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ABSTRACT

We establish sharp bounds for simultaneous local rotation and Hölder-distortion of planar quasiconformal maps.
In addition, we give sharp estimates for the corresponding joint quasiconformal multifractal spectrum, based on new
estimates for Burkholder functionals with complex parameters. As a consequence, we obtain optimal rotation estimates
also for bi-Lipschitz maps.

1. Introduction

A deformation f : R2 → R2 is called L-bilipschitz if it distorts Euclidean distances
by at most a fixed factor L � 1,

1
L

|x − y|� ∣
∣ f (x) − f (y)

∣
∣� L|x − y| for x, y ∈ R2.

Such a map changes length insignificantly, nevertheless it may change local geometry by
creating (logarithmic) spirals out of line segments. As a simple model example consider
the logarithmic spiral map

(1.1) f (z) = z|z|iγ , z ∈ C = R2, γ ∈ R \ {0}.
On the other hand, the constant L imposes constraints on the speed of spiralling:

for any L-bilipschitz map, see Proposition 6.1 below, the infinitesimal rate of rotation at
a point z ∈ R2,

(1.2) γ (z) = γf (z) = lim sup
t→0

arg[ f (z + t) − f (z)]
log t

,

satisfies |γ |� L − 1
L with equality for (1.1) at z = 0.

Note that a map can have non-trivial (i.e. γ �= 0) rotation only at points of non-
differentiability, hence for bilipschitz maps only in a set of measure zero. This leads one to
study the rotational multifractal spectrum of these mappings, that is, to ask what is the maximal
Hausdorff dimension of a set Eγ where an L-bilipschitz deformation rotates every point
with a given rate γ .

The following result gives a complete answer, describing the universal bounds for
the class of bilipschitz mappings. Indeed, these interpolate linearly between the bounds
valid pointwise and those valid almost everywhere.
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Theorem 1.1. — Suppose f : R2 → R2 is L-bilipschitz and γ is a real number such that

|γ |� L − 1
L . Then

(1.3) dimH
{

z ∈ R2 : γf (z) = γ
}

� 2 − 2L
L2 − 1

|γ |.
Moreover, for every such γ there exists an L-bilipschitz map f : R2 → R2 for which the equality holds

in (1.3).

A key observation towards establishing rotational bounds, such as Theorem 1.1,
is that it is necessary to control the higher integrability of complex powers of the derivative
fz = ∂ f /∂z. Such an integrability is most naturally studied through a holomorphic flow
of the map f .

However, holomorphic flows do not keep the maps bilipschitz. Any orientation
preserving L-bilipschitz f : R2 → R2 solves the Beltrami equation

(1.4) fz̄ = μ(z)fz, with
∣
∣μ(z)

∣
∣ ≤ L2 − 1

L2 + 1
a.e. x ∈ R2.

Replacing μ by μλ, a coefficient depending holomorphically on a complex parameter
λ, the equations provide us with homeomorphic solutions which vary holomorphically
with λ—holomorphic motions of Mañé, Sad and Sullivan [17]. However, in general
these homeomorphisms are only quasisymmetric (see (2.2) below) even if the initial map
in (1.4) is bilipschitz.

Surprisingly, though we are forced to move outside the bilipschitz world, this ap-
proach leads to a complete description of the multifractal rotation spectra.

The correct setup for integral estimates of complex powers of fz is within the solu-
tions to an arbitrary Beltrami equation (1.4), thus in terms of quasiconformal mappings.
Here the result takes the following form (for the appropriate concepts see Section 2).

Theorem 1.2. — Suppose f is a K-quasiconformal map on a domain � ⊂ C. Then for any

exponent β ∈ C in the critical ellipse

(1.5) |β| + |β − 2| < 2 · K + 1
K − 1

we have
∣
∣ f β

z

∣
∣ ∈ L1

loc(�).

This result is sharp in a strong sense; it fails for any complex exponent β on the
boundary of the critical ellipse as well as outside, see Section 4.

Theorem 1.2 includes a number of interesting special cases. Taking β real-valued
we recover the optimal higher integrability of the gradient of a quasiconformal map-
ping [1]. Other values of β lead to new phenomena: among them is the optimal expo-
nential integrability of the argument of fz.
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Corollary 1.3. — Suppose f is a K-quasiconformal map on a domain � ⊂ C. Then

eb|arg fz| ∈ L1
loc for all positive b <

4K
K2 − 1

.

Again the integrability fails for some K-quasiconformal mapping in case b = 4K
K2−1 .

Moreover, we have similar precise bounds on exponential integrability for bilipschitz
mappings as well, see Theorem 6.2 below.

To understand the mechanisms of how the integrability breaks down at the border-
line case in Theorem 1.2, we analyze the situation in a weighted setting. This reveals con-
nections with Burkholder functionals and raises new questions regarding quasiconvexity.
The novelty here lies in creating a family of Burkholder-type functionals depending on
a complex parameter, for which we establish partial quasiconcavity, see Theorem 4.3. In
the course of doing so we bring into play Lebesgue spaces with complex exponents to
advance in this setting the interpolation technique of [3]. For details see Section 4.

The above approach allows a natural extension to multifractal properties of qua-
siconformal mappings. Even further, in view of [17, 22] one may consider general holo-
morphic motions of subsets E ⊂ C, that is, maps � : D × E → C injective in the z-
variable and holomorphic in the λ-variable, with �(0, z) ≡ z at the “time” λ = 0. Now,
however, one needs to take into account also the stretching in a manner to be discussed in
Section 3.2. We arrive at general bounds for the joint rotational and stretching multifractal
spectra.

Theorem 1.4. — Suppose � : D × E → C is a holomorphic motion of a set E ⊂ C and that

α > 0 and γ ∈ R are given.

If λ ∈ D, assume that at every point z ∈ E we have scales rj → 0 along which �λ(z) =
�(λ, z) stretches with exponent α,

lim
j→∞

log |�λ(z + rj) − �λ(z)|
log rj

= α, z ∈ E,

and simultaneously rotates with rate γ ,

lim
j→∞

arg(�λ(z + rj) − �λ(z))

log |�λ(z + rj) − �λ(z)| = γ, z ∈ E.

Then

(1.6) dim(E)� 1 + α − 1
|λ|

√

(1 − α)2 + (

1 − |λ|2)α2γ 2.

Moreover, for each λ ∈ D, α > 0 and γ ∈ R such that the right hand side of (1.6)
is nonnegative, there exists a set E ⊂ C and its holomorphic motion for which we have
equality in (1.6).
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TABLE 1. — Quasiconformal stretching versus Bilipschitz rotation

K-quasiconformal stretching L-bilipschitz rotation

Grötzsch problem John’s problem

Radial stretching z|z|α−1 Logarithmic spiral map z|z|iγ

Hölder exponent 1/K � α � K Rate of spiralling |γ | � L − 1/L

log J(z, f ) ∈ BMO arg fz ∈ BMO

Higher integrability f ∈ W1,p

loc , p < 2K
K−1 Exponential integrability exp(b|arg fz|) ∈ L1

loc, b < 2L
L2−1

Multifractal spectrum dimH{z : α(z) = α}� 1 + α − |1−α|
k

Multifractal spectrum dimH{w : γ (w) = γ }� 2 − 2L
L2−1

|γ |
Factoring the radial stretch map along a geodesic Factoring the logarithmic spiral map along a horocycle

Holomorphic motions and the study of their geometric properties arise naturally in
various questions in complex dynamics. It is clear that detailed combinatorial or topolog-
ical information about specific dynamical systems, combined with the methods of Theo-
rem 1.4, will improve the bounds above.

The proofs of the statements in this introduction can be found in the text as follows.
Theorem 1.2 and Corollary 1.3 are proved in Section 4. Theorem 1.4 and further quasi-
conformal multifractal spectra estimates are treated in Section 5. Finally, Theorem 1.1 is
obtained by developing the bilipschitz theory in Section 6. In Section 3 we build up the
basic framework for discussing rotational phenomena through rigorous definitions of var-
ious branches of the logarithms involved. Section 2 contains prerequisites on bilipschitz
and quasiconformal mappings.

The above and further results in the present work as well as of other authors reflect
a close interaction between rotational phenomena for bilipschitz mappings and stretching
phenomena for quasiconformal mappings. This may be summarized as the dictionary of
Table 1 between the two, see Section 6 for a discussion.

2. Prerequisites

Before considering the rotational and stretching properties of bilipschitz and qua-
siconformal mappings, we briefly recall the basic concepts underlying our study.

2.1. Bilipschitz and quasiconformal maps. — By definition, in any dimension n � 2,
K-quasiconformal mappings are orientation preserving homeomorphisms f : � → �′

between domains �,�′ ⊂ Rn, contained in the Sobolev class W 1,n
loc (�), for which the

differential matrix and its determinant are coupled in the distortion inequality,

(2.1)
∣
∣Df (x)

∣
∣
n � K det Df (x), where

∣
∣Df (x)

∣
∣ = max

|ξ |=1

∣
∣Df (x)ξ

∣
∣,

for some K � 1. From now on, we will consider these mappings only in dimension n = 2.
It is clear that any orientation preserving L-bilipschitz mapping is K-quasiconformal with
K = L2.
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In comparison, any quasiconformal mapping of the entire plane is quasisymmetric,
i.e. satisfies the estimate

(2.2)
| f (x) − f (z)|
| f (y) − f (z)| � η

( |x − z|
|y − z|

)

, x, y, z ∈ C,

for some continuous strictly increasing η : R+ → R+ with η(0) = 0. We will make fre-
quent use of this geometric description. Conversely, any quasisymmetric mapping is K-
quasiconformal with K = η(1).

What makes quasiconformal mappings particularly flexible in dimension n = 2 is
that they satisfy the Beltrami equation

(2.3) fz̄ = μfz with |μ|� k < 1, k = K − 1
K + 1

.

Conversely, any homeomorphic W1,2
loc -solution to (2.3) is K-quasiconformal with K =

(1 + k)/(1 − k). We refer to [2] for definitions and basic facts on planar quasiconformal
maps.

If the coefficient μ is compactly supported, the mapping f is conformal near ∞
and we may use normalisation f (z) = z+o(1) as z → ∞. In this case we call f the principal

solution to (2.3); such a solution is uniquely determined by the Beltrami coefficient μ(z)

and it is a homeomorphism. The Beltrami equation paves the way for embedding the
principal solution f into a holomorphic family of quasiconformal maps. One may simply
consider the flow of principal solutions {f λ(z)}λ∈D to the equation

(2.4) fz̄ = μλfz, μλ(z) = λμ(z)/‖μ‖∞, f = f λ.

Similarly, the global solutions to (2.4) normalized by f (0) = 0, f (1) = 1 depend holo-
morphically on λ ∈ D. More generally, within both normalizations we achieve the holo-
morphic dependence as soon as μλ(z) varies holomorphically with the parameter λ. For
details and further facts on holomorphic dependence see [2, Section 5.7].

2.2. Choosing the logarithmic branches. — In describing the different aspects of rota-
tion under quasiconformal mappings we will need a convenient and systematic way to
discuss the various branches of the logarithm of the difference f (z)− f (w). The following
simple observation serves best our purposes.

