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1. Introduction

1.1. Bi-algebraic geometry and the Ax-Lindemann-Weierstraß property. — Let X and S
be complex algebraic varieties and suppose π : Xan −→ San is a complex analytic, non-

algebraic, morphism between the associated complex analytic spaces. In this situation the
image π(Y) of a generic algebraic subvariety Y ⊂ X is usually highly transcendental and
the pairs (Y ⊂ X,V ⊂ S) of irreducible algebraic subvarieties such that π(Y) = V are
rare and of particular geometric significance. We will say that an irreducible subvariety
Y ⊂ X (resp. V ⊂ S) is bi-algebraic if π(Y) is an algebraic subvariety of S (resp. any ana-
lytic irreducible component of π−1(V) is an irreducible algebraic subvariety of X). Notice
that V ⊂ S is bi-algebraic if and only if any analytic irreducible component of π−1(V) is
bi-algebraic.

Example 1.1. — Let π := (exp(2π i·), . . . , exp(2π i·)) : Cn −→ (C∗)n. One easily
shows that an irreducible algebraic subvariety Y ⊂ Cn (resp. V ⊂ (C∗)n) is bi-algebraic if
and only if Y is a translate of a rational linear subspace of Cn = Qn ⊗Q C (resp. V is a
translate of a subtorus of (C∗)n).

Example 1.2. — Let π : Cn −→ A be the uniformising map of a complex Abelian
variety A of dimension n. One checks that an irreducible algebraic subvariety V ⊂ A is bi-
algebraic if and only if V is the translate of an Abelian subvariety of A (cf. [32, prop. 5.1]
for example).

More generally, given Y ⊂ X an algebraic subvariety, one may ask for a description
of the Zariski-closure π(Y)

Zar
of its image π(Z). We will say that π : X −→ S satisfy the

Ax-Lindemann-Weierstraß property if for any such Y ⊂ X the irreducible components
of π(Y)

Zar
are bi-algebraic. One checks that the Ax-Lindemann-Weierstraß property is

equivalent to the following: for any algebraic subvariety V ⊂ S, any irreducible algebraic
subvariety Y of X contained in π−1(V) and maximal for this property is bi-algebraic.

Example 1.3. — In the situations of Examples 1.1 and 1.2 Ax [2] showed that
π : X −→ S has the Ax-Lindemann-Weierstraß property. Namely:

- if π := (exp(2π i·), . . . , exp(2π i·)) : Cn −→ (C∗)n and Y ⊂ Cn is an algebraic
subvariety then any irreducible component of π(Y)

Zar
is the translate of a subtorus

of (C∗)n.
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- if π : Cn −→ A is the uniformising map of a complex abelian variety A of dimen-
sion n and Y ⊂ Cn is an algebraic subvariety then any irreducible component of π(Y)

Zar

is the translate of an Abelian subvariety of A.

Remark 1.4. — Notice that Ax’s theorem for π := (exp(2π i·), . . . , exp(2π i·)) :
Cn −→ (C∗)n is the functional analog of the classical Lindemann-Weierstraß transcen-
dence theorem ([13], [36]) stating that if α1, . . . , αn are Q-linearly independent algebraic
numbers then eα1, . . . , eαn are algebraically independent over Q. This explain our termi-
nology.

1.2. The hyperbolic Ax-Lindemann-Weierstraß conjecture. — The main result of this pa-
per is the proof of the Ax-Lindemann-Weierstraß property for the uniformising map
π : X −→ S := �\X of any arithmetic variety S. Here X denotes a Hermitian symmetric
domain and � is any arithmetic subgroup of the real adjoint Lie group G of biholomorphisms
of X. This means that there exists a semisimple Q-algebraic group G and a surjective
morphism with compact kernel p : G(R) −→ G such that � is commensurable with the
projection p(G(Z)) (cf. Section 2 for the definition of G(Z) and [14] for a general refer-
ence on arithmetic lattices).

The Ax-Lindemann-Weierstraß property does not make sense directly for π : the
arithmetic variety S admits a natural structure of complex quasi-projective variety via
the Baily-Borel embedding [3] but the Hermitian symmetric domain X is not a complex
algebraic variety. However X admits a canonical realisation as a bounded symmetric
domain D ⊂ CN (with N = dimC X) (cf. [28, §II.4]).

Definition 1.5. — We will say that a subset Y ⊂D is an irreducible algebraic subvariety
of D if Y is an irreducible component of the analytic set D ∩ ˜Y where ˜Y is an algebraic subset of CN.

An algebraic subvariety of D is then defined as a finite union of irreducible algebraic subvarieties.

With these definitions the morphism π is far from algebraic (in the simplest case
where D is the Poincaré disk and S is the modular curve, the map π : D −→ S is the
usual j-invariant seen on the disk) and it makes sense to study the bi-algebraic subvarieties
for π . In [32] Ullmo and Yafaev proved that the bi-algebraic subvarieties of S for π are
the weakly special ones, namely the irreducible complex algebraic subvarieties of S whose
smooth locus is totally geodesic in S endowed with its canonical Hermitian metric.

Our main result is the proof of the Ax-Lindemann-Weierstraß property in this
context:

Theorem 1.6 (The hyperbolic Ax-Lindemann-Weierstraß conjecture). — Let S = �\D be an

arithmetic variety with uniformising map π : D −→ S. Let Y ⊂ D be an algebraic subvariety. Then

any irreducible component of the Zariski-closure π(Y)
Zar

of π(Y) is weakly special.
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Equivalently, let V be an algebraic subvariety of S. Irreducible algebraic subvarieties of D con-

tained in π−1V and maximal for this property are precisely the irreducible components of the preimages

of maximal weakly special subvarieties contained in V.

Remarks 1.7.

(a) The Ax-Lindemann-Weierstraß property in an hyperbolic context was first
proven by Pila in the case where S is a product of modular curves: cf. [23,
section 1.4 and theor. 6.8]. It is a crucial ingredient in Pila’s proof of the
André-Oort conjecture for product of modular curves. The hyperbolic Ax-
Lindemann-Weierstraß conjecture for the uniformising map of a general con-
nected Shimura variety S is stated in [30, conjecture 1.2], where Ullmo ex-
plains its role in the proof of the André-Oort conjecture. In [34] Ullmo and
Yafaev prove Theorem 1.6 in the special case where S is compact. In [26], in
part inspired by [34] and relying on [20], Pila and Tsimerman proved Theo-
rem 1.6 in the special case S = Ag , the moduli space of principally polarised
Abelian varieties of dimension g.

(b) Mok has a nice, entirely complex-analytic, approach to the hyperbolic Ax-
Lindemann-Weierstraß conjecture. In the rank 1 case his approach should ex-
tend some of the results of this text to the case where � is a non-arithmetic
lattice. We refer to [16], [17] for partial results.

(c) We defined algebraic subvarieties of X using the Harish-Chandra realisation D
of X but we could have used as well any other realisation of X in the sense of [30,
section 2.1]. Indeed morphisms of realisations are necessarily semi-algebraic,
thus X admits a canonical semi-algebraic structure and a canonical notion of
algebraic subvarieties (cf. Appendix B for details). Hence one can replace D in
Theorem 1.6 by any other realisation of X, for example the Borel realisation
(cf. [15, p. 52]).

1.3. Motivation: the André-Oort conjecture. — Let (G,XG) be a Shimura datum. Let
X be a connected component of XG (hence X is a Hermitian symmetric domain). We
denote by G(Q)+ the stabiliser of X in G(Q). Let Kf be a compact open subgroup
of G(Af ), where Af denotes the finite adèles of Q and let � := G(Q)+ ∩ Kf be the
corresponding congruence arithmetic lattice of G(Q).

Then the arithmetic variety S := �\X is a component of the complex quasi-
projective Shimura variety

ShK(G,X) := G(Q)+\X × G(Af )/Kf .

