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ABSTRACT

We present the min-max construction of critical points of the area using penalization arguments. Precisely, for
any immersion of a closed surface � into a given closed manifold, we add to the area Lagrangian a term equal to the
Lq norm of the second fundamental form of the immersion times a “viscosity” parameter. This relaxation of the area
functional satisfies the Palais–Smale condition for q > 2. This permits to construct critical points of the relaxed Lagrangian
using classical min-max arguments such as the mountain pass lemma. The goal of this work is to describe the passage
to the limit when the “viscosity” parameter tends to zero. Under some natural entropy condition, we establish a varifold
convergence of these critical points towards a parametrized integer stationary varifold realizing the min-max value. It is
proved in Pigati and Rivière (arXiv:1708.02211, 2017) that parametrized integer stationary varifold are given by smooth
maps exclusively. As a consequence we conclude that every surface area minmax is realized by a smooth possibly branched
minimal immersion.

I. Introduction

The study of minimal surfaces, critical points of the area, has stimulated the devel-
opment of entire fields in analysis and in geometry. The calculus of variations is one of
them. The origin of the field is very much linked to the question of proving the existence
of minimal 2-dimensional discs bounding a given curve in the Euclidean 3-dimensional
space and minimizing the area. This question, known as Plateau Problem, has been posed
since the XVIIIth century by Joseph-Louis Lagrange, the founder of the Calculus of Vari-
ation after Leonhard Euler. This question has been ultimately solved independently by
Jesse Douglas and Tibor Radó around 1930. In brief the main strategy of the proofs
was to minimize the Dirichlet energy instead of the area, which is lacking coercivity
properties, the two lagrangians being identical on conformal maps. After these proofs,
successful attempts have been made to solve the Plateau Problem in much more general
frameworks. This has been in particular at the origin of the field of Geometric Measure The-

ory during the 50’s, where the notions of rectifiable current which were proved to be the
ad-hoc objects for the minimization process of the area (or the mass in general) in the most
general setting.

The search of absolute or even local minimizers is of course the first step in the
study of the variations of a given lagrangians but is far from being exhaustive while study-
ing the whole set of critical points. In many problems there is even no minimizer at all, this
is for instance the case of closed surfaces in simply connected manifolds with also trivial
two dimensional homotopy groups. This problem is already present in the 1-dimensional
counter-part of minimal surfaces, the study of closed geodesics. For instance in a sub-
manifold of R3 diffeomorphic to S2 there is obviously no closed geodesic minimizing the
length. In order to construct closed geodesics in such manifold, Birkhoff around 1915
introduced a technic called “min-max” which permits to generate critical points of the
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length with non trivial index. In two words this technic consists in considering the space of
paths of closed curves within a non-trivial homotopy classes of paths in the sub-manifold
(called “sweep-out”) and to minimize, out of all such paths or “sweep-outs”, the maxi-
mal length of the curves realizing each “sweep-out”. In order to do so, one is facing the
difficulty posed by a lack of coercivity of the length with respect to this minimization pro-
cess within this “huge space” of sweep-outs. In order to “project” the problem to a much
smaller space of “sweep-outs” in which the length would become more coercive, George
Birkhoff replaced each path by a more regular one made of very particular closed curves
joining finitely many points with portions of geodesics minimizing the length between
these points. This replacement method also called nowadays “curve shortening process”
has been generalized in many situations in order to perform min-max arguments.

Back to minimal surfaces, in a series of two works (see [6] and [7]), Tobias Colding
and Bill Minicozzi, construct by min-max methods minimal 2 dimensional spheres in
homotopy 3-spheres (the analysis carries over to general target Riemannian manifolds).
The main strategy of the proof combines the original approach of Douglas and Radó,
consisting in replacing the area functional by the Dirichlet energy, with a “Birkhoff type”
argument of optimal replacements. Locally to any map from a given “sweep-out” one
performs a surgery, replacing the map itself by an harmonic extension minimizing the
Dirichlet energy. The convergence of such a “harmonic replacement” procedure, cor-
responding in some sense to Birkhoff “curve shortening procedure” in one dimension,
is ensured by a fundamental result regarding the local convexity of the Dirichlet en-
ergy into a manifold under small energy assumption and a unique continuation type
property. What makes possible the use of the Dirichlet energy instead of the area func-
tional, as in [38], is the fact that the domain S2 posses only one conformal structure and
modulo a re-parametrization any W1,2 map can be made ε-conformal (due to a funda-
mental result of Charles Morrey see Theorem I.2 [28]). This is not anymore the case if
one wants to extend Colding–Minicozzi’s approach to general surfaces. This has been
done however successfully by Zhou Xin in [48] and [49] following the original Colding–
Minicozzi approach. These papers are based on an involved argument in which to any
“sweep-out” of W1,2-maps a path of smooth conformal structures together with a path of
re-parametrization are assigned in order to be as close as possible to paths of conformal
maps.

