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ABSTRACT

We obtain a dichotomy for C1-generic, volume-preserving diffeomorphisms: either all the Lyapunov exponents
of almost every point vanish or the volume is ergodic and non-uniformly Anosov (i.e. nonuniformly hyperbolic and the
splitting into stable and unstable spaces is dominated). This completes a program first put forth by Ricardo Mañé.

Introduction

From a probabilistic perspective, ergodicity is the most basic irreducibility prop-
erty of a dynamical system. A measurable map f : M → M is ergodic with respect to an
invariant probability measure μ if every f -invariant subset of M is μ-trivial: f −1(A) = A
implies μ(A) = 0 or 1, for every measurable A ⊂ M. In the context of this paper, where
M is a compact manifold, f is a homeomorphism, and μ = m is a normalized volume, er-
godicity is equivalent to equidistribution of almost every orbit: for m-almost every x ∈ M
and every continuous φ : M → R,

lim
n→∞

1
n

n∑

j=1

φ
(

f j(x)
) =

∫

M
φ dm.

Is ergodicity with respect to volume a typical property? The question was first ad-
dressed by Oxtoby and Ulam in the 1930’s [OU], who proved that the generic volume-
preserving homeomorphism is ergodic; that is, the set of ergodic maps in the space
Homeo+

vol(M) of volume-preserving homeomorphisms contains a countable intersection
of open and dense sets in the uniform topology. A natural question, still open in general,
is whether such a result extends to the space of volume-preserving diffeomorphisms.

If one looks at the other extreme of regularity, C∞ diffeomorphisms, ergodicity is
not a typical property at all: KAM theory guarantees on any manifold of dimension at
least 2 an open set of diffeomorphisms in Diff∞vol(M) that are not ergodic. This paper fo-
cuses on the lowest class of differentiability, C1 diffeomorphisms, where the question is still
open: is ergodicity a generic property in the space Diff1

vol(M) of C1 volume-preserving diffeomorphisms

of a compact manifold M?
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As a first approach to this question, one should ask whether the techniques of the
Oxtoby–Ulam proof can be extended to the C1 setting. There is an immediate obstruc-
tion: metric entropy. The same technique (namely periodic approximation) that proves
genericity of ergodicity in [OU] also proves that the metric entropy hm( f ) of a generic
f ∈ Homeo+

vol(M) is 0. The corresponding statement is false for Diff1
vol(M), as we ex-

plain below: there are open sets of diffeomorphisms f ∈ Diff1
vol(M) with hm( f ) > 0. Thus

the Oxtoby–Ulam technique cannot be naïvely extended from the C0-category to prove
general results about C1-generic diffeomorphisms.

This phenomenon of robustly positive entropy is most clearly demonstrated by
the Anosov maps, in which every direction in the tangent bundle to M sees expansion
or contraction under iteration of the derivative Df n. Interestingly, this uniformly hyperbolic

behavior that gives rise to positive metric entropy in Anosov systems is also the source
of a powerful mechanism for ergodicity, known as the Hopf argument [An1], which is
of a very different nature than the Oxtoby–Ulam mechanism. Here we show for generic
diffeomorphisms in Diff1

vol(M), positive metric entropy is associated with a strong type
of non-uniformly hyperbolic behavior, which we call non-uniformly Anosov. Harnessing this
hyperbolicity, we prove:

Theorem A. — C1-generically, a volume-preserving diffeomorphism f : M → M of a compact

manifold M with positive entropy is ergodic.

Our proof of this theorem completes a program first put forth by Ricardo Mañé
to understand the Lyapunov exponents of volume-preserving diffeomorphisms from a
C1-generic perspective. In his 1983 ICM address [M], Mañé announced the following
remarkable result, whose proof was later completed by Bochi [Boc1].

Theorem (Mañé–Bochi). — C1-generically, an area preserving diffeomorphism f of a compact

connected surface M is either Anosov (and ergodic) or satisfies

lim
n→±∞

1
n

log
∥∥Dx f nv

∥∥ = 0,

for a.e. x ∈ M and every 0 �= v ∈ TxM.

Our main result gives the optimal generalization to higher dimensions:

Theorem B. — C1-generically, a volume-preserving diffeomorphism f of a compact connected

manifold M is either nonuniformly Anosov and ergodic or satisfies

lim
n→±∞

1
n

log
∥∥Dx f nv

∥∥ = 0

for a.e. x ∈ M and every 0 �= v ∈ TxM.
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Theorem B was conjectured in its present form by Avila–Bochi [AB] where it was
shown that generic diffeomorphisms in Diff1

vol(M) with only non-zero Lyapunov expo-
nents almost everywhere are ergodic and non-uniformly Anosov. In dimension three,
Theorem B was proved by M.A. Rodríguez-Hertz [R] by reducing to an analysis of dom-
inated splittings admitting some uniformly hyperbolic subbundles, which have been thor-
oughly described for 3-manifolds. Our proof of Theorem B in the general case follows a
very different route, focused on the elimination of zero Lyapunov exponents throughout
large parts of the phase space.

In another paper [ACW], we will use Theorem B above in order to prove a C1-
version of a conjecture by Pugh and Shub: among smooth partially hyperbolic volume-
preserving diffeomorphisms, the stably ergodic ones are C1-dense.

Before exploring further consequences of Theorems A and B, we put it in context
and explain the terminology. Throughout, M will denote a closed connected Riemannian
manifold with dimension d , and Diff r(M) will denote the set of Cr diffeomorphisms of M
endowed with the Cr-topology. The volume induces, after normalization, a Borel proba-
bility measure m and we denote by Diff r

vol(M) the set of f ∈ Diff r(M) preserving m. Both
Diff r(M) and Diff r

vol(M) are Baire spaces. We say that a property of (volume-preserving)
diffeomorphisms is Cr generic if it holds on a dense Gδ (i.e., a countable intersection of
open-dense sets) in Diff r(M) (respectively Diff r

vol(M)).
A measure of chaoticity for volume-preserving diffeomorphisms is given by the

notion of Lyapunov exponents. A real number χ is a Lyapunov exponent of f at x ∈ M if
there exists a nonzero vector v ∈ TxM such that

(1) lim
n→±∞

1
n

log
∥∥Df n(v)

∥∥ = χ.

Oseledets’s ergodic theorem implies that there is a set � ⊂ M of total measure—i.e.,
μ(�) = 1, for every invariant Borel probability measure μ—with the following property:
for any x ∈ � there exists �(x) ≥ 1 and a Df -invariant splitting

(2) TxM = E1(x) ⊕ E2(x) ⊕ · · · ⊕ E�(x)(x),

depending measurably on x such that the limit χ = χ(x, v) in (1) exists for every v ∈
Ei(x) \ {0}. The value χ(x, v) is constant in Ei(x) \ {0} so that χ(x, ·) can assume at most
dim(M) distinct values χ1(x), . . . , χ�(x)(x). If f preserves the volume m, then the sum of
the Lyapunov exponents is zero on a set of total measure.

Lyapunov exponents can be used to control a more familiar barometer of chaos,
namely the metric (or measure-theoretic) entropy. Entropy and Lyapunov exponents of
C1 diffeomorphisms are related by Ruelle’s inequality, which states that for f ∈ Diff1(M)

preserving a Borel probability μ,

hμ( f ) ≤
∫

M

∑

χi(x)≥0

dim
(
Ei(x)

)
χi(x) dμ(x).
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For μ = m, the reverse equality was proved by Pesin for all f ∈ Diff2
vol(M) and gener-

ically in Diff1
vol(M) by Tahzibi [T1] and Sun–Tian [ST]. In particular for generic

f ∈ Diff1
vol(M), the metric entropy vanishes exactly when the second case of Theorem B

occurs. Hence Theorem B implies Theorem A.
In his 1983 address mentioned above, Mañé proposed to study how the “Oseledets

splitting” (2) varies as a function of the diffeomorphism f , in the C1 topology. A diffeo-
morphism f of a compact manifold M is Anosov if there exists a continuous Df -invariant
splitting

(3) TM = Eu ⊕ Es

and 0 < λ < 1, n0 ∈ N, such that ‖Df n|Eu‖ ≤ λn and ‖(Df n|Es)−1‖ ≤ λn for every n ≥ n0.
In this case, the (measurable) Oseledets splitting (2) refines the (continuous) Anosov split-
ting (3) and the Lyapunov exponents are nonzero (either smaller than −| log(λ)| or larger
than +| log(λ)|). This property is extremely rigid in low dimension (and conjecturally
rigid in all dimensions): in particular, if f is an Anosov diffeomorphism of a surface, then
M is a torus, and f is topologically conjugate to a hyperbolic linear automorphism. Thus
the Mañé–Bochi theorem implies that if M is not a torus, then the C1-generic area-
preserving diffeomorphism of M has metric entropy 0.