The variety S contains the so-called special points and special subvarieties (these are the
weakly special subvarieties of S containing one special point, we refer to [6] or [18] for
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the detailed definitions). One of the main motivations for studying the Ax-Lindemann-
Weierstraß conjecture is the André-Oort conjecture predicting that irreducible subvari-
eties of S containing Zariski dense sets of special points are precisely the special subva-
rieties. The André-Oort conjecture has been proved under the assumption of the Gen-
eralised Riemann Hypothesis (GRH) by the authors of this paper ([31], [12]), relying
on ideas of Edixhoven [9]. Recently Pila and Zannier [27] came up with a new proof
of the Manin-Mumford conjecture for abelian varieties using the flat Ax-Lindemann-
Weierstraß theorem. This gave hope to prove the André-Oort conjecture unconditionally
with the same strategy. In [23] Pila succeeded in applying this strategy to the case where
S is a product of modular curves (and more generally, in the context of mixed Shimura
varieties, when S is a product of modular curves, of elliptic curves defined over Q and
of an algebraic torus Gl

m). Roughly speaking, the strategy of [23] consists of two main
ingredients: the first is the problem of bounding below the sizes of Galois orbits of spe-
cial points and the second is the hyperbolic Ax-Lindemann-Weierstraß conjecture. We
refer to [30] for details on how the general hyperbolic Ax-Lindemann-Weierstraß con-
jecture and a good lower bound on the sizes of Galois orbits of special points imply the
full André-Oort conjecture. As a direct corollary of Theorem 1.6 and the proof of [30,
theor. 5.1] one obtains:

Corollary 1.8. — The André-Oort conjecture holds for An
6 for any positive integer n.

Notice also that (as explained in [30]) a new proof of the André-Oort conjecture
under the GRH, alternative to [31] and [12], is a consequence of three ingredients:
Theorem 1.6, a lower bound under GRH for the size of Galois orbits of special points
(provided by Tsimerman [35] in the case of Ag and by Ullmo-Yafaev [33] in general) and
an upper bound for the height of special points in Siegel sets. This upper-bound has been
announced by C. Daw and M. Orr [5].

1.4. Strategy of the proof of Theorem 1.6. — Our general strategy for proving Theo-
rem 1.6, which originates in [23], is also the one used in [34] and [26]: it ultimately relies
on estimations of rational points in transcendental real-analytic varieties or more gener-
ally in spaces definable in an o-minimal structure (cf. [29] for a survey). Let us describe
roughly this strategy and emphasize the new ideas involved.

(i) Let S := �\X and π : X −→ S be the uniformising map. Even though the map
π is transcendental, it still enables us to relate the semi-algebraic structures on X and S
through a larger o-minimal structure. We refer to [7], [8], [34, section 3] for details on o-
minimal structures. Recall that a fundamental set for the action of � on X is a connected
open subset F of X such that �F = X and such that the set {γ ∈ � | γF ∩ F �= ∅} is
finite. Our first result of independent interest is the following:

Theorem 1.9. — There exists a semi-algebraic fundamental set F for the action of � on X
such that the restriction π|F : F −→ S is definable in the o-minimal structure Ran,exp.
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Remarks 1.10.

(a) The special case of Theorem 1.9 when S is compact is easy and was proven in
[34, Prop. 4.2]. In this case, the map π|F is even definable in Ran. Theorem 1.9
in the case where X = Hg is the Siegel upper half plane of genus g was proven
by Peterzil and Starchenko (see [20] and [21]): in this case they use an explicit
description for π in terms of θ -function and delicate computations with these.
Their result is a crucial ingredient in [26]. Notice moreover that this particular
case implies Theorem 1.9 for any special subvariety S of Ag (see Proposition 2.5
of [30]).

(b) On the other hand Peterzil and Starchenko’s method does not generalize to
general arithmetic varieties, where an explicit description of π is not available.
Moreover, while the definability of π restricted to F is of geometric essence,
the geometric meaning of computations with θ -functions is difficult to follow.
On the contrary our general proof of Theorem 1.9 is completely geometric: it
relies on the general theory of toroidal compactifications of arithmetic varieties
(cf. [1]). In particular it does not use [20] or [21].

(ii) Choose a semi-algebraic fundamental set F for the action of � as in Theo-
rem 1.9 above. The choice of a reasonable representation ρ : G −→ GL(E) (cf. Sec-
tion 2) allows us to define a height function H : � −→ R (cf. Definition 5.1). In Section 5 we
show the following result, which is the most original part of the proof (it mixes the geom-
etry of toroidal compactifications and various arguments from hyperbolic geometry, like
Theorem 5.7 of Hwang-To):

Theorem 1.11. — Let Y be a positive dimensional irreducible algebraic subvariety of X. Define

NY(T) = ∣

∣

{

γ ∈ � : H(γ ) ≤ T, Y ∩ γF �= ∅}∣

∣.

Then there exists a positive constant c1 such that for all positive real number T large enough:

NY(T) ≥ Tc1 .

Remark 1.12. — When S is compact Ullmo and Yafaev proved in [34, theor. 2.7]
a more refined result. Indeed let F := {γ ∈ F , γF ∩ F �= 0} be a finite symmetric set
of generators for � and let l : � −→ N be the word length function on � associated to
F. Then Ullmo and Yafaev show that the function NY(n) := |{γ ∈ �, dim(γF ∩ Y) =
dim Y and l(γ ) ≤ n}| grows exponentially with n ∈ N and Theorem 1.11 follows in this
case. We were not able to obtain such a result in the general case.

(iii) In Section 6, applying the counting result above and some strong form of Pila-
Wilkie’s theorem [24], we prove:
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Theorem 1.13. — Let V be an algebraic subvariety of S and Y a maximal irreducible algebraic

subvariety of π−1V. Let �Y denotes the stabiliser of Y in G(R) and define HY as the connected

component of the identity of the Zariski closure of G(Z) ∩ �Y. Then HY is a non-trivial Q-subgroup

of G, such that HY(R) is non-compact.

(iv) Without loss of generality one can assume that V is the smallest algebraic subva-
riety of S containing π(Y). With this assumption we show in Section 7 that ˜V is invariant
under HY(Q), where ˜V is an analytic irreducible component of π−1V containing Y, and
then conclude that π(Y) = V is weakly special using monodromy arguments.

2. Notations

In the rest of the text:

• X denotes a Hermitian symmetric domain (not necessarily irreducible).
• G is the adjoint semi-simple real algebraic group, whose set of real points, also

denoted by G, is the group of biholomorphisms of X; hence X = G/K where K
is a maximal compact subgroup of G.

• � ⊂ G is an arithmetic lattice. This means (cf. [14]) that there exists a semi-
simple linear algebraic group G over Q and p : G(R) −→ G a surjective mor-
phism with compact kernel such that � is commensurable with p(G(Z)). Here
we recall that two subgroups of a group are commensurable if their inter-
section is of finite index in both of them; moreover G(Z) denotes G(Q) ∩
ρ−1(GL(EZ)) for some faithful representation ρ : G −→ GL(E), where E is
a finite-dimensional Q-vector space and EZ is a Z-lattice in E; the commensu-
rability of � and p(G(Z)) is independant of the choice of ρ and EZ.

• We denote by n the dimension of E as a Q-vector space.
• One easily checks that Theorem 1.6 holds for � if and only if it holds for any �′

commensurable with �. In particular without loss of generality one can and will
assume that the group G(Z) is neat (meaning that for any γ ∈ G(Z) the group
generated by the eigenvalues of ρ(γ ) is torsion-free) and the group � coincides
with p(G(Z)) (hence is torsion-free).

