphism in an oo-category will be called an equivalence
if it 1s a homotopy equivalence (i.e. becomes an isomorphism in the homotopy
category). The word equivalence will also refer to a weak equivalence in a model
category.

A derived Artin stack is by definition a derived stack which is m-geometric for some
integer m, for the étale topology and the class P of smooth maps (see [To-Ve-1,
§2.2.2] and [To2]). All derived Artin stacks are assumed to be locally of finite
presentation over Speck.

For a derived stack X, its quasi-coherent derived category is denoted by D .4 (X),
and its oo-categorical version by L, (X). The larger derived category of all
Ox-modules is denoted by D(Ox), and its oo-categorical version by L(Ox).
By definition, L, (X) is a full sub-co-category of L(Ox). As usual, morphisms
between x and y in D, (X) will be denoted by [x, y]. We have

[x, ] =~ 70 (M“quw,,(X) (x, y)).

We refer to [To2, Tol], and also [Lu3], for detailed definitions and properties of
these co-categories.

Complexes of morphisms between objects ¥ and y in L(Ox) or L, (X) will
be denoted by RHom(x, ). The oo-categories L(Ox) and L,,;,(X) have nat-
ural symmetric monoidal structures (in the sense of [To-Ve-2, Lu5]), and this
monoidal structures are closed. The internal mapping object in L(Ox) between
x and y is denoted by RHom(x, »). In particular, for an object x, we denote by
x" := RHom(x, Ox) its dual. Perfect complexes on X are by definition dualiz-
able objects in L., (X).

Expressions such as f*, f, and ®; should be understood in the derived sense,
and should be read as Lf*, Rf,, ®/, unless specified otherwise.

For a derived Artin stack X, we denote by Ly, € L,,,(X) its cotangent complex
over Speck (see [To2, To-Ve-1] and [Lu), §7.3]). Since, according to our con-
ventions, X is assumed to be locally of finite presentation, it follows that Ly is a
perfect complex on X, and thus is dualizable. Its dual is denoted by T, := Ly, Ik
and is called the tangent complex of X over Speck.
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1. Definitions and properties

In this first section we give the definitions of p-forms, closed p-forms and symplectic forms
over a derived Artin stack. We will start by some elementary constructions in the setting
of mixed and graded mixed complexes. These constructions will then be applied to define
p-forms and closed p-forms over an affine derived scheme Spec A, by using some explicit
graded mixed complexes constructed from the derived de Rham complex of A. Finally,
these constructions are shown to be local for the smooth topology and to glue on smooth
covers, giving global notions for any derived Artin stack. This smooth descent property is
not a completely obvious statement, and its proof requires some care.

1.1. Graded mixed complexes

Recall from [Ka] that a mixed complex over k is a dg-module over k[e] = H,(S', k),
where € is in degree —1 and satisfies € = 0. The category of mixed complexes will be
denoted by €-dg,, and also called the category of €-dg-modules over 4. The differential
of the complex of £-modules underlying an object E € €-dg, will be denoted by 4, and by
convention it raises degrees d : E" —> E"*!,

The tensor product ®; makes €-dg, into a symmetric monoidal category, which
1s moreover a symmetric monoidal model category for which the weak equivalences are
the quasi-isomorphisms (see [To-Ve-3, §2]). By definition a graded mixed complex over k is a
mixed complex E over £, equipped with a direct sum decomposition of the underlying
complex of £-dg-modules

E:=EPE@).
pez
in such a way that multiplication by € has degree 1
e:E(p) — E@p+1),
while the differential 4 of the complex of £-modules underlying E respects this grading
d:E(p) — E(p).

The extra grading will be called the weight grading, and we will say that elements in E(p)
have weight p.

Graded mixed complexes over £ form a category denoted by €-dg; , that is again a
symmetric monoidal model category, for the tensor product over £ with the usual induced
grading

(E®: F)(p) :== @D EG) @ E(),
i+j=p

and with weak equivalences being the quasi-isomorphisms.
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Remark 1.1. — Alternatively, graded mixed complexes can be viewed as dg-
comodules over the commutative dg-Hopf-algebra (see also [Ben-Nad])

B. := H*(G,, x BG,, O),

the cohomology Hopf algebra of the semi-direct product group stack G,, X BG,. It is
the semi-direct (or cross-)product of the multiplicative Hopf algebra £[¢, £~'] with [e] =
H*(S!, k), via the natural action of G,, on £[e] given by rescaling e. More precisely, as a
commutative dg-algebra, B, is £[¢, '] ®; k[e], with zero differential and comultiplication
determined by

A)=t®1, Al =tQe.
Note that the tautological equivalence of symmetric monoidal categories
€-dg; >~ B.-dg-comod,
commutes with the two forgetful functors to the category of complexes of £-dg-modules.

Let E € €-dg, be a mixed complex over £. We may form the usual negative cyclic
object NC(E), which is a dg-module over £ defined in degree n by the formula

NC'(E) := ]_[ ErY,
>0
For an element {m;}; € Hizo E"~% the differential is defined by the formula

D({m}), = em1 + dn,

If E is moreover a graded mixed complex, then the extra grading E = €5 , E(p) defines a
sequence of sub-complexes NC(E)(p) C NC(E), by

NC'E)(p) =] [E(p+ ).
>0

These sub-complexes are natural direct summands (i.e. the inclusions admit natural re-
tractions), and thus we have natural morphisms

PNCE) () — NCE) — [ [NCE) Q).
Vs P

These are monomorphisms of complexes, but in general they are neither isomorphisms
nor quasi-isomorphisms.
The above constructions are functorial in E, and define a functor

NC : e-dg] —> dg,,
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from the category of graded mixed complexes to the category of complexes. Moreover,
the functors E = NC(E)(p) defines direct summands of the functor NC, together with
natural transformations @p NC(p) — NC —> ]_[pNC (p). We will be interested in the

family of functors NC(p) : €-dg} —> dg,, as well as in their direct sum

NC" == P NC) : e-dgf — dgf.
b

where dg] denotes the category of graded complexes of k-modules—i.e. complexes of
k-modules equipped with an extra Z-grading, with morphisms the maps of complexes
preserving the extra grading:

Definition 1.2. — For a graded mixed complex E, the weighted negative cyclic complex
is defined by

NC"(E) := @HNCE)(p) € g
pez
Iis cohomology is called the weighted negative cyclic homology of E, and is denoted by
NCY(E) :=H"(NC"(E)),  NCY(E)@P) :=H"(NC"E)(®)).
The natural decomposition
NC! (E) ~ EHNCY E) ()
pEZ

is called the Hodge decomposition.

As observed above, we have a natural morphism
NC” (E) — NC(E)

which is, in general, not a quasi-isomorphism. The complex NC(E) computes the usual
negative cyclic homology of the mixed complex E, which can differ from the weighted cyclic
homology as defined above. The two coincide under obvious boundedness conditions
on E.

Both categories €-dg] and dg; have natural projective model structures, where weak
equivalences are quasi-isomorphisms and fibrations are epimorphisms, on the underlying
complexes of k-modules (see [To-Ve-3]).

Proposition 1.3. — The functor
NCY : e-dg] —> dg}

is a right Quallen_functor for the projective model structures.
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Progf: — We denote by k(p) € €-dg] the graded mixed complex consisting of £ sit-
ting in degree 0 and having pure weight p. We construct an explicit cofibrant replacement

Q(p) of k(p) as follows. As a graded £[€]-module, Q(p) is
Q) = P Hell2l = Hella, ... ;... 1.
Jj=0

where ¢; stands for the canonical generator of £[€][2/] (in degree —2j). The differential in
Q(p) 1s then given by

daj+¢€-a_,=0.
Finally, a; is declared to be of weight p + ;. The natural projection
Q) — k(p)

sending all the g;’s to zero for j > 0, and gy to 1 € £, is a quasi-isomorphism of graded
mixed complexes. Moreover QQ(p) is a free graded module over £[€], and thus is a cofi-
brant object in €-dg} . Finally, we have

NC" (E)(p) =~ Hom(Q(p), E).

where Hom stands for the complex of morphisms between two objects in e-dg} (e-dg; is
a C(k)-model category in a natural way, where C(k) is the symmetric monoidal model
category of complexes of £-modules). This finishes the proof of the proposition. UJ

Since all objects in the model categories €-dg] and dg are fibrant for the pro-
jective model structures, Proposition 1.3 implies in particular that NC* preserves quasi-
isomorphisms. Following our conventions, we will denote by

dg’, e-dg, and e-dg’,

the oo-categories obtained by Dwyer-Kan localization from the corresponding model
categories dg} , €-dg, and e-dg} , respectively. The functor NC* thus defines an co-functor

NC" =P NC () : e-dg] —> dg].
?
Corollary 1.4. — The oo-funclor
NC" :e-dg’ —> dg’
preserves 0o-limits. Moreover, we have natural equivalences
NC"(E)(p) = RHom(k(p), E)

where k(p) € €-dg] is the graded mixed complex consisting of k sitting in degree O and having pure
weight p.
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Progf. — This is a consequence of the statement and proof of Proposition 1.3. U

Remark 1.5. — The notion of weighted negative cyclic homology has the following
geometric interpretation (see also [Ben-Nad]). We let the multiplicative group scheme
G,, (over Speck) act on the group stack BG,, and form the semi-direct product group
stack G,, X BG,. It can be shown from the definitions that there exists an equivalence of
00-categories

L,.:(B(G, x BG,)) ~ e-dg] .

This equivalence is obtained by sending a quasi-coherent complex E on the stack
B(G,, x BG,) to its fiber at the base point Speck — B(G,, X BG,), which is natu-
rally equipped with an action of G,, X BG,, and thus a structure of a comodule over the
dg-coalgebra of cochains C*(G,, X BG,, O). This dg-coalgebra turns out to be formal
and quasi-isomorphic to the dg-coalgebra B, discussed above—the semi-direct product
of k[t,#~'] with k[e]. This fiber is therefore a graded mixed complex, and it is straight-
forward to check that this construction induces an equivalence of co-categories as stated.
Using this point of view, the co-functor NC" has the following interpretation. Consider
the natural projection

7 : B(G, x BG,) — BG,,.

It induces a direct image on the co-categories of quasi-coherent complexes
Ty quh(B(Gm X BGa)) — L,,(BG,),

right adjoint to the pull-back functor
7*: Lw(BG,) —> L,i(B(G, x BG,)).

If we identify L,.,(B(G,, x BG,)) with e-dg] as above, and L,.,(BG,) with dg, then 7,
becomes womorphic to NC*. In other words, NC" (E) computes the homotopy fixed point
of E under the action of BG,. The residual G,-action then corresponds to the grading
by the pieces NC" (E)(p).

We finish this section by observing that the graded complex NC"(E) comes
equipped with a natural projection

NC"(E) — E,

which is functorial in E and is a morphism of graded complexes. It consists of the mor-
phisms induced by the projection to the : = 0 component

NCYEY'(p) =] [E(p+i) — E'@).