However, in higher dimensions uniform hyperbolicity is too much to aim for: any
volume-preserving diffeomorphism admitting a dominated splitting must have robustly posi-
tive metric entropy. A diffeomorphism f ∈ Diff1(M) is said to admit a (global) dominated
splitting if there exists a continuous non-trivial decomposition TM = E1 ⊕ E2 that is Df -
invariant and satisfies

∥∥(
Df N

∣∣E1

)−1∥∥∥∥Df N
∣∣E2

∥∥ < 1,

for some N ∈ N. Thus f is an Anosov map if and only if it admits a uniformly hyperbolic
dominated splitting.

While in dimension 2 a dominated splitting for an area-preserving diffeomorphism
is always Anosov, already in dimension 3 there are manifolds that do not support Anosov
dynamics, but which are compatible with a dominated splitting.1

In the presence of robust obstructions to uniform hyperbolicity, the best one can
hope for is to obtain a dominated splitting TM = E+ ⊕ E− that is non-uniformly hyperbolic,
in the sense that there exists χ0 > 0 such that for m-a.e. x ∈ M, each Lyapunov exponent
is either smaller than χ0 or larger than χ0. This leads to:

Definition. — A diffeomorphism f ∈ Diff1
vol(M) admitting a non-uniformly hyperbolic domi-

nated splitting will be called non-uniformly Anosov. Equivalently, f is non-uniformly Anosov if it

1 On the unit tangent bundle of a hyperbolic surface, the geodesic flow is Anosov; hence its time-one map is a
diffeomorphism preserving a dominated splitting. However this manifold does not support any Anosov diffeomorphism,
since, in dimension 3, only the torus has this property (Franks–Newhouse theorem [F, N]).
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possesses a dominated splitting TM = E+ ⊕ E− and if there exists 0 < λ < 1 such that for m-almost

every x ∈ M, there exists n0(x) ∈ N such that ‖Df n(x)|E−(x)‖ ≤ λn an ‖Df −n(x)|E+(x)‖ ≤ λn

for every n ≥ n0(x).

The class of non-uniformly Anosov diffeomorphisms is strictly larger than the
Anosov class; Shub and Wilkinson [SW] constructed an open set of non-uniformly
Anosov diffeomorphisms in Diff2

vol(T
3) that are not Anosov. (Their construction is at the

root of one of the arguments used in this paper; see Section 1.)
The existence of a dominated splitting is a robust dynamical property (i.e., stable

under perturbations in Diff1(M)), as is uniform hyperbolicity. A striking consequence of
Theorem B (proved in Section 4.1) is thus:

Corollary 1. — A map f ∈ Diff1
vol(M) has robust positive metric entropy if and only if it admits

a dominated splitting.

These results highlight the unique features of the C1 topology. At least conjec-
turally, sufficiently regular volume-preserving diffeomorphisms are expected to be com-
patible with a quite different phenomenon: the coexistence of quasiperiodic behavior
(where Lyapunov exponents vanish) with chaotic, non-uniformly hyperbolic behavior (in-
ducing positive metric entropy). Even on surfaces, this problem remains open.

Discussion and questions. — We return briefly to the question posed at the beginning
of the paper: Is ergodicity a generic property in Diff1

vol(M)? Some partial results are known.
Bonatti and Crovisier proved [BC] that transitivity (i.e., existence of a dense orbit) is
a generic property in Diff1

vol(M) (the topological mixing also holds [AC]). A property
in between transitivity and ergodicity with respect to volume is metric transitivity, where
almost every orbit is dense. A weaker question is thus:

Question 1. — Is metric transitivity generic in Diff1
vol(M)?

The next question relates to the Oxtoby–Ulam technique [OU]. If f has entropy 0,
then the results in [BDP], [BC] and [Av] show that it can be perturbed to have a dense
set of periodic balls.

Question 2. — Can every f ∈ Diff1
m(M) of entropy 0 be C1 approximated by an almost

everywhere periodic diffeomorphism (i.e. a diffeomorphism whose periodic points have full measure)?

In the case of C1-generic diffeomorphisms with positive entropy, a next goal would
be to describe better their measurable dynamics. Some additional argument gives the
following corollary of Theorem B, which is proved in Section 4.2:

Corollary 2. — The generic f ∈ Diff1
vol(M) with positive metric entropy is weakly mixing.
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Due to the lack of regularity in Diff1
vol(M) we cannot use Pesin theory to get the

Bernoulli property to be generic.

Question 3. — Are generic nonuniformly Anosov diffeomorphisms in Diff1
m(M) Bernoulli? or at

least strongly mixing?

Even among the class of C1 Anosov diffeomorphisms, genericity of the mixing
condition is an open question.

When M is endowed with a symplectic form ω, one may also consider the space
of diffeomorphisms Diff1

ω(M) that preserve ω. For “technical reasons,” Mañé focuses on
this case in [M]: the symplectic rigidity imposes some symmetry in the Oseledets splitting.
The argument developed in the present paper (Theorem C below) can not be transposed
in this setting. Some partial results have been obtained for C1-generic symplectomor-
phisms: for instance [ABW] proves that if there exists an invariant global dominated
splitting, then the volume is ergodic (but it is not non-uniformly hyperbolic, unless the
diffeomorphism is Anosov). In an upcoming work we will prove the symplectic version
of Theorem A, using different (and simpler!) methods that are special to the symplectic
setting.

1. The main technique: localized, pointwise perturbations of central
Lyapunov exponents

From the development of Pesin Theory and the gradual taming of (sufficiently reg-
ular) non-uniformly hyperbolic dynamics which followed ([P], [Ka]), it has been a central
problem to understand how often such systems arise. While it is understood that the “op-
posite” behavior, the vanishing of all Lyapunov exponents, does appear robustly (through
the KAM mechanism), it has been proposed by Shub and Wilkinson ([SW], Question 1a)
that for typical orbits of a generic Cr conservative dynamical system, the presence of some
non-zero Lyapunov exponent implies in fact that all Lyapunov exponents are non-zero.
Such an optimistic picture was motivated by an argument, introduced in the same paper,
which allows one to leverage (in a particularly controlled setting) the non-zero Lyapunov
exponents to “perturb away” the zero Lyapunov exponents.

The specific situation considered by Shub and Wilkinson consisted of a trivial circle
extension of a linear Anosov map. This is a partially hyperbolic dynamical system with
a one-dimensional central direction along which the Lyapunov exponent vanishes every-
where. Through a carefully designed perturbation, the central bundle borrows some of
the hyperbolicity from the uniformly expanding bundle, so the average central Lyapunov
exponent becomes positive. In order to show that the actual Lyapunov exponent along
the center is non-zero almost everywhere, they observe that the system can be, at the
same time, made ergodic by a separate argument (based on the Pugh–Shub ergodicity
mechanism).
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This argument has been pursued further, in low regularity, by Baraviera and Bon-
atti [BaBo]. They consider conservative diffeomorphisms admitting a dominated splitting
TM = E1 ⊕ · · · ⊕ Ek and show that the average of the sum of the Lyapunov exponents
along any subbundle can be made non-zero by a C1 perturbation. This result was used
by Bochi, Fayad and Pujals in [BFP] to show that stably ergodic diffeomorphisms, which
admit a dominated splitting by [BDP], can be made non-uniformly hyperbolic by pertur-
bation.

In a sense, here we do just the opposite of [BFP]: we show the generic absence
of zero Lyapunov exponents almost everywhere (under the positive entropy assumption)
is a means to conclude ergodicity (via [AB]). In order to do this, we must develop a
perturbation argument that can affect directly the actual Lyapunov exponents of certain
orbits inside an invariant region, and not just their averages over the whole manifold.
Without an assumption of ergodicity, these can be different. This is obtained through
the following local, pointwise version of Baraviera–Bonatti’s argument [BaBo] (see also
[SW]). Even for a diffeomorphism that preserves a globally partially hyperbolic structure,
this is a new result. A more precise statement will be given in Section 3.

If μ and ν are finite Borel measures on M, the notation μ ≤ ν means that μ(A) ≤
ν(A) for all measurable sets A. For f ∈ Diff1

m(M), x ∈ M, and a nontrivial subspace F ⊂
TxM, we denote by JacF( f , x) the Jacobian of Df restricted to F, i.e., the product of the
singular values of Df (x)|F.

Theorem C. — Let f ∈ Diff1
m(M), and let K ⊂ M be an invariant compact set such that:

• K admits a dominated splitting TKM = E1 ⊕ E2 ⊕ E3 into three non-trivial subbundles;

• for almost every point x ∈ K one has

lim sup
n→±∞

1
n

log JacE2(x)

(
f n, x

) ≤ 0.

Then for every ε > 0 and every small neighborhood Q of K, there exists a diffeomorphism g arbitrarily

close to f in Diff1
m(M) such that for every g-invariant measure ν such that ν ≤ m|Q and ν(M) ≥ ε,

one has
∫

log JacE2( g,x)( g, x)dν(x) < 0.

In the previous statement the fibers of the bundles E1, E2, E3 do not necessarily
have constant dimension, but one can easily reduce the theorem to this case by decom-
posing the compact set K. The expression E1( g) ⊕ E2( g) ⊕ E3( g) denotes the continuation

of the dominated splitting for the diffeomorphism g on any g-invariant set contained in a
neighborhood of Q. (See Section 2.1.2.)