Because of the finite dimensional nature of the moduli space of conformal struc-
tures in 2-D, and the “optimal properties” of the Dirichlet energy, Colding–Minicozzi’s
min-max method is intrinsically linked to two dimensions as Douglas–Radó’s resolution
of the Plateau problem was too. The field of Geometric Measure Theory, which was orig-
inally designed to remedy to this limitation and to solve the Plateau Problem for arbitrary
dimensions in various homology classes, has been initially developed with a minimization
perspective and the framework of rectifiable currents as well as the lower semicontinuity
of the mass for weakly converging sequences was matching perfectly this goal. In order
to solve min-max problems in the general framework of Geometric Measure Theory, the
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notion of varifold has been successfully introduced by William Allard and by Fred Alm-
gren. A complete GMT min-max procedure has been finally set up by Jon Pitts in [31]
who introduced the notion of almost minimizing varifolds and developed their regularity the-
ory in co-dimension 1. Constructive comparison arguments as well as combinatorial type
arguments are also needed in this rather involved and general procedure (The reader is
invited also to consult [5] and [22] for thorough presentations of the GMT approaches
to min-max procedures).

The aim of the present work is to present a direct min-max approach for con-
structing minimal surfaces in a given closed sub-manifold Nn of Rm. The general scheme
is simple : one works with a special subspace of C1 immersions of a given surface �, one
adds to the area of each of such an immersion �� a relaxing “curvature type” functional
multiplied by a small viscous parameter σ 2

(I.1) Aσ ( ��) := Area( ��)+ σ 2

∫
�

curvature terms dvolg ��

where dvolg �� is the volume form on � induced by the immersion ��. The “curvature
terms” is chosen in order to ensure that Aσ satisfies the Palais–Smale property on the ad-hoc

corresponding Finsler manifold of C1-immersions. This offers the suitable framework in
which Palais deformation theory can be applied to produce critical points realizing an
arbitrary minmax value. Once a min-max critical point of Aσ is produced one passes to
the limit σ → 0 · · ·

More precisely, we introduce the space E�,p of W2,2p-immersions �� of a given
closed surface � for p > 11 into Nn ⊂ Rm. It is proved below that this space has a nice
structure of Banach Manifold. For such immersions we consider the relaxed energy

Aσ ( ��) := Area( ��)+ σ 2

∫
�

[
1 + |�I ��|2]p dvolg ��

where g �� and �I �� are respectively the first and second fundamental forms of ��(�)
in Nn. Unlike previous existing viscous relaxations for min-max problems in the litera-
ture, the energy Aσ is intrinsic in the sense that it is invariant under re-parametrization
of �� : Aσ ( ��) = Aσ ( �� ◦�) for any smooth diffeomorphism � of �. Modulo a choice
of parametrization it is proved in [20] and [18] that for a fixed σ �= 0 the Lagrangian
Aσ satisfies the Palais–Smale condition. Hence we can consider applying the mountain path
lemma to this Lagrangian.

We introduce now the following definition

1 The condition p > 1 ensures that �� is C1. This last fact permits to use the classical definition of an immersion.
The case p = 1 was considered in previous works by the author where the notion of immersion had to be weakened.
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Definition I.1. — Let � be a closed Riemann surface and Mm be a closed sub-manifold

Mm ⊂ RQ. A map �� ∈ W1,2(�,Mm) together with an L∞ bounded integer multiplicity Nx is called

“integer target harmonic” if for almost every2 domain �⊂� and any smooth function F supported in

the complement of an open neighborhood of ��(∂�) we have

(I.2)
∫
�

Nx

〈
d
(
F( ��)), d ��〉

g0
− Nx F( ��)A( ��)(d ��, d ��)g0 dvolg0

where g0 is an arbitrary metric whose conformal structure is the one given by the Riemann surface �,

〈·, ·〉g0 denotes the scalar product in T∗� issued from g0, A(�y) denotes the second fundamental form

of Mm ⊂ Rm at the point �y. When the function N is constant on � we simply speak about “target

harmonic” maps.