>0
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Remark 1.6. — If E 1s a graded e-dg-module (i.e. a graded mixed complex) over
k, then for any weight p there is a natural map—that might be called the absolute
e-differential—

Dg(p) : E(p) — NCP(E)(p+ D[-1]

whose degree m piece is

D) 1B (p) = [[E 7 0+ 1+ 1) 2 > (€5, 0,0,..).

>0

1.2. p-Forms, closed p-forms and n-shified symplectic structures

Let A € ¢dga:" be a commutative differential non-positively graded algebra over £,
and let us denote by £, the A-dg-module of Kahler differential 1-forms of A over k.
We can form its de Rham algebra over % (see [To-Ve-3])

DR(A/K) = Sym, (82} ,[11).

where in contrast with our usual usage Sym, here refers to the underived symmetric
product of A-dg-modules. The complex DR(A/k) is in a natural way a commutative €-
dg-algebra in the sense of [To-Ve-3, §2]. Here we will consider DR(A/k) just as a graded
mixed complex, by forgetting the extra multiplicative structure. The underlying complex
of k-modules is simply

Sym (824 ,[11) @QA//C[?]’

where .sz/k =A A.Qll\/k The mixed structure is induced by the de Rham differential

€:=dpp: 2} o [2lY /k , and is the unique mixed structure on Sym, (§2\ ,i[11) making it
into an €-cdga and for which the action of € on the factor A = A% 2, s 1s the universal
dg-derivation d : A —> £} s (see [To-Ve-3, §2]). Finally, the grading on DR(A/F) is the
one for which DR(A/k)(p) := .Qi silp]. This graded mixed structure on DR(A/F) is also
compatible with the multiplicative structure, and makes it into a graded mixed cdga over
k, but we will not make use of this finer structure in this work.

The assignment A = DR(A/k) defines a functor

cdga;’ — e-dg .

This functor can be derived on the left, by pre-composing it with a cofibrant replacement
functor on ¢gda;’, to obtain

LDR(—/k) : cdga”’ — e-dg
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which now preserves quasi-isomorphisms. Therefore, it induces a well defined co-functor
DR(—/k) : cdga, —> €-dg] . Recall that, for A a cdga over £, the underlying complex
of DR(A/k) is

@ (/\f)\LA//i) [,

»

where Ly ; is the cotangent complex of A over £, and A}, must now be understood in the
derived sense (see the proof of [To-Ve-3, Proposition 2.4]).

Definition 1.7. — Let A € cdga,. The weighted negative cyclic complex of A over &
is defined by

NC"(A/k) :== NC" (DR(A/F)).
T his defines an 0o -functor
NC" : cdga, —> dg; .
As we have seen, for any graded mixed complex E, we have a natural projection
NC”(E) — E,

which is a morphism of graded complexes. We get this way, for any p > 0, a natural
morphism of complexes

NC"(AJR)(p) —> AAL 4lp).

For a complex of £-modules E, we will denote by |E| the simplicial set obtained by
the Dold-Kan correspondence (applied to the truncation 7, (E)). By definition we have a
natural weak equivalence |E| >~ Map,, (k, E), where Mapy, denotes the mapping space
(ie. simplicial set) in the co-category dg,. For A € edga,, and two integers p > 0 and
n € Z, we set

AJZ(A, 72) = } /\PA L/\//C[ﬂ]‘ eS.
This defines an co-functor AL (—, n) : cdga, —> S. In the same way, we set
AL (A ) = INC A/ = p)(p)].

Using the natural projection mentioned above NC" (A/k)[n — pl(p) —> A'Lysln], we
deduce a natural morphism .Ai’d(A, n) —> AL(A, n). We have therefore two co-functors

Aﬁ’d(—, n), A’Z(—, n) : cdga, —> S,

. : ol
together with a natural transformation A" (—, n) —> AL(—, n).
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Definition 1.8. — For A € cdga,, the simplicial set AL(A, n) (respectively AL (A, n)) is
called the space of p-forms of degree n on the derived stack Spec A, relative to £ (respectively
the space of closed p-forms of degree n on the derived stack Spec A, relative to k).

As usual, when the ground ring £ is clear from the context, we will simply write

AP(—, n) and AP?(—, n) for A(—, n) and AP (—, n).

Remark 1.9. — We have seen that graded mixed complexes can be understood as
quasi-coherent complexes on the stack BH, where H is the semi-direct product group
stack G,, X BG, (see our Remark 1.5). If we continue this point of view, p-forms and
closed p-forms can be interpreted as follows (see also [Ben-Nad]).

Let X = SpecA be a derived affine scheme over %, and consider its derived loop
stack £X := RMap(S', X). The natural morphism S! = BZ —> BG,, induced by the
inclusion Z — G,, induces a morphism

£"X := RMap(BG,, X) — L£X.

This morphism turns out to be an equivalence of derived schemes. Therefore, the group
stack H of automorphisms of BG,, acts naturally on £X. We can form the quotient stack
and consider the natural projection

»:[LX/H] — BH.

Using the results of [To-Ve-3] it is possible to show that there exists a functorial equiva-
lence in L,,,(BH)

P2« (Orexmy) =~ DR(A/E),

where DR(A/k) is viewed as an object in L,,,,(BH) using our Remark 1.5.

As p-forms and closed p-forms are defined directly from the graded mixed com-
plexes, this explains the precise relation between our notion of closed p-forms, and func-
tions on derived loop stacks. For instance, we have that NC"(A/k) are simply the BG,-
invariants (or equivalently the S'-invariants through S' — BG,) in the complex of func-
tions on L£X, in the sense that we have a natural equivalence of quasi-coherent sheaves

on BG,,
7(Orexymy) = NC"(A/K),
where now ¢ is the projection [LX/H] — BH — BG,,.

Note that the space A" (A, n), of closed p-forms of some degree 7, is not a full sub-
space (i.e. not a union of connected components) of A”(A, n). For a point w € A’(A, n),
the homotopy fiber K(w) of the map A*“(A, n) —> A?(A, n), taken at w, can be a
complicated space. Contrary to what the terminology closed p-forms seems to suggest, being
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closed 1s not a well defined property for a p-form, and there is indeed an entire space
of “closing structures” on a given p-form, namely the homotopy fiber K(w). As a point in
K(w) consists of the data needed to “close” the p-form w, we will call K(w) the space of
keys of w. For future reference we record this in the following definition.

Definition 1.10. — For A € edga,, and w € A’(A, n), the space K(w), is defined to be
the homotopy fiber of the natural map A»(A, n) —> AP(A, n) taken at w. It is called the space of
keys of w.

We have defined two oo-functors A?(—, n), A"'(—, n) : cdga, —> S that we con-
sider as derived pre-stacks, dAff —> S. When A € cdga, is viewed as a derived scheme
X = SpecA, we will obviously write

A'(X, n) = A(A, n), APU(X, n) = APUA, n).

Proposition 1.11. — The derived pre-stacks A?(—, n) and A" (—, n) are derived stacks for
the étale topology.

Progf. — For A?(—, n), we have by definition
Al(SpecA, n) = Mapy, (k, (N\Lai)[n]).

Therefore, the fact that A?(—, n) satisfies étale descent follows from the fact that the
functor Spec A = ALy, satisfies étale descent. This latter co-functor, when restricted
to the small étale site of a derived affine scheme X is a quasi-coherent complex of Ox-
modules, and thus is a derived stack for the étale (and in fact the fpqc) topology (see
[To-Ve-1, Lemma 2.2.2.13]).

In the same way, the derived pre-stack

SpecA— DR(A/K)[n— p] =~ @(A?\LA//{) [g—p+n]
q

is a quasi-coherent complex on the small étale site of X = SpecA, and so satisfies étale
descent. Therefore, Corollary 1.4 implies that

Spec A — NC" (DR(A/K)[n — p]) = NC" (DR(A/K))[n — p]

is a derived stack for the étale topology. Taking the degree p part and applying the Dold-
Kan correspondence, we deduce that SpecA — A”“(A, n) has descent for the étale
topology. UJ

Proposition 1.11 enables us to globalize the definition of A?(X, ) and A”"(X, n)
to any derived stack X, as follows.
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Definition 1.12. — Let I € dSt;, be a derived stack over k, p and n integers with p > 0. The
space of p-forms, relative to £, of degree n on ¥ us defined by

AL(F, n) == Mapyg, (F, A(—, n)).
The space of closed p-forms, relative to £, of degree n on F s defined by
AL (F, n) 1= Mapyg, (F, AL (=, m).

As before, when the base ring £ is clear from the context, we will not include it in
the notation.

Using the natural projection A”“(—, n) —> A’(—, n), we have, for any F, a natu-
ral projection A*"(F, n) —> A’(F, n).

Definition 1.12 above has an alternative description, based on Corollary 1.4. Con-
sider the derived pre-stack Spec A — DR(A/k). It is a derived pre-stack with values in
e-dg] . As the forgetful co-functor

e-dg —> dg/

1s conservative and preserves 0o-limits, Corollary 1.4 implies that DR is a derived stack
with values in graded mixed complexes. By left Kan extension, this derived stack extends
uniquely to an oo-functor (see e.g. [To-Ve-2, §1.2] or [Lul])

DR(—/k) : dSt} —> e-dg’.
Therefore, as in Definition 1.12, we may give the following
Defination 1.13. — For a derwed stack ¥ we set
NC"(F/k) :== NC" (DR(F/k)) € dg] .
As usual, if k 1s clear from the context, we will write
DR(F) =DR(F/k), NC*(F) = NC” (F/F).
Note that Corollary 1.4 implies that we have natural equivalences

A (F, n) = |DR(F/K)[n— pl(p)|, AL(F, m) = [NC" (F/B)n— pl(p)].

The second of these equivalences is sometimes useful to compute the spaces of closed
p-forms by first computing explicitly the graded mixed complex DR(¥/£) and then ap-
plying the co-functor NC".

The space of closed p-forms on a general derived stack F can be a rather compli-
cated object, even when F is a nice derived Artin stack. The space of p-forms, however,
has the following, expected, description.
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Proposition 1.14. — Let ¥ be a derived Artin stack over k, and L. € Ly, (F) be 1ts cotangent
complex relative to k. Then, we have an equivalence
AP(F, I’l) ~ Md])Lth(F) (OF, /\pLF/k[n]).
This equivalence s functorial in ¥ in the obvious sense. In particular, we have a functorial byective map
ﬂ()(Ap(F, ﬂ)) ~ Hn(F, /\pLF/k).