• Without loss of generality we can and will assume that the group G is of adjoint

type. Indeed let λ : G −→ Gad denotes the natural algebraic morphism to the
adjoint group Gad of G (quotient by the centre). As the Lie group G is adjoint
the morphism p : G(R) −→ G factorises through

G(R)
λ

p

Gad(R)

pad

G
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and � is commensurable with pad(Gad(Z)).
• Without loss of generality we can and will assume that each Q-simple factor of G

is R-isotropic. Indeed let H be the quotient of G by its R-anisotropic Q-factors.
Again, the morphism p : G(R) −→ G factorises through H(R) and � is com-
mensurable with the projection of H(Z).

• The group K∞ := p−1K is a maximal compact subgroup of G(R). Hence X =
G(R)/K∞. We denote by x0 the base-point eK∞ of X.

• The quotient S := �\X is a smooth complex quasi-projective variety. We denote
by π : X −→ S the uniformisation map.

• We choose ‖ · ‖∞ : ER −→ R a Euclidean norm which is ρ(K∞)-invariant.
• We denote by X any realisation of X (cf. Appendix B).

3. Compactification of arithmetic varieties

3.1. Siegel sets. — First we recall the definition of Siegel sets for �. We refer to [4,
§12] for details. We follow Borel’s conventions, except that for us the group G acts on X
on the left.

Let P be a minimal Q-parabolic subgroup of G such that K∞ ∩P(R) is a maximal
compact subgroup of P(R). Let U be the unipotent radical of P and let A be a maximal
split torus of P. We denote by S a maximal split torus of GL(E) containing ρ(A). We
denote by M the maximal anisotropic subgroup of the connected centralizer Z(A)0 of A
in P and by 
 the set of positive simple roots of G with respect to A and P. We denote
by A ⊂ S(R) the real torus A(R). For any real number t > 0 we let

At :=
{

a ∈ A
∣

∣ aα ≥ t for any α ∈ 

}

.

A Siegel set for G(R) for the data (K∞,P,A) is a product:

�′
t,� := � · At · K∞ ⊂ G(R)

where � is a compact neighborhood of e in M0(R) · U(R).
The image

�t,� := � · At · xo ⊂X

of �′
t,� in X is called a Siegel set in X .

Theorem 3.1 [4, theor. 13.1]. — Let X, G, G, �, P, A, K∞, and X be as above. Then for

any Siegel set �t,�, the set {γ ∈ � | γ�t,� ∩ �t,� �= ∅} is finite. There exist a Siegel set (called a

Siegel set for �) �t0,� and a finite subset J of G(Q) such that F := J · �t0,� is a fundamental set for

the action of � on X .
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When � is chosen to be semi-algebraic the Siegel set �t,� and the fundamental set
F are semi-algebraic as by definition of a complex realisation (cf. Appendix B) the action
of G(R) on X is semi-algebraic and the subset � · At of G(R) is semi-algebraic.

We will only consider semi-algebraic Siegel sets in the rest of the text.

3.2. Boundary components. — General references for this section and the next one
are [19] and [1].

Let D ↪→ CN be the Harish-Chandra realisation of X as a bounded symmetric do-
main. The action of G extends to the closure D of D in CN. The boundary ∂D :=D\D
is a smooth manifold which decomposes into a (continuous) union of boundary components,
which are defined as maximal complex analytic submanifolds of ∂D (or alternatively as
holomorphic path components of ∂D). Explicitly, let us say that a real affine hyperplane
H ⊂ CN is a supporting hyperplane if H ∩ D is nonempty but H ∩ D is empty. Let H
be a supporting hyperplane and let F = H ∩ D = H ∩ ∂D. Let L be the smallest affine
subspace of CN which contains F. Then F is the closure of a nonempty open subset F ⊂ L
which is then a single boundary component of D (cf. [28, §III.8.11]). The boundary com-
ponent F turns out to be a bounded symmetric domain in L.

Fix a boundary component F. The normaliser N(F) := {g ∈ G | gF = F} turns out
to be a proper parabolic subgroup of G. The Levi decomposition N(F) = R(F) · W(F)

(where W(F) denotes the unipotent radical of N(F) and R(F) is the unique reductive Levi
factor stable under the Cartan involution corresponding to K) can be refined into

(3.1) N(F) = (

Gh(F) · Gl(F) · M(F)
) · V(F) · U(F),

where:
- U(F) is the centre of W(F). It is a real vector space;
- V(F) = W(F)/U(F) turns out to be abelian. It is a real vector space of even

dimension 2l, and we get a decomposition W(F) = V(F) · U(F) using “exp”;
- Gl(F) · M(F) · V(F) · U(F) acts trivially on F and Gh(F) modulo a finite center is

Aut0(F);
- Gh(F) ·M(F) ·V(F) ·U(F) commutes with U(F) and Gl(F) modulo a finite central

group acts faithfully on U(F) by inner automorphisms;
- M(F) is compact.
The boundary component F is said to be rational if �F := � ∩ N(F) is an arithmetic

subgroup of N(F). There are only finitely many �-orbits of rational boundary compo-
nents, we choose representatives F1, . . . ,Fr for these �-orbits. Then the Baily-Borel com-
pactification of S is

S
BB = S ∪

r
⋃

i=1

(�Fi
\Fi)

with a suitable analytic structure.
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3.3. Toroidal compactifications and local coordinates. — Let X∨ be the compact dual of
X and D ↪→ X∨ be the Borel embedding. Recall that X∨ has an algebraic action by GC.
Given a boundary component F of D we define, following [19, section 3], an open subset
DF of X∨ containing D as follows:

DF =
⋃

g∈U(F)C

g ·D.

The embedding of D in DF is Piatetskii-Shapiro’s realisation of D as Siegel Domain of
the third kind. In fact there is a canonical holomorphic isomorphism (we refer to the
proof of Lemma 4.2 for a precise description of this isomorphism):

DF
j� U(F)C × Cl × F.

This biholomorphism defines complex coordinates (x, y, t) on DF, such that

D
j� {

(x, y, t) ∈ U(F)C × Cl × F
∣

∣ Im(x) + lt(y, y) ∈ C(F)
} ⊂DF

where Im(x) is the imaginary part of x, C(F) ⊂ U(F) is a self-adjoint convex cone ho-
mogeneous under the Gl(F)-action on U(F) and lt : Cl × Cl −→ U(F) is a symmetric
R-bilinear form varying real-analytically with t ∈ F. The group U(F)C acts on DF and in
these coordinates the action of a ∈ U(F)(C) is given by:

(x, y, t) −→ (x + a, y, t).

From now on we fix a �-admissible collection of polyhedra σ = (σα) (cf. [1, defini-
tion 5.1]) such that the associated toroidal compactification S = Sσ constructed in [1] is
smooth projective and the complement S \ S is a divisor with normal crossings. We refer
to [1] for details and we just recall what is needed for our purposes.

The compactification S is covered by a finite set of coordinates charts constructed
as follows (cf. [19, p. 255–256]):

(a) Take a rational boundary component F of D;
(b) We may choose some complex coordinates x = (x1, . . . , xk) on U(F)C (depend-

ing on the choice of σ) such that the following diagram commutes:

(3.2) D DF
j� U(F)C × Cl × F

expF

expF(D) = � ∩ UF\D
πF

C∗k × Cl × F Ck × Cl × F

S
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where expF : U(F)C × Cl × F → C∗k × Cl × F is given by

(3.3) (x, y, t) �→ (

exp(2iπx), y, t
)

, where exp(2iπx) = (

exp(2iπx1), . . . , exp(2iπxk)
)

.

(c) Define the “partial compactification of expF(D) in the direction F” to be the set
expF(D)∨ of points P in Ck × Cl × F having a neighborhood � such that

� ∩ C∗k × Cl × F ⊂ expF(D).

Then there exists an integer m, 1 ≤ m ≤ k, such that expF(D)∨ contains

S(F,σ) =
m

⋃

i=1

{

(z, y, t)
∣

∣ z = (z1, . . . , zk), zi = 0
}

.