Proposition 2.1. — Let f : � → R2 be a homeomorphism of a simply connected domain

� ⊂ R2. Assume that f is differentiable at a point w0 ∈ � with positive Jacobian. Then the logarithmic

expression

(2.5) log
f (z) − f (w)

z − w
, (z,w) ∈ � × �, z �= w,
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admits a single-valued continuous branch.

Moreover, any continuous branch is uniquely determined by its value at any given pair (z,w) ∈
� × �, z �= w.

Proof. — Since f : � → R2 is differentiable at w0 ∈ � and J(w0, f ) = | fz(w0)|2 −
| fz̄(w0)|2 > 0, the function

(2.6) z �→ f (z) − f (w0)

z − w0

is continuous and non-vanishing in � \ {w0}. Its accumulation set at z = w0 is contained
in a closed disk B̄(a, r), centered at a = fz(w0) and of radius r = | fz̄(w0)| � 0. By our
assumptions on the Jacobian, 0 /∈ B(a,R) as soon as R > r is sufficiently close to r. If γ is
any loop in �\{w0}, it is homotopic to a loop that lies arbitrarily close to w0, i.e. to a loop
whose image under f lies in B(a,R). Therefore (2.6) admits a single valued logarithm as
a function of z ∈ �.

In order to show that log f (z)−f (w)

z−w
admits a single-valued continuous branch in the

whole domain U := (�×�) \ {(w,w) : w ∈ �}, it is then enough to verify that any loop
in U is homotopic to one that lies in the section U ∩ {(z,w) : w = w0}. Since � is simply
connected, it is homeomorphic to the unit disc D and we just need to consider the case
U = D. Moreover, we may assume that w0 = 0. Given any loop (α,β) : [0,1] → D × D
that avoids the diagonal (that is, α(t) �= β(t) for all 0 � t � 1), the required homotopy is
given by

(αs, βs) =
(

α − sβ

1 − sβα
,

(1 − s)β

1 − s|β|2
)

, 0 � s � 1.

Indeed, αs(t) �= βs(t) for all 0 � t � 1 and 0 � s � 1. �

Remark 2.2. — In most cases that we will encounter there is a natural choice for
the branch of the logarithm (2.5). For instance, if f : C → C is normalized by f (0) = 0,
f (1) = 1 we will choose log f (1) = log(( f (1) − f (0)/(1 − 0)) = 0. Or if f : C → C
is a principal solution to (2.3) with f (z) = z + o(1) as z → ∞, then we consider the
continuous branch with

(2.7) log
f (z) − f (w)

z − w
→ 0 as z → ∞,

and call it the principal branch.

Remark 2.3. — Later on, we also need to consider flows of homeomorphisms f λ : C →
C that depend continuously on a complex parameter λ ∈ D. Proposition (2.1) generalizes
to this situation, and there is a single-valued continuous branch of the logarithm

log
f λ(z) − f λ(w)

z − w
defined for (z,w) ∈ C × C, z �= w, and λ ∈ D.
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In order to prove this one observes that any loop γ = (γ1, γ2, γ3) in the domain

(

(C × C) \ {

(z,w) : z = w
})× D

is homotopic to a curve lying in ((C×C)\{(z,w) : z = w})×{0} by the trivial homotopy
(t, s) �→ (γ1(t), γ2(t), (1 − s)γ3(t)). This reduces one to the case that was already handled
in the proof of Proposition (2.1). Naturally the branch is uniquely determined by its value
at any (z,w,λ) with z �= w.

3. Notions of rotation

We start with the pointwise notions, i.e. describe the extremal behavior and the
optimal bounds for the rotation and stretching at a point z0 ∈ C.

There are (at least) three natural different and geometric ways to describe the ro-
tational properties under a planar mapping: the infinitesimal, the local and the global
concepts. They have different and complementary geometric and analytic descriptions,
but we shall see later that they are all intimately related. These relations will then form the
basis of the quasiconformal and bilipschitz multifractal properties studied in Sections 5
and 6.

We begin with the local point of view, where one fixes the argument at a chosen
pair of points z0 �= z1 ∈ C, and then studies the behavior of the logarithmic cross ratio

log
(

f (z) − f (z0)

f (z1) − f (z0)

)

, as z → z0, z �= z0.

The scale invariance of this expression allows universal distortion bounds.
As a next step, the local bounds enable one to study the geometric rate of spiraling

for the image of an infinitesimal line segment; for precise definitions see (3.8)–(3.10) and
Theorem 3.3.

Finally, for principal mappings; that is, when f (z) = z + o(1) as z → ∞, we have
the third possibility of taking z = ∞ as the reference point. Here it is natural to travel
from ∞ to z0 along a line segment and study how much the image rotates around f (z0).

3.1. Rotation and stretching: The local picture. — By the classical Mori’s theorem, a
K-quasiconformal mapping f is locally Hölder continuous with exponent 1/K. We look
for a similar bound on the maximal change in argument. It turns out that a fruitful point
of view is to measure twisting and stretching simultaneously, and this is one of the leading
insights in what follows. By scale invariance it makes no difference to take z0 = 0 and
z1 = 1 and assume f (0) = 0, f (1) = 1.
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Theorem 3.1. — Consider a K-quasiconformal mapping f : C → C normalized by f (0) = 0
and f (1) = 1. Then for any 0 < r < 1,

(3.1)

∣
∣
∣
∣
log f (r) − 1

2

(

K + 1
K

)

log r

∣
∣
∣
∣
� 1

2

(

K − 1
K

)

log
1
r

+ c(K),

where the constant c(K) is independent of r. Here the continuous branch of the logarithm log f (r) is

determined by log f (1) = 0.

Furthermore, for any 0 < r < 1 and for any number τ on the circle

(3.2)

∣
∣
∣
∣
τ − 1

2

(

K + 1
K

)∣
∣
∣
∣
= 1

2

(

K − 1
K

)

the equality in (3.1) holds with c(K) = 0 for the K-quasiconformal mapping

(3.3) fτ (z) = z

|z| |z|
τ , τ = α(1 + iγ ).

For an illustration of the parameter disk (3.2), see Figure 2 presented after Theo-
rem 3.3.

Before embarking to the proof, let us recall some of the earlier results on quasicon-
formal rotation. Gutlyanskĭı and Martio [12] answer a problem of John [15] on bilips-
chitz mappings by determining the maximal rotation for K-quasiconformal maps that fix
given annuli, keep one boundary circle fixed and rotate the other boundary circle. The
extremal in this situation is given by the map (3.3) where α = 1, corresponding to a pure
rotation. Balogh, Fässler and Platis [4] extend this result to annuli with different modu-
lus, and the extremal is of the general form (3.3). Both of these works actually consider
a fairly general class of maps of finite distortion. However, they only consider mappings
between round annuli. Our result relaxes this hypothesis, and we simply ask for the max-
imal combined rotation and Hölder distortion of f (z + r)− f (z) for any mapping defined
in the entire plane; after a normalization we are reduced to (3.1).

Proof of Theorem 3.1. — The case of the equality for fτ is immediate. Note, in par-
ticular, that the circle (3.2) is precisely the set of points τ such that

∣
∣
∣
∣

τ − 1
τ + 1

∣
∣
∣
∣
= K − 1

K + 1
.

Since each f = fτ in (3.3) satisfies the Beltrami equation fz̄ = τ−1
τ+1

z

z̄
fz, the mappings are

indeed K-quasiconformal.
Next, let 0 < r � 1, and consider first K-quasiconformal mappings which are con-

formal outside the disk B(0,2) with

(3.4) f (z) = z +O(1/z) as |z| → ∞.
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Embed f in a holomorphic flow {fλ}λ∈D as in (2.4), so that each map has the same asymp-
totics (3.4). By Koebe distortion (see e.g. [2, Theorem 2.10.4]) fλB(0,2) ⊂ B(0,4), so that
the values of fλ(z)− fλ(0) for |z|� 2 all stay within the disk B(0,8). We thus observe that
the holomorphic function

ψ(λ) := log
8

fλ(r) − fλ(0)
, λ ∈ D,

where the branch for the logarithm is fixed by setting ψ(0) > 0, has positive real part.
These preparations take us to the main point of the argument, where we simply

apply Schwarz lemma to ψ : D → H, with H the right half plane. This implies |ψ(λ) −
1+|λ|2
1−|λ|2 ψ(0)|� 2|λ|

1−|λ|2 ψ(0). Unwinding the definitions gives us

∣
∣
∣
∣
log

[

f (r) − f (0)
]− 1

2

(

K + 1
K

)

log r

∣
∣
∣
∣

(3.5)

� 1
2

(

K − 1
K

)

log
1
r

+ (K − 1) log 8.

Thus a version of (3.1) is shown to hold for the principal branch.
It remains to find estimates when we do not have conformality outside 2D. For

this, given a quasiconformal mapping f of C normalized by f (0) = 0 and f (1) = 1, apply
Stoilow factorization ([2, Theorem 5.5.1]) and represent f = F◦ f0, where f0 is a principal
map conformal outside the disk 2D, and F a quasiconformal map which is conformal in
the domain � = f0(2D).

Here we will make use of the following lemma.

Lemma 3.2. — Suppose that F : � → C is conformal, where � � C is simply connected.

Then for any x, y,w ∈ � with x �= w, y �= w, and any chosen branch of the logarithm (cf. Proposi-

tion 2.1) it holds that

∣
∣
∣
∣
log

F(x) − F(w)

x − w
− log

F(y) − F(w)

y − w

∣
∣
∣
∣
� 10ρ�(x, y),

where ρ� is the hyperbolic metric of the domain �.

Proof. — The lemma is basically a reformulation of the classical distortion bounds
for conformal mappings in the unit disk. Indeed, suppose first that F is conformal in D
with F(0) = 0. Then [19, p. 21] we have |F′′(z)

F′(z) | � 6(1 − |z|2)−1 uniformly in D which
implies for any branch of the logarithm that

∣
∣log F′(x) − log F′(y)

∣
∣� 3ρD(x, y), x, y ∈ D.
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On the other hand [19, p. 66], we also have
∣
∣
∣
∣
log

zF′(z)
F(z)

∣
∣
∣
∣
� log

1 + |z|
1 − |z| , z ∈ D,

with the normalization log 1 = 0 at z = 0. Combining the estimates gives, again for any
branch of the logarithm,

(3.6)

∣
∣
∣
∣
log

F(x)

x
− log

F(y)

y

∣
∣
∣
∣
� 5ρD(x, y), x, y ∈ D.

In the general case compose with the Riemann map φ : D → �, φ(0) = w. Then
for any choices of the respective branches

log
F(φ(z)) − F(φ(0))

φ(z) − φ(0)
= log

F(φ(z)) − F(φ(0))

z
− log

φ(z) − φ(0)

z

+ 2π in, 0 �= z ∈ D,

for some n ∈ Z. Applying now (3.6) twice proves the claim. �

Returning to the proof of Theorem 3.1 and the factorization f = F ◦ f0, the triple
x = f0(r), y = f0(1), w = f0(0) is contained in f0(D), and this set has hyperbolic diame-
ter in � = f0(2D) bounded uniformly in terms of K only. As F(x) = f (r),F(y) = 1 and
F(w) = 0, Lemma 3.2 shows that

∣
∣log f (r) − log

(

f0(r) − f0(0)
)+ log

(

f0(1) − f0(0)
)∣
∣� M(K) < ∞.