We remark that the existence of a global dominated splitting, which is a starting
point in [SW] and [BaBo], is here also obtained as a consequence of non-uniform hyper-
bolicity (again, via [AB]). The hypothesis of positive entropy (and hence the existence of
some non-zero Lyapunov exponents) is however enough to obtain local dominated split-
tings, thanks to a result of Bochi and Viana [BV2] who showed that, for almost every orbit
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of generic conservative diffeomorphisms, the Oseledets splitting extends continuously to
a dominated splitting on its closure.

Our basic technique is the following. First, we may assume that the initial (generic)
diffeomorphism has a positive measure set K of orbits having some, but not all, non-zero
Lyapunov exponents (otherwise [AB] yields the conclusion at once). Consider a suffi-
ciently long segment of a typical orbit that admits a dominated splitting E1 ⊕ E2 ⊕ E3,
where E2 corresponds to zero Lyapunov exponents. If this orbit segment is long enough,
then it “sees” the Lyapunov exponents of the orbit. We can then reproduce the perturba-
tion technique of [SW] and [BaBo] along the orbit: since this technique concerns average
exponents, we first thicken the initial point to a small positive measure set, and conclude
that the average of the sum of the Lyapunov exponents along the central bundle can be
decreased. In order to produce a pointwise estimate, we use a randomization technique
introduced by Bochi in [Boc2], which allows us to apply the Law of Large Numbers to
promote the averaged estimate to a pointwise one. Using a standard towers technique,
this argument can be carried out simultaneously a large set of the orbits remaining within
the domain of definition U of the local dominated splitting.

Naturally, the perturbation changes the dynamics, so in principle the decrease of
the sum of Lyapunov exponents could be cancelled later. In fact the dynamics could
change so much that many orbits escape U and we lose all control, but this “loss of mass”
is an irreversible event and thus relatively harmless. As for possible cancellations, we sim-
ply assume away the problem by restricting attention to the case where the Lyapunov
exponents along E2 are non-positive for almost every orbit that remains within U. Re-
markably, this seemingly very strong hypothesis can be in fact verified along the steps of a
carefully designed inductive argument. In any case, with this assumption we can conclude
directly that for most orbits remaining in U the number of zero Lyapunov exponents is
strictly less than the dimension of E2, after perturbation.

Iterating this argument, we eventually succeed in either eliminating all non-zero
Lyapunov exponents, or in obtaining vanishing Lyapunov exponents almost everywhere
(this happens when we keep running into the situation where orbits escape the domains
of definition of local dominated splittings).

2. A dichotomy for conservative diffeomorphisms

In this section we prove Theorem B assuming Theorem C.

2.1. Dominated splittings and center Jacobians. — Let f ∈ Diff1(M). We recall well-
known properties of dominated splittings. As before d = dim(M).

2.1.1. Given an f -invariant compact set Kf , we say that f |Kf admits a dominated

splitting of type (d1, d2, d3) (where d1, d2, d3 ≥ 0 and d1 +d2 +d3 = d ) if there is an f -invariant



DIFFEOMORPHISMS WITH POSITIVE METRIC ENTROPY 327

splitting TxM = E1(x) ⊕ E2(x) ⊕ E3(x) defined over K, where E∗(x) = E∗( f , x) are sub-
spaces of dimension d∗, ∗ = 1,2,3, and there is an n ∈ N such that for each x ∈ K one
has

∥∥(
Df n(x)

∣∣E1(x)
)−1∥∥ <

∥∥Df n(x)
∣∣E2(x)

∥∥−1
,

∥∥(
Df n(x)

∣∣E2(x)
)−1∥∥ <

∥∥Df n(x)
∣∣E3(x)

∥∥−1
.

In other words, the smallest contraction along E1 and the largest expansion along E3

dominate the behavior along E2. For a fixed d1, d2, d3, the E∗(x) are uniquely defined in
this way and depend continuously on x.

2.1.2. This dominated splitting is robust in the following sense. Consider an ar-
bitrary continuous extension of the E∗(x) to a neighborhood of Kf and consider arbitrary
metrics on the Grassmanian manifolds of M. Then for every α > 0, there are neighbor-
hoods V ⊂ Diff1(M) of f and V ⊂ M of Kf such that if g ∈ V and Kg ⊂ V is a compact
invariant set, then g|Kg admits a dominated splitting of type (d1, d2, d3), and moreover
the spaces E∗( g, x) are α-close to (the extension of) E∗( f , x) for every x ∈ Kg .

2.1.3. Given a compact set Q ⊂ M, we let K( f ,Q ) = ⋂
n∈Z f n(Q ) be its maxi-

mal f -invariant subset. Notice that K( g,Q ) ⊂ V for every neighborhood V of K( f ,Q )

and every g ∈ Diff1(M) close to f in the C0 topology.
The previous paragraph thus implies that the set of all g ∈ Diff1(M) such that

g|K( g,Q ) admits a dominated splitting of type (d1, d2, d3) is open. This includes the diffeo-
morphisms g such that K( g,Q ) is empty.

2.1.4. Let Xf ⊂ M be the set of Oseledets regular points x of f , i.e. which have well-
defined Oseledets splitting and Lyapunov exponents

λ1( f , x) ≥ λ2( f , x) ≥ · · · ≥ λd( f , x).

By Oseledets’s theorem, Xf is a measurable f -invariant set of total measure. Moreover,
the Lyapunov exponents define d functions λ1, . . . , λd ∈ L1(μ).

For any regular point x, by summing all the directions associated to the positive,
zero, or negative Lyapunov exponents, we obtain a splitting:

TxM = E+(x) ⊕ E0(x) ⊕ E−(x).

The dimensions dim(E+(x)), dim(E−(x)) are called unstable and stable dimensions of x.
An invariant probability measure is hyperbolic if for almost every point the Lyapunov

exponents are all different from zero.
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2.1.5. For x ∈ M and a subspace F ⊂ TxM, we let

�F( f , x) = lim
n→±∞

1
n

log JacF

(
f n, x

)
,

which is well-defined on a set of x of total measure. If x is Oseledets regular, and F is a
sum of Oseledets subspaces, then 1

n
log JacF( f n, x) converges to the sum of the Lyapunov

exponents of f along F. Moreover if ν is an f -invariant finite Borel measure, and F(x) ⊂
TxM is a measurable f -invariant distribution of subspaces defined ν-almost everywhere,
then for every n ≥ 1 we have

∫
�F(x)( f , x)dν(x) = 1

n

∫
log JacF(x)

(
f n, x

)
dν(x).

2.1.6. Recall that if μ and ν are finite Borel measures, the notation μ ≤ ν means
that μ(A) ≤ ν(A) for all measurable sets A. This property is equivalent to the two con-
ditions: μ is absolutely continuous with respect to ν and the Radon–Nikodym derivative
dμ/dν is essentially bounded above by 1. When ν is fixed, the set of measures μ satisfying
μ ≤ ν is clearly compact in the weak-∗ topology.

2.1.7. Recall that m is a smooth volume on M. For ε > 0 and Q ⊂ M compact,
we denote by Gε(Q, d1, d2, d3) the set of all g ∈ Diff1(M) such that

• g|K( g,Q ) admits a dominated splitting of type (d1, d2, d3) (including the case
where K( g,Q ) = ∅),

• for every g-invariant measure ν ≤ m|Q satisfying ν(M) ≥ ε, one has

∫
JacE2( g,x)( g, x)dν(x) < 0.

The compactness of the set of ν satisfying ν ≤ m|Q and the openness of the dominated
splitting condition give:

Lemma 2.1. — For every ε > 0, the set Gε(Q, d1, d2, d3) is open in Diff1(M).

Proof. — Consider ( gn) converging to g in Diff1(M) and assume gn /∈ Gε(Q, d1, d2, d3).
We have to prove that g /∈ Gε(Q, d1, d2, d3). For the sake of contradiction, by Sec-
tion 2.1.2 it suffices to assume that the gn|K( gn,Q ) admit dominated splittings of type
(d1, d2, d3). Let νn ≤ m|Q be a sequence of gn-invariant measures satisfying νn(M) ≥ ε and∫

JacE2( gn,x)
( gn, x)dνn(x) ≥ 0. Let ν be a weak-∗ limit of νn. Then ν ≤ m|Q is g-invariant

and satisfies ν(M) ≥ ε and
∫

JacE2( g,x) dν(x) ≥ 0. Hence g /∈ Gε(Q, d1, d2, d3). �
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2.2. Oseledets blocks. — For f ∈ Diff1
m(M), the set of regular points Xf splits into

f -invariant measurable subsets Xf (d1, d2, d3), d1 + d2 + d3 = d and d∗ ≥ 0, defined as the
set of points admitting d1 positive, d2 zero and d3 negative Lyapunov exponents (counted
with multiplicity). Note that:

• Xf (0, d,0) is the set of points whose Lyapunov exponents are all zero;
• the set of non-uniformly hyperbolic points, denoted by Nuhf is the union of the sets

X(d1,0, d3), with d1, d3 > 0;
• by volume preservation, the other non-empty sets satisfy d1, d2, d3 > 0.