Proof: — We start by constructing a morphism

d)F :MCZ[)L ) (OF’ /\pLF/k[I’l]) — Afj(F, n),

‘qeoh.

functorial in F. By definition, the right hand side is given by

A (F, n) >~ Holim A'(X, n)

X=SpecAc(dAff/F)”

~ Holim Mau I3 A Leilnl).
X=SpecAc(dAff/F)” pdgk( A A/k[ ])

On the oco-site dAff/F, of derived affine schemes over I, we have a (non-quasi-coherent)
O-module, denoted by A’L, and defined by

X= SpecA = /\f).\LA/k-

We also have the quasi-coherent O-module A’Lg;. There exists a natural morphism of
O-modules on dAff/F, A’Ly/, —> A'L obtained over u : Spec A — F, by the natural
morphism #*(Lg/;) —> Ly/. This defines a morphism on global sections

P i p
Mapllth(]:) (OF’ N Lf/k[ﬂ]) — X:SPeTgell(znAﬂ/F)”ﬁ M‘lﬁdgk (ka /\ALA/k[n])

~ A’(F,n).
We will now check that this morphism
¢ :Maqum;,(F) (OF’ /\pLF/k[n]) — A'(F, n)

is an equivalence. For this we assume that I is a derived Artin stack which is m-geometric
for some m > 0 (see [To-Ve-1, §1.3.3]), and we proceed by induction on m. For m =0, F is
a derived affine stack and the statement is true. We assume that the statement is correct
for (m — 1)-geometric derived stacks. We can write F as the quotient of a smooth Segal
groupoid object X,,, with X, being (m — 1)-geometric for all z (see [To-Ve-1, §1.3.4]).
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We have a commutative square of descent maps

Ma/’qu/,(l")(OF’APLF//c[”]) —— Holim;ca Ma/’LW,/,(x,.)(OXp/\” (Lx;/6)[n])

9 |

AP (F, n) Holim;ea A?(X;, 1)

By induction, the right vertical morphism between the homotopy limits is an equivalence.
The bottom horizontal morphism is also an equivalence, because F — A?(F, n) sends
oo-colimits to oo-limits by definition. It thus remains to show that the top horizontal
morphism is an equivalence. But this follows from the following lemma.

Lemma 1.15. — Let X, be a smooth Segal groupoid object in derived Artin stacks, with quotient
F = |X.|. Then, for any integer p and n, the natural morphism

Mapy,,,,x) (Or. A"Lijs[n]) — Holim;e, Mapy, ) (Ox,» A'Li,/in])
is an equivalence.

Proof of lemma. — For any n, the morphisms appearing in the statement of the
lemma are retracts of the natural morphism

Maqumh(F) <OF, @(/\pLF/k) [n —p]>

r
o (Map Lyean(X,) (OXw @(/\p Ly,/i)[n— p])).

The mapping spaces of the co-category L, (F) are related to the derived Hom’s by the
formula

Map, 4 (E, F) >~ |RHom(E, F)|,

qeoh

and therefore it is enough to prove that

RHom (OF, @ (/\pLF/k) [—l’]>

b

—> Holim RHom <0Xi’ @(APLXZ//C) [—]7]>

JISVAN
V4

is a quasi-isomorphism of complexes of £-modules.
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For a derived stack F, we denote by T'(F) the shifted tangent stack
TF) := Map(Spec kle_i1, F),

where ¢_; is in degree —1. The oco-functor F > T'(F) preserves derived Artin stacks and
finite homotopy limits. Moreover, if X —> Y is a smooth and surjective morphism of
derived Artin stacks then T'(X) —> T'(Y) is an epimorphism of derived stacks, as one
may see by using the infinitesimal criterion for smoothness [To-Ve-1, §2.2.5]. It follows
formally from these properties that the natural morphism |T'X, | —> T!|X,| = T'(F) is
an equivalence. This implies that we have

RHomy,; 1) (Or1 @y, Oriy) 2= HOlimR Homy, 11 0y (O, O ) -
1

Moreover, for any derived Artin stack X, T'(X) is affine over X and can be written as a
relative spectrum (see [To-Ve-1, Proposition 1.4.1.6])

T'(X) ~ Specy ($Hmp, (Lx[—11)).

In particular, we have natural quasi-isomorphisms

RHOWZ(OTI(X), OTI(X)) >~ RHOm(O)(, @(/\%XLX)[_p]> .
b

We thus deduce that the natural morphism

RHOquM[(F) <OF, @ (/\pLF/k) [—p])

b

—> HolimRHom, ,x,) (Oxi, @(APLXW)[—P])

€A
b
is a quasi-isomorphism, which implies the lemma. 4
This finishes the proof of the proposition. U

Remark 1.16. — The interpretations of p-forms and closed p-forms as functions
and invariant functions on the derived loop stacks given in Remark 1.9 has a global
counterpart. This globalization is not totally obvious, as the construction X > £X is not
compatible with smooth gluing. However, it is possible to introduce the formal loop stack
/X, the formal completion of £X along the constant loops X < £X, and to prove that
functions on £/X have smooth descent (this is essentially the same argument as in our
Lemma 1.15, see also [Ben-Nad]). The group stack H acts on £/X, and if we denote by

g:[£/X/H] — BH — BG,
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the natural projection, we have

NCP(¥/F) = ¢ (O my)-

In other words, closed p-forms on X can be interpreted as BG,-invariant (or equivalently
S'-invariant) functions on £/X.

Remark 1.17. — Let F be a derived Artin stack locally of finite presentation over £.
If we consider the absolute e-differential Dy (Remark 1.6) for E := DR(¥/k)[n — p] =

RI(F, @20 (ALp) gD [n — pl, we get

dpr(p) :=Dr(p) : DRE/K)(p)[n — p] —> NC* (F/R) (p+ D[n— (p+ 1]

whose geometric realization gives the derived de Rham differential (as a map of spaces)
dpr(p) := |df)1e([9)| s A (F; ) — ATHUE; ).

We are now ready to define the space of n-shified symplectic structures on a derived
Artin stack F. To do this, let us recall that if I is a derived Artin stack (locally of finite
presentation over £, as are all of our derived Artin stacks by convention), then the cotan-
gent complex Ly/; is a perfect complex. In particular it is a dualizable object in L, (F)
(or equivalently dualizable in D, (F), see [To-Ve-2]). Its dual will be denoted by Tg/;.
Under this condition, any 2-form o of degree n on F, induces by Proposition 1.14 a
morphism of quasi-coherent complexes

Op —> (A, L) ],

and thus, by duality, a morphism /\éFTF/k —> Ok[n]. By adjunction, this induces a well
defined morphism in L, (F)

@w : TF/k —> LF/k[n]

Defination 1.18. — Let ¥ be a derwed Artin stack, and n € Z.
1. A2-formw € .A,% (F, n) s non-degenerate if the corresponding morphism in D, (F)
O, : Ty —> Liji[n]
is an 1somorphism.

We denote by AZ(F, )" the full subspace of A} (F, n) which is the union of all the

connected components consisting of non-degenerate 2-forms of degree n on F.
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2. The space of n-shifted symplectic structures on I (relative to &), Symp, (F, n) s
defined by the following homotopy pull-back square

Symp(F, n) — A7(F, n)

| |

AX(F, ! —— AX(F, n).

We will simply write Symp(¥, n) when the base ring k s clear from the context.

Note that, by definition, Symp(F, ) is the full sub-space of A*“(F, n) defined by a
unique condition on the underlying 2-form.

Remark 1.19. — As F is locally of finite presentation, the cotangent complex Ly,
is perfect and thus of bounded amplitude. In particular we see that at most one of the
spaces Symp(F, n) can be non-empty when 7 varies in Z, otherwise L/, will be periodic
and thus not perfect.

More precisely, let us say that a derived Artin stack, locally of finite presentation
over k, has amplitude in [—m, n] (with m, n > 0) if its cotangent complex has perfect am-
plitude in that range. Then such a derived stack might only carry shifted symplectic
structures of degree r =m — n.

We conclude this section by describing the space of closed p-forms in two simple
situations: smooth schemes (or more generally Deligne-Mumford stacks), and classifying stacks
of reductive group schemes. Finally we show that shified cotangent stacks carry a canonical
shifted symplectic structure.

Smooth schemes. —  We start with the case of a smooth scheme X over Speck. In this case
Ly, >~ 24 /1> and thus Proposition 1.14 gives a description of the spaces of p-forms of
degree n as

A (X, n) ~ |RI(X, 2%, [n]].

Assume first that X = SpecA is smooth and affine. In this case we know that
DR(A/k) is naturally quasi-isomorphic, as a graded mixed complex, to DR(A/k), the
usual, underived, de Rham algebra of A over £ (see [To-Ve-3]). We can then explicitly
compute the graded complex NC"(A/k). By applying directly the definitions in Sec-
tion 1.1, we get, for any p > 0

NC"(A/R)[—pI(p) = NC” (DRAJK)) [—p)(p) = 257,
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where .fok is the naively truncated de Rham complex

V4 Pl P2 o e
QA//c ‘QA//c -QA/k ’

where £ s sits in degree 0. From this we deduce that the space of closed p-forms of
degree n on SpecA is
Ap’d(SpecA, n) > ‘Qﬁ’k[n]‘.

In particular, we have

0 ifn <0,
(A" (SpecA, n)) = { Hjw''(SpecA) if0<i<n,
25, if i = n.

By descent, we have similar formulas for a general smooth scheme X (or more
generally for a smooth Deligne-Mumford stack over £)

A m) = [RI(X, 257, ],
(AKX, ) ~ H (X, ‘Qg]’f)

As a consequence, we have the following three important properties for a smooth
scheme X

1. The space A**(X, 0) of closed p-forms of degree 0 is equivalent to the discrete
set I'(X, .QQZC) of usual closed p-forms.

2. The spaces A"“(X, n) are empty for n < 0.

3. The spaces A”“(X, n) are n-truncated for » > 0, and we have

(AP (X, m) > H (X, 28),).

We can use these properties to describe Symp(X, n) for all smooth schemes X and
all n. Indeed, property (2) implies that Symp(X, n) is empty for all n < 0. Property (1)
gives that Symp(X, 0) is equivalent to the set of usual symplectic forms on X. Finally,
Symp(X, n) 1s also empty for n > 0, as all closed 2-forms of degree n must be degenerate,
since we cannot have .Q)l([n] 2~ T'x unless n = 0 (note that both 9;4 and Tx are complexes
concentrated in degree O since X is smooth). In other words, on smooth schemes there
are no derived symplectic forms of degree # 0, and those in degree 0 are just the usual
ones.

Note also an interesting consequence of the above properties. When X is smooth
and also proper over Speck, then we have
i (AX, m) = FHE (X/R),
where I* stands for the Hodge filtration on the de Rham cohomology Hj,,(X/£).
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Classifying stacks. — Let now G be an affine smooth group scheme over Speck, and consider
its classifying stack BG, viewed as a derived Artin stack. If g denotes the Lie algebra of G,
the cotangent complex of BG is g¥[—1], considered as a quasi-coherent complex on BG
via the adjoint action of G on its lie algebra g. In particular, using Proposition 1.14, we
find that the spaces of p-forms on BG are given by

AN(BG, n) ~ |H(G, Sy (g”))[n —

where H(G, —) denotes the Hochschild cohomology complex of the affine group scheme
G with quasi-coherent coeflicients (as in [De-Ga, §3.3] and [To3, §1.5]). In particular,
when G 1is reductive, we find

AV(BG, n) ~ | (g") [n —

and, equivalently,

7:(AY(BG, n)) =~ . lfl 7n=p
Sml(g)¢ ifi=n—p.