On the other hand, applying (3.5) with r = 1 to f0 implies

(3.7)
∣
∣log

(

f0(1) − f0(0)
)∣
∣� (K − 1) log 8.

Finally, combining these bounds with (3.5) for a general 0 < r < 1 completes the proof of
the theorem. �

3.2. The infinitesimal rate of rotation. — For a quasiconformal mapping f : � → �′

defined in a proper subdomain � ⊂ C it is senseless to ask for uniform bounds for rotation
or stretching in all of �—the general properties are determined by the geometry of the
specific domains in question. One should recall in this context that even a conformal
map from unit disc onto e.g. a snowflake domain rotates in an unbounded manner as one
approaches suitably the boundary.

On the other hand, in any domain for infinitesimal rotation and stretching we have
uniform bounds. To describe this more precisely, first consider for τ := α(1 + iγ ) the
prototype example

(3.8) fτ (z) = z

|z| |z|
α(1+iγ ), for |z|� 1 with fτ (z) = z, for |z| > 1.
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FIG. 1. — A logarithmic spiral with rotation rate γ = 5

The map fτ takes a radial segment in the unit disk to a logarithmic spiral with rate of
rotation γ ∈ R, see Figure 1, while α > 0 can be considered as the stretching exponent
of fτ at the origin.

Intuitively, keeping the model map fτ in mind, for a general mapping f the local
exponent for stretching at a point z0 ∈ � should then be given by

(3.9) α(z0) = lim
r→0

log | f (z0 + r) − f (z0)|
log r

,

while the (geometric) rate of rotation one would define as

(3.10) γ (z0) = lim
r→0

arg( f (z0 + r) − f (z0))

log | f (z0 + r) − f (z0)| .

In defining the latter expression one takes into account that the more the mapping is
compressing the more it has to rotate to produce a given geometric spiral as the image
of a half-line emanating from z0. An easy way to illustrate this is to consider the curve
t → t1+iγ and the change of variable t = sK.

The problem with the above intuitive notions is, of course, that the respective lim-
its need not exist as f may have different behaviour at different scales. Therefore we
formulate the infinitesimal joint stretching-rotation bounds as follows.

Theorem 3.3. — Assume f : � → �′ is a K-quasiconformal homeomorphism between two

planar domains, and that z0 ∈ � is given.

Suppose we can find radii rk → 0, such that the limits

α = lim
k→∞

log | f (z0 + rk) − f (z0)|
log rk

,(3.11)

γ = lim
k→∞

arg( f (z0 + rk) − f (z0))

log | f (z0 + rk) − f (z0)|(3.12)
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FIG. 2. — The exponent τ from (3.13) lies in the hyperbolic disk pictured above

both exist. Then the exponent τ = α(1 + iγ ) satisfies

(3.13)

∣
∣
∣
∣
τ − 1

2

(

K + 1
K

)∣
∣
∣
∣
� 1

2

(

K − 1
K

)

.

Remark 3.4. — To explicate the statement above, in (3.12) we use some continuous
branch of argument r �→ arg( f (z0 + r) − f (z0)). However, it is important to notice that
the limit (3.12), if exists, is independent of the choice of branch used.

Corollary 3.5. — In particular, for every K-quasiconformal mapping f : � → �′ and for

every point z0 ∈ �, each limiting rate of rotation γ in (3.12) satisfies

(3.14) |γ |� 1
2

(

K − 1
K

)

.

The tangent line in Figure 2 illustrates the extremal case in Corollary 3.5.
Recall furthermore that for | τ−1

τ+1 | = K−1
K+1 the model map (3.8) is K-quasiconformal,

that for z0 = 0 the exponents α and γ are given by (3.11) and (3.12), respectively, for any
sequence of radii rk → 0, and that the exponent τ = α(1 + iγ ) satisfies (3.13) as an
equality. Thus the bounds of Theorem 3.3 are optimal.

Proof of Theorem 3.3. — It suffices to consider simply connected domains � ⊂ C.
We first apply Stoilow factorization [2, Theorem 5.5.1] and represent

f (z) = ϕ ◦ f0(z), z ∈ �,

where f0 : C → C is K-quasiconformal and ϕ is conformal in the domain �′′ = f0(�). If
� = C we take ϕ(z) = z.
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Theorem 3.1 now implies
∣
∣
∣
∣
log

[
f0(z0 + tr0) − f0(z0)

f0(z0 + r0) − f0(z0)

]

− 1
2

(

K + 1
K

)

log t

∣
∣
∣
∣

(3.15)

� 1
2

(

K − 1
K

)

log
1
t

+ c(K), t ∈ (0,1],

where r0 is such that B(z0, r0) ⊂ �. On the other hand, Lemma 3.2 gives
∣
∣
∣
∣
log

ϕ(x) − ϕ(z)

x − z
− log

ϕ(y) − ϕ(z)

y − z

∣
∣
∣
∣
� 10ρ�′′(x, y),

for x, y, z ∈ �′′. Choosing x = f0(z0 + tr0), y = f0(z0 + r0) and z = f0(z0) shows that (3.15)
holds for f , too, with c(K) replaced by a constant depending on K and the hyperbolic
distance in �′′ between f0(z0 + tr0) and f0(z0 + r0). Adjusting r0 this distance can be made
arbitrarily small uniformly in t ∈ (0,1].

Finally, letting t = rk/r0, dividing by log(1/rk) and taking k → ∞ gives the bound
(3.13). Note here that by Mori’s theorem we necessarily have α � 1/K > 0. �

3.3. Global aspects of rotation: the complex logarithm log fz. — With Theorems 3.1
and 3.3 one has a first description of the rotation and stretching properties of quasi-
conformal mappings. Theorem 3.3 determines the extremal infinitesimal phenomena,
and it is of interest only at the points of non-differentiability.

For a principal mapping with f (z) = z + o(1) when z → ∞, it is also natural to
consider a global notion, the rotation the image of a half line from ∞ to z0 makes around
the image point f (z0), see Figure 3. This global measure of rotation, however, works best
at points of differentiability and as it turns out, is described by the function log fz.

Before embarking into the several interesting analytic and geometric properties
that the complex logarithm of fz encodes, we of course need to clarify the pointwise def-
inition of the function log fz. There are actually two alternative ways for this: an analytic
approach and a geometric one.

Analytic definition. — As explained in Section 2.1 above, by letting μ(z) = μλ(z) depend
holomorphically on a parameter λ ∈ D, we have natural ways to embed a given principal
mapping f into a family of quasiconformal maps f λ, with analytic dependence on the
parameter λ ∈ D. To make further use of this property, we need a refinement of [3,
Lemma 3.7].

Lemma 3.6. — There is a set E ⊂ C of full measure, such that for every λ ∈ D and for every

z ∈ E, the map f λ is differentiable at z with f λ
z �= 0.

In addition, for a fixed z ∈ E and for any compact A ⊂ D the differential quotients

f λ(z + t) − f λ(z)

t
, t ∈ (0,1), λ ∈ A,
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are uniformly bounded.

Furthermore, for z ∈ E the function λ �→ f λ
z (z) is holomorphic in λ ∈ D and the equation (2.3)

with μ = μλ holds true pointwise in E.

We postpone the proof of the Lemma to the end of this section. As f 0(z) ≡ z, it
is natural to set log f 0

z ≡ 0, and thus requiring that log f λ
z (z) remains holomorphic in λ

defines the logarithm uniquely at every z ∈ E. Returning to the original solution f we can
now set the analytic definition

log fz(z) = log f k
z (z), k = ‖μ‖∞, z ∈ E.

Geometric definition. — While the analytic approach to log fz requires mappings defined
in the entire plane, there is a more geometric approach that works in general settings.
Indeed, by Proposition 2.1 given a quasiconformal mapping f : � → �′ between simply
connected domains, each branch of the logarithm

(3.16) log
f (z) − f (w)

z − w
, (z,w) ∈ � × �, z �= w,

determines at points of differentiability of f (such that also fz̄(z) = μ(z)fz(z), hence almost
everywhere) a corresponding branch of the complex logarithm of fz, namely

(3.17) log
(

∂ f (z)
) = lim

t→0+
log

[
f (z + t) − f (z)

t

]

− log
[

1 + μ(z)
]

.

The role of the auxiliary horizontal approach is of course redundant, and one could as
well apply an approach from any other direction,

log
(

∂ f (z)
) = lim

t→0+
log

[
f (z + teiθ ) − f (z)

t

]

− log
[

1 + e−2iθμ(z)
]− iθ.

For general f : � → �′ there is no natural choice for the argument of ∂ f (z)

in (3.17) but for principal mappings f : C → C, unless otherwise explicitly stated, we
will always consider the principal branch of log fz(z0), determined by the conditions (2.7)
and (3.17). This branch admits a clear geometric interpretation. Namely, we may con-
sider the corresponding continuous branch of the argument,

arg
[

f (z0 + t) − f (z0)
] = Im log

[
f (z0 + t) − f (z0)

t

]

, 0 < t < ∞,

where in the case of the principal branch (2.7) we have arg[ f (z0 + t) − f (z0)] → 0 as
t → +∞. The integer part of 1

2π
arg[ f (z0 + t0) − f (z0)] then gives the number of times

the point f (z) = f (z0 + t) winds around f (z0), when z = z0 + t moves from t = +∞ to
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FIG. 3. — arg ∂ f (z0) measures the total winding of the image curve around the point f (z0)

t = t0 along the horizontal line through z0. Further, at any point z0 of differentiability of
f the argument satisfies

arg
[

f (z0 + t) − f (z0)
] = arg

[
f (z0 + t) − f (z0)

t

]

= arg
[

∂ f (z0) + μ(z0)∂ f (z0) +O(t)
]

as t → 0+. Since |μ| � k < 1, we may choose arg[1+μ(z)] ∈ (−π

2 , π

2 ), and obtain almost
everywhere the geometric definition of the argument arg[∂ f (z0)] = Im log ∂ f (z0).

As the above discussion indicates, with this definition at points of differentiability, for the

principal branch we have | Im log(∂ f )(z)− 2πn| < π where n is the number of times (with sign) that

f (w) winds around f (z) when w travels from ∞ to z along a fixed radius, see Figure 3.

Even if above we used two quite different approaches to the complex logarithm of
fz, both methods lead to the same concept.

Lemma 3.7. — For any principal quasiconformal mapping f : C → C, the geometric and

analytic definition of the principal branch of log fz agree on a set of full measure.

Proof. — It is useful to observe that the definition of the principal branch of
arg[ f (z0 + t) − f (z0)] given above can equivalently be obtained from the imaginary part
of the analytic continuation h(λ) = log( f λ(z0 + t) − f λ(z0)), when one sets h(0) = log t.

For the proof we only need to consider the set E ⊂ C given by Lemma 3.6. At any
z ∈ E define

at(λ, z) = log
[

f λ(z + t) − f λ(z)

t

]

− log
[

1 + μλ(z)
]

.