(d) The basic property of S is that the covering map πF : expF(D) → S extends to
a local homeomorphism πF : expF(D)∨ → S making the diagram

(3.4) D
expF

π expF(D)

πF

expF(D)∨

πF

S S

commutative. Moreover every point P of S − S is of the form πF((z, y, t)) with zi = 0 for
some i ≤ m, for some F.

The following proposition summarizes what we will need:

Proposition 3.2. — Let � = �t,� ⊂D be a Siegel set for the action of �. Then � is covered

by a finite number of open subsets � having the following properties. For each � there is a rational

boundary component F, a simplicial cone σ ∈ σ with σ ⊂ C(F), a point a ∈ C(F), relatively compact

subsets U′, Y′ and F′ of U(F), Cl and F respectively such that the set � is of the form

�
j� {

(x, y, t) ∈ U(F)C × Cl × F, Re(x) ∈ U′, y ∈ Y′, t ∈ F′ ∣
∣

Im(x) + lt(y, y) ∈ σ + a
}

⊂ U(F)C × Cl × F
j−1

� DF.

Proof. — Let us provide a proof of this proposition, essentially stated without proof

in [19, p. 259]. Let D �� W(F)×C(F)×F be the real-analytic isomorphism deduced from
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the group-theoretic isomorphism (3.1) constructed in [1, p. 233]. Following [1, p. 266,
corollary of proof], the Siegel set � is covered by a finite number of sets � of the form

�
�� ωF × (

C0 ∩ σ F
α

) × E,

where E ⊂ F and ωW ⊂ W(F) are compact, C0 ⊂ C(F) is a rational core and σ F
α is one of

the polyhedra in our decomposition of C(F).
Considering C(F) as a cone in

√−1 ·U(F) and decomposing W(F) as U(F) ·V(F),

the isomorphism � extends to the real-analytic isomorphism DF
�� U(F)C × V(F) × F

constructed in [1, p. 235]. Hence the Siegel set � is covered by a finite number of sets �

of the form

(3.5) �
�� �(D) ∩ {

(x, s, t) ∈ U(F)C × V(F) × F
∣

∣ Re(x) ∈ U′, s ∈ S′, t ∈ F′}

where F′ ⊂ F, U′ ⊂ U(F) and S′ ⊂ V(F) are relatively compact.
Using the definition of j given in [37, §7] and recalled in the proof of Lemma 4.2

below, it follows, as stated in [1, p. 238], that the diffeomorphism j ◦ �−1 : U(F)C ×
V(F) × F � U(F)C × Cl × F is a change of trivialisation of the real-analytic bundle

DF

π ′
F

πF D′
F

pF

F

studied in [1, p. 237]. Here the map π ′
F is a U(F)C-principal homogeneous space, the map

pF is a V(F)-principal homogeneous space, and the map j ◦�−1 is U(F)C-equivariant and
respects the fibrations over F. These two properties ensure that j ◦ �−1 identifies the set
�(�) of (3.5) to a set of the required form

�
j� {

(x, y, t) ∈ U(F)C × Cl × F, Re(x) ∈ U′, y ∈ Y′, t ∈ F′ ∣
∣

Im(x) + lt(y, y) ∈ σ + a
}

⊂ U(F)C × Cl × F. �

4. Definability of the uniformisation map: proof of Theorem 1.9

First notice that, although the variety S does not canonically embed into some Rn,
the statement of Theorem 1.9 makes sense as S has a canonical structure of real algebraic
manifold, hence of Ran,exp-manifold: cf. Appendix A.
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By Theorem 3.1 there exist a semi-algebraic Siegel set � and a finite subset J of
G(Q) such that F := J ·� is a (semi-algebraic) fundamental set for the action of � on D.
Hence Theorem 1.9 follows from the following more precise result.

Theorem 4.1. — The restriction π|� : � −→ S of the uniformising map π : D −→ S is

definable in Ran,exp.

Proof. — By Proposition 3.2 we know that � is covered by a finite union of open
subsets � with the following properties. For each � there is a rational boundary com-
ponent F, a simplicial cone σ ∈ σ with σ ⊂ C(F), a point a ∈ C(F), relatively compact
subsets U′, Y′ and F′ of U(F), Cl and F respectively such that the set � is of the form

�
j� {

(x, y, t) ∈ U(F)C × Cl × F, Re(x) ∈ U′, y ∈ Y′, t ∈ F′ ∣
∣(4.1)

Im(x) + lt(y, y) ∈ σ + a
}

⊂ U(F)C × Cl × F.

We first prove that the holomorphic coordinates we introduced on DF are defin-
able:

Lemma 4.2. — The canonical isomorphism j :DF � U(F)C × Cl × F is semi-algebraic.

Proof. — The isomorphism j was studied in [22] and in full generality in [37, §7]
(cf. [3, §1.6] for a survey). To keep the amount of definitions at a reasonable level we
follow in this proof (and this proof only) the notations of Wolf and Koranyi in [37]. For
example our X, resp. X∨ is denoted by M, resp. M∗.

Let ξ : p− = CN −→ M∗ be the Harish-Chandra morphism defined by ξ(E) =
exp(E) · x (cf. [37, p. 901]; in the notations of Wolf and Koranyi x is the base point of M∗).
This is a holomorphic embedding onto a dense open subset of M∗. Notice that the map
ξ is real algebraic: indeed p− is a nilpotent sub-algebra of gC hence the exponential is
polynomial in restriction to p−. The bounded symmetric domain D is ξ−1(G0(x)).

Let 
 be a maximal set of strongly orthogonal positive non-compact roots of gC as
in [37, p. 901]. For any α ∈ 
 let cα ∈ G be the partial Cayley transform of M associated
to α (cf. [37, p. 902], recall that with the notations of Wolf and Koranyi G is the compact
form of the complexified group GC!). For a subset θ ⊂ 
 we denote by cθ := ∏

α∈θ cα the
partial Cayley transform associated with θ (cf. [37, §4.1]).

Following [37, theor. 4.8] there exists a unique subset θ ⊂ 
 such that F =
ξ−1c
−θMθ , where Mθ = G0

θ (x) is defined in [37, p. 912]. Let p−1
θ ⊂ p− be defined as

in [37, p. 912], let p−

−θ,1 be the (+1)-eigenspace of ad(c4


−θ ) on p
−

−θ and p

θ,−
2 be the

(−1)-eigenspace of ad(c4

−θ ) on p−. One has a canonical decomposition (cf. [37, p. 933]):

(4.2) p
− = p

−

−θ,1 ⊕ p

θ,−
2 ⊕ p

−
θ .
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The decomposition (3.1) of the normaliser N(F) = Bθ (cf. [37, remark 3 p. 932])
is proven in [37, theorem 6.8]. In particular it follows that exp
−θ := exp◦adc
−θ :
p

−

−θ,1 −→ U(F)C and exp : pθ,−

2 −→ Cl are polynomial isomorphisms, while F ⊂ p−

is a bounded symmetric domain of p−
θ .

Following [37, §7.6 and §7.7] the map j :D −→ U(F)C × Cl × F ⊂ U(F)C × Cl ×
p

−
θ is the composition of the semi-algebraic holomorphic maps

D ξ−1c
−θ ξ−−−−→ p
− = p

−

−θ,1 ⊕ p

θ,−
2 ⊕ p

−
θ

(exp
−θ ,exp,Id)−−−−−−−→ U(F)C × Cl × p
−
θ

which finishes the proof of Lemma 4.2. �

The previous lemma enables us to forget about the definable biholomorphism j.
From now on and for simplicity of notations we simply write DF = U(F)C × Cl × F.

In the description (4.1) we may and do assume that U′, Y′ and F′ are semi-algebraic
subsets respectively of U(F)C, Cl and F. Then the set � is definable in Ran because:

- the function ψ : Y′ × F′ → U(F) defined by ψ(y, t) = lt(y, y) is analytic and
defined on a compact semi-algebraic set.