Still under the hypothesis that G is reductive, let us now compute the space A”“(BG, n).

For this we start by computing the graded mixed complex DR(BG). Proposition 1.14

tells us that the underlying graded complex of DR(BG) is cohomologically concentrated

in degree 0

DR(BG) =~ (Smig") [0].

It follows that DR(BG), as a graded mixed complex is quasi-isomorphic to Sym; (g*)[0],
where the €-action is trivial, and the grading is the natural grading on Sym; (g") (where g”
1s assigned weight 1). A direct consequence is that we have a natural quasi-isomorphism
of graded complexes

NC" (DR(BG)) = € $ymi (") " —211.
>0

Thus, we have

ABG, )~ | D Sl (g )In—p—2il.

>0

In particular

0 if n1s odd
7o(A*(BG, n)) ~ . ’
O( ( n)) { Synd,(g")C  if nis even.
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For degree reasons, a closed 2-form of degree n can be non-degenerate on BG only
when n = 2. Moreover,

o (A>(BG, 2)) = S (g") .

is the £-module of G-invariant symmetric bilinear forms on g. Such a closed 2-form is
non-degenerate if and only if the corresponding bilinear form on g" is non-degenerate in
the usual sense. As a consequence, we have

JTQ(Symp(BG, 2)) 2~ {non-degenerate G-invariant quadratic forms on g}.

If G is assumed to have simple geometric fibers, then Symp(BG, 2) possesses essentially
a unique element. Indeed, Sym’(g¥)® is a projective module—being a direct factor in
Sym (g"). Moreover, it is well known that this projective module is of rank one when £ is
a field, and this implies, by base change, that Sym’ (g")© is in fact a line bundle on Spec k.
Nowhere vanishing sections of this line bundle corresponds to 2-shifted symplectic forms
on BG. We thus see that, at least locally on the Zariski topology of Speck, there is a
2-shifted symplectic form on BG, which is unique up to a multiplication by an invertible
element of .

When a reductive group scheme G is realized as a closed subgroup scheme of
GL,, then there is a natural element in Symp(BG, 2). The inclusion G < GL, defines
a faithful representation V of G on £". This representation has a character, which is a
G-invariant function on G. This function can be restricted to the formal completion of
G at the identity, to get a well defined element in

ay € (’)(@G) ~ %k(gv)c.

The degree 2 part of this element provides an invariant symmetric bilinear form on g,
which is non-degenerate because G is reductive, and thus a 2-shifted symplectic form on
BG. In different terms, BGL, has a canonical 2-shifted symplectic structure, given by the
bilinear form (A, B) — Tr(AB), defined on the £-modules M, (k) of n x n matrices. The
inclusion G < GL, defines a morphism of stacks BG — BGL,, and the pull-back of
the canonical 2-shifted symplectic form on BG remains a 2-shifted symplectic form.

Shufied cotangent stacks. — We define the n-shifted cotangent stack of a Deligne-Mumford
stack, and prove that it carries a canonical n-shifted symplectic structure.

Definition 1.20. — Let n € Z, and X be a derwved Artin stack locally of finite presentation
over k. We define the n-shifted cotangent (derived) stack as

T*X[n] := RSpec Sym, (TX[—n]).

For any n, we have a map of derived stacks pn] : 'T*X[n] —> X, induced by the canonical map
OX —> SymOK(TX[—n])
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On T*X[n] we have a canonical Liouville n-shifted 1-form. The idea—Ilike in differen-
tial geometry, where there is obviously no shift—is that the pullback of p[z] : T*X[n] — X
along p[n] itself has a canonical section, the diagonal, and any such section gives a hori-
zontal 1-form on T*X[r]. More precisely, we start by considering the inclusion

Tx[—n] < Sym, (Tx[—n]).
Since Ty 1s perfect, this corresponds uniquely—by adjunction—to a map
Ox — Tx[—n]" R0y SymOX (TX[—n])
~ Ly [n] ®oy Symy, (Tx[—n]) > plnlpln]*Lx[n],

that, again by adjunction, yields a map
Orsxn = pln]*Lx[n].

By composing this arrow with the shift-by-n of the canonical map p[n]*Lx — L+, we
obtain the Liouville n-shified 1-form on T*X[n]

A(X; 1) : Opexpy) = Lipexqulnl.

Nothe that A is horizontal, by definition, i.e. the composite Orsxj,y — Lpsxpqln] —
Lpexp/x[n] is zero.

Recall from Remark 1.17, the existence of a derived de Rham differential
dpr == |dpr(D)| : A" (T*X[n]; n) — A>(T*X[n]; n).

Let’s denote by dpr(A(X; n)) € mo(A>*I(T*X[n]; n)) = H2(NC” (T*X[r])(2)) the in-
duced n-shifted closed 2-form.

Proposition 1.21. — If X 15 a deriwed Deligne-Mumford stack, then the underlying n-shified
2-form of @ := dpr(A(X; n)) is non degenerate, .e. w s symplectic.

Proof. — Let us simply denote by iz’ Tr+xpy = Liexpy[n] the map induced—by
adjunction—by the 2-form in H"(T%[x], A?Lsxq,y) underlying dpg(A(X; 7). We want
to prove that dA” is a quasi-isomorphism. Since étale maps induce equivalences of cotan-
gent complexes, by using an étale atlas {U; = Spec(A;) — X} for X, and the induced
étale atlas {1"U;[n] = Spec(B;) — T*X[n]} on T*X][xn], it will suffice to prove the same
statement upon restriction along any such étale map Spec(B;) — T*X[z]. By natural-
ity of the construction of dA” with respect to étale maps, it will be enough to prove the
proposition for X = Spec(A) (with A quasi-free).
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So, let X = Spec(A), where A is a quasi-free £-cdga on the quasi-basis {x;}cr.
Then

LX ~ Qi/k = @ASX[,
1€l
with |8x;] = | x|, with the usual differential defined by d(adx;) = d(a)8x; + (— 1) ad(dx;),
where § is the unique derivation A — .QA n extending x; = dx;. Therefore,
Tx >Tay= @As&-i,
el
where &; is dual to §x;, and |&;| = —|«x;|. Moreover
Y :=T*X[n] = Spec(SymA (TX[—n])) ~ Spec(B),

where B is quasi-free over A with quasi-basis {y;}ic1, [7:| = —|xi| + 7. In other words, B is
quasi-free over £ with quasi-basis {x;, y;}ic1, [7i| = —|xi| + n. Therefore

Ly~ 2, = (P Bsx & Bdy,.
el
with |8x;| = |x;], [89:] = —|«;| + n (with its usual differential), and
Ty >Ty, = @B&' ® Bn;,

€l

where §; is dual to dx;, n; is dual to 8y;, and |§;| = —|x;|, |n:| = |x;| — n. Moreover
Ly/x >~ -QE/A = @ Béy;, Tyx = Tga = EBBUi-
el el

In these terms, the n-shifted Liouville 1-form A on Y is given by A = Y. (—1)Pily,8x;.
Note that A is an element of degree 0 in DR(Y /k)(1)[n— 1] =~ £2, / [n]. Now, by definition
of the de Rham differential (Remark 1.17), we have

dDR)\ = <d[)R(Z(—1)D7i Z’(S)@‘) = Z(—I)V"léyi AN 8)61', 0,...,0,.. )
1€l 1€l
e (NC" (DR(Y/K))()[n — 2])",
so that the n-shifted 2-form underlying dpgA is Ziel(— 1)V18y; A 8x;. In particular, we have
@3 : Ty = D BS @ By —> ED BSxlnl @ Bayln] = 25, [nl,
1€l 1€l
§i—> —(—l)mla)}i[ﬂ], ni— (—l)ml(SXi[”],

and this is, by inspection, an isomorphism of graded B-modules, and we conclude that w
is indeed symplectic (since we already knew that A" is a map of B-dg-modules). O
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Remark 1.22. — It 1s very likely that Proposition 1.21 holds for any derived Artin
stack, we just did not investigate how one may deal with smooth atlases instead of étale
ones.

2. Existence of shifted symplectic structures

We prove in this section three existence results for n-shifted symplectic forms on
certain derived stacks. We start by the mapping derived stack of an oriented object to an
n-shifted symplectic target, which is surely the most important of the existence theorems
given below. We also introduce the notion of a Lagrangian structure on a morphism with
target an n-shifted symplectic derived stack, and show that the fibered product of two
such morphisms comes equipped with a natural (n — 1)-shifted symplectic form. Finally,
we explain a construction of 2-shifted symplectic forms using the Chern character con-
struction of [To-Ve-2], and apply it to exhibit a natural 2-shifted symplectic structure on
RPerf, the derived moduli stack of perfect complexes.

2.1. Mapping stacks

The following construction is well-known in differential geometry and provides,
together with [AKSZ], heuristics for our constructions below. Let M be a compact G-
manifold of dimension m, N be a C**-manifold, and Map.. (M, N) the Fréchet manifold
of C*°-maps from M to N. The following diagram

M x Mapeo (M, N)

N M

induces a map
¥4 q pHg—m . * 0 ._ ~D
§2y X 825 —> .QM%OO(MN) (o, B) > / prya ANer'Bi=ap,
M

where [}, denotes integration along the fiber, sometimes called the fat-product (see e.g.
[Viz]). Now, if (N, w) is symplectic and 7 is a volume from on M, then nw € .wa(M,N)
defines a symplectic form on Map..(M, N).

In the derived algebraic geometry setting we are concerned with in this paper, we
will need a replacement for Poincaré duality and for the notion of an orientation. The first
one is given by Serre duality (in the more general context of Calabi-Yau categories), while
the second one will be that of O-orientation (Definition 2.4). The notion of O-orientation
will allow for a quasi-coherent variant of integration along the fiber (Definition 2.3).

We start by considering the following finiteness conditions on derived stacks.



304 TONY PANTEV, BERTRAND TOEN, MICHEL VAQUIE, GABRIELE VEZZOSI

Defimition 2.1. — A derived stack X, over a derwved affine scheme SpecA, s strictly
O-compact over A if it satisfies the following two conditions

1. Ox 15 a compact object in D ., (X).
2. For any perfect complex E on X, the A-dg-module

CX,E) :=RHom(Ox, E)

is perfect.

A derived stack X over k is O-compact if for any derived affine scheme Spec A the derived stack
X x SpecA is strictly O-compact over A.