Then for a fixed z ∈ E, limt→0+ at(λ, z) is holomorphic in λ, as a pointwise limit of
bounded holomorphic functions (here we use the statement of uniform boundedness of
the differential quotients in Lemma 3.6). Further, the function vanishes at λ = 0 and one
has exp(limt→0+ at(λ, z)) = ∂ f λ(z) for every λ ∈ D. �

In particular, the definition of log fz does not depend on how the mapping is em-
bedded to a holomorphic flow.
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Once the pointwise notion of log fz is settled, one can ask for its function space
properties. Here it follows from the work of D. Hamilton [13] that log fz ∈ BMO(C). He
complexifies an argument of Reimann [21] and estimates the λ-derivative of the function.
Indeed, writing f λ+ε = hε ◦ f λ and using [2, Theorem 5.5.6] we have

(3.18) μhε

(

f λ(z)
) = ε

μ‖μ‖∞
‖μ‖2∞ − |λ|2|μ|2

f λ
z

f λ
z

+O
(

ε2
) =: ενλ ◦ f λ(z) +O

(

ε2
)

.

For the derivatives of hε we have at almost every point (hε)z = 1 + εS(νλ) + O(ε2) with
(hε)z̄ = ενλ +O(ε2), where S is the Beurling transform, see [2, Section 5.7]. Thus, from
the chain rule we have

∂zf
λ+ε − ∂zf

λ = ∂zhε

(

f λ
)

∂zf
λ − ∂zf

λ + ∂z̄hε

(

f λ
)

∂z̄f λ

= ε(Sνλ)
(

f λ
)

∂zf
λ + ενλ

(

f λ
)

∂z̄f λ +O
(

ε2
)

.

Thus

∂λf λ
z

f λ
z

= (Sνλ)
(

f λ
)+ νλ

(

f λ
)

μλ

f λ
z

f λ
z

= (Sνλ)
(

f λ
)+ λ

|μ|2
‖μ‖2∞ − |λ|2|μ|2 .

Since by another theorem of Reimann, quasiconformal mappings preserve the space
BMO(C), the right hand side has BMO-norm uniformly bounded for |λ| � k0 < 1. By
integrating along a radius from λ = 0 to λ = ‖μ‖∞ we obtain

Proposition 3.8. — [13] Suppose f ∈ W1,2
loc (C) is a principal quasiconformal mapping. Then

log fz ∈ BMO(C).

In particular, arg fz is exponentially integrable, i.e.

eb|arg fz| ∈ L1
loc for some positive constant b.

One of the key points of the present work is finding the optimal form of the exponential
integrability. This will be done in Corollary 4.10 where we give the sharp bounds for b in
terms of the distortion K( f ).

To complete the subsection we need to justify Lemma 3.6.

Proof of Lemma 3.6. — After [3, Lemma 3.7] one only needs to verify the (simulta-
neous and uniform for all λ) differentiability almost everywhere. Recall that in plane con-
tinuous functions f ∈ W1,p

loc (C) with p > 2 are differentiable almost everywhere. A proof is
based on the classical Morrey estimate (see [8, Section 4.5.3]),

(3.19)
∣
∣g(y) − g(x)

∣
∣� cp|y − x|

(
1

B(x, |y − x|)
∫

B(x,|y−x|)
|Dg|p

)1/p

, g ∈ W1,p

loc (C),
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where p > 2. The differentiability a.e. follows by applying the above estimate to the func-
tion g(y) = f (y) − f (x) − Df (x)(y − x) and using a Lebesgue point argument.

For our purposes we only need to quantify this a little bit. Denote by Qf (x) the
maximal difference quotient at x, given by

Qf (x) := sup
|y−x|�1

| f (y) − f (x)|
|y − x| .

As a direct consequence of Morrey’s estimate, any continuous f ∈ W1,p

loc (C) satisfies the
pointwise estimate

Qf (x)� cpMp(Df )(x),

where Mp(g)(x) := supr>0(
1

B(x,r)

∫

B(x,r)
|g|p)1/p. Especially, when derivatives of f belong to

Lp(C) the weak (1,1)-continuity of the maximal function yields for any s > 0

(3.20)
∣
∣{Qf > s}∣∣� c′

p s−p‖Df ‖p
p.

In our situation, for any given δ < 1 we may pick p = p(δ) > 2 so close to 2 that the
standard L p-properties of the Beurling operator and the Neumann series representation
(see [2, p. 163]) enable one to write, for any λ ∈ D,

(3.21) f λ(z) − z =
∞
∑

n=1

λnfn(z) with ‖Dfn‖p � c0δ
−n/2.

Here c0 depends only on the size of the support of μ in (2.4), and each fn ∈ C(C) ∩
W1,q

loc (C) for every q < ∞. The series converges locally uniformly in C.
For n � 1 write hn,λ := ∑∞

k=n λkfk . Fix δ < 1, denote Ak := {Qfk > δ−3k/4}, and use
(3.19) to estimate |Ak| � c

p

0δ
−kp/2δ3kp/4 = cδkp/4. Next, write Fn := ⋃∞

k=n Ak , so that |Fn| �
δnp/4 while if x ∈ Fc

n, we have

(3.22) Qhn,λ
(x)�

∞
∑

k=n

δkδ−3k/4 � δn/4 for every |λ|� δ.

Clearly this implies that the set Eδ := ⋂∞
n=1 Fn has full measure with limn→∞ Qhn,λ

(x) = 0
for every |λ| � δ and x ∈ Eδ .

Pick now a set Ẽ of full measure such that each fk in (3.21) is differentiable at every
point of Ẽ. Especially, for every |λ| � δ the function f λ is differentiable at each x ∈ Ẽ∩Eδ ,
with

Df λ(x) = Id +
∞
∑

k=1

λkDfk(x).

Whence we may choose E := Ẽ ∩ ⋃∞
�=1 E1−1/�. Finally, the statement about uniform

boundedness of the differential quotients with respect to λ in compacts follows directly
from (3.20) and (3.22). �
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4. Interpolation with complex exponents and Burkholder integrals

4.1. Interpolation with complex exponents. — Let (�,σ ) be a measure space and let
M (�,σ ) denote the space of complex-valued σ -measurable functions on �. We con-
sider L p(�,σ ) spaces in which the (quasi-)norms are defined by

‖�‖p =
(∫

�

∣
∣�(x)

∣
∣
p
dσ(x)

) 1
p

, 0 < p < ∞, and

‖�‖∞ = ess sup
x∈�

|�(x)|.

We shall consider analytic families �λ of measurable functions in �, i.e. jointly measur-
able functions (x, λ) �→ �λ(x) defined on � × U, where U ⊂ C is a domain, and such
that for each fixed x ∈ � the map λ �→ �λ(x) is analytic in U. The family is said to be
non-vanishing if there exists a set E ⊂ � of σ -measure zero such that �λ(x) �= 0 for all
x ∈ � \ E and for all λ ∈ U.

In the following we give a generalization of the interpolation results from [3] to
complex exponents. In fact, restricting below in (4.1) to the real interval β ∈ [p0,

p0
2 (1 +

1
|λ|)] one arrives at the bounds of [3, Lemma 1.6].

Lemma 4.1 (Interpolation Lemma with complex exponents). — Suppose {�λ; |λ| < 1} ⊂
M (�,σ ) is a non-vanishing analytic family of functions, parametrized by complex numbers λ ∈ D,

such that for some p0 > 0,

�0 ≡ 1, and ‖�λ‖p0 � 1 for every λ ∈ D.

Then, for every |λ| < 1 and for every complex exponent β ∈ C contained in the closed ellipse

(4.1) |β| + |β − p0|� p0

|λ| ,

we have

(4.2)
∫

�

∣
∣�

β

λ

∣
∣dσ � 1.

The choice of branch in (4.2) is the natural one, determined by the condition log�0 = 0.

Proof. — By considering the analytic family �
p0/2
λ we may restrict our attention to

the p0 = 2 case, which will later make calculations simpler. Observe that our assumption
‖�0‖2 � 1 implies σ(�)� 1. Actually, by the maximum principle for analytic L 2-valued
functions, we may further assume the strict inequality

(4.3) σ(�) < 1.
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Otherwise �λ would be constant in λ, as we have ‖�λ‖2 � 1 for all λ ∈ D. We may also
assume in the proof that 0 < c � |�λ(x)| � C < ∞ uniformly for all (x, λ) ∈ � × U, as
the reduction of the general situation to this is done exactly as in [3, Section 2]. Similarly,
we choose an arbitrary positive probability density ℘, uniformly bounded away from 0
and ∞,

℘ ∈ M (�,σ ), ‖℘‖1 =
∫

�

℘(x)dσ(x) = 1.

By Jensen’s inequality using the convexity of x �→ x log(x) and (4.3) we have I :=
∫

�
℘(x) log℘(x)dx > 0. Temporarily assuming that ℘ is fixed, we consider the holomor-

phic function f in the unit disk

f (λ) = 1
I

∫

℘(x) log�λ(x)dσ(x).

Again by Jensen’s inequality we have the bound

2 Re f (λ) − 1 = 1
I

∫

�

℘ log
|�λ|2

℘
dσ � 1

I
log

(∫

�

℘
|�λ|2

℘
dσ

)

= 1
I

log‖�λ‖2
2 � 0, for |λ| < 1.

Thus f maps the unit disk into a half-plane Re f (λ) � 1/2, while f (0) = 0 by our as-
sumption �0 ≡ 1. At this stage we appeal to Schwarz lemma and deduce that for any
0 � k < 1, the image f ({|λ|� k}) lies in a hyperbolic disk Dk , centered at 0, of the above
half-plane. Precisely,

f
({|λ| � k

}) ⊂ Dk =
{

z

1 + z
: |z|� k

}

.

Our objective is to find all exponents β ∈ C such that for all |λ|� k,

(4.4) Re
(

βf (λ)
) = 1

∫

℘(x) log℘(x)
Re

(

β

∫

℘(x) log�λ(x)dσ(x)

)

� 1.

Equivalently, we aim at the estimate
∫

�

℘(x) log
|�λ(x)

β |
℘(x)

dσ(x) � 0,

and once this is achieved, by specialising the choice of ℘, that is, choosing ℘(x) :=
|�λ(x)

β |(∫
�

|�β

λ |)−1, we will obtain our assertion

log
(∫

�

∣
∣�

β

λ

∣
∣dσ

)

� 0.
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Given |λ| � k, the condition (4.4) is now ensured by

(4.5) Re(βw) � 1, for all w ∈ Dk,

as the range of f (λ) lies in Dk . To state this requirement more explicitly, note first that as

z

1 + z
= z

1 + z
· 1 + z

1 − |z|2 − |z|2
1 − |z|2 ,

inequality (4.5) takes the form

(4.6) Re
(

βz
1 + z

1 + z

)

− |z|2 Reβ � 1 − |z|2, |z|� k.

Here only the first term depends on the argument of z, with z �→ z 1+z

1+z
preserving the

circle of radius k. Thus (4.5) is equivalent to

k|β| − k2 Reβ � 1 − k2.

By simple algebra, we have here the equality if and only if

(4.7) β = 1 + 1
k

cos θ + i

√
1 − k2

k
sin θ, for some θ ∈ [0,2π ].