- the cone σ is polyhedral, hence semi-algebraic.

Hence the restriction π|� : � −→ S is definable in Ran,exp if and only if the restric-
tion π|� : � −→ S to any set � appearing in Proposition 3.2 is definable in Ran,exp.

Fix such a set

� = {

(x, y, t), y ∈ Y′, t ∈ F′,Re(x) ∈ U′ ∣
∣ Im(x) + lt(y, y) ∈ σ + a

}

associated to a rational boundary component F ∈ {F1, . . . ,Fr}.
Consider the left-hand side of the diagram (3.4):

D
expF

π expF(D)

πF

S

Recall that expF :DF → C∗k × Cl × F is given by

(x, y, t) �→ (

exp(2iπx), y, t
)

,

where exp(2iπx) = (

exp(2iπx1), . . . , exp(2iπxk)
)

.
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The function Re(xi), 1 ≤ i ≤ k, is bounded on � hence the restriction to � of the map
x �→ exp(2iπRe(x)) is definable in Ran. On the other hand the restriction to � of the
function x �→ exp(−2πIm(x)) is definable in Rexp by definition of Rexp. Thus the restric-
tion to � of the map expF is definable in Ran,exp and we are reduced to showing that
πF : expF(�) −→ S is definable in Ran,exp.

Consider the lower part of the diagram (3.4):

expF(D)

πF

expF(D)∨

πF

S S.

As U′,V′,F′ are relatively compact and the imaginary part of x has a lower bound on �,
the closure expF(�) of expF(�) is compact in expF(D)∨. Hence πF : expF(�) −→ S,
which is the restriction of the analytic map πF : expF(D)∨ −→ S to the relatively compact
subset expF(�) of expF(D)∨, is definable in Ran. �

5. Proof of Theorem 1.11

5.1. Distance, norm, height.

5.1.1. Distance. — Let ∗ be the adjunction on ER associated to the Hilbert struc-
ture ‖ · ‖∞ on ER. The restriction of the bilinear form (u, v) �→ tr(u∗v) to the Lie
algebra Lie(G(R)) defines a G(R)-invariant Kähler metric gX on X. We denote by
d : X × X −→ R the associated distance and by ω the associated Kähler form.

5.1.2. Norm. — We still denote by ‖ · ‖∞ : End ER −→ R the operator norm asso-
ciated to the norm ‖ · ‖∞ on ER. By restriction we also denote by ‖ · ‖∞ : G(R) −→
R the function ‖ · ‖∞ ◦ ρ. As K∞ preserves the norm ‖ · ‖∞ on ER, the function
‖ · ‖∞ : G(R) −→ R is K∞-bi-invariant, in particular descends to a K∞-invariant func-
tion ‖ · ‖∞ : X −→ R.

Choose (e1, . . . , en) a basis of EZ in which A diagonalises. It will be useful to com-
pare the norm ‖ · ‖∞ with the norm | · |∞ : End ER −→ R defined by

(5.1) ∀ϕ ∈ End ER, |ϕ|∞ = max
i,j

|ϕij|,

where (ϕij) is the matrix of ϕ in the basis (e1, . . . , en) of ER.
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5.1.3. Height.

Definition 5.1. — We define the (multiplicative) height function H : End EZ −→ R as

∀ϕ ∈ End EZ, H(ϕ) = max
(

1,‖ϕ‖∞
)

.

Remark 5.2. — When dimQ E = 1, this height function coincides with the classical
multiplicative height function on rational numbers.

By restriction, we also denote by H : G(Z) −→ R the function H ◦ ρ. Notice that
for ϕ ∈ End ER, ‖ϕ‖∞ is the square root of the largest eigenvalue of the positive definite
matrix ϕ∗ϕ. If ϕ ∈ End EZ it follows that ‖ϕ‖∞ is at least 1, hence

∀ϕ ∈ G(Z), H(ϕ) = ‖ϕ‖∞ ≥ 1.

We also define Hclass the classical multiplicative height on End E using the basis
(e∗i ⊗ ej)i,j . In particular if ϕ ∈ End EZ then Hclass(ϕ) = |ϕ|∞. As the norms ‖ · ‖∞ and
| · |∞ are equivalent on End ER we obtain the following:

Lemma 5.3. — There exist a positive number C such that

∀ϕ ∈ End EZ,
1
C

· Hclass(ϕ) ≤ H(ϕ) ≤ C · Hclass(ϕ).

5.2. Comparing norm and distance.

Lemma 5.4. — For any g ∈ G(R) the following inequality holds:

log‖g‖∞ ≤ d(g · x0, x0).

Proof. — Let G(R) = K∞ ·A∞ ·K∞ be a Cartan decomposition of G(R) associated
to K∞, where A∞ is a maximal split real torus of G containing A. Let g ∈ G(R) and
write g = k1 · a · k2 its Cartan decomposition, with k1, k2 in K∞ and a ∈ A∞. As ‖ · ‖∞
is K∞-bi-invariant and d is G(R)-equivariant the equalities log‖g‖∞ = log‖a‖∞ and
d(g · x0, x0) = d(a · x0, x0) do hold.

The torus A∞ is diagonalisable in an orthonormal basis (f1, . . . , fn) of ER. Write
a = diag(a1, . . . , an) in this basis, then:

log‖a‖∞ = max
i

log |ai| and d(a · x0, x0) =
√

√

√

√

n
∑

i=1

(log |ai|)2

hence the result. �
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5.3. Comparing height and norms. — The main result of this section is the following:

Lemma 5.5. — Let F ⊂ X be the fundamental domain described in Theorem 3.1. There exists

a positive number B such that:

(5.2) ∀γ ∈ G(Z), ∀u ∈ γF , H(γ ) ≤ B · ‖u‖n
∞.

Proof. — Write u = γ · j · x with j ∈ J and x = ω · a · k ∈ �′
t0,�

= � · At0 · K∞. Thus:

(5.3) u = j · (j−1γ j
) · a · (a−1ωa

) · k.

Notice that for each j ∈ G(Q) the groups G(Z) and j−1G(Z)j are commensurable
(i.e. their intersection is of finite index in both of them). As the subset J ⊂ G(Q) is finite, it
follows that the subgroup G(Z)J := G(Z)

⋂

(
⋂

j∈J j−1G(Z)j) is of finite index in j−1G(Z)j,
j ∈ J. Choose a finite set S of representatives in G(Q) for the cosets j−1G(Z)j/G(Z)J,
j ∈ {1} ∪ J. Hence there exists a unique s ∈ S and γ ′ ∈ G(Z)J ⊂ G(Z) such that j−1γ j =
s · γ ′. We deduce from (5.3):

(5.4) u = js · (γ ′ · a
) · (a−1ωa

) · k.

The set J · S is finite. The group K∞ is compact. Moreover the set
⋃

a∈At0
a−1�a

is relatively compact in G by [4, Lemma 12.1]. As ‖ · ‖∞ is sub-multiplicative, it follows
from (5.4) that there exists a positive number b, depending only on � and t0, such that

(5.5) ‖u‖∞ ≥ b
∥

∥γ ′ · a
∥

∥

∞.

As j−1γ j = s · γ ′ and J and S are finite sets, there exists a positive number b′,
depending only on � and t0, such that

(5.6)
∥

∥γ ′∥
∥

∞ ≥ b′‖γ ‖∞.

Thus Lemma 5.5 follows the equality H(γ ) = ‖γ ‖∞, inequalities (5.5) and (5.6) and
Sublemma 5.6 below. �

Sublemma 5.6. — There exists a positive number B depending only on � and t0 such that for

all γ ∈ G(Z) and a ∈ At0 the following inequality holds:

(5.7) ‖γ ‖∞ ≤ B · ‖γ · a‖n
∞.