2.2.1. Domination. — Oseledets and dominated splittings coincide generically.

Theorem 2.2 (Bochi–Viana [BV2]). — For any diffeomorphism f in a dense Gδ subset of

Diff1
m(M) and for any ε > 0, for each Oseledets block Xf (d1, d2, d3) there exists an f -invariant

compact set K satisfying:

• f |K admits a dominated splitting of type (d1, d2, d3),

• m(Xf (d1, d2, d3) \ K) ≤ ε.

In the previous theorem, the set K is not necessarily contained in Xf (d1, d2, d3).

2.2.2. The non-uniformly hyperbolic set. — Generically the non-uniformly hyperbolic
set Nuhf coincides m-almost everywhere with a single Oseledets block.

Theorem 2.3 (Avila–Bochi [AB], Theorem A). — For any diffeomorphism f in a dense Gδ

subset of Diff1
m(M), either m(Nuhf ) = 0 or Nuhf is dense in M and the restriction m|Nuhf is

ergodic.

2.2.3. The set where all exponents vanish. — As a consequence we get (see also [AB],
Corollary 1.1):

Corollary 2.4. — For any diffeomorphism f in a dense Gδ subset of Diff1
m(M), if

m(Nuhf ) > 0, then there exists a global dominated splitting TM = E ⊕ F on M such that for

m-almost every point x ∈ Nuhf ,

v ∈ E(x) \ {0} =⇒ lim
n→∞

1
n

log
∥∥Dx f n(v)

∥∥ > 0,

and

v ∈ F(x) \ {0} =⇒ lim
n→∞

1
n

log
∥∥Dx f n(v)

∥∥ < 0.

In particular, Xf (0, d,0) = ∅.
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Proof. — Theorem 2.3 implies that, C1-generically, if Nuhf has positive volume,
then it is dense in M, the restriction of m is ergodic and it coincides with a set X(d1,0, d3).
Suppose then that m(Nuhf ) > 0, and let ε = m(Nuhf )/2. By Theorem 2.2, there ex-
ists an invariant compact set K with m(Nuhf \K) < ε that admits a non-trivial domi-
nated splitting. In particular, m(Nuhf ∩K) > 0; since m|Nuhf is ergodic, this implies that
m(Nuhf \K) = 0. This proves that the compact set K contains m-almost every point of
Nuhf , and hence coincides with M, since Nuhf is dense in M. We have thus proved that
M has a non-trivial dominated splitting, and so the set Xf (0, d,0) is empty. �

2.2.4. The other Oseledets blocks. — Using Theorem C we get:

Corollary 2.5. — For any diffeomorphism f in a dense Gδ subset of Diff1
m(M), the Oseledets

blocks Xf (d1, d2, d3) with d1, d2, d3 > 0 have volume zero.

Proof. — Let K be a countable family of compact sets of M such that for any
K ⊂ U ⊂ M, with K compact and U open, there exists Q ∈ K satisfying K ⊂ Q ⊂ U.
By Lemma 2.1, one can assume that for any Q ∈ K, any ε > 0 such that 1/ε ∈ N,
and any type (d1, d2, d3), the diffeomorphism f either belongs to Gε(Q, d1, d2, d3) or to
Diff1

vol(M) \ Gε(Q, d1, d2, d3).

Case 1. The case Nuhf has zero volume. — We prove by increasing induction on d2 + d3

that Xf (d1, d2, d3) has volume zero, for each triple (d1, d2, d3) with d1 + d2 + d3 = d and
d1, d2, d3 > 0. We thus fix (d1, d2, d3) and assume that m(Xf (d

′
1, d ′

2, d ′
3)) = 0 for each triple

(d ′
1, d ′

2, d ′
3) such that d ′

2 + d ′
3 < d2 + d3 and d ′

1, d ′
2, d ′

3 > 0.

Claim. — For any set Xf (d
′
1, d ′

2, d ′
3) with positive volume, one has d ′

2 + d ′
3 ≥ d2 + d3.

Proof. — We consider separately the three possible cases:

• (d ′
1, d ′

2, d ′
3) = (0, d,0): the claim holds trivially,

• d ′
1, d ′

2, d ′
3 are all nonzero: our inductive assumption implies the claim,

• d ′
2 = 0: this does not occur since Nuhf has zero volume. �

We fix ε > 0 with 1/ε ∈ N. By Theorem 2.2 there exists an invariant compact
set K (possibly empty) such that m(Xf (d1, d2, d3) \ K) is smaller than ε and such that f |K
admits a dominated splitting E1 ⊕ E2 ⊕ E3 of type (d1, d2, d3).

Almost every point x ∈ K belongs to a set Xf (d
′
1, d ′

2, d ′
3) with positive volume. By

the claim above, d ′
2 + d ′

3 ≥ d2 + d3. As a consequence E2( f , x) is contained in the sum
of the central and the stable spaces of the Oseledets decomposition at x. This implies
�E2( f ,x)( f , x) ≤ 0.

We have proved that the assumptions of Theorem C are satisfied. We choose
a small neighborhood Q ∈ K of K. There exists g arbitrarily close to f in Diff1

vol(M)
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such that for every invariant measure ν ≤ m|Q such that ν(M) ≥ ε, one has∫
X log JacE2( g,x) dν(x) < 0. In particular g belongs to Gε(Q, d1, d2, d3), and hence f

does as well (recall that f belongs to the union of the open sets Gε(Q, d1, d2, d3) and
Diff1

vol(M)\Gε(Q, d1, d2, d3)). It follows that Xf (d1, d2, d3)∩K has volume smaller than ε.
With our choice of K, this proves m(Xf (d1, d2, d3)) ≤ 2ε. Since ε > 0 has been arbitrarily
chosen we get m(Xf (d1, d2, d3)) = 0, as desired. The induction on d2 + d3 in {1, . . . , d −1}
concludes the proof in this case.

Case 2. The case Nuhf has positive volume. — In the case Nuhf has positive volume, we
modify the previous argument. By Theorem 2.3, there exists d+, d− such that Nuhf and
Xf (d+,0, d−) coincide up to a set of volume zero and by Corollary 2.4 there exists a
global domination TM = E ⊕ F with dim(E) = d+.

Claim. — If d2 + d3 ≤ d−, then for any set Xf (d
′
1, d ′

2, d ′
3) with positive volume, one has

d ′
2 + d ′

3 ≥ d2 + d3.

Proof. — One considers the three possible case:

• (d ′
1, d ′

2, d ′
3) = (0, d,0): the claim holds trivially,

• d ′
1, d ′

2, d ′
3 are all nonzero: our inductive assumption implies the claim,

• d ′
2 = 0: this implies Xf (d

′
1, d ′

2, d ′
3) = Nuhf ; hence d ′

2 + d ′
3 = d− ≥ d2 + d3. �

The induction of case 1 can thus be repeated while the condition d2 + d3 ≤ d− of
the claim holds. This proves that the Oseledets blocks X(d1, d2, d3) with d1, d2, d3 > 0 and
d2 + d3 ≤ d− have measure zero.

Replacing f by f −1, one gets the same conclusion for the blocks X(d1, d2, d3) with
d1, d2, d3 > 0 and d1 + d2 ≤ d+, i.e. such that d− ≤ d3. This completes the proof in this
second case. �

2.3. Proof of Theorem B. — Theorem 2.3 and Corollaries 2.4 and 2.5 now imply
Theorem B.

3. Local perturbations of center exponents

This section is devoted to the proof of the following, which implies Theorem C.

Theorem C’. — Let f ∈ Diff1
vol(M), and let K be an f -invariant compact set admitting a

dominated splitting TKM = E1 ⊕ E2 ⊕ E3 into three non-trivial subbundles. Then for any α > 0
small and for any neighborhood U ⊂ Diff1

vol(M) of the identity, there exists δ > 0 such that for any

η > 0, there exists n0 ≥ 1 satisfying the following property.

For any n ≥ n0, any compact neighborhood Q of K and any χ > 0, there exist a smooth

diffeomorphism ϕ ∈ U , and a measurable subset � ⊂ Q such that:
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• ϕ is supported on Q and is χ -close to the identity in the C0 topology,

• m(K \ �) < η,

• the diffeomorphism g = f ◦ ϕ satisfies

(4)
1
n

log JacF

(
gn, y

) ≤ 1
n

log JacE2( f ,y)

(
f n, y

) − δ,

for every y ∈ � such that y, gn( y) ∈ K, and every subspace F ⊂ TyM such that F is α-close

to E2( f , y) and Dgn( y) · F is α-close to E2( f , gn( y)).

Proof of Theorem C from Theorem C’. — Consider f , K, ε as in the statement of The-
orem C and small neighborhoods V ⊂ Diff1

vol(M) of f and Q ⊂ M of K such that the
maximal invariant set K( g,Q ) for any g ∈ V still has a dominated splitting that extends
the splitting TKM = E1 ⊕ E2 ⊕ E3 on K. We construct g satisfying the conclusion of the
Theorem C.