Thus the extremal β lie on the ellipse with foci {0,2} and eccentricity k, so that (4.5) is
equivalent to k|β| + k|β − 2| � 2. For a general exponent p0 > 0, the ellipse takes the
form of (4.1). �

Remark 4.2. — Given β , the left hand side of (4.6) attains its maximum over {λ :
|λ| = k} at the point where

argβ = 2 arg(1 + λ) − argλ,

that is when

β = 1 + λ

λ
(1 + λ)s(λ), s(λ) ∈ R+.

Testing this requirement against (4.5) shows that s(λ) � 1/(1 + Reλ). Therefore the
equality in (4.5) is attained at λ, |λ| = k, if and only if

(4.8) β = (1 + λ)2

λ(1 + Reλ)
=

(

1 + 1
λ

)
1 + λ

1 + Reλ
.
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4.2. Burkholder integrals. — Let f : C → C be the principal solution of a Beltrami
equation

(4.9) fz̄(z) = μ(z)fz(z),
∣
∣μ(z)

∣
∣� kχD(z), 0 � k < 1.

In studying the rotation spectrum of bilipschitz or quasiconformal mappings we are faced
with the question for which exponents β ∈ C is the complex power ( fz)

β locally in-
tegrable? It turns out that the universal bounds are given exactly by (4.1) with p = 2,
|λ| = k, that is, in terms of an ellipse having foci {0,2} and eccentricity determined by
the ellipticity constant k of the equation. See Theorem 4.9 for the precise statement.

In fact, we are going to carry out our analysis in the weighted setting and con-
sider the so called Burkholder type integrals. Here recall the functionals introduced by
Burkholder [7], which applied to the derivatives of a map f : R2 → R2 take the form

Bp(Df ) = 1
2

(

pJ(z, f ) + (2 − p)|Df |2) · |Df |p−2

= (| fz| − (p − 1)| fz̄|
) · (| fz| + | fz̄|

)p−1
, p ∈ R.

Originally the functional was discovered by Burkholder in his studies of optimal
martingale inequalities—since then optimal integral identities related to Bp, and in par-
ticular its conjectured quasiconcavity (for |p − 1| � 1) have been of wide interest. For
recent advances and background see e.g. [3, 5, 14].

Here we search for corresponding functionals determined by a complex parame-
ter p ∈ C \ B(1,1). We define an auxiliary unimodular function ρ = ρ(z), |ρ| ≡ 1, by
requiring that the complex numbers

(4.10) pρ(z) and 1 + ρ(z)
∣
∣μ(z)

∣
∣ have the same argument.

Theorem 4.3. — Suppose we are given a complex parameter p with 1 � |p − 1| � 1
k

and an

exponent β ∈ C with

(4.11) |β| + |β − 2|� 2|p − 1|.
Then for every principal solution to (4.9) we have

(4.12)
1
π

∫

D

(∣
∣| fz| + ρ| fz̄|

∣
∣− |p|| fz̄|

)∣
∣
(

fz + ρ|μ| fz
)β−1∣

∣� 1,

where the unimodular function ρ = ρ(z) is determined by (4.10).
The estimate holds as an equality for f (z) ≡ z. Furthermore, when β is determined (uniquely)

in terms of p by the equations

(4.13) |β| + |β − 2| = 2|p − 1| and Re(β/p) = 1 (see Figure 4),
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FIG. 4. — The relation between p and β in (4.13), |β| + |β − 2| = 2|p − 1| and Re(β/p) = 1

we have the equality in (4.12) for every power map of the form

f (z) = z

|z| |z|
1−η
1+η , where p

η

1 + η
∈ [0,1] and |η| = k.

In other words, the functional (4.12) is quasiconcave for the parameter values 1 �
|p − 1|� 1/k, within the class of principal k-quasiconformal deformations.

Remark 4.4. — Using the disk filling procedure as in [3], we get many more ex-
tremals for the functional (4.12).

Remark 4.5. — For p � 2 we have ρ ≡ 1, while for p < 0, ρ ≡ −1. Thus for real p

with the choice of (4.13) we get back the Burkholder functionals Bp(Df ). On the “phase
transition” boundary |p − 1| = 1, (4.13) forces β = 2 and we recover the Jacobian.

Proof of the Theorem 4.3. — The proof adopts ideas from [3] to the case of com-
plex exponents. Given the Beltrami equation (4.9), we define a holomorphic variation as
follows. For λ ∈ D, set

μλ(z) = αλ(z)ρ(z) · μ(z)

|μ(z)|,

where
αλ(z)

1 + αλ(z)
= p · ρ(z)|μ(z)|

1 + ρ(z)|μ(z)| · λ

1 + λ
.

Above we use the convention “0/0 = 0” whenever dividing by zero.
By the choice of ρ in (4.10) we have p · ρ|μ|

1+ρ|μ| � 0. Together with the assumption
1 < |p − 1| � 1

k
, in fact p · ρ|μ|

1+ρ|μ| ∈ [0,1]. This can be seen, for instance, by considering
the half-plane U = {w : Rew < 1/2} and observing the following inequality in terms of
the hyperbolic metric in U,

dU

(

0,
ρ|μ|

1 + ρ|μ|
)

� log
1 + k

1 − k
� dU

(

0,
1
p

)

.
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Consequently, |μλ(z)| = |αλ(z)| � |λ| < 1, which makes legitimate to solve the Beltrami
equations

f λ
z̄ = μλf λ

z , λ ∈ D

under the normalization of the principal solution.
We recover the original equation for the complex value λ = 1

p−1 and the Cauchy-
Riemann equations for λ = 0.

Next, interpolate the analytic family of functions given by

�λ(z) = (

1 + αλ(z)
)

f λ
z (z) �= 0.

Indeed, �0 ≡ 1 and according to Lemma 3.6, {�λ} is a non-vanishing family in the sense
required by Lemma 4.1. Furthermore, we have the comparison

J(z, f λ)

|�λ(z)|2 = 1 − 2 Re
αλ(z)

1 + αλ(z)
� 1 − p · ρ(z)|μ(z)|

1 + ρ(z)|μ(z)| =: ω(z).

Thus by the classical area theorem, see e.g. [2, p. 41], we have the L 2-bounds

1
π

∫

D
|�λ|2ω � 1,

and we may apply Lemma 4.1 with the measure space M (D, 1
π
w dz) to obtain

(4.14)
1
π

∫

D

(

1 − p
ρ|μ|

1 + ρ|μ|
)
∣
∣
(

fz + ρ|μ| fz
)β∣
∣� 1,

with β ∈ C as in (4.11). Since by (4.10) the complex numbers pρ(z)|μ(z)| and 1 +
ρ(z)|μ(z)| have the same argument, the integrand, in fact, takes the equivalent form
of (4.12).

Concerning sharpness, let f (z) = z

|z| |z|
1−η
1+η with |η| = k. As μf (z) = − z

z̄
η, the re-

quirement p η

1+η
� 0 determines the unimodular factor ρ ≡ η/|η|, i.e. η = ρ|μ|. From

Re(β/p) = 1 one computes that Re βη

1+η
= p η

1+η
. Since fz = 1

1+η
|z|−2η

1+η , a direct substitution
shows that the equality holds in (4.12). �

4.3. Higher complex integrability. — By Stoilow factorization, for local integrability
issues it is enough to control the behaviour of principal maps. Hence, our previous theo-
rem yields immediate corollaries.

Theorem 4.6. — Suppose f : C → C is a K-quasiconformal mapping and B = B(z, r) ⊂ C
is a disk. Then for any exponent β ∈ C such that

(4.15) |β| + |β − 2| < 2 · K + 1
K − 1

,
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we have

c1(K, β)

∣
∣
∣
∣

(
f (z + r) − f (z)

r

)β∣
∣
∣
∣
� 1

|B|
∫

B

∣
∣ f β

z

∣
∣(4.16)

� c2(K, β)

∣
∣
∣
∣

(
f (z + r) − f (z)

r

)β∣
∣
∣
∣

where the constants c1, c2 depend only on K and β .

Remark 4.7. — The branches of log fz(w), for w ∈ B, and of (
f (z+r)−f (z)

r
)β are here

chosen as in (3.16)–(3.17), using the same branch for both. More precisely, consider any
of the branches of log f (z)−f (w)

z−w
discovered in Proposition 2.1. As explained in (3.17), this

determines at a.e z ∈ C a branch of log ∂ f (z), thus also the branches in (4.16). On the
other hand, the result holds for any choice of the branch.

Proof. — By a change of variables and scaling, i.e. by using the auxiliary function

F(w) = f (z + rw) − f (z)

f (z + r) − f (z)
, w ∈ C,

we may assume that B = D and that f fixes the points 0 and 1. With this scaling we
are also reduced to the case where the branch of log f (z)

z
is determined by the condition

log f (1) = 0.
Use then the Stoilow factorization,

(4.17) f (z) = ϕ ◦ f0(z),

where ϕ is conformal on f0(2D) and f0 : C → C is a principal quasiconformal mapping,
with μf0(z) = μf (z) for |z| < 2 and μf0(z) = 0 for |z| > 2. In particular,

( f0)z̄ = μ(z)( f0)z,
∣
∣μ(z)

∣
∣� kχ2D(z), k ≡ K − 1

K + 1
< 1.

Considering first the inner factor, one applies Theorem 4.3 to f0(2z)/2, with com-
plex parameter 1 � |p − 1| � 1

k
. However, if we take |p − 1| = 1

k
, at points where

|μ(z)| = k = K−1
K+1 , we have pρk = 1 + ρk and the integrand in (4.12) vanishes, hence

the estimate becomes useless for (4.16). It is for this reason that we need to assume the
strict inequality in (4.15).

Setting p = 1 + |β|+|β−2|
2 , we then have the strict inequalities 2 < p < 1 + 1/k,

k = K−1
K+1 . Now ρ(z) ≡ 1 and (4.12) gives

(4.18)
1
π

∫

B

∣
∣(∂ f0)

β
∣
∣� 4

max{1, (1 + k)1−Reβ}
1 − k(p − 1)

.
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On the other hand, [2, (3.35)] shows for any quasisymmetric map g : � → �′ the
estimate

|g(z) − g(z0)|� c(η)

r

∫

D(z0,r)

|∂g|, z ∈ D(z0, r) ⊂ �,

where η(t) is the modulus of quasisymmetry as in (2.2). Further, quasisymmetry with
Koebe distortion or [2, (2.61)] gives diam( f0B)� c1(K). Therefore

∫

B |∂ f0|� c(K).
Consequently,

c(K)2 �
(∫

B

∣
∣(∂ f0)

β/2(∂ f0)
1−β/2

∣
∣

)2

�
∫

B

∣
∣(∂ f0)

β
∣
∣ ·

∫

B

∣
∣(∂ f0)

2−β
∣
∣.

The requirement (4.15) holds for β if and only if it does for 2 − β , and therefore (4.18)
gives, too, the lower bound

c(K, β) �
∫

B

∣
∣(∂ f0)

β
∣
∣.

For the outer factor in the Stoilow factorization we apply Lemma 3.2 in � =
f0(2D). This gives

∣
∣
∣
∣
log

ϕ(x) − ϕ(w)

x − w
− logϕ′(w)

∣
∣
∣
∣
� 10ρ�(x,w), x,w ∈ �.