Proof. — As the norm ‖ · ‖∞ on End ER is equivalent to the norm | · |∞, it is enough
to show that |γ |∞ ≤ |γ · a|n∞.

Let γ = (γk,l) be the matrix of γ in the basis (e1, . . . , en) of EZ. As the torus A
is diagonalisable in the basis (e1, . . . , en), we write a = diag(a1, . . . , an), with ai ∈ R>0. It
follows that:

(5.8) ∀k, l ∈ {1, . . . , n}, (γ · a)kl = γkl · al .
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As γ is invertible, there exists for each s ∈ {1, . . . , n} an index rs ∈ {1, . . . , n} such
that γrs,s �= 0. It follows from Equation (5.8) that:

(5.9) ∀k, l ∈ {1, . . . , n}, (γ · a)k,l ·
∏

s �=l

(γ · a)rs,s = γk,l ·
∏

s �=l

γrs,s ·
n

∏

s=1

as = γk,l ·
∏

s �=l

γrs,s,

where we used that
∏n

l=1 ai = 1 as ρ(G) ⊂ SL(E).
Notice that � = G(Z) hence each γk,l is an integer. It follows from Equation (5.9)

that:

∀k, l ∈ {1, . . . , n},

|γk,l| ≤
∣

∣

∣

∣

γk,l ·
∏

s �=l

γrs,s

∣

∣

∣

∣

=
∣

∣

∣

∣

(γ · a)k,l ·
∏

s �=l

(γ · a)rs,s

∣

∣

∣

∣

≤
(

max
r,s

∣

∣(γ · a)r,s

∣

∣

)n

.

In other words: |γ |∞ ≤ |γ · a|n∞. Hence the inequality (5.7) follows. �

5.4. Lower bound for the volume of an algebraic curve. — In [11, Corollary 3 p. 1227],
Hwang and To prove the following lower bound for the area of any complex analytic
curve in D:

Theorem 5.7 (Hwang and To). — Let C be a complex analytic curve in D. For any point

x0 ∈ C there exist positive constants a1, b1 such that for any positive real number R one has:

(5.10) VolC
(

C ∩ B(x0,R)
) ≥ a1 exp(b1 · R).

Here VolC denotes the area for the Riemanian metric on C restriction of the metric gX

on D and B(x0,R) denotes the geodesic ball of D with center x0 and radius R.

5.5. Upper bound for the volume of algebraic curves on Siegel sets.

Lemma 5.8.

(i) There exists a constant A0 > 0 such that for any algebraic curve C ⊂ D of degree d we

have the bound

VolC(C ∩ �) ≤ A0 · d.

(ii) There exists a constant A > 0 such that for any algebraic curve C ⊂D of degree d we have

the bound

VolC(C ∩F) ≤ A · d.
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Proof. — We first prove (i). Recall that � is covered by a finite union of open subsets
� described in Proposition 3.2: there is a rational boundary component F, a simplicial
cone σ ∈ � with σ ⊂ C(F), a point a ∈ C(F), relatively compact subsets U′, Y′ and F′ of
U(F), Cl and F respectively such that the set � is of the form

� = {

(x, y, t) ∈DF , y ∈ Y′, t ∈ F′,Re(x) ∈ U′ ∣
∣ Im(x) + lt(y, y) ∈ σ + a

}

⊂DF = U(F)C × Cl × F.

Recall that ω denotes the natural Kähler form on X. As C ⊂ X is a complex analytic
curve, one has:

VolC(C ∩ �) =
∫

C∩�

ω.

On the other hand let ωDF be the Poincaré metric on DF defined in the Siegel coordinates
by:

ωDF =
∑ dxi ∧ dxi

Im(xi)2
+

∑

dyj ∧ dyj +
∑

dfk ∧ df k.

Mumford [19, Theor. 3.1] proved that there exists a positive constant c such that on D:

ω ≤ c · ωDF .

Hence:

VolC(C ∩ �) ≤ c

∫

C∩�

ωDF .

Let pxi
, pyj

and pfk be the projections on DF to the coordinates xi , yj and fk .
As the curve C has degree d the restriction of these maps to C ∩ � are either

constant or at most d to 1, hence

VolC(C ∩ �) ≤ c · d ·
(

∑

∫

pxi
(�)

dxi ∧ dxi

Im(xi)2
+

∑

∫

pyj
(�)

dyj ∧ dyj

+
∑

∫

pfk
(�)

dfk ∧ df k

)

.

Let i be such that the map pxi
is not constant. In view of the description of � the

projection pxi
(�) is contained in a usual fundamental set of the upper-half plane, of finite

hyperbolic area.
Let w be a coordinate yj , fk and pw be the associated projection on the w axis. By

the definition of � the projection pw(�) is a relatively compact open set of the plane,
hence of finite Euclidean area.

This finishes the proof of (i).



THE HYPERBOLIC AX-LINDEMANN-WEIERSTRASS CONJECTURE 351

Let us prove (ii). As C ∩F = C ∩ J · �, one has the inequality:

VolC(C ∩F) ≤
∑

j∈J

VolC(C ∩ j · �) =
∑

j∈J

Volj−1C

(

j−1C ∩ �
) ≤ |J| · A0 · d

where we used part (i) applied to the algebraic curves j−1C of D, j ∈ J, which are of
degree d .

This finishes the proof of Lemma 5.8. �

5.6. Proof of Theorem 1.11. — Choose C ⊂ Y an irreducible algebraic curve. To
prove Theorem 1.11 for Y it is enough to prove it for C.

Consider the set

C(T) := {

z ∈ C and ‖z‖∞ ≤ T
}

.

As F is a fundamental domain for the action of � one has on the one hand:

C(T) =
⋃

γ∈�
γF∩C�=∅

{

u ∈ γF ∩ C and ‖u‖∞ ≤ T
}

⊂
⋃

γ∈�
γF∩C�=∅

H(γ )≤B·Tn

{u ∈ γF ∩ C} by Lemma 5.5.

Taking volumes:

VolC
(

C(T)
) ≤

∑

γ∈�
γF∩C�=∅

H(γ )≤B·Tn

VolC
(

F ∩ γ −1C
)

hence

(5.11) VolC
(

C(T)
) ≤ (A · d) · NC

(

B · Tn
)

where we applied Lemma 5.8(ii) to the algebraic curves γ −1C, γ ∈ �, which are all of
degree d .

On the other hand if follows from Lemma 5.4 that

C ∩ B(x0, log T) ⊂ C(T),

hence

(5.12) VolC
(

C ∩ B(x0, log T)
) ≤ VolC

(

C(T)
)

.
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Finally:

(A · d) · NC

(

B · Tn
) ≥ VolC

(

C(T)
)

by inequality (5.11)

≥ VolC
(

C ∩ B(x0, log T)
)

by inequality (5.12)

≥ a1 exp(b1 log T) by Theorem 5.7.

Hence the result. �

6. Stabilisers of a maximal algebraic subset: proof of Theorem 1.13

6.1. Pila-Wilkie theorem.

Definition 6.1. — The classical height Hclass(x) of a point x = (x1, . . . , xm) ∈ Qm is defined

as

Hclass(x) = max
(

H(x1), . . . ,H(xm)
)

where H is the usual multiplicative height of a rational number.

Let Z ⊂ Rm be a subset and T ≥ 0 a real number, we define:

�class(Z,T) := {

x ∈ Z ∩ Qm : Hclass(x) ≤ T
}

and

Nclass(Z,T) := ∣

∣�class(Z,T)
∣

∣.

For Z ⊂ Rm a definable set in a o-minimal structure we define the algebraic part
Zalg of Z to be the union of all positive dimensional semi-algebraic subsets of Z.