Our main result in the present work is the following convergence theorem.

Theorem I.1. — Let Nn be a closed n-dimensional sub-manifold of Rm with 3 ≤ n ≤ m − 1
being arbitrary. Let � be an arbitrary closed Riemanian 2-dimensional manifold. Let σk → 0 and let
��k be a sequence of critical points of

Aσk( ��) := Area( ��)+ σ 2
k

∫
�

[
1 + |�I ��|2]p dvolg ��

in the space of W2,2p-immersions of � and satisfying the entropy condition

(I.3) σ 2
k

∫
�

[
1 + |�I ��k

|2]p dvolg ��k
= o

(
1

logσ−1
k

)
.

Then, modulo extraction of a subsequence, there exists a closed Riemann surface (S, h0) with

genus(S)≤ genus(�)

and a conformal integer target harmonic map ( ��∞,N) from S into Nn such that

lim
k→+∞

Aσk( ��k)= 1
2

∫
S

N |d ��∞|2h0
dvolh0 .

Moreover, the oriented varifold associated to ��k converges in the sense of Radon measures towards the

stationary integer varifold associated to ( ��∞,N).

The regularity of target harmonic maps is established in [35] and [30]. Accord-
ing to the main results in these works the limit ( ��∞,N) is a smooth minimal branched
immersion equipped with a smooth integer valued multiplicity.

2 The notion of almost every domain means for every smooth domain � and any smooth function f such that f −1(0)=
∂� and ∇f �= 0 on ∂� then for almost every t close enough to zero and regular value for f one considers the domains
contained in � or containing � and bounded by f −1({t}).
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Open problem: Assuming ��k has a uniformly bounded Morse index for the La-
grangian Aσk one expects that the convergence is a strong W1,2- “bubble tree” conver-
gence (i.e. strong away from finitely many points) which is equivalent to N ≡ 1 on S.

The main difficulty in proving Theorem I.1 in contrast with existing non intrinsic
viscous approximations of min-max procedures in the literature is that there is a-priori no
ε-regularity property independent of the viscosity σ available. Indeed the following result is
proved in [25].

Proposition I.1. — There exists ��k ∈ C∞(T2,S3) and σk → 0 such that ��k is a sequence

of immersions, critical points of Aσk , which is conformal into S3 from a converging sequence of flat tori

R2/Z + (ak + i bk)Z towards R2/Z + (a∞ + i b∞)Z, for which

lim sup
k→+∞

Aσk( ��k) <+∞

such that also ��k weakly converges to a limiting map ��∞ in W1,2(R2/Z + (a∞ + i b∞)Z,S3) but
��k nowhere strongly converges: precisely

∀U open set in R2/Z + (a∞ + i b∞)Z∫
U

|∇ ��∞|2 dx2 < lim inf
k→+∞

∫
U

|∇ ��k|2 dx2.

In order to overcome this major difficulty in the passage to the limit σk → 0 we
prove a quantization result, Lemma III.3, which roughly says that there is a positive
number Q0, depending only on the target Nn ⊂ Rm, below which for k large enough, un-
der the entropy condition assumption, there is no critical point of Aσk . This result is used
at several stages in the proof. The main strategy goes as follows. We first establish the
stationarity of the limiting varifold. The proof is based on an almost divergence form of the
Euler Lagrange equation associated to Aσ following the approach introduced in [33] for
the Willmore Lagrangian in Rm. The existence of such an almost divergence form is due to the
symmetry group associated to the same Lagrangian in flat space and the application of
Noether theorem (see [2]). As in [25], the exact divergence form in Euclidian space is just
an almost-divergence form in manifold. Next we choose a conformal parametrization of ��k

on a possibly degenerating sequence of Riemann surfaces (�, hk) (where hk denotes the
constant curvature metric of volume