Let C0 be an upper bound for d log‖Dg(x)‖, where x ∈ M, g ∈ V . Fix α > 0 small.
Reducing V , Q if necessary, for any point x ∈ K( g,Q ) ∩ K the spaces E2( f , x) and
E2( g, x) are α-close. Theorem C’ applied to α, V , gives δ. One then chooses η > 0 smaller
than min(ε/10, δε/100C0) and Theorem C’ gives n0. We also take κ > 0 smaller than
min(ε/10, δε/100C0).

We choose n ≥ n0 and define the compact set

� =
{

x ∈ K,
1
n

log JacE2( f ,x)

(
f n, x

) ≤ δ/2
}
.

If n is large enough, K\� has measure less than κ . For χ > 0 sufficiently small, shrinking
if necessary the neighborhood Q, for any g such that g ◦ f −1 is χ -close to the identity in
the C0 topology, we have:

m
(
K \ g−n(K)

) ≤ κ, m
(
K( g,Q ) \ K

) ≤ κ.

Theorem C’ provides us with a diffeomorphism g ∈ V and a set � such that for
every x ∈ K( g,Q ) ∩ K ∩ � ∩ � ∩ g−n(K) one has

1
n

log JacE2( g,x)

(
gn, x

) ≤ 1
n

log JacE2( f ,x)

(
f n, x

) − δ ≤ −δ/2.

Moreover the complement of the set Z := K( g,Q ) ∩ K ∩ � ∩ � ∩ g−n(K) in
K( g,Q ) has volume smaller than 3κ + η.

If ν ≤ m|Q is a g-invariant measure with ν(M) ≥ ε, then ν(Z) ≥ ε −3κ −η ≥ ε/2.
Thus

∫
log JacE2( g,x)( g, x)dν(x) =

∫
1
n

log JacE2( g,x)

(
gn, x

)
dν(x)
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≤ C0ν(M \ Z) − δ

2
ν(Z)

< C0(3κ + η) − δε

4
< 0.

The result follows. �

The construction of the perturbation in Theorem C’ follows three natural steps,
and will occupy the remainder of this section.

3.1. Infinitesimal. — Let Rd = E+ ⊕E0 ⊕E− be an orthogonal decomposition, and
set d0 = dim(E0). Let G ⊂ Rd be a two-dimensional subspace that intersects both E0 and
E− in one-dimensional subspaces, endowed with an arbitrary orientation. For a subspace
F ⊂ Rd , we let F⊥ denote its orthogonal complement, and we let PF : Rd → F be the
projection with kernel F⊥. For θ ∈ R, let Rθ : Rd → Rd be the orthogonal operator that is
the identity on G⊥ and that restricted to G is a rotation of angle 2πθ (measured according
to the chosen orientation).

Elementary perturbation. — We introduce a diffeomorphism ψε which will be used at dif-
ferent places for the perturbation. Let α : Rd → R be a smooth function with the follow-
ing properties:

• α(x) = 0 for x in the complement of the unit ball B := {x,‖x‖ ≥ 1},
• α(x) = 1 for ‖x‖ ≤ 1/2,
• ‖α‖C0 ≤ 1,
• α(Rθ · x) = α(x) for every θ ∈ R and x ∈ Rd .

Given ε > 0, let ψε : Rd → Rd be defined by ψε(x) = Rεα(x) · x. It is a smooth, volume-
preserving diffeomorphism of Rd and is the identity outside the unit ball. See Figure 1.
We have ‖ψε − Id‖C1 ≤ κε for some constant κ > 0.

Let με be a probability measure in SL(d,R) given by the push-forward under
x �→ Dψε(x) of normalized Lebesgue measure m on the unit ball. Note that for every
A ∈ suppμε, we have A · (E0 + G) = (E0 + G). We set

(5) c(ε) = −
∫

log JacE0(PE0 · A)dμε(A).

Taking ε > 0 small enough, the A ∈ suppμε are close enough to the identity so that the
log JacE0(PE0 · A) are uniformly bounded. Consequently, c(ε) is finite.

We describe the effect of an elementary perturbation averaged on the unit ball.

Lemma 3.1. — For every ε > 0 sufficiently small, we have c(ε) > 0.
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FIG. 1. — The map ψε

Proof. — Observe that for any x0 ∈ G⊥, x �→ PE0 · ψε(x0 + x) defines a diffeomor-
phism of G that is the identity outside the ball of radius max(0, (1 − |x0|2)1/2). In partic-
ular, Fubini’s theorem implies

∫

SL(d,R)

JacE0(PE0 · A)dμε(A) =
∫

B
JacE0

(
PE0 · Dψε(z)

)
dm(z)(6)

=
∫

G⊥ ∫
G JacE0 (PE0 ·Dψε(x0+x)) dx dx0=1.

Observe also that for |x| < 1/2 we have JacE0(PE0 ·Dψε(x)) = cos(2πε) < 1. Thus c(ε) >

0 follows from Jensen’s inequality:

−
∫

log JacE0(PE0 · A)dμε(A) > − log
(∫

SL(d,R)

JacE0(PE0 · A)dμε(A)

)

= 0. �

Random composition of elementary perturbations. — By the Law of Large Numbers, the effect
of an elementary perturbation composed along most random sequences of points of the
unit ball is the same as the average effect of a single elementary perturbation.

Proposition 3.2. — If ε > 0 is small, there exists λ ∈ (0,1/4) such that for every θ > 0 there

exist R0 ∈ N and for each R ≥ R0 a compact set WR ⊂ SL(d,R)R with μ⊗R
ε (SL(d,R)R \WR) <

θ with the following property. Let R ≥ R0 and let Lj : Rd → Rd , 0 ≤ j ≤ R − 1, be invertible linear
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operators preserving E+, E0 and E− such that

∥∥Lj

∣∣E0
∥∥ · ∥∥L−1

j

∣∣E+∥∥ ≤ λ and
∥∥Lj

∣∣E−∥∥ · ∥∥L−1
j

∣∣E0
∥∥ ≤ λ.

Then

log JacF

(
(LR−1 · AR−1) · · · (L1 · A1) · (L0 · A0)

)

<

R−1∑

j=0

log JacE0(Lj) − c(ε)

2
R,

for every (A0, . . .AR−1) ∈ WR and for every d0-dimensional subspace F such that ‖PE−|F‖ ≤ 1/2
and ‖PE+|(LR−1 · AR−1 · · ·L0 · A0) · F‖ ≤ 1/2.

The proof will use the following lemma about dominated splittings.

Lemma 3.3. — There exists C > 0 such that if ε > 0 is sufficiently small, then the following

holds. Let L : Rd → Rd be an invertible linear operator that preserves each of E+, E0 and E−, and

assume that for some λ ∈ (0,1/4) we have

(7)
∥∥L

∣∣E0
∥∥ · ∥∥L−1

∣∣E+∥∥ ≤ λ and
∥∥L

∣∣E−∥∥ · ∥∥L−1
∣∣E0

∥∥ ≤ λ.

Let A ∈ suppμε and let F ⊂ Rd be a d0-dimensional subspace. Then (7) implies:

1. if ‖PE−|F‖ ≤ 1/2 then ‖PE−|(L · A) · F‖ ≤ λ;

2. if ‖PE+|(L · A) · F‖ ≤ 1/2 then ‖PE+|F‖ ≤ λ; and

3. if ‖PE−|F‖,‖PE+|(L · A) · F‖ ≤ γ , for some γ ∈ (0,1/2), then

log JacF(L · A) < log JacE0(L) + log JacE0(PE0 · A) + C(λ + γ ).

Proof. — If v ∈ Rd is a unit vector with ‖PE− · v‖2 ≤ 1/2, then ‖PE− · v‖ ≤
‖PE+⊕E− · v‖. With (7) this gives

∥∥(PE− · L) · v∥∥ = ∥∥(L · PE−) · v∥∥ ≤ λ
∥∥(L · PE+⊕E0) · v∥∥

= λ
∥∥(PE+⊕E0 · L) · v∥∥.

Since ε > 0 is small, ‖PE−|F‖ ≤ 1/2 implies ‖PE−|A ·F‖2 ≤ 1/2. The first estimate follows.
Symmetrically if v ∈ Rd is a unit vector with ‖PE+ · v‖2 ≤ 1/2, then

∥∥(
PE+ · L−1

) · v∥∥ = ∥∥(
L−1 · PE+

) · v∥∥ ≤ λ
∥∥(

L−1 · PE0⊕E−
) · v∥∥

= λ
∥∥(PE0⊕E− · L) · v∥∥.