Remark 2.2. — Since perfect complexes are exactly the dualizable objects in
D,4(X), condition (1) of the definition above implies that all perfect complexes are com-
pact in D,,(X) for an O-compact derived stack X, as well as all perfect complexes on
X x SpecA for any A € cdga;’.

The main property of (strictly) O-compact derived stacks is the existence, for any
other derived stack I, of a morphism of graded mixed complexes (over £)

krx : DR(F x X) — DR(F) ®; C(X, Ox),

functorial in F, where C(X, Ox) is considered pure of weight 0 with trivial mixed struc-
ture. It is defined as follows.

Since X is, by hypothesis, O-compact, the complex C(X, Ox) is perfect over £, so
the oo-endofunctor E — E®, C(X, Ox), of the co-category of mixed graded complexes,
commutes with oo-limits. Also, by definition, the functor I — DR(F x X) sends oo-
colimits to co-limits. Therefore, the two co-functors

DR(— x X), DR(-) ®; C(X, Ox) : dSt —> e-dg’

send oo-colimits of derived stacks to oo-limits of graded complexes. By left Kan exten-
sions (see [Lul] or [To-Ve-2, §1.2]), we see that in order to construct a natural transfor-
mation k_ x : DR(— x X) — DR(—) ®; C(X, Ox), it is enough to construct a natu-
ral transformation between the two oco-functors restricted to the oo-category of derived
affine schemes. By definition, these two co-functors, restricted to derived affine schemes
are given as follows

DR(-) ®; C(X, Ox) : dAff! = cdga;’ — e-dg”
A —> DR(A) ®; C(X, Ox)

DR(— x X) : dAff/ = cdga;’ — e-dgi
A — H(X, DR(A ®, Ox)),
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where DR(A ®; Ox) is the stack of mixed graded complexes on X sending SpecB — X
to DR(A ®; B), and H(X, DR(A ®, Ox)) denotes its global sections.

For any two objects B, C € cdga™", we have a natural equivalence of graded mixed
complexes (Kunneth formula)

DR(B) ®; DR(C) ~ DR(B ®; C),
induced by the identification
Lpg,c >~ (L ®: C) ® (B®; Lc).

Therefore, the co-functor DR(— x X) sends A to H(X, DR(A) ®, DR(Ox)). We con-
sider the natural projection on the component of weight zero (with trivial mixed structure)
DR(Ox) — Ok, and obtain a morphism DR(— x X) — H(X, DR(—) ®; Ox) =~
CX,DR(—) ®; Ox). As X is O-compact, C(X, —) commutes with colimits of quasi-
coherent sheaves, and thus the natural morphism

DR(-) ® C(X, Ox) — C(X, DR(-) ®; Ox)

is an equivalence.
We thus have defined a natural transformation of co-functors

DR(— x X) — C(X, DR(-) ®; Ox) = DR(-) ®, C(X, Ox),
which defines our morphism of graded mixed complexes
krx : DR(F x X) — DR(F) ®, C(X, Ox).

We can apply the oo-functor NC* to the morphism above, in order to get a mor-
phism of graded complexes

kr.x : NG (F x X) — NC" (DR(F) ®; C(X, Ox)).
As C(X, Ox) is a perfect complex over £, the morphism
NC"(DR(F)) ®; C(X, Ox) — NC"(DR(F) ®, C(X, Ox))

1s an equivalence of graded complexes.
To summarized, we have defined for any derived stack F and any O-compact de-
rived stack X, a commutative square of graded complexes

KF.X

X

NC”(F x X) — NC"(F) ®, C(X, Ox)

! |

DR(F x X) —— DR(}) ®, C(X, Ox),

where the vertical morphisms are the projections NC* — DR.



306 TONY PANTEV, BERTRAND TOEN, MICHEL VAQUIE, GABRIELE VEZZOSI

We keep the hypothesis that X is an O-compact derived stack, and we assume
further that, for some integer € Z, we are given a map

n:CX, Ox) — kld],

in the derived category D(£). Then, for any derived stack I we have a natural morphism
of graded complexes

KF,X 1d®
NCP(F x X) ——= NC"(F) ®, C(X, Ox) ——= NC"(F)[d].

This morphism, well defined in the homotopy category of graded complexes Ho(dg} ),
is called the wntegration along 7.

Definition 2.3. — Let ¥ and X be derived stacks, with X O-compact, and let
n: C(X, Ox) —> kld] be a morphism in D(k), for some integer d. The integration map along
n 1s the morphism

KF, Wd®
/ L NCY(F x X) ——= NC"(F) ®; C(X, Ox) —> NC"(F)[d]
n
constructed above.

We also have a similar morphism on the level of de Rham complexes

KF,X

/: DR(F x X) — DR ®, C(X, Ox) ﬂ DR(I)[4],
n

in a way that we have a commutative diagram of mixed graded complexes

Iy
NCY(F x X) —= NC"(F)[d]
L,
DR(F x X) —— DR(F)[d].

Let X be an O-compact derived stack. The complex C(X, Ox) possesses a natural
structure of a (commutative) dg-algebra over £, so comes equipped with a cup-product
morphism

C(X, Ox) ®, C(X, Ox) — C(X, Ox).

In particular, any morphism 7 : C(X, Ox) —> k[—d] provides a morphism

“Ng: X, Ox) ® CX, Ox) —— CX,Ox) —— K—d].
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If we denote by C(X, Ox)" := RHom(C(X, Ox), k) the derived dual of C(X, Ox), the
morphism above defines an adjoint morphism

—Nn:CX,O0x) — CX, Ox)'[-d].

More generally, if E is a perfect complex on X, of dual EV := RHom(E, Ox), the natural
pairing

C(X,E) ®; C(X,EY) — C(X, Ox),
composed with 7 induces a morphism
—Nn:CX E) — C(X,EY)[—d].

If moreover A € cdga;"’, the same is true for the derived A-scheme X, 1= X x
Spec A. The morphism 7 induces a morphism

na=n®idy: C(Xy, Ox,) = C(X, Ox) @ A —> k[—d] ®; A,

and for any perfect complex E on X, the morphism 1, induces a natural morphism
— N7 CXy, B) — C(Xa, EY) [,

where now G(X,, EY)Y is the derived A-dual of C(X,, EY).

Definition 2.4. — Let X be an O-compact derwved stack and d € Z. An O-orientation of
degree d on X consists of a morphism of complexes

[X]: C(X, Ox) — k[—d],
such that for any A € cdga:" and any perfect complex F. on X, 1= X x Spec A, the morphism
— N[X]s: CXa, B) —> C(Xs, EY) [—d]
is a quast-isomorphism of A-dg-modules.
We are now ready to state and prove our main existence statement.

Theorem 2.5. — Let ¥ be a derived Artin stack equipped with an n-shified symplectic
Jorm w € Symp(F, n). Let X be an O-compact derived stack equipped with an O-orientation
[X]: C(X, Ox) —> k[—d] of degree d. Assume that the derived mapping stack Map(X, F) s
uself a derwed Artin stack locally of finite presentation over k. Then, Map (X, ¥) carries a canonical
(n — d)-shifled symplectic structure.
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Proof. — We let w : X x Map(X, I) — T be the evaluation morphism. We have
w € Symp(F, n) C A*(F, n), and this corresponds to a morphism of graded complexes

: k[2 — n](2) — NC"(F).

Using the integration along the orientation [X] of Definition 2.3, we consider the com-
position

/ w1 H2 — n](2) —2 NC”(F) <> NC" (X x Map(X, F))
[X]

ﬂ NC" (Map(X, F))[—d].

This is, by definition, a closed 2-form of degree (7 — d) on Map(X, I), i.e.

f w € A (Map(X, F), n — d).
[X]

It remains to show that this 2-form is non-degenerate. For this, we have to deter-
mine the underlying 2-form of degree (n — d). It is given by the following morphism

K2 — n](2) —%> DR(F) - DR(X x Map(X, F))

@ DR(Map(X, F))[—d].

If we unravel the definition of f[X], we see that this 2-form can be described as follows.
First of all, let x : Spec A — Map(X, F) be an A-point corresponding to a mor-
phism of derived stacks

f: X x SpecA — .

If Ty denotes the tangent complex of I, the tangent complex of Map(X, F) at the point
x 1s given by

T.Map(X, F) >~ C(X,, /*(Tp)).
The 2-form @ defines a non-degenerate pairing of perfect complexes on F
Tr A Tr — Ok[n],
which induces an alternate pairing of A-dg-modules
C(Xa. f*(Tp) A C(Xa, f*(Tr)) —> C(Xa, Ox,[n]).
We can compose with the orientation [X,] to get a pairing of perfect A-dg-modules.

C(X x SpecA, f*(Tp)) A C(X x SpecA, f*(Tr)) —> Aln— d].
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By inspection, this pairing is the one induced by the 2-form underlying f[X] n. The fact
that it is non-degenerate then follows from the definition of an orientation and the fact
that @ is non-degenerate. O

Here follow some examples of derived stacks X satisfying the condition of Theo-
rem 2.5.

e Mapping stacks with Betti source. Let M be a compact, connected, and
oriented topological manifold. We consider X = S(M) its simplicial set of singu-
lar simplices, as a constant derived stack. The category D, (X) is then naturally
equivalent to D, (M, £), the full sub-category of the derived category of sheaves
of k-modules on the space M, consisting of objects with locally constant coho-
mology sheaves. In particular, we have functorial isomorphisms

H*(X,E) ~H* (M, &),

for any E € D,,,(X) whose corresponding complex of £-modules on M is de-
noted by &. Perfect complexes on X correspond to objects in D, (M, k) locally
quasi-isomorphic to bounded complexes of constant sheaves of projective mod-
ules of finite type. This implies that X is O-compact. Moreover, the orientation
on M determines a well defined fundamental class [M] € H,;(M, k), and thus a
morphism [X] : G(M, £) —> k[—d], where d = dim M. Poincaré duality on M
implies that [X] is an Q-orientation on X. Finally, M has the homotopy type of
a finite CW complex, so X 1s a finite homotopy type. This implies that for any
derived Artin stack F, Map(X, F) is a finite homotopy limit of copies of F, and
thus is itself a derived Artin stack.

e Mapping stacks with de Rham source. Let Y be a smooth and proper
Deligne-Mumford stack over Speck, with connected geometric fibers. Recall
from [To-Ve-1, Corollary 2.2.6.15] that we can define a derived stack Y g, such
that

Yor(A) == Y(ﬂ 0(A) red) )

for any A € edga;’. We set X := Y pz. We have a natural equivalence between
D,.,»(X) and the derived category of Dy -modules with quasi-coherent coho-
mology. Moreover, perfect complexes on X correspond to complexes of Dy ;-
modules whose underlying quasi-coherent complexes are perfect over Y. In par-
ticular, if E is a perfect complex on X, corresponding to a complex of Dy -
modules & perfect over Y, then we have

H*(X, E) ~ H} (Y /k, £).
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It follows easily that X is O-compact. Moreover, the choice of a fundamental
class in de Rham cohomology [Y] € Ha(Y/k, O) (where d is the relative di-
mension of Y over Spec k) determines a morphism

[X]: C(X, O) — k[—2d]

which, by Poincaré duality in de Rham cohomology, is an O-orientation on X.
Finally, the fact that Map(X, F) is a derived Artin stack when F is one, can
be deduced from Lurie’s version of Artin representability criterion. We will be
mainly interested in the special case where F is either a smooth quasi-projective
variety, or a classifying stack BG, or the deriwed stack of perfect complexes RPerf. In all
these specific situations, the fact that Map(X, I) is a derived Artin stack locally
of finite presentation can be found in [To-Ve-1, §2.2.6.3] and [Si2].
Mapping stacks with Dolbeault source. The previous example has the
following Dolbeault analog. Let again Y be a smooth and proper Deligne-
Mumford stack over Speck, with connected geometric fibers. We define Y,

by (see [S12, §2])
Y])ol = BTY/k —> Y,

the classifying stack of the formal tangent bundle of Y relative to £. We set X :=
Y p,. We know that a quasi-coherent complex E on X consists of a pair (£, ¢)
where & is a quasi-coherent complex on Y, and ¢ is a Higgs field ¢ on & (i.e. an
action of the Oy-algebra Symo, (Ty,)). Under this correspondence, we have

H*(X, E) ~ H3, (Y, ).