Recall (cf. definition 3.3 of [34]), that a semi-algebraic block of dimension w in
Rm is a connected definable set W ⊂ Rm of dimension w, regular at every point, such
that there exists a semi-algebraic set A ⊂ Rm of dimension w, regular at every point with
W ⊂ A.

The following result is a strong form, proven by Pila [23, theor. 3.6], of the original
theorem of Pila and Wilkie [24]:

Theorem 6.2 (Pila-Wilkie). — Let Z ⊂ Rm be a definable set in a o-minimal structure. For

every ε > 0, there exists a constant Cε > 0 such that

Nclass

(

Z\Zalg,T
)

< CεTε

and the set �class(Z,T) is contained in the union of at most CεTε semi-algebraic blocks.

As a corollary of Theorem 6.2 and Lemma 5.3 one obtains:
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Corollary 6.3. — Let Z ⊂ End ER be a definable set in a o-minimal structure. Define

�(Z,T) := {x ∈ Z ∩ End EZ : H(x) ≤ T} and N(Z,T) := |�(Z,T)|. For every ε > 0, there

exists a constant Cε > 0 such that

N
(

Z\Zalg,T
)

< CεTε

and the set �(Z,T) is contained in the union of at most CεTε semi-algebraic blocks.

6.2. Proof of Theorem 1.13. — Let V be an algebraic subvariety of S and Y a maxi-
mal irreducible algebraic subvariety of π−1V. Let �Y be the stabiliser of Y in G(R) and
HY be the neutral component of the Zariski-closure of G(Z)∩�Y in G. We want to show
that HY is a non-trivial subgroup of G, acting non-trivially on X.

Via ρ : G ↪→ GL(E), we view G(R) as a semi-algebraic (and hence definable)
subset of End ER. As π|F : F −→ S is definable by Theorem 1.9, lemmas 5.1 and 5.2 of
[34] show the following:

Proposition 6.4. — Let us define

�(Y) = {

g ∈ G(R) : dim
(

gY ∩ π−1V ∩F
) = dim(Y)

}

and

�′(Y) = {

g ∈ G(R) : g−1F ∩ Y �= ∅}

.

The following properties hold:

(1) The set �(Y) is definable and for all g ∈ �(Y), gY ⊂ π−1V.

(2) For all γ ∈ �(Y) ∩ G(Z), γ Y is a maximal algebraic subset of π−1V.

(3) The following equality holds:

�(Y) ∩ G(Z) = �′(Y) ∩ G(Z).

It follows that the number NY(T) defined in Theorem 1.11 coincide with
|�(Y,T)|, where

�(Y,T) := G(Z) ∩ �
(

�(Y),T
)

.

We can now finish the proof of Theorem 1.13 in exactly the same way as the proof
of theorem 5.4 of [34]. For the sake of completeness, we reproduce it here. As �(Y,T) ⊂
�(�(Y),T) it follows from Corollary 6.3 that for T large enough, the set �(Y,T

1
2n )

is contained in at most T
c1
4n semi-algebraic blocks. As |�(Y,T

1
2n )| = NY(T

1
2n ) ≥ T

c1
2n by

Theorem 1.11, we see that there is a semi-algebraic block W in �(Y) containing at least
T

c1
4n elements γ ∈ �(Y) ∩ G(Z) such that H(γ ) ≤ T

1
2n .

Using lemma 5.5 of [31] which applies verbatim in our case, we see that there exists
an element σ in �(Y) such that σ�Y contains at least T

c1
4n elements γ ∈ �(Y) ∩ G(Z)

such that H(γ ) ≤ T
1
2n .
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Let γ1 and γ2 be two elements of σ�Y ∩ G(Z) such that H(γ ) ≤ T
1
2n .

Let γ := γ −1
2 γ1 ∈ G(Z) ∩ �Y. Using elementary properties of heights, we see that

H(γ ) ≤ cnT1/2 where cn is a constant depending on n only. It follows that for all T large
enough, �Y contains at least T

c1
4n elements γ ∈ G(Z) with H(γ ) ≤ T. Hence the con-

nected component of the identity HY of the Zariski closure of G(Z) ∩ �Y in G is a
positive dimensional algebraic subgroup of G contained in �Y. This finishes the proof of
Theorem 1.13.

7. End of the proof of Theorem 1.6

Let V be an algebraic subvariety of S. Our aim is to show that maximal irreducible
algebraic subvarieties Y of π−1V are precisely the irreducible components of the preim-
ages of maximal weakly special subvarieties contained in V.

Using Deligne’s interpretation of Hermitian symmetric spaces in terms of Hodge
theory the representation ρ : G ↪→ GL(E) defines a polarised Z-variation of Hodge
structure on S. We refer to [18, section 2] for the definition of the Hodge locus of X
and S. Recall that an irreducible analytic subvariety M of X or S is said to be Hodge
generic if it is not contained in the Hodge locus. If M is not irreducible we say that M is
Hodge generic if all the irreducible components of M are Hodge generic.

Let V′ ⊂ V be the Zariski closure of π(Y), as Y is analytically irreducible it easily
follows that V′ is irreducible. Replacing V by V′ we can without loss of generality assume
that π(Y) is not contained in a proper algebraic subvariety of V. We now have to show
that π(Y) = V and V is an arithmetic subvariety of S.

Since the group G is adjoint, it is a direct product

G = G1 × · · · × Gr

where the Gi ’s are the Q-simple factors of G. This induces decompositions

G =
r

∏

i=1

Gi, X =
r

∏

i=1

Xi, G(Z) =
r

∏

i=1

Gi(Z),

� =
r

∏

i=1

�i, S =
r

∏

i=1

Si,

where Gi is a group of Hermitian type, Xi its associated Hermitian symmetric domain,
�i is an arithmetic lattice in Gi , Si := �i\Xi is the associated arithmetic variety and πi :
Xi −→ Si the associated uniformisation map.

Our main Theorem 1.6 is then a consequence of the following:
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Theorem 7.1. — Let ˜V be the an analytic irreducible component of π−1V containing Y. In the

situation described above, after, if necessary, reordering the factors, one has

˜V = X1 × ˜V>1

where ˜V>1 is an analytic subvariety of X2 × · · · × Xr (in particular if r = 1 then ˜V = X1 = X).

We first show:

Proposition 7.2. — Theorem 7.1 implies the main Theorem 1.6.

Proof. — Let t, 1 ≤ t ≤ r, be the largest integer such that, after reordering the factors
if necessary, we have:

˜V = X1 × · · · × Xt × ˜V>t

with ˜V>t an analytic irreducible subvariety of Xt+1 × · · · × Xr which does not (after
reordering the factors if necessary) decompose into a product Xt+1 × V>t+1.

In this case necessarily one has:

Y = X1 × · · · × Xt × Y>t

where Y>t is a maximal algebraic subset of ˜V>t .
Suppose that dimC(˜V>t) > 0. Let x≤t be a special point on X1 × · · · × Xt and x>t

be a Hodge generic point of Y>t . Let H ⊂ G be the Mumford-Tate group of the point
(x≤t, x>t) of X and let XH ⊂ X be the H(R)-orbit of x. Replace G by H the group of
biholomorphisms of XH, X by XH, G by Had, � by �H the projection of H(Z) on H, S
by SH := �H\XH, π : X −→ S by πH : XH −→ SH, V by VH := πH(x≤t × ˜V>t) and Y by
x≤t ×Y>t and apply Theorem 7.1 for these new data: this shows that there exists t′ > t +1
such that ˜V>t = Xt+1 × · · · × Xt′ × ˜V>t′ . This contradicts the maximality of t.

Hence ˜V>t is a point (xt+1, . . . , xr). Thus

˜V = X1 × · · · × Xt × (xt+1, . . . , xr)

is weakly special, in particular algebraic, hence by maximality

Y = ˜V = X1 × · · · × Xt × (xt+1, . . . , xr)

and Y is weakly special. �

Let us prove Theorem 7.1. Let HY be the maximal connected Q-subgroup in
the stabiliser of Y in G(R). By Theorem 1.13 the group HY is a non-trivial algebraic
subgroup of G.