Since ε > 0 is small, ‖PE+|(L · A) · F‖ ≤ 1/2 implies ‖PE+|L · F‖2 ≤ 1/2. The second
estimate follows.
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For any unit vector v ∈ Rd such that ‖PE− · v‖2 ≤ 1/2 and ‖PE+ · L · v‖ ≤ γ ‖L · v‖,
∥∥L · v − (PE0 · L) · v∥∥ ≤ ∥∥(PE+ · L) · v∥∥ + ∥∥(PE− · L) · v∥∥

≤ γ ‖L · v‖ + λ
∥∥(PE+⊕E0 · L) · v∥∥

≤ (γ + λ)‖L · v‖.
Thus if F ⊂ Rd satisfies ‖PE−|F‖ ≤ 1/2 (and hence ‖PE−|A · F‖2 ≤ 1/2) and ‖PE+|(L · A) ·
F‖ ≤ γ , we can write L|A · F as SF · L · (PE0|A · F), where SF : E0 → Rd is a linear map
with ‖SF‖ ≤ (1 − γ − λ)−1. We conclude that

log JacF(L · A) ≤ −d0 log(1 − γ − λ) + log JacE0(L) + log JacF(PE0 · A).

On the other hand, the function log JacF(PE0 · A) is uniformly (on A ∈ suppμε) Lipschitz
as a function of those F satisfying ‖PE+⊕E−|A · F‖ ≤ 1/2. Thus

∣∣log JacF(PE0 · A) − log JacE0(PE0 · A)
∣∣ ≤ C0‖PE+⊕E−|F‖,

for some C0 > 0. Since ‖PE+⊕E−|F‖ ≤ ‖PE−|F‖ + ‖PE+|F‖ ≤ γ + λ, the third estimate
follows. �

Proof of Proposition 3.2. — Define Fj , 0 ≤ j ≤ R by F0 = F, Fj+1 = Lj · Aj · F. First
notice ‖PE+|FR‖ ≤ 1/2 and ‖PE−|F0‖ ≤ 1/2 imply, by iterated application of estimates
(1–2) in the previous lemma, that ‖PE+|Fj‖ ≤ λ for 0 ≤ j ≤ R − 1, while ‖PE−|Fj‖ ≤ λ

for 1 ≤ j ≤ R. By item (3) in Lemma 3.3 we get that log JacFj
(Lj · Aj) − (log JacE0(Lj) +

log JacE0(PE0 · Aj)) is at most 2Cλ if 1 ≤ j ≤ R − 2, and at most Cλ + C
2 for j = 0 or

j = R − 1. It follows that

log JacF

(
(LR−1 · AR−1) · · · (L0 · A0)

)

≤
R−1∑

j=0

log JacE0(Lj) +
R−1∑

j=0

JacE0(PE0 · Aj) + 2CRλ + C.

If 0 < λ ≤ (10C)−1c(ε) and R ≥ 10Cc(ε)−1, this gives

log JacF

(
(LR−1 · AR−1) · · · (L0 · A0)

)

≤
R−1∑

j=0

log JacE0(Lj) +
R−1∑

j=0

JacE0(PE0 · Aj) + 3c(ε)

10
R.

Recalling the definition (5) of c(ε), the Law of Large Numbers implies that for
every θ > 0, if R is sufficiently large, the probability, with respect to μ⊗R

ε , that

1
R

R−1∑

j=0

JacE0(PE0 · Aj) ≥ −4c(ε)

5

is less than θ . The result follows. �
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3.2. Local. — In the second step, we explain how to perturb along an orbit.

Proposition 3.4. — If ε > 0 is small, there exists λ ∈ (0,1/4) such that for every θ > 0 there

exists R0 ∈ N with the following property. Let R ≥ R0, N ≥ R, and let fj : (Rd,0) → (Rd,0),

0 ≤ j ≤ N − 1, be germs of volume-preserving diffeomorphisms such that the Lj = Dfj(0) preserve E+,

E0 and E−, and such that

∥∥Lj

∣∣E0
∥∥ · ∥∥L−1

j

∣∣E+∥∥ ≤ λ and
∥∥Lj

∣∣E−∥∥ · ∥∥L−1
j

∣∣E0
∥∥ ≤ λ.

Then for every small neighborhood U of 0 ∈ Rd , and 0 ≤ j ≤ N − 1, there exist measurable

subsets Zj of Uj := fj−1 ◦ · · · ◦ f0(U), smooth volume-preserving diffeomorphisms ϕj : Rd → Rd and

perturbations f̃j := fj ◦ ϕj such that:

• m(Zj) ≥ (1 − 2θ)m(Uj),

• ϕj coincides with Id outside Uj and Dϕj(x) ∈ suppμε for every x ∈ Rd ,

• for any 0 ≤ j ≤ N − R, any y ∈ Zj and any d0-dimensional space F satisfying ‖PE−|F‖ ≤
1/3 and ‖PE+|D( f̃j+R−1 ◦ · · · ◦ f̃j)( y) · F‖ ≤ 1/3, we have:

log JacF( f̃j+R−1 ◦ · · · ◦ f̃j, y) ≤ JacE0(Lj+R−1 ◦ · · · ◦ Lj) − c(ε)

3
R.

The proof of Proposition 3.4 uses the following lemma, which allows us to construct
a sequence of perturbations along an orbit that act like random perturbations.

Lemma 3.5. — Consider a sequence fj : Uj → Uj+1, 0 ≤ j ≤ N−1, of C1 volume-preserving

diffeomorphisms between bounded open sets of Rd and f j = fj−1 ◦ · · · ◦ f0. Let ψj be volume-preserving

diffeomorphisms of Rd supported on the unit ball B. Let μj be the push-forward of normalized Lebesgue

measure m on B under the map

B � x �→ Dψj(x) ∈ SL(d,R).

Then for any χ > 0 there exist orientation- and volume-preserving diffeomorphisms ϕj of Rd

such that, setting f̃j = fj ◦ ϕj and f̃ j = f̃j−1 ◦ · · · ◦ f̃0, we have:

1. for 0 ≤ j ≤ N−1, the diffeomorphism ϕj is χ -close to the identity in the C0-distance, equals

Id outside Uj , and satisfies Dϕj(x) ∈ suppμj for each x ∈ Rd ;

2. the push-forward of normalized Lebesgue measure m on U0 under the map

U0 � x �→ (
Dϕj

(
f̃ j(x)

))N−1

j=0
∈ SL(d,R)N

is arbitrarily close to μ0 ⊗ · · · ⊗ μN−1.

Proof. — The proof is by induction on N. For N = 0 there is nothing to do. Assume
it holds for N−1, and apply the result for the sequence ( fj)0≤j≤N−2, yielding the sequence
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(ϕj)0≤j≤N−2. Define f̃j and f̃ j as before, and let νN−1 be the push-forward of normalized
Lebesgue measure on U0 under the map

HN−1 : U0 � x �→ (
Dϕj

(
f̃ j(x)

))N−2

j=0
∈ SL(d,R)N−1,

so that νN−1 is arbitrarily close to μ0 ⊗ · · · ⊗ μN−2.
For n ∈ N, let {Dn

�}� be a finite family of disjoint closed balls in UN−1 chosen using
the Vitali lemma such that:

• diam(Dn
�) < n−1;

• defining D̂n
� ⊂ U0 by Dn

� = f̃ N−1(D̂n
�), we have:

∑
� m(D̂n

�) ≥ (1 − n−1)m(U0);
• if x, y ∈ D̂n

� then ‖HN−1(x) − HN−1( y)‖ ≤ n−1.

Let ξn,� be the conformal affine dilation that sends B into Dn
�. Define ϕN−1,n to be

the identity outside
⋃

� Dn
� and by

ϕN−1,n(x) = ξn,�ψN−1

(
ξ−1

n,� x
)
, x ∈ Dn

�.

Let νN,n be the push-forward of normalized Lebesgue measure on U0 under

HN,n : U0 � x �→ (
HN−1(x),DϕN−1,n

(
f̃ N−1(x)

)) ∈ SL(d,R)N.

The properties of the first item are immediate. For instance diam(Dn
�) < n−1 above implies

that, for n large enough, ϕN−1,n is C0-close to the identity.
Since νN−1 is close to μ0 ⊗ · · · ⊗ μN−2, it is enough to show that limn→∞ νN,n =

νN−1 ⊗ μN−1 to establish the second item. Equivalently, we must show that for a dense
subset of compactly supported, continuous functions ρ : SL(d,R)N → R, we have

(8) lim
n→∞

∫
ρ dνN,n =

∫
ρ dνN−1 ⊗ dμN−1.

Take ρ to be Lipschitz with constant Cρ . Since diam(HN−1(D̂n
�)) ≤ n−1, the quan-

tities

1

m(D̂n
�)

∫

D̂n
�

ρ
(
HN,n(x)

)
dx,

and

1

m(D̂n
�)

2

∫

D̂n
�

∫

D̂n
�

ρ
(
HN−1(x),DϕN−1,n

(
f̃ N−1( y)

))
dx dy

differ by at most Cρn−1. By construction, for any x ∈ D̂n
� we have

1

m(D̂n
�)

∫

D̂n
�

ρ
(
HN−1(x),DϕN−1

(
f̃ N−1( y)

))
dy
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=
∫

SL(d,R)

ρ
(
HN−1(x), z

)
dμN−1(z),

so that
∣∣∣∣
∫

⋃
� D̂n

�

ρ
(
HN,n(x)

)
dx −

∫ ∫

⋃
� D̂n

�

ρ
(
HN−1(x), z

)
dx dμN−1(z)

∣∣∣∣(9)

≤ Cρm

(⋃

�

D̂n
�

)
n−1.