This implies that X is O-compact. As above, the choice of a fundamental class in
Hodge cohomology [Y] € H%,(Y, 0) ~H(Y, [2{‘? /k) determines a morphism

[X]: C(X, 0) — k[—2d]

which, by Poincaré duality in Dolbeault cohomology, is indeed an O-orientation
on X.

Again, the fact that Map(X, F) is a derived Artin stack when F is one, can
be deduced from Lurie’s version of Artin representability criterion. We will be
mainly interested in the special case where I is either a smooth quasi-projective
variety, or a classifying stack BG, or the derwed stack of perfect complexes RPerf. In all
these specific situations, the fact that Map(X, F) is a derived Artin stack locally
of finite presentation can be found in [To-Ve-1, §2.2.6.3] and [Si2].

The Dolbeault and de Rham complexes can also be considered together at
the same time, by taking X := Yp,, — A', see [Sil]. More generally, we could
take X to be any nice enough formal groupoid (as in [Sil]).
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e Mapping stacks with Calabi-Yau source. Let now X be a smooth and
proper Deligne-Mumford stack over Speck of relative dimension d, with con-
nected geometric fibers. We assume that we are given an isomorphism of line
bundles

U:wx/ = /\dQ;(/k >~ OX =0.

Considered as a derived stack X, is automatically O-compact. Moreover, the
isomorphism u, together with the trace map, defines an isomorphism

HY(X, 0) —— HI(X, wx) —= F.

This isomorphism induces a well defined morphism of complexes

which, by Serre duality, is indeed an Q-orientation on X.

As above, the fact that Map(X, F) is a derived Artin stack when I is one,
can be deduced from Lurie’s version of Artin representability criterion. We will
be mainly interested in the special case where I is either a smooth quasi-projective
variety, or a classifying stack BG, or the derwed stack of perfect complexes RPerf. In all
these specific situations, the fact that Map(X, I) is a derived Artin stack locally
of finite presentation can be found in [To-Ve-1, §2.2.6.3] and [To-Va].

We gather the following consequences of Theorem 2.5 and of the examples above,
in the following

Corollary 2.6. — Let G be a reductive affine group scheme over Speck. Let Y be a smooth
and proper Deligne-Mumford stack over Spec k with connected geometric fibers of relative dimension d.
Assume that we have fixed a non-degenerate G-invariant symmetric bilinear form on g.

1. The chowe of a_fundamental class [Y] € H%e(Y, O) determines a canonical 2(1 — d)-
shufted symplectic form on the derived stack

RZocpp(Y, G) := Map(Y px, BG)

of flat G-bundles on Y.
2. The chowe of a fundamental class [Y] € H%’é,(Y, O) determines a canonical 2(1 — d)-
shafied symplectic form on the derived stack

RZocp,(Y, G) :=Map(Yp,, BG)

of Higgs G-bundles on'Y .
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3. When it exists, the choice of a trivialization isomorphism wy , = Oy, determines a canonical
(2 — d)-shufied symplectic form on the derived stack of G-bundles on' Y

RBun(Y, G) := Map(Y, BG)

of G-bundles on Y.

4. If M 15 a compact, orientable topological manifold of dimension d, then a choice of a_funda-
mental class [M] € Hy(M, k) determines a canonical (2 — d)-shifted symplectic form on
the derwed stack

RLoc(M, G) :=Map(M, BG)
of local systems of principal G-bundles on M.

In Section 3 we will explain how these n-shifted symplectic structures compare with
the well known symplectic structures on certain coarse moduli spaces (e.g. on character
varieties, moduli spaces of stable sheaves on K3-surfaces, etc.).

2.2. Lagrangian intersections

We will be interested here in the study of derived symplectic structures induced
on fiber products of derived Artin stacks. In order to do this, we first need to intro-
duce the notion of wotropic and Lagrangian data on a morphism with symplectic target,
extending the usual notions of isotropic and Lagrangian sub-varieties of a smooth sym-
plectic manifold. We will show (Theorem 2.9) that the fiber product of two morphisms
with Lagrangian structures towards an zn-shifted symplectic target is naturally equipped
with an (7 — 1)-shifted symplectic structure. In particular, the derived intersection of two
smooth (algebraic) usual Lagrangians in a smooth (algebraic) symplectic manifold carries
a canonically induced (—1)-shifted symplectic structure.

We fix a derived Artin stack F and an n-shifted symplectic form w € Symp(F, n)
on F. For / : X — F a morphism of derived Artin stack, we have the pull-back closed
2-form

fH(w) € A2(X, n).

Definition 2.7. — An 1sotropic structure on f (relative to w) s a path between 0 and
(@) in the space A>* (X, n). The space of isotropic structures on f (relative to ) is defined
1o be the path space

ISOt(f', @) := Pathy p+(u) (A (X, n)).

A Lagrangian structure on the morphism f (with respect to w) will be an isotropic
structure satisfying some non-degeneracy condition. To introduce this condition, let us
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fix an isotropic structure % € Isot(f, @). We consider the 2-form Ty A Ty —> Og[n] un-
derlying w, as well as its pull-back on X, /*(Tg) A f*(Tr) —> Ox|n]. By definition, %
gives us a homotopy between 0 and the composite morphism

Tx AN Tx —— f*(Tp) Af*(Tp) —— Ox[n].

We let T, be the relative tangent complex of f, so that we have an exact sequence of
perfect complexes on X

The isotropic structure £ induces also a homotopy between 0 and the composite mor-
phism

T, ®Tx ——= Tx ATx — [*(Tp) AS*(Tr) — Oxlnl.

As the morphism T, — f*(Ty) comes itself with a canonical homotopy to 0, by
composing these homotopies, we end up with a loop pointed at O in the space
M"qum;,(X) (T; ® Tx, Ox|n]). This loop defines an element in

7 (Mapy, ) (T ® Tx, Oxlnl), 0) = [T ® Tx, Ox[n — 11].
By adjunction, we get a morphism of perfect complexes on X
@h . Tj —> Lx[n — 1],

depending on the isotropic structure /.

Defimition 2.8. — Let [ : X —> ¥ be a morphism of derived Artin stacks and @ an n-shified
symplectic form on ¥. An isotropic structure h on f is a Lagrangian structure on f (relative to )
if the induced morphism

@h:Tf_>LX[n_ 1]

is a quasi-isomorphism of perfect complexes.

The usefulness of Lagrangian structures is shown by the following existence theo-
rem.

Theorem 2.9, — Let

Y
lg
F

X —

r
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be a diagram of derived Artin stacks, w € Symp(F, n) an n-shifled symplectic form on ¥, and h (respec-
tively, k) be a Lagrangian structure on_f (respectively, on g). Then, the derived Artin stack X x}Y is

equipped with a canonical (n — 1)-shifled symplectic structure called the residue of w, and denoted by
R(w, h, k).

Progf. — Let Z:= X x}. Y. The two morphisms
b 7 —>X —— T, ¢: 7 —>Y —~F

come equipped with a natural homotopy u : p = ¢. This u gives rise to a homotopy
between the induced morphisms on the spaces of closed 2-forms

ut gt =gt A2 X, n) — AN(Z,n).
Moreover, £ (respectively, k) defines a path in the space A*“(Z, n)
h: 0~ p*(w)
(respectively,
k0~ ¢"(w).)

By concatenation of 4, u*(w) and £~', we get a loop at 0 in the space A*>%(Z, n), therefore
a well defined element

R(w, h, k) € 1 (A (Z, ) ~ o (A*(Z,n—1)).

It remains to show that this closed 2-form of degree (n — 1) is non-degenerate. This
follows from the definition of a Lagrangian structure. To see this, let 7 :=p:Z — F be
the natural map,® and

prg il — X, pry:l —Y

the two projections. By definition we have a commutative diagram in L,,;(Z) with exact
rows

T;

prx(Tx) @ pry(Ty)

*
7 (Tr)
OR(w,h k) on=ten J/ l Ow

L[n— 1] — prix@)ln— 110 pry,(Ly)ln — 11 — 7*(Ly[n]).

5 Since we just want to prove that the closed 2-form is non-degenerate, we might equivalently have chosen to run
the argument for 7 := ¢, instead of 7 := p.
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The morphism 6, is a quasi-isomorphism because w is non-degenerate. The morphism
®, ® 6, is also a quasi-isomorphism because of the definition of Lagrangian structures.
This implies that &g, 44 1s a quasi-isomorphism, and thus that R(w, £, £) is an (n — 1)-
shifted symplectic structure. U

An immediate corollary is the following statement.

Corollary 2.10. — Let X be a smooth Deligne-Mumford stack over Speck, @ a symplectic
Jorm on X, and L, I C X two smooth closed Lagrangian substacks (in the sense that w vanishes on L
and 1!, and both L and 1 are of middle dimension). Then, the derived fiber product 1. x* 1. carries a

canonical (—1)-shifled symplectic structure.

Progf. — It follows by the following simple observations. As X, L. and L." are smooth,
the spaces of closed 2-forms of degree 0 on X, L and L are (homotopically) discrete (and
equal to H'(X, 2¢7), H(L, 27, H°(I', £2/;7)). From this it follows that the spaces of
isotropic and Lagrangian structures on the two inclusions

L— X, I'—>X

are either empty or (equivalent to) a point. As L and L are Lagrangian substacks it is easy
to see that these spaces are non-empty and hence both equivalent to a point. In particular,
there are unique Lagrangian structures on the above two inclusion morphisms, and thus
Theorem 2.9 implies that L x% 1. is endowed with a canonical (—1)-shifted symplectic
structure. UJ

A particular case of the above corollary is the existence of (—1)-shifted symplectic
forms on derived critical loci of functions on smooth Deligne-Mumford stacks (see also
[Ve] for a more direct local approach).