Choosing x0 = f0(1), w0 = f0(0) it follows that
∣
∣
∣
∣
log

ϕ(x0) − ϕ(w0)

x0 − w0

∣
∣
∣
∣
= ∣

∣log
(

f0(1) − f0(0)
)∣
∣� (K − 1) log 8

where the last estimate was shown in (3.7). Consequently, | logϕ′(w0)|� C(K). To com-
plete the argument note that as in the proof of Lemma 3.2 the function | logϕ′(z)| is
uniformly Lipschitz with respect to the hyperbolic metric of �. Since f0(D) has hyber-
bolic diameter in � bounded in terms of K only, | logϕ′(z)| � c(K) < ∞ for z ∈ f0(D).
With the chain rule and (4.17) we finally have

c1(K, β)�
∫

B

∣
∣(∂ f )β

∣
∣� c2(K, β),

proving the claim. �

As for higher integrability with real exponents [2, Section 13.4.1], the theorem can
be interpreted in terms of the Muckenhoupt Ap-weights.
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FIG. 5. — The elliptical integrability region in Theorem 4.9 and its various consequences

Corollary 4.8. — Suppose 1 < p < ∞ and f : C → C is a K-quasiconformal mapping. If

the exponent β ∈ C satisfies both (4.15) and the dual condition

(4.19) |β| + ∣
∣β + 2(p − 1)

∣
∣ < 2 · K + 1

K − 1
(p − 1),

then |f β
z | ∈ Ap.

Moreover, for each 1 < p < ∞, outside this range of exponents the conclusion fails for some

K-quasiconformal mapping f : C → C.

As a last remark, the Stoilow factorization works as well for mappings defined in
proper subdomains of C, and therefore arguing as in Theorem 4.6 we have the following
local higher integrability stated as Theorem 1.2 in the introduction.

Theorem 4.9. — Suppose f is a K-quasiconformal map on a domain � ⊂ C. Then for any

exponent β ∈ C in the critical ellipse

(4.20) |β| + |β − 2| < 2 · K + 1
K − 1

,

we have

(4.21)
∣
∣ f β

z

∣
∣ ∈ L1

loc(�).

Sharpness of the previous result is seen by testing with maps (3.3).
The previous theorem includes a number of special cases which are worth expli-

cating, see Figure 5. The major axis corresponds to Higher Integrability of [1]. Other
boundary points on the ellipse uncover new phenomena. These will address exponen-
tial integrability of the argument for quasiconformal maps (Corollary 4.10) as well for
bilipschitz maps (Theorem 6.2) and rotational multifractal spectrum (Corollary 5.4 for
quasiconformal maps and Theorem 6.3 for bilipschitz maps).

As a first special case with a purely imaginary exponent β we obtain (cf. Corol-
lary 1.3).



QUASICONFORMAL MULTIFRACTAL SPECTRA 139

Corollary 4.10. — Suppose f is a K-quasiconformal map on a domain � ⊂ C. Then

eb|arg fz| ∈ L1
loc for all positive b <

4K
K2 − 1

.

The result is optimal in the sense that it may fail with b = 4K
K2−1 for some K-quasiconformal f . Such an

example is provided by (3.3) with the choice

τ = 1
2

(

K + 1
K

)

+ i

2

(

K − 1
K

)

.

Remark 4.11. — We have chosen to derive Theorem 4.9 from the precise weighted
estimates of Theorem 4.3. However, to obtain the optimal exponent of integrability β

in Theorem 4.9 one may apply the interpolation lemma in many different ways. For
instance, we could base the argument on the standard holomorphic flow given by μλ =
λ · μ

k
and the analytic family f λ

z . In order to obtain uniform L 2-bounds in this setting,
one needs to restrict the motion to {|λ| < 1 − ε} and use quasisymmetry.

5. Multifractal spectra

The multifractal spectrum of a Radon measure μ on Rn is (on the intuitive
level) usually defined as the Hausdorff dimension of the set of points x ∈ Rn for which
μ(B(x, r)) ∼ rα for small radii. The rigorous definition has to be done carefully, and
actually there are various notions of multifractal spectrum, see e.g. [9] or [18]. For a
homeomorphism f : Rn → Rn the natural counterpart is the multifractal spectrum of the
induced push-forward measure μ = f∗(dx). In this spirit the multifractal spectra of qua-
sisymmetric maps of the real line was studied by the third author and Smirnov in [20].
Also closely related is Binder’s work [6] on the mixed integral means spectrum of confor-
mal maps.

In this section we apply the results of the complex integrability of the gradient fz
from the previous section, to analyze the multifractal spectra of a K-quasiconformal map
f : C → C. The complex integrability allows us to consider even the joint multifractal
behaviour with respect to both rotation and stretching.

According to the discussion in Section 3.2, fix α > 0 and γ ∈ R and consider points
z ∈ C with the following property:

There is a decreasing sequence (depending on z) of radii (rk)k�1, with rk → 0, such
that simultaneously

(5.1)

⎧

⎪⎪⎨

⎪⎪⎩

α = lim
k→∞

log | f (z + rk) − f (z)|
log rk

,

γ = lim
k→∞

arg( f (z + rk) − f (z))

log | f (z + rk) − f (z)| .
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One should observe that a single point can satisfy the condition (5.1) for several
different values of (α, γ ). In (5.1) the quantity | f (z + rk) − f (z)| measures stretching
in the direction of the positive real axis, but by the quasisymmetry of f any other fixed
direction gives the same result, and thus the definition is quite robust.

Introducing the joint rotational and stretching multifractal spectrum for the class
of all K-quasiconformal homeomorphisms, we are asking for a characterisation of the
maximal size of the set of points satisfying (5.1), i.e. to determining the quantity

FK(α, γ ) := sup
{

dimH(E) : (5.1) holds for everyz ∈ E, for some

K-quasiconformal mapping f : C → C
}

,

(5.2)

where dimH stands for the Hausdorff dimension. Note that, in view of Theorem 3.3 there
are no points satisfying (5.1) unless τ = α(1 + iγ ) lies in the closed disk

(5.3)

∣
∣
∣
∣
τ − 1

2

(

K + 1
K

)∣
∣
∣
∣
� 1

2

(

K − 1
K

)

.

The following theorem gives a complete description of the quasiconformal joint
multifractal spectrum.

Theorem 5.1. — Assume that the parameters α > 0, γ ∈ R lie in the natural domain of

definition of FK, i.e. τ = α(1 + iγ ) satisfies (5.3). In this range the joint multifractal spectrum equals

(5.4) FK(α, γ ) = (1 + α) −
√

(1 − α)2(K + 1)2 + 4Kα2γ 2

K − 1
.

Outside the range (5.3) we can set FK(α, γ ) = −∞, since then the set correspond-
ing to τ = α(1 + iγ ) is empty for any K-quasiconformal map.

Remark 5.2. — It will be later useful to observe that as a function of the variable
τ = α(1 + iγ ) the function (5.4) is determined as the unique ‘cone’-like function on the
closed disc (5.3) with the properties: the function takes the value 2 at τ = 1, vanishes
on the boundary of the disk (5.3) and is linear on each line segment that joins 1 to the
boundary circle. Figure 6 gives an illustration of the graph of FK(α, γ ).

Proof of Theorem 5.1. — We begin with upper estimates for the spectrum FK(α, γ ).
Assume that f : C → C is K-quasiconformal and write for any α > 0 and γ ∈ R

(5.5) Sf (α, γ ) := {

z ∈ C : z satisfies (5.1) for some radii rk → 0
}

.

Our task is to estimate dimH(Sf (α, γ )); obviously, it is enough to estimate the Hausdorff
dimension of Sf (α, γ ) ∩ D.

Next, we apply the complex integrability of the gradient fz established in the pre-
vious section. For our present purposes the most suitable form is given by Theorem 4.6,
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FIG. 6. — The joint multifractal spectrum FK(α, γ ) as a function of the variable α(1 + iγ )

which in particular states for any exponent β in the critical ellipse |β| + |β − 2| < 2
k

and
for any disk B(z, r) ⊂ B(0,2) that

(5.6)

∣
∣
∣
∣

(
f (z + r) − f (z)

r

)β∣
∣
∣
∣
� c(K, β)r−2

∫

B

∣
∣ f β

z

∣
∣.

For consistency, recall that above the argument of both fz and of the differences f (z+ r)−
f (z) are obtained from a fixed choice of a branch of the function log(( f (w)− f (z)/(w −
z)), defined for (w, z) ∈ C2 with w �= z; the same branch is used for every z ∈ Sf (α, γ ) in
the definition (5.7) below.

Assume then that (α, γ ) satisfies (5.3) with strict inequality, as it is clearly enough
to consider this case. Fix arbitrarily small ε ∈ (0, α). By definition, we may select for any
z ∈ Sf (α, γ ) ∩ D a radius rz ∈ (0, ε) so that

(5.7)

log | f (z + rz) − f (z)|
log rz

∈ (α − ε,α + ε) and

arg( f (z + rz) − f (z))

log | f (z + rz) − f (z)| ∈ (γ − ε, γ + ε).

Vitali’s covering lemma allows us to select countably many points zn so that the discs
Bn := B(zn, rn) with rn := rzn

are disjoint and Sf (α, γ ) ∩ D ⊂ ⋃

n 5Bn.
We fix an arbitrary β from the open ellipse |β|+ |β −2| < 2

k
and observe that (5.7)

together with (5.6) yields for any of the discs B(zn, rn)

r2+(α−1)Reβ−αγ Imβ+O(ε)
n = r2

n

∣
∣
∣
∣

(
f (zn + rn) − f (zn)

r

)β∣
∣
∣
∣
�

∫

B(zn,rn)

∣
∣ f β

z

∣
∣.
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Above the exponent O(ε) is uniform in n. We thus obtain

∑

n

r2+(α−1)Reβ−αγ Imβ+O(ε)
n �

∑

n

c(β)

∫

B(zn,rn)

∣
∣( fz)

β
∣
∣

� c(β)

∫

2D

∣
∣( fz)

β
∣
∣ < ∞.

(5.8)

Since Sf (α, γ ) ∩ D ⊂ ⋃

n 5Bn, and ε > 0 can be taken arbitrarily small, it immediately
follows that 2 + (α − 1)Reβ − αγ Imβ is an upper bound for dimH(Sf (α, γ )), for any
β in the critical ellipse. As f was an arbitrary K-quasiconformal map we infer that

(5.9) FK(α, γ )� inf
β

{

2 + (α − 1)Reβ − αγ Imβ
}

,

where the supremum is taken over the set |β| + |β − 2| < 2
k
. Using the parametrization

of the ellipse in condition (4.7) we get equivalently

FK(α, γ )� min
θ∈[0,2π)

{

(1 + α) + α − 1
k

cos θ − αγ

√
1 − k2

k
sin θ

}

= (1 + α) − 1
k

√

(1 − α)2 + (

1 − k2
)

α2γ 2

= (1 + α) −
√

(1 − α)2(K + 1)2 + 4Kα2γ 2

K − 1
,

as k = K−1
K+1 .
In fact, as soon as we have the equality in (5.9), from this representation one most

directly sees the cone like property of FK(α, γ ), as discussed in Remark 5.2.
It remains to find lower bounds for FK(α, γ ), and for this we provide examples ver-

ifying the optimality of the estimate (5.9). The examples are constructed by iterating the
map (3.8) in a self-similar manner inside interlaced annuli that form a Cantor like struc-
ture. The quasiconformal map spirals only inside the annuli, elsewhere it is a similarity.
The reader may compare the construction with that in [2, Theorem 13.6.1]).