Clearly
∣∣∣∣
∫

ρ dνN,n − 1
m(U0)

∫

⋃
� D̂n

�

ρ
(
HN,n(x)

)
dx

∣∣∣∣ ≤ ‖ρ‖∞n−1 and

∣∣∣∣
∫

ρ dνN−1 ⊗ dμN−1 − 1
m(U0)

∫ ∫

⋃
l D̂n

�

ρ
(
HN−1(x), z

)
dx dμN−1(z)

∣∣∣∣

≤ ‖ρ‖∞n−1,

so that (9) implies (8). �

Proof of Proposition 3.4. — Use Proposition 3.2 to select λ, R0 and compact sets WR.
Lemma 3.5 applied with ψj = ψε gives the ϕj . In particular, for every 0 ≤ j ≤ N − R,
there exists Zj ⊂ Uj with m(Zj) > (1 − 2θ)m(Uj) such that the image under

Uj � x �→ (
Dϕn

(
f̃ n−j(x)

))j+R−1

n=j
∈ SL(d,R)R

of the set Zj is arbitrarily close to WR. It follows that if y is a point in Zj and if F is
a d0-dimensional space satisfying ‖PE−|F‖ ≤ 1/3 and ‖PE+|F′‖ ≤ 1/3 for F′ = (Lj+R−1 ·
Aj+R−1) · · · (Lj · Aj) · F, then

log JacF

(
(Lj+R−1 · Aj+R−1) · · · (Lj · Aj)

) ≤ log JacE0(Lj+R−1 · · ·Lj)

− 2c(ε)

5
R,

where we denote Aj+i = Dϕj+i( f̃j+i−1 ◦ · · · ◦ f̃j( yj)).
Since the fi are diffeomorphisms, if the neighborhood U is small enough,

log JacF

(
D( f̃j+R−1 ◦ · · · ◦ f̃j)( yj)

) ≤ log JacF

(
(Lj+R−1 · Aj+R−1) · · · (Lj · Aj)

)

+ c(ε)

20
R.

The result follows. �
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3.3. Global: proof of Theorem C’. — Using the local perturbation technique along
orbits, we define in this third step the global perturbation by building towers.

Proof of Theorem C’. — Let Bξ ⊂ Rd be the ball centered at the origin of radius ξ > 0
small. Fix a precompact family of volume-preserving smooth embeddings �x : Bξ → M,
x ∈ K, such that �x(0) = x and D�x(0) sends E+, E0, E− to E1(x), E2(x) and E3(x),
respectively.

Let α > 0 be small enough so that (from the dominated splitting TKM = E1 ⊕
E2 ⊕ E3) for all x ∈ K, if F is α-close to E2(x) then for each j ≥ 0 the image Df j(x) · F
is close to a subspace of E1( f j(x)) ⊕ E2( f j(x)) and Df −j(x) · F is close to a subspace of
E2( f −j(x)) ⊕ E3( f −j(x)). In particular for every j ≥ 0,

∥∥PE+
∣∣(D�f −j (x)(0)−1 · Df −j(x)

) · F
∥∥,

∥∥PE−
∣∣(D�f j (x)(0)−1 · Df j(x)

) · F
∥∥

≤ 1/5.

If U is small in the C1-topology, for any g ∈ U and j ≥ 0 we still have:

• if g(x), g2(x), . . . , gj(x) are close enough to f (x), f 2(x), . . . , f j(x), then
∥∥PE−

∣∣(D�gj (x)(0)−1 · Dgj(x)
) · F

∥∥ ≤ 1/4,

• if g−1(x), . . . , g−j(x) are close enough to f −1(x), . . . , f −j(x), then
∥∥PE+

∣∣(D�g−j (x)(0)−1 · Dg−j(x)
) · F

∥∥ ≤ 1/4.

We choose ε > 0 small (this choice depends on the neighborhood U , see below)
and apply Proposition 3.4 to get λ. The dominated splitting gives J0 ∈ N such that for
x ∈ K, the map Lx = D�f J0 (x)(0)−1Df J0(x)D�x(0) satisfies

‖Lx|E0‖ · ‖L−1
x |E+‖ ≤ λ and‖Lx|E−‖ · ‖L−1

x |E0‖ ≤ λ.

We then fix δ < c(ε)/(3J0). Now take θ ∈ (0, η/10) and apply Proposition 3.4 to
get R0. Next, fix R much larger than R0 (see the choice below) and set r = R · J0.

Since K has a dominated splitting, any periodic point p ∈ K with period k satisfies
Df k(p) �= Id. The Implicit Function Theorem implies that the periodic points for f in
K have measure 0. This implies that there exists a Rokhlin tower, i.e. a measurable set
Z ⊂ K and a large integer n0 ≥ 1 such that the iterates Z, f (Z), . . . , f n0−1(Z) are pairwise
disjoint and

⋃n0−1
k=0 f k(Z) has measure larger than m(K) − θ/2. Fix such a tower. Since n0

is large, one can introduce n := N · J0 with N := [n0/J0], and by regularity of the measure,
one can replace Z by a compact subset Y, so that

m

(
K \

n−1⋃

k=0

f k(Y)

)
< θ.
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For each x ∈ Y, considers the sequence of diffeomorphisms

fj,x := �−1
f ( j+1)J0 (x)

◦ f J0 ◦ �f jJ0 (x), 0 ≤ j ≤ N − 1,

and a neighborhood Dx (which is the image �x(Ux) of some small neighborhood Ux

of 0). By compactness, one can find finitely many such points xs ∈ Y, s ∈ S, and reduce
the associated neighborhoods Ds := Dxs

, so that the f k(Ds), s ∈ S, 0 ≤ k < n are pairwise
disjoint, and

m

(
K \

⋃

s∈S

⋃

0≤k<n

f k(Ds)

)
< 2θ.

The domains Ds may be chosen with small diameter so that for each point z ∈ K in an
iterate f jJ0(Ds), 0 ≤ j ≤ N − 1, and for any d0-dimensional affine subspace F ⊂ Rd ,

(10) ‖PE−|F‖ ≤ 1/4 ⇒ ∥∥PE−
∣∣D�f jJ0 (xs)

(0)−1 · D�z(0) · F
∥∥ ≤ 1/3,

and

‖PE+|F‖ ≤ 1/4 ⇒ ∥∥PE+
∣∣D�f ( j+R)J0 (xs)

(0)−1 · D�f RJ0 (z)(0) · F
∥∥ ≤ 1/3.

Proposition 3.4 applied to xs and to R, N gives a sequence of diffeomorphisms
ϕj,s, and a sequence of sets Zj,s ⊂ f jJ0(Ds) such that m(Zj,s) ≥ (1 − 2θ)m(Ds). Define the
diffeomorphism ϕ in each f jJ0(Ds), 0 ≤ j ≤ N − 1 by

ϕ = �f jJ0 (xs)
◦ ϕj,s ◦ �−1

f jJ0 (xs)
,

and let ϕ = Id otherwise. It is clear that if the neighborhoods Ds are chosen small enough,
then ϕ is arbitrarily close to the identity in the C0 topology. Also, if ε is small enough then
ϕ is close to the identity in the C1 topology. We set g = f ◦ ϕ.

Define the set � to be the set of all points y belonging to some f k(Ds), with 0 ≤
k ≤ (N − 1)J0 − r, such that f jJ0−k( y) ∈ Zj,s, where j = [k/J0] + 1. Hence

k ≤ jJ0 ≤ ( j + R)J0 ≤ k + r.

Clearly, if n is large and since 10θ < η, we have m(K \ �) < η.
Now consider y ∈ � ∩ K ∩ g−r(K) and a d0-dimensional subspace F ⊂ TyM that is

α-close to E2( f , y) and whose image Dgr ·F is α-close to E2( f , gr( y)). We also introduce j,
k, xs as defined above such that f jJ0−k( y) belongs to Zj,s. Since k− jJ0 and ( j+R)J0 −(k+r)

are bounded (by 2J0) and g can be chosen arbitrarily close to f in the C1-topology, by the
choice of α we have

∥∥PE−
∣∣D�f jJ0−k( y)(0)−1 · DjJ0−kg( y) · F

∥∥ ≤ 1/4,
∥∥PE+

∣∣D�f ( j+R)J0−k( gr( y))(0)−1 · Dg( j+R)J0−k( y) · F
∥∥ ≤ 1/4.
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By (10), this gives:
∥∥PE−

∣∣D�f jJ0 (xs)
(0)−1 · DjJ0−kg( y) · F

∥∥ ≤ 1/3,
∥∥PE+

∣∣D�f ( j+R)J0 (xs)
(0)−1 · Dg( j+R)J0−k( y) · F

∥∥ ≤ 1/3.