Corollary 2.11. — Let X be a smooth Deligne-Mumford stack over Spec k, and f € O(X) a
global function on X, with differential df : X — T*X. Then, the derwved critical locus of f, defined
as the derived fiber product

RCerf(f) =X X{#,T*X,O X,

of the zero section with the section df inside the total cotangent stack 'T*X, carnes a canonical (—1)-
shafled symplectic structure.

Proof. — We simply observe that T*X carries a canonical symplectic structure and
that X sits inside T*X as two Lagrangian substacks, either via the zero section of via the

section df . O



316 TONY PANTEV, BERTRAND TOEN, MICHEL VAQUIE, GABRIELE VEZZOSI
2.3. 2-Shufled symplectic structure on RPerf

We now state our third existence theorem, giving a canonical 2-shifted symplectic
structure on the derived stack of perfect complexes RPerf. This 2-shifted symplectic
form will be constructed using the Chern character of the universal object on RPerf,
with values in negative cyclic homology. We will use the construction in [To-Ve-2], as it
1s perfectly suited to our context, but any functorial enough construction of the Chern
character could be used instead.

We recall from [To-Va] the definition of the derived stack RPerf, which was de-
noted there by M. The functor RPerf sends a differential non-positively graded algebra
A to the nerve of the category of perfect (i.e. homotopically finitely presentable, or equiva-
lently, dualizable in the monoidal model category of A-dg-modules) A-dg-modules which
are cofibrant in the projective model structure of all A-dg-modules. It is a locally geomet-
ric derived stack, that is a union of open substacks which are derived Artin stacks of finite
presentation over Spec . Everything we said about derived Artin stacks locally of finite
presentation also make sense for RPerf, in particular we can speak about p-forms, closed
p-forms and symplectic structures on RPerf, even though RPerf is not strictly speaking
a derived Artin stack.

On RPerf we have the universal perfect complex £ € Ly, (RPerf). The endo-
morphisms of this perfect complexes define a perfect dg-algebra over RPerf, denoted
by

A:=RHom(E,E)~=E" QE.

The derived loop stack of RPerf
LRPerf:=Map(S', RPerf) —> RPerf

can be identified with the derived group stack over RPerf of invertible elements in .4
LRPerf> A* := GL,(A),

where GL;(A) is the group stack of auto-equivalences of A considered as an .A-module.
As A is a perfect dg-algebra over RPerf, we see that A* is a derived Artin group stack
over RPerf, and that the corresponding quasi-coherent dg-Lie algebra over RPerf is A
itself, endowed with its natural bracket structure given by the commutator. This implies
that we have a natural quasi-isomorphism of perfect complexes over RPerf

TRPerf = A[ 1 ] .
This identification can be used to define a 2-form of degree 2 on RPerf

TRPerf AN TRPerf = *S))mQ (A)[Q] — ORPerf[Q]’
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which, by definition, is (the shift by 2 of) the composition

mult Tr

A@A - ./4 - ORPerfa
of the multiplication and the trace (or evaluation) morphism
A ~ E\/ ® E— ORPerf.

This 2-form is clearly non-degenerate. We will now see that this 2-form of degree 2 on
RPerf is the underlying 2-form of a canonical 2-shifted symplectic structure on RPerf.

We consider two derived stacks
INC| : dAFE — S, HC™ : dAff — S,

defined as follows. We have the derived stack in mixed complexes DR (we forget the
extra grading here), on which we can apply the construction NC to get a derived stack in
complexes of k-modules. The derived stack |NC| is obtained by applying the co-functor
E — |E| (i.e. the Dold-Kan construction) to turn NC into a derived stack of spaces. In
other words, | NC| sends a commutative k-dg-algebra A to the simplicial set obtained from
the complex NC(DR(A)).

The derived stack HC™ sends an affine derived scheme X to O(EX)}ZSI , the space
of S'-homotopy fixed functions on the loop space of X. It is easy to describe this derived
stack algebraically using simplicial commutative algebras. To a commutative £-dg-algebra
A we form A’ the corresponding commutative simplicial £-algebra (see [To-Ve-3]), and
consider S' ®F A’, which is another simplicial commutative algebra on which the simpli-
cial group S' = BZ acts. The space of homotopy fixed point of this action is a model for
HC™ (SpecA)

HC™(SpecA) ~ (' @A)

The main theorem of [To-Ve-3] states that these two derived stacks |[NC| and HC™
are naturally equivalent (and that there is moreover a unique equivalence respecting the
multiplicative structures). Furthermore, the Chern character construction of [To-Ve-2,
§4.2] produces a morphism of derived stacks C/ : RPerf — H(™, and thus, by the
mentioned equivalence, a morphism

Ch : RPerf — |NC|.

This is the Chern character of the universal perfect complex, and defines a natural ele-
ment in

Ch(E) € my(Map(RPerf, INC|)) ~ H’(NC(RPerf)).
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We can project this element by the projection on the weight 2 piece NC —> NC"(2) to
get

Ch(E), € H'(NC” (RPerf)(2)) = 1y (A>“ (RPerf, 2)),

which is a closed 2-form of degree 2.

Theorem 2.12. — The closed 2-form Ch(E)y defined above is a 2-shifled symplectic structure
on RPerf.

Progf: — The proof consists in identifying the underlying 2-form (of degree 2) of
Ch(E)9, and show that it coincides (up to a factor %) with the 2-form described earlier in
this section

mult Tr

ARA — A —— Orpert-

This identification can be seen as follows. For a perfect complex E on a derived Artin
stack X, its Chern character C/(E) has an image in Hodge cohomology

Ch(E) =) " Chy(E) e @O H (X, AL jz).
b

induced by the natural morphism from negative cyclic homology to Hochschild homol-
ogy (i.e. the projection NC' — |DR|). These Hodge cohomology classes can be described
using the Atiyah class of E

ag : E— E®o Lx/[1].
We can compose this class with itself to get
ay, - E—> E®oy (ALl
which we write as
a, : Ox — EY ®p E ®py (/\iLX/k)[i]-

Composing with the trace EY ® o, E —> Ox, we obtain classes in H (X, AiLx/k). We
have

Tr(a% )

!

Chy(E) =

€ H'(X, A'Lxy).

We come back to our specific situation where X = RPerf and E = £ is the universal per-
fect complex. The shifted cotangent complex Ly x[1] is naturally equivalent to £ ®p, £V,
and the Atiyah class

dg:S—)E@OX(S'@@XSV
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is simply the adjoint of the multiplication morphism

5 ® A — 5,
where A = RHom(E, £) is the endomorphism dg-algebra of £. From this we get the
required formula

1
Cho(€) = 5 Tr(mult) € H* (RPerf, A*Lugers). -

As a corollary of the last theorem and of Theorem 2.5, we have the following
statement, which is an extension of the Corollary 2.6 from the case of vector bundles to
the case of perfect complexes.

Corollary 2.13. — Let Y be a smooth and proper Deligne-Mumford stack with connected
geomelric fibers of relative dimension d.

1. The choiwe of a _fundamental class [Y] € H%@(Y, O) determines a canonical 2(1 — d)-
shufted symplectic form on the derived stack of perfect complexes with flat connexions on'Y

RPerf)z(Y) := Map(Y pr, RPerf).

2. The chowce of a_fundamental class [Y] € Hf{ﬁ,(Y, O) determines a canonical 2(1 — d)-
shafied symplectic form on the deried stack of perfect complexes with Higgs fields

RPerf),(Y) := Map(Y),,, RPerf).

3. The choice of a trivialization (when it exists) wy . = Oy, determines a canonical (2 — d)-
shufted symplectic form on the derived stack of perfect complexes on Y

RPerf(Y) := Map(Y, RPerf).

4. If M is a compact, orientable topological manifold of dimension d, then a chowce of a_funda-
mental class [M] € Hy(M, k) determines a canonical (2 — d)-shifted symplectic form on
the derived stack of perfect complexes on M

RPerf(M) := Map(M, RPerf).

3. Examples and applications

We present in this last section some examples and consequences of our results.

3.1. 0-Shufted symplectic structures on modul of sheaves on curves and surfaces

We start here by explaining how Theorems 2.5 and 2.12 can be used in order to
recover the existence of well known symplectic forms on certain moduli spaces of local
systems on curves, and vector bundles (or more generally of perfect complexes) on K3
and abelian surfaces.
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Local systems on curves. — To start with, assume that G is a simple algebraic group over
some field £, and C be a (geometrically connected) smooth and proper curve over k.
We have the derived moduli stacks RLocpz(C, G), RLocp,(C, G) and RLocg(C, G) :=
RLoc(C”, G), of local systems of principal G-bundles on C, Higgs G-bundles on C, and
flat G-bundles on the underlying topological space C* of C. According to our Corol-
lary 2.6, a choice of an orientation of C determines O-shifted symplectic structures on
these spaces. These spaces contain smooth Deligne-Mumford substacks consisting of sim-
ple objects

LOCDR(C7 G)Y - RLOCDR(C’ G)a LOCDol(Cv C")Y C RLOCDOZ(C’ G),
Locg(C, G)' C RLocg(C, G).

These substacks of simple objects are moreover étale gerbes over smooth algebraic vari-
eties, bounded by the center of G (so they are algebraic varieties as soon as this center is
trivial). Therefore, the restriction of these 0-shifted symplectic forms on these substacks
define symplectic forms on the corresponding smooth algebraic varieties. We recover
this way well known symplectic structures on the coarse moduli space of simple flat G-
bundles, simple Higgs G-bundles, and simple flat G-bundles on G (see e.g. [Go, Je,
In-Iw-Sal).

It is interesting to note here that our results imply that these symplectic forms
existing on the smooth locus of simple objects have canonical extension to the whole
derived moduli stacks. Another interesting remark is the case of C = P! is a projective
line. The corresponding coarse moduli of simple objects is just a point, but the derived
stacks are non-trivial. For instance, in the de Rham setting, we have

RLocpr(C, G) ~ [(Spec Sym(gv[l]))/G].
This derived stack has already been considered in [La], and according to our results
carries a canonical 0-shifted symplectic form. The tangent complex at the unique closed
point is

Tx=gl[l]®g[-1],
and the O-shifted symplectic form there is the canonical identification

glll®gl-11~g"[11®g'[-1]

induced by the isomorphism g 2~ g* given by the data of the (essentially unique) symmet-
ric, non-degenerate, bilinear G-invariant form on g.
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Perfect complexes on C1 surfaces. —  As a second example we let S be a Calabi-Yau surface
(either a K3 or an abelian surface) over a field £, equipped with a trivialization ws >~ Os.
We have RPerf(S), the derived moduli stack of perfect complexes on S. According to
our Corollary 2.13, this derived stack is equipped with a canonical 0-shifted symplectic
form. We let RPerf(S)’ C RPerf(S) be the derived open substack of simple objects, that
1s perfect complexes with no negative self extensions and only scalar multiplication as
endomorphisms (see [To-Va]). We denote by My its truncation

L := i) (RPerf(S)').