Again, fix K > 1 and a pair (α, γ ) ∈ (0,∞) × R such that τ = α(1 + iγ ) satisfies
(5.3) with a strict inequality. This initial knowledge allows us to fix the auxiliary parame-
ters t and parameters (α0, γ0) via declaring t to be the smallest positive number such that

(5.10) t−1
(

α(1 + iγ ) − 1
)+ 1 =: α0(1 + iγ0) ∈ BK,

where

BK :=
{

τ ∈ C :
∣
∣
∣
∣
τ − 1

2

(

K + 1
K

)∣
∣
∣
∣
� 1

2

(

K − 1
K

)}

.
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Clearly t ∈ (0,1). There will be an additional free parameter r ∈ (0,1/8) that we fix so
small that r < 2−4rt , and denote

s := rγα/α0γ0 = rt.(5.11)

We next construct a K-quasiconformal map φ (that depends on the parameters
α0, γ0 and r) by suitably iterating the model map (3.3) with parameters (α0, γ0). For that
end we select first inductively an infinite collection of annuli, partitioned into levels j � 0,
in such a way that the level j annuli will have outer radius rj and inner radius srj . In level 0
there is only one annulus, i.e. B(0,1) \ B(0, s). Assume that we have already constructed
all the annuli up to level j − 1, where j � 1. For each annulus of the level j − 1, say for
B(z0, rj−1) \ B(z0, srj−1), we may pick N := (�(s/2r)�)2 = (�r(t−1)/2�)2 � r2(t−1)/8 disjoint
discs B(zm, rj), with m = 1,2, . . . ,N, all lying inside the punctured disc B(z0, srj−1) \ {z0}.
The corresponding level j annuli are B(zm, rj)\B(zm, srj) for m = 1, . . . ,N. By performing
this operation for all annuli of the level j − 1 we obtain the complete collection of annuli
of level j, and their total number is Nj . This collection can be written as {B \ sB : B ∈Aj},
where Aj stands for the set of all the outer discs of the level j annuli. Obviously this
construction can be made via suitable similitudes so that the intersection

(5.12) E :=
⋂

j=1

(
⋃

B∈Aj

B
)

becomes a self-similar Cantor set in the plane.
Given an arbitrary annulus B \ sB, with B = B(w,R) we define the corresponding

rotation map ψB by setting

(5.13) ψB(z) =

⎧

⎪⎨

⎪⎩

z if z /∈ B
w + R (z−w)

|z−w| (
|z−w|

R )α0(1+iγ0) if z ∈ B \ sB

continuous similarity extension if z ∈ sB.

The quasiconformal mapping φ is then defined via an inductive construction, see
Figure 7 for illustration. First set φ0(z) = z and assume that φj−1 is already defined. Then
choose

(5.14) φj(z) =
{

φj−1(z) if z ∈ C \ (
⋃

B∈Aj
B)

ψφj−1(B)(φj−1(z)) if z ∈ B with B ∈Aj.

The new spiralling introduced via φj takes place in the set where φj−1 is conformal (ac-
tually even complex linear). Hence, the fact α0(1 + iγ0) ∈ BK implies that each φj is
K-quasiconformal, and so is our final map φ, where

(5.15) φ(z) := lim
j→∞

φj(z).
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FIG. 7. — Illustration of the mapping φ constructed in (5.15)

Let us then consider how φ maps fixed level j � 1 balls. Any ball B ∈Aj has radius
rj := rj and it is mapped into a ball B′ = φ(B) with radius r′

j , where the definition of φ

together with (5.11) and (5.10) yields that

(5.16) r′
j = sj(α0−1)rj = rjt(α0−1) = rj(α−1) = (rj)

α.

Hence the stretching of φ has the desired order with respect to the center point of B.
Moreover, this is also true for the rotation of φ since if B = B(z, rj) we obtain directly by
construction and using normalization (2.7) that

(5.17) arg
(

f
(

z + rj
)− f (z)

) = jγ0α0 log s = γ log r′
j .

Every point in E is inside a disc of level j. It is not quite the center point, but at a
finite hyperbolic distance from it. Thus the above observations together with the robust-
ness of the definition of pointwise rates of rotation and stretching (based on Theorem 3.1),
allow us to conclude that

E ⊂ Sφ(α, γ ).

On the other hand, the Hausdorff dimension τ := dimH(E) is computed from the
equation Nrτ = 1, and by recalling that N = (�r(t−1)/2�)2 we obtain in the limit r → 0+

that τ → 2(1 − t). Hence

FK(α, γ )� 2(1 − t).

According to definition (5.10) and the cone-type characterization observed in Re-
mark 5.2, this exactly means that FK(α, γ ) has the right lower bound, and the proof
of Theorem 5.1 is complete. �

Combining general properties of holomorphic motions with the above quasicon-
formal multifractal bounds quickly gives

Proof of Theorem 1.4. — Suppose � : D × E → C is a holomorphic motion of a
set E ⊂ C. By Slodkowski’s generalized λ-lemma [22] � extends to a motion of the
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whole complex plane, while the original λ-lemma of Mañé, Sad and Sullivan [17] proves
the extended map �λ(z) = �(λ, z) to be quasiconformal in C. A Schwarz-lemma type
argument shows that

K(�λ) �
1 + |λ|
1 − |λ| , λ ∈ D,

for details see e.g. [2, pp. 303–304]. The dimension bounds (1.6) hence follow from The-
orem 5.1. �

We next consider the upper and lower stretching exponents of f at point z defined
by

αf (z) = lim sup
r→0+

log | f (z + r) − f (z)|
log r

,

αf (z) = lim inf
r→0+

log | f (z + r) − f (z)|
log r

.

(5.18)

In a similar manner, the upper and lower rates of rotation are given by
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

γ f (z) = lim sup
r→0+

arg( f (z + r) − f (z))

log | f (z + r) − f (z)| ,

γ
f
(z) = lim inf

r→0+
arg( f (z + r) − f (z))

log | f (z + r) − f (z)| .
(5.19)

In the following result the novelty is the estimate (5.21) for the Hausdorff dimen-
sion of the set where each point has a prescribed rotation index. This estimate also shows
that although our method considers simultaneous rotation and stretching, it is capable of
producing optimal estimates for the pure rotational multifractal spectra.

Corollary 5.3. — Let f : C → C be a K-quasiconformal map and k = K−1
K+1 . Then

(5.20) dimH
({

z : αf (z) = α or αf (z) = α
})

� 1 + α − 1
k
|1 − α|,

for any α ∈ [K−1,K]. Moreover,

(5.21) dimH
({

z : γ f (z) = γ or γ
f
(z) = γ

})

� 2 − k−1 − k
√

1 + γ −2 − k

for any γ with |γ |� (K − K−1)/2.

If either α or γ lies outside the given interval, then there are no points with exponent α or index

γ , respectively. Both estimates are optimal.
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Proof. — The first statement (5.20) is deduced by a small modification of the proof
of Theorem 5.1. For each z ∈ αf (z) (resp. z ∈ αf (z)) one chooses a radius rz that satisfies
the first condition in (5.7) and, in the later stage of the proof, employs only real parame-
ters β in the allowed range β ∈ (1−1/k,1+1/k). In view of (5.8) and (5.9) the Hausdorff
dimension of the left hand side set in bounded by

inf
β∈(1−1/k,1+1/k)

{

2 + (α − 1)β
}

,

and the claim follows. That the sets in question are empty for values α /∈ [K−1,K] follows
immediately from Theorem 3.3, and the optimality is obtained via considering maps
(5.15) with γ = 0.

Towards the second statement, we first fix γ > 0 and write

(5.22) E := {

z : γ (z) = γ or γ (z) = γ
}

.

We claim that E ⊂ ⋃

α∈I Sf (α, γ ), where I is the interval of allowed α, i.e. the values of
α so that the pair (α, γ ) satisfies (5.3). Namely, if e.g. γ (z) = γ , we may pick a sequence
rk → 0 such that the second condition in (5.1) is satisfied, and by moving to a further
subsequence the first condition (5.1) holds as well, with some allowed value for α. One
observes that the proof of Theorem 5.1 is quite robust and yields immediately for any
(α′, γ ) satisfying (5.3) and for any ε > 0 the estimate

dimH

(
⋃

α′−ε�α�α′+ε

Sf (α, γ )

)

� FK

(

α′, γ
)+ cε

with a uniform constant c = c(γ,K). By covering the interval I with finitely many inter-
vals (α′ − ε � α � α′ + ε) and since ε > 0 is arbitrary we deduce that

dimH(E)� sup
α′∈I

FK

(

α′, γ
)

.

This estimate is obviously optimal in view of the example (5.15).
In order to compute the above supremum one may shorten computations by recall-

ing from Remark 5.2 that FK(α, γ ) = 2(1 − t), with α(1 + iγ ) − 1 = t(α0(1 + iγ0) − 1),
where α0(1 + iγ0) is a boundary point of the disc (5.3). We parametrize the boundary
by α0(1 + iγ0) = A + a cos θ + ia sin θ where A := (K + 1/K)/2 and a := (K − 1/K)/2.
Then t is determined from the condition

γ = tα0γ0

1 + t(α0 − 1)
= ta sin θ

1 − t + t(A + a cos θ)

and we get t = (1 + (a/γ ) sin θ − a cos θ − A)−1. The minimal value of this quantity is
obviously

tmin := 1

1 − A + a
√

1 + γ −2
,
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which yields the stated dimension bound.
The emptiness of the sets under consideration in the case where the parameters

lie outside the stated ranges follows again from Theorem 3.1. Here one notes that the
maximal slope for lines through origin that intersect the closed disc defined by condition
(5.3) equals (K − K−1)/2. �

One may also bound the size of the image of the set with prescribed rotation rate
as follows:

Corollary 5.4. — For any K-quasiconformal map f : C → C one has

dimH
(

f
{

z : γ f (z) = γ or γ
f
(z) = γ

})

� 2 − 4K
K2 − 1

|γ |

for any γ with |γ |� (K − K−1)/2.

For γ outside the interval there are no points with this rotation rate. The result is optimal.

Proof. — We again modify the proof of Theorem 5.1. Choose for each point z ∈ E
(where E was defined in (5.22)) a radius rz so that the second condition in (5.7) holds
with a fixed ε > 0, and pick the disjoint balls Bn = B(zn, rn) as before. Define αn through
rαn
n = | f (zn + rn)− f (z)| =: r′

n. In (5.8) and (5.9) apply only the values β = 2+ ib with |β −
2|+ |β| < 2/k, or equivalently |b| < k−1 − k. In this situation (5.8) can be written in terms
of the radii r′

n in the form
∑

n r′2−γ b+O(ε)

n � C. By quasisymmetry, the balls cB( f (zn), r′
n)

cover the image f (E), where c depends only on K. Hence the analogue of (5.9) takes the
form

dimH
(

f (E)
)

� inf
|b|<(k−1−k)

(2 − γ b) = 2 − |γ |(k−1 − k
)

,

which yields the stated estimate.
Optimality is verified by considering the map φ from (5.15) with the stretching and

rotation indices (α(γ ), γ ), with |γ | < (K − K−1)/2, and where the judiciously chosen
value of α equals

α(γ ) := 1
1 + |γ |k .