Lemma 7.3. — The group HY(Q) stabilises ˜V.
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Proof. — Suppose there exists h ∈ HY(Q) such that

˜V �= h˜V.

As Y is contained in ˜V ∩ h˜V and Y is irreducible, we can choose an analytic irreducible
component ˜V′ of ˜V ∩ h˜V containing Y. Notice that π(˜V′) is an irreducible component,
say V′, of V ∩ Th(V). As dimC(˜V′) < dimC(˜V), we have that dimC(V′) < dimC(V).

As π(Y) ⊂ V′, this contradicts the assumption that π(Y) is Zariski dense in V. �

Choose a Hodge generic point z of Vsm (smooth locus of V) and a point z̃ of ˜V
lying over z. Let

ρmon : π1

(

Vsm, z
) −→ GL(EZ)

be the corresponding monodromy representation. We let �V ⊂ G(Z) be the image of ρ.
By usual topological Galois theory the group �V is the subgroup of G(Z) stabilising ˜V
(cf. section 3 of [18]), in particular �V contains HY(Z).

By Deligne’s monodromy theorem (see Theorem 1.4 of [18]), the connected com-
ponent of the identity Hmon of the Zariski closure �V

Zar,Q
of �V in G is a normal sub-

group of G. As G is semi-simple of adjoint type, after reordering the factors we may
assume that Hmon coincides with G1 ×· · ·×Gt ×{1} for some integer t ≥ 1. In particular
HY ⊂ G1 × · · · × Gt × {1}.

We claim that �V normalises HY. Let γ ∈ �V. Consider the Q-algebraic group
F generated by HY and γ HYγ −1. Then F(R)+ · ˜V = ˜V, where F(R)+ denotes the con-
nected component of the identity of F(R). Hence F(R)+ · Y ⊂ ˜V. By Lemma B.3 there
exists an irreducible (complex) algebraic subvariety Ỹ of Ṽ containing U, hence Y. By
maximality of Y one has Ỹ = Y hence

F(R)+ · Y = Y.

By maximality of HY, we have F = HY. This proves the claim.
As HY is normalised by �V, it is normalised by Hmon = G1 × · · · × Gt × {1}. It

follows that (after possibly reordering factors) HY contains G1 × {1}.
The fact that HY(R) stabilises ˜V shows (by taking the HY(R)-orbit of any point

of ˜V) that ˜V = X1 × ˜V>1. This concludes the proof of Theorem 7.1 and hence of Theo-
rem 1.6.

Appendix A: Definability

A.1 About Theorem 1.9. — Let R be any fixed o-minimal expansion of R (in our
case R= Ran,exp). Recall [7, Chap. 10] that a definable manifold of dimension n is an equiv-
alence class (for the usual relation) of triple (X,Xi, φi)i∈I where {Xi : i ∈ I} is a finite cover
of the set X and for each i ∈ I:
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(i) we have injective maps φi : Xi −→ Rn such that φi(Xi) is an open, definably
connected, definable set.

(ii) each φ(Xi ∩ Xj) is an open definable subset of φi(Xi).
(iii) the map φij : φi(Xi ∩ Xj) −→ φj(Xi ∩ Xj) given by φij = φj ∩φ−1

i is a definable
homeomorphism for all j ∈ I such that Xi ∩ Xj �= ∅.

We say that a subset Z ⊂ X is definable (resp. open or closed) if φi(Z ∩ Xi) is a
definable (resp. open or closed) subset of φi(Xi) for all i ∈ I. A definable map between
abstract definable manifolds is a map whose graph is a definable subset of the definable
product manifold.

Notice in particular that X = PnC has a canonical structure of a definable man-
ifold (for any R): take Xi = Cn = {[zo, . . . , zi−1,1, zi+1, . . . , zn] ∈ PnC}, 0 ≤ i ≤ n where
we identify Cn with R2n. As a corollary any complex quasi-projective variety is canoni-
cally a definable manifold. This apply in particular to S. In particular the statement of
Theorem 1.9 has an intrinsic meaning.

Appendix B: Algebraic subvarieties of X

Recall from [30, section 2.1] that a realisation X of X for G is any analytic subset of
a complex quasi-projective variety ˜X , with a transitive holomorphic action of G(R) on
X such that for any x0 ∈ X the orbit map ψx0 : G(R) −→ X mapping g to g · x0 is
semi-algebraic and identifies G(R)/K∞ with X. A morphism of realisations is a G(R)-
equivariant biholomorphism. By [30, lemma 2.1] any realisation of X has a canonical
semi-algebraic structure and any morphism of realisations is semi-algebraic. Hence X
has a canonical semi-algebraic structure.

Let X be a realisation of X for G. A subset Y ⊂ X is called an irreducible algebraic

subvariety of X if Y is an irreducible component of the analytic set X ∩ ˜Y where ˜Y is
an algebraic subset of ˜X . By [10, section 2] the set Y has only finitely many analytic
irreducible components and these components are semi-algebraic. An algebraic subvariety

of X is defined to be a finite union of irreducible algebraic subvarieties of X .

Lemma B.1. — A subset Y of X is algebraic if and only if Y is a closed complex analytic

subvariety of X and semi-algebraic in X .

Proof. — Let Y ⊂ X be a closed complex analytic subvariety of X , semi-algebraic
in X . Without loss of generality we can assume that Y is irreducible as an analytic sub-
variety, of dimension d . Consider the real Zariski-closure ˜Y of Y in the real algebraic
variety ResC/R

˜X , where ResC/R denotes the Weil restriction of scalars from C to R. Let
us show that ˜YR has a canonical structure of a complex subvariety of ˜X . Choose an affine
open cover ( ˜Xi)i∈I ⊂ Ani of ˜X and denote by ˜Yi the intersection ˜Y ∩ ˜Xi . Let i ∈ I such
that ˜Yi is non-empty. As Y is semi-algebraic, Y is open in ˜Y for the Hausdorff topology,
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hence Yi := Y ∩ ˜Xi is non-empty and open in ˜Yi for the Hausdorff topology. Consider
the Gauss map ϕi from the smooth part ˜Ysm

i of ˜Yi to the real Grassmannian Gr2d,2ni of
real 2d-planes of ResC/RAni associating to a point its tangent space. The map ϕi is real
analytic and its restriction to the open subset Ysm

i of ˜Ysm
i takes values in the closed real

analytic subvariety Grd,ni

C ⊂ Gr2d,2ni of complex d-planes of Ani

C. By analytic continuation
ϕi takes values in Grd,ni

C . Hence ˜Yi is a complex algebraic subvariety of Ani . As this is true
for all i ∈ I, ˜Y is a complex algebraic subvariety of ˜X . As Y ⊂ ˜Y is open and Y is closed
analytically irreducible in X , it follows that Y is an irreducible component of X ∩ ˜Y,
hence algebraic.

The other implication is clear. �

As any morphism of realisations is an analytic biholomorphism and semi-algebraic
the previous lemma implies immediately:

Corollary B.2. — Let ϕ :X1 −→X2 be a morphism of realisations of X. A subset Y1 of X1

is algebraic if and only if its image Y2 := ϕ(Y1) ⊂X2 is algebraic.

This defines the notion of algebraic subsets of X.

Lemma B.3. — Let X be a realisation of a Hermitian symmetric domain X. Let Z ⊂X ⊂ Cn

be a complex analytic subvariety and W ⊂ Z a semi-algebraic set. There exists an irreducible complex

algebraic subvariety Y ⊂ Cn such that

W ⊂ Y ∩ X ⊂ Z

Proof. — This is a consequence of the proof of [25, lemma 4.1]. �
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