The (underived) stack My is a G,,-gerbe over an algebraic space MY, locally of finite pre-
sentation over £. It is proven in [In] that My is smooth and comes equipped with a natural
symplectic structure. The existence of a non-degenerate 2-form is easy, but there are rel-
atively heavy computations in order to prove that this 2-form is closed. We will explain
how this symplectic structure can be deduced from the O-shifted symplectic structure on
the whole derived stack RPerf(S). First of all, the O-shifted symplectic form restricts to
a O-shifted symplectic form on the open RPerf(S)’. We consider the determinant mor-
phism of [Sch-To-Ve, 3.1]

det : RPerf(S)' —> RPic(S),

where RPic(S) is the derived Picard stack of S, defined to be Mapygg, (S, BG,,). As ex-
plained in [Sch-To-Ve, 4.2] there is a natural projection RPic(S) —> Spec£[e ], with ¢
of degree —1. The choice of a point s € S(£) (assume there is one for simplicity) defines by
pull-back along s : Speck — S, another projection RPic(S) — RPic(Speck) = BG,,.
These two projections, pre-composed with the determinant map, defines a morphism of
derived stacks

7 : RPerf(S)’ —> Speck[¢] x BG,,.

It is easy to see that this projection is smooth and representable by an algebraic space.
Thus, its fiber at the natural base point is a smooth algebraic space X, equipped with a
natural morphism

j:X —> RPerf(S)".

By definition, X is naturally isomorphic to MY, the coarse moduli of the truncation M
of RPerf(S)’. Finally, the O-shifted symplectic form on RPerf(S)’ can be pulled back to
X by j, and defines a closed 2-form on X. The tangent of X at a point corresponding to
a perfect complex E is Ext'(E, E), and this 2-form is the natural pairing

n ] T .
Ext'(E,E) x Ext'(E,E) —— Ext*(E,E) SN Ext*(Os, Og) >~ k,
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and thus is a symplectic form on the smooth algebraic space X, which is the one con-
structed in [In].

Again, the interesting remark here is that this symplectic structure on My is in-
duced by a 0-shifted symplectic structure on the whole derived stack RPerf(S), which in-
cludes all perfect complexes, and in particular non-simple ones, and even complexes with
possibly non trivial negative self-extensions.

Remark 3.1. — As the morphism
7 : RPerf(S)’ — Speck[e ] x BG,

1s smooth with fibers X, it is locally (for the smooth topology) on RPerf(S)* equivalent to
the projection

X x Speckle] x BG,, — Speck[e] x BG,,.

To be more precise, we have a commutative diagram of derived stacks, with Cartesian
squares

RPerf(S)’ — - Speckle,] x BG,,

: |

Y Specile ]
X Speck.

Here, Y and X are derived algebraic spaces, respectively smooth over Speck[e,] and
Spec k. Moreover, X >~ 4°(Y) is the truncation of Y, and 7 : X — Y is the natural closed
embedding. Locally for the étale topology, Y is a direct product U x Spec£[e;], where
U is an étale scheme over X. Indeed, any affine scheme Z smooth over Spec£[e ], splits
(uniquely, the space of splitting is connected) as a product Z, x Speck[e¢;] where Z is
a smooth affine variety. Finally, the morphism p is a G,,-torsor and thus is smooth and
surjective. This shows that locally for the smooth topology on RPerf(S)’, the morphism
7 18 a direct product.

Remark 3.2. — It 1s also possible to show that this local decomposition of the pre-
vious Remark 3.1 is compatible with the symplectic structure. More precisely, locally
RPerf(S)’ looks like X x Speck[e ] x BG,,. Now, the derived stack Speck[e;] x BG,,
possesses a natural O-shifted symplectic structure, for instance by using our Corollary 2.6
and the fact that we have a natural identification

Speck[e¢ ] x BG,, =~ RMap(SQ, BG,,,).
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The projection m is a symplectic morphism, and the local decomposition
RPerf(S)' ~ X x Speck[e ] x BG,

becomes a decomposition of symplectic derived stacks.

3.2. (—1)-Shifled symplectic structures and symmetric obstruction theories

We compare here our notion of (—1)-shifted symplectic structure with the no-
tion of a symmetric obstruction theory of [Be-Fa, Definition 1.10]. Recall first from
[Sch-To-Ve, §1] that for any derived stack F which is locally of finite presentation, its
truncation 4°(F) comes equipped with a natural perfect obstruction theory. It is con-
structed by considering the inclusion j : 2°(F) —> F, and by noticing that the induced
morphism of cotangent complexes

J‘* ij'* (LF/k) —> Ly

satisfies the property to be a perfect obstruction theory. In practice all obstruction theories
arise this way.

Assume now that I comes equipped with a (—1)-shifted symplectic structure w.
We write the underlying 2-form of degree —1 as a morphism of perfect complexes

w: Ty ATy — Op[—1].
We use the fact that @ is non-degenerate and the equivalence
O, Ty ~Lg[—1],
to get another morphism
Sy (L) [~2] = (Lel—11) A (Lil—11) = Tp A Ty —> Op[—1],
which we rewrite as
Sy’ (L) —> Oyl11.
This pairing stays non-degenerate, and thus defines a equivalence
Ly >~ Ty[1].

When restricted to the truncation °(F) < F, we find that the perfect obstruction theory
E :=;*(Lg/), comes equipped with a natural equivalence

E~E"[1],

which is symmetric (i.e. comes from a morphism Sym®(E) — O[1]). It is, by definition
[Be-Fa, Definition 1.10], a symmetric obstruction theory on /°(F).
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Remark 3.3. — As explained in [Sch-To-Ve], the datum of the truncation 4"(F)
together with the obstruction theory j*(Lg) is strictly weaker than the datum of the de-
rived stack F. In the same way, the passage from a (—1)-shifted symplectic form on F to
a symmetric obstruction theory on 4°(F) looses important informations. The most im-
portant one is that the corresponding symmetric obstruction theory only depends on the
underlying 2-form of w, and thus does not see that @ comes with the important further
closedness datum.

An interesting related question is whether a symmetric obstruction theory that is
induced by a (—1)-shifted symplectic form, is étale locally isomorphic to the canonical
one given by Lagrangian intersections on a smooth scheme, or even to that existing on the
derived zero locus of a closed 1-form on a smooth scheme—instead of just an almost-closed
l-form, as in the case of a general symmetric obstruction theory, see [Be, §3.4]. Some
very interesting formal and local (for the analytic topology) results in this direction have
been proven in [Br-Bu-Du-Jo] slightly after the appearance of the first preprint version
of this paper, and efficiently applied by the same authors to show the existence of local
potentials for Donaldson-Thomas theory on Calabi-Yau 3-folds.

Three main sources of examples of (—1)-shifted symplectic structures, and thus of
symmetric obstruction theories, are the following.

Sheaves on C1" 3-folds. — Let X be a smooth and proper CY manifold of dimension 3,
together with a trivialization wx/ =~ Ox. It is a O-compact object endowed with an
Q-orientation of dimension 3, so our Theorem 2.5 can be applied. We find in particu-
lar that the derived stack RPerf(X) of perfect complexes on X is canonically endowed
with a (—1)-shifted symplectic structure. This defines a symmetric obstruction theory
on the truncation /4’ (RPerf(X)). The (—1)-shifted symplectic structure also induces a
(—1)-shifted symplectic structure on the derived stack of perfect complexes with fixed
determinant. For this, we use the determinant map of [Sch-To-Ve]

det : RPerf(X) —> RPic(X),

and consider the fiber at a given global point L € Pic(X), corresponding to a line bundle
on X

RPerf(X);, := det”' ({L}).

The (—1)-shifted symplectic form on RPerf(X) can be pulled-back to a closed 2-form
on RPerf(X);, using the natural morphism RPerf(X); —> RPerf(X). It is easy to see
that this closed 2-form stays non-degenerate, and thus defines a (—1)-shifted symplectic
structure on RPerf(X);.. Finally, restricting to simple objects, we get a quasi-smooth de-
rived stack RPerf(X); , endowed with a (—1)-shifted symplectic structure. On the trun-
cation /" (RPerf(X); ) we thus find a perfect symmetric obstruction theory of amplitude
[—1,0].
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We could also consider similar examples, like RLoc(M, G)—for M an oriented

compact 3-dimension topological manifold, and G a reductive group scheme over k—or
RPerf(M) := RMap(M, RPerf).

Maps from elliptic curves to a symplectic target. — The second source of examples of (—1)-
shifted symplectic structures is by considering maps from an elliptic curve towards a
symplectic smooth target. Let E be a fixed elliptic curve endowed with a trivialization
wgy; =~ O, and (X, @) a smooth symplectic variety over £ (for instance X can be T*Z
for some smooth Z, with its canonical symplectic form. This example is of fundamental
interests in elliptic cohomology, see [Co-Gw]). We let I := RMap(E, X), which by our
Theorem 2.5 is endowed with a canonical (—1)-shifted symplectic structure. The derived
stack I 1s a derived algebraic space, and in fact a quasi-projective derived scheme if X is it-
self quasi-projective. It is moreover quasi-smooth, as its tangent at a given point f : E — X
1s the Zariski cohomology complex C*(E, /*(Tx)). We thus have a quasi-smooth derived
algebraic space (or even scheme), endowed with a (—1)-shifted symplectic structure. It
gives rise to a symmetric perfect obstruction theory of amplitude [—1, 0] on the trunca-
tion 4°(F). Once again, the existence of the (—1)-shifted symplectic form is a stronger
statement than the existence of a symmetric obstruction theory. This (—1)-shifted sym-
plectic structure induces, by passing to the derived formal completion at a given point,
the degree —1 symplectic structure recently considered by Costello in [Co]. As explained
in [Co] it can be used to construct a quantization of the moduli I, and for this the datum
of the symmetric obstruction theory is not enough.

Lagrangian wntersections. — Let (X, ) be a smooth symplectic scheme over £, with two
smooth Lagrangian subschemas L. and L. Then, the two closed immersions L, ' C X
are endowed with a unique Lagrangian structure in the sense of our Definition 2.8, and
thus our Theorem 2.9 implies that the derived intersection L xé‘(L’ carries a natural (—1)-
shifted symplectic structure. Again this defines a symmetric perfect obstruction theory of
amplitude [—1, 0] on the truncation, that is on the usual schematic fiber product L xx L.
The data of the (—1)-shifted symplectic structure is again stronger than the data of the
corresponding symmetric obstruction theory, as for instance it can be used to quantize the
mntersection L xx I.". We will come back to the quantization construction in a future work.
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