One also notes that dim(φ(E)) = dim(E)/α as one easily computes by observing that
φ(E) is likewise self-similar. It is of interest to observe that, independently of the value of
γ > 0, the half-line determined by the points 1 and α(γ )(1 + iγ ) intersects ∂BK at the
point 1−k2

1+k2 + i2k

1+k2 . �

Remark 5.5. — One could of course also ask for bounds of the Hausdorff dimension
of the image in the contexts of Theorem 5.1 or of the first part of Corollary 5.3. In these



148 KARI ASTALA, TADEUSZ IWANIEC, ISTVÁN PRAUSE, AND EERO SAKSMAN

cases the optimal bound is obtained by multiplying the already obtained results by α−1,
since one may cover the image by balls B(zj, crα−ε

j ), where the disks B(zj, rj) are as in the
respective proofs.

It is also reasonable to study Minkowski type multifractal spectra by considering
dimension estimates of the type

Df ,M(α, γ ) := lim
ε→0

lim sup
r→0

log N(r, α, γ, ε)

| log r| ,

where N(r, α, γ, ε) is a maximum number of disjoint disks Bn = B(zn, r) with center
zn ∈ D, such that the stretching and rotation of f on Bn satisfy (5.7) (with rz replaced
by r). The proof of Theorem 5.1 applies with mere cosmetic changes and yields

Corollary 5.6. — Let f : C → C be a K-quasiconformal map. Then

Df ,M(α, γ )� 1 + α −
√

(1 − α)2(K + 1)2 + 4Kα2γ 2

K − 1
,

whenever τ = α(1 + iγ ) lies in the disk (5.3). The estimate is the best possible.

Remark 5.7. — By standard localization and Stoilow factorisation, the results in
this section generalize for K-quasiconformal maps between arbitrary domains.

Remark 5.8. — Obviously Theorem 5.1 can be equally well understood as a
statement on the combined ordinary multifractal spectrum of the pull-back measure
μ := f ∗(dx) and the rotation spectrum.

6. Bilipschitz maps and rotation

In this section, we apply our quasiconformal methods to bilipschitz maps. These
have, by the very definition, trivial stretching but may exhibit non-trivial rotation. On the
other hand, extremal quasiconformal mappings for various “stretching problems” often
exhibit no rotation at all. This leads to a number of dual analogies, as described in Table 1
in the introduction. Below we uncover the various entries from this dictionary.

As discussed in Section 2.1, orientation preserving L-bilipschitz mappings f : � →
C are L2-quasiconformal (and if f is not orientation preserving, then its conjugate f is).
An archetypical example of a bilipschitz map with spiralling behaviour is the logarithmic
spiral map

(6.1) sγ (z) = z|z|iγ , γ ∈ R,
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that we already discussed before. Indeed, it is not hard to verify that sγ : D → D is L-
bilipschitz where L � 1 satisfies

L − 1
L

= |γ |.
In the following, we study rotational behaviour of general planar bilipschitz mappings
in various points of views. All of our results will be consequences of the quasiconformal
theory. Nevertheless, in this way we obtain sharp results even in the bilipschitz category.
One way to explain this phenomenon is that often the maps extremal in the bilipschitz
category, such as the logarithmic spiral map (and its iterated variants), are not only bilips-
chitz but also area-preserving; thus there is an exact correspondence between the optimal
quasiconformal and bilipschitz constants of the form K = L2.

6.1. John’s problem. — Denote by A = A(r,R) = {z ∈ C : r < |z| < R} the annulus
with radii 0 < r < R < ∞. Let f : A → A be an L-bilipschitz map identity f (z) = z on
the outer boundary |z| = R, with a prescribed rotation (parametrized by γ ∈ R) on the
inner boundary,

f (z) = zeiγ log(R/r), |z| = r.

John’s problem asks for constraints on the bilipschitz constant L for such a map to exist.
Note that the analogous problem of finding quasiconformal maps between annuli (of
different conformal modulus) is attributed to Grötzsch. In his work [15] F. John obtained
some quantitative results in the asymptotic regime L → 1, while the complete solution
was given by Gutlyanskĭı and Martio [12]: the rotation parameter γ and the bilipschitz
constant L need to satisfy

(6.2) |γ |� L − 1
L

.

As discussed above, the spiral maps such as in (6.1) provide extremal examples. For re-
lated recent results in the class of mappings of finite distortion, see [4].

We begin by generalizing (6.2) to all L-bilipschitz maps between arbitrary do-
mains.

6.2. Pointwise rotation. — Recall the upper and lower rates of rotation from Sec-
tion 5, definitions (5.19). For bilipschitz mappings it is equivalent to use the following
convenient formulations

γ f (z) = lim sup
r→0+

arg( f (z + r) − f (z))

log r
,

γ
f
(z) = lim inf

r→0+
arg( f (z + r) − f (z))

log r
.
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Proposition 6.1. — Let f : � → �′ be an L-bilipschitz homeomorphism between planar do-

mains. Then the rates of rotation satisfy the following pointwise bound

∣
∣γ f (z)

∣
∣,
∣
∣γ

f
(z)

∣
∣� L − 1

L
, z ∈ �.

The spiral map (6.1) shows that this is best possible in general.

Proof. — After taking the conjugate if necessary, the L-bilipschitz map becomes
L2-quasiconformal. We observe that the bilipschitz property of f ensures that the limit
(3.11) is equal to one at every point regardless of the subsequence of radii chosen. Hence
an application of Theorem 3.3 yields for (any) rate of rotation γ the inequality

∣
∣
∣
∣
iγ − 1

2

(

K + 1
K

− 2
)∣
∣
∣
∣
� 1

2

(

K − 1
K

)

.

As K � L2, a simplification yields the stated bound. �

The slightly weaker estimate |γ | � √
L2 − 1 was derived by Freedman and He

[11] in connection with the bilipschitz factoring problem for the map sγ . We will see in
Section 6.5 how the optimal form of Theorem 6.1 leads to an optimal answer of the
factoring problem, as well.

Theorem 6.1 is sharp as a pointwise estimate, but one expects that extremal spi-
ralling behaviour cannot simultaneously occur at many places. This is the theme we dis-
cuss next.

6.3. BMO and exponential integrability. — On a historical side, the function space
of bounded mean oscillation was originally introduced by John and Nirenberg [15, 16]
exactly in the context of rotational phenomena of bilipschitz maps, i.e. John’s problem
above. Roughly speaking, John established a discrete variant of the fact, cf. Proposi-
tion 3.8, that

arg fz ∈ BMO.

This coupled with the John-Nirenberg lemma leads then to bounds on the rotation prob-
lem considered in Section 6.1.

In view of the previous discussion it is natural to ask for the best possible expo-
nential integrability of the argument arg fz. As an application of Theorem 4.9 we obtain
immediately

Theorem 6.2. — Let f : � → C be an L-bilipschitz mapping. Then for any 0 � b < 2L
L2−1

we have

(6.3) exp
(

b|arg fz|
) ∈ L1

loc(�).

Furthermore, the integrability fails at the borderline b = 2L
L2−1 for some L-bilipschitz mapping f .
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FIG. 8. — Multifractal spectra: quasiconformal stretching (left) and bilipschitz rotation (right)

Proof. — Since | fz| is uniformly bounded above and below, only the imaginary part
of β plays now a role in Theorem 4.9. But for β ’s inside the critical ellipse |β|+ |β −2| <
2L2+1

L2−1 , the supremum of the imaginary part equals 2L
L2−1 (and infimum equals − 2L

L2−1 ). The
optimality is seen by considering the model map (6.1) with L − 1/L = |γ |. �

6.4. Multifractal spectrum. — Interpreting Theorem 6.2 more geometrically we use
it for multifractal bounds on rotation. Indeed, by specializing Theorem 5.1 to the bilips-
chitz case, that is, by setting α = 1 and K = L2, we obtain the following characterisation

Theorem 6.3. — Let f : � → �′ be an L-bilipschitz mapping, where � and �′ are planar

domains. Then we have the optimal bounds

dimH

({

z ∈ � : γ f (z) = γ or γ
f
(z) = γ

})

� 2 − 2L
L2 − 1

|γ |

for every admissible |γ |� L − 1
L .

Theorem 1.1 is an immediate corollary. The optimality of the bounds, i.e. that
they hold as an equality for some L-bilipschitz mapping, follows from the construction
in Theorem 5.1 with α = 1. Figure 8 above contrasts Corollary 5.3 and (5.20) with
Theorem 6.3. Observe also that for bilipschitz maps the dimension of any set is preserved,
whence the above estimate is valid also for the image of the set of prescribed rate of
rotation.

6.5. Factoring the logarithmic spiral. — A basic open question in the study of bilip-
schitz mappings (in Rn) is whether such a map can be represented as a composition of
(1 + ε)-bilipschitz mappings, for any ε > 0. The factoring is known only in dimension
n = 1; see [10] for recent general results on this theme. Towards this problem Freedman
and He [11] studied the factoring of the logarithmic spiral map (6.1). As an application
of our pointwise rotation estimates we will revisit their question.
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One way to factor sγ to maps of small bilipschitz distortion is to simply write it as
a composition of slower spirals:

sγ = sγ0 ◦ sγ0 ◦ · · · ◦ sγ0
︸ ︷︷ ︸

N terms

,

where γ0 = γ /N. The next Theorem says that this is the most efficient way.

Theorem 6.4. — Let sγ : D̄ → D̄ be factored as sγ = fN ◦ fN−1 ◦ . . . f1, where each fi is an

L0-bilipschitz map of a closed Jordan domain in R2, L0 > 1. Then the number of factors needed is at

least N � � |γ |
L0− 1

L0

�.

Freedman and He proved the same result with lower bound |γ |/√L2
0 − 1, and the

improvement above was observed in [12] for factoring within a special class of bilipschitz
maps.

Proof. — We follow [11], where the only adjustment needed is the sharp form of
Theorem 6.1. For simplicity, we assume γ > 0, the γ < 0 case being similar. The crucial
observation of [11] is the subadditivity of the rate of rotation under composition. In our
notation, for f and g bilipschitz maps,

γ g◦f (z)� γ f (z) + γ g

(

f (z)
)

,

provided that γ g◦f (z) > 0. Since γ sγ
(0) = γ , the repeated application of subadditivity

and the estimate of Theorem 6.1 implies

γ � N
(

L0 − 1
L0

)

,

as required. �

Remark 6.5. — The content of Theorem 6.4 is that bilipschitz factoring even when
exists might need exponentially more factors than optimal quasiconformal factoring.
One may visualize the difference in this particular example by considering the maps
fτ (z) = z

|z| |z|α(1+iγ ), where τ = α(1 + iγ ), with the parameter space H = {Re τ > 0}.
Here the logarithm of the quasiconformal distortion log K( fτ ◦ f −1

τ ′ ) equals the hyper-
bolic distance dH(τ, τ ′). If we now start at sγ (z) = z|z|iγ , travelling to the identity along
the hyperbolic geodesic in H provides us the optimal quasiconformal factoring, while
bilipschitz factoring requires travelling along the horocycle α = 1.
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