Let F′ = DjJ0−kg( y) · F. Since f jJ0−k( y) belongs to Zj,s, by applying Proposition 3.4
we obtain:

log JacF′
(

gRJ0, g jJ0−k( y)
) ≤ log JacE2( f , f jJ0 (xs))

(
f RJ0, f jJ0(xs)

) − c(ε)

3
R + 4C0,

where C0 bounds | log JacH(D�x)| for any x ∈ K and any d0-dimensional space H.
If g is sufficiently C0-close to f , and if the sets Ds have small diameter, then the

orbits ( f −k( y), . . . , f 2n−k( y)) and (xs, . . . , f 2n(xs)) are arbitrarily close. It follows that there
exists a constant C1 > 0, which depends on J0 but not on R, such that:

log JacF

(
gr, y

) ≤ log JacE2( f ,y)

(
f r, y

) − c(ε)

3J0
r + 4C0 + C1.

If r (and R) has been chosen large enough, one gets (4) by our choice of δ. This ends the
proof of Theorem C’. �

4. Proof of the corollaries

4.1. Robust positive metric entropy. — We prove here Corollary 1.
For m-almost every point x, we denote the Lyapunov exponents by

λ1(x) ≥ · · · ≥ λdim M(x).

If f has a (non-trivial) dominated splitting TM = E ⊕ F, then by the Pesin-type inequality
for C1 diffeomorphisms with a dominated splitting proved in [ST], we have:

hm( f ) ≥
∫ (

λ1(x) + · · · + λdim E(x)
)

dm(x).

The dominated splitting also gives that there exists a > 0 such that λdim E(x) >

λdim E+1(x)+a for almost every point x. In particular,

a + 1
dim F

∫
(λdim E+1 + · · · + λdim M) dm <

1
dim E

∫
(λ1 + · · · + λdim E) dm.

Since f is conservative,
∫

(λ1 + · · · + λdim E) dm +
∫

(λdim E+1 + · · · + λdim M) dm = 0.
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All these estimates together imply that the metric entropy is positive:

hm( f ) ≥
∫

(λ1 + · · · + λdim E) dm >
a dim E dim F

dim M
> 0.

To prove the converse, assume that f has no dominated splitting on M. Then
Theorem B implies that the generic diffeomorphism g in the open set U provided by the
lemma below has zero metric entropy. In particular f is the limit of diffeomorphisms with
zero metric entropy.

Lemma 4.1. — If f has no dominated splitting on M, then there exists an open set U ⊂
Diff1

vol(M) of diffeomorphisms with no dominated splitting such that f belongs to the closure of U .

Proof. — Fix ε > 0. There exists [BC] an arbitrarily C1-small perturbation f1 with
a sequence of periodic orbits On converging to M in the Hausdorff topology. Since f1
is arbitrarily close to f , the dominated splittings that may exist on On, for n large, are
weak: by [BoBo] and the Franks lemma, for each 1 ≤ i < dim M, one can, after a ε/2-
perturbation f2 (with respect to the C1-distance), ensure that On has simple eigenvalues
and that the ith and the (i +1)st eigenvalues are complex and conjugate. In particular, any
diffeomorphism g that is C1-close to f2 has no dominated splitting E⊕F, with dim(E) = i.
This last perturbation is supported on a small neighborhood of On. Considering different
periodic orbits, one can perform independently dim M−1 such perturbations and obtain
a diffeomorphism which robustly has no dominated splitting, as required. �

4.2. Weak mixing. — We now prove Corollary 2.
Consider a diffeomorphism f ∈ Diff r

vol(M) with r > 1. For m-almost every point x

we have introduced in Section 2.1.4 the splitting TxM = E+(x) ⊕ E0(x) ⊕ E−(x) induced
by the Oseledets decomposition. The Pesin stable manifold theorem asserts that if x ∈ M
is a regular point and ε > 0 is small, then

W−(x) :=
{

z : lim sup
n→+∞

1
n

log d
(

f n(x), f n(z)
) ≤ −ε

}

is an injectively immersed submanifold tangent to E−(x). Symmetrically, one obtains an
injectively immersed submanifold W+(x) tangent to E+(x).

If O is a hyperbolic periodic orbit, we define the Pesin homoclinic class:

Hs
Pes(O) = {

x Oseledets regular : W−(x) �∩ Wu(O) �= ∅}
,

Hu
Pes(O) = {

x Oseledets regular : W+(x) �∩ Ws(O) �= ∅}
,

where W1 �∩ W2 denotes the set of transverse intersections between manifolds W1, W2,
i.e. the set of points x such that TxW1 + TxW2 = TxM. The Pesin homoclinic class is
HPes(O) := Hs

Pes(O) ∩ Hu
Pes(O). See Figure 2. We stress the fact that Hs

Pes(O) can contain
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FIG. 2. — The Pesin homoclinic class

points x whose stable dimension dim(E−(x)) is strictly larger than the stable dimension
of O. However the set HPes(O) only contains non-uniformly hyperbolic points whose
stable/unstable dimensions are the same as O.

An improvement of Hopf argument gives:

Theorem 4.2 (Rodriguez-Hertz–Rodriguez-Hertz–Tahzibi–Ures [RRTU]). — Let f ∈
Diff r

m(M) with r > 1 and let O be a hyperbolic periodic orbit such that m(Hs
Pes(O)) and m(Hu

Pes(O))

are positive. Then Hs
Pes(O), Hu

Pes(O), HPes(O) coincide m-almost everywhere and m|HPes(O) is er-

godic.

Recall that f ∈ Diff1
vol(M) is weakly mixing if and only if f × f is ergodic with

respect to m × m.
Given a continuous function φ : M×M → R and ε > 0, we denote by U(φ, ε) the

set of all f ∈ Diff1
vol(M) such that, for some n ≥ 1, the set of all (x, y) ∈ M × M satisfying

∣∣∣∣
1
n

n−1∑

k=0

φ
(

f k(x), f k( y)
) −

∫
φ(x, y)dm(x)dm( y)

∣∣∣∣ < ε

has measure strictly larger than 1 − ε. Note that U(φ, ε) is open, and that for any dense
subset � ⊂ C0(M×M,R), f × f is ergodic if and only if f belongs to

⋂
φ∈�

⋂
ε>0 U(φ, ε).

We say that f is ε-weak mixing if it admits an invariant subset X of measure strictly
larger than 1−ε, such that f |X is weak mixing. Notice that if f is ε-weak mixing then f ∈
U(φ,3ε‖φ‖L∞) for every φ ∈ C0(M × M,R). Thus to prove the genericity statement of
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Corollary 2, it is enough to prove that ε-weak mixing is dense among the diffeomorphisms
in Diff1

vol(M) with positive metric entropy.
Let f ∈ Diff1

vol(M) be a C1-generic diffeomorphism given by Theorem B and let us
assume that it has positive metric entropy. We may also assume that f has the following
additional C1-generic properties:

(1) f is topologically transitive, by [BC, Théorème 1.3],
(2) for any hyperbolic periodic point p, we have Wu(p) ∩ Ws( f (p)) �= ∅ and the

intersection is transverse, by [AC, Theorems 3 and 4], and
(3) there exist hyperbolic periodic points p1, . . . , pk such that for every ε > 0 and

every g ∈ Diff2
vol(M) sufficiently C1-close to f , there exists a pi with the following

property: the Pesin homoclinic class HPes(O(pi( g))) of the orbit O(pi) of pi has
m-measure > 1 − ε and the restriction of the volume is ergodic, non-uniformly
hyperbolic and its Oseledets splitting is dominated, by [AB, Lemma 5.1].

Let p1, . . . , pk be given by item (3) and let ε > 0. By [Av], there exists g ∈ Diff2
vol(M)

arbitrarily C1-close to f . Then, by item (2) for each i = 1, . . . , k, there still exists a trans-
verse intersection point between Wu(pi( g)) and Ws( g(pi( g))) associated to the hyperbolic
continuation pi( g). By item (3) there exists i ∈ 1, . . . , k such that the Pesin homoclinic
class HPes(O(pi( g))) has m-measure > 1 − ε and the restriction of the volume is ergodic,
non-uniformly hyperbolic and its Oseledets splitting is dominated.

It follows from [P] that HPes(O(pi( g))) decomposes as a disjoint union of measur-
able sets A ∪ g(A) ∪ · · · ∪ g�−1(A) and that the restriction m|A is Bernoulli for g�. On the
other hand, since Wu(pi( g)) ∩ Ws( g(pi( g))) �= ∅, the Pesin homoclinic class of the orbits
of pi( g) for g and g� coincide, implying by Theorem 4.2 that m|HPes(O(pi( g))) is ergodic
for g�. This shows that � = 1, and that g is Bernoulli, and in particular weakly mixing, on
HPes(O(pi( g))). Thus g is ε-weakly mixing, and so ε-weak mixing is dense in Diff1

vol(M).
This completes the proof of Corollary 2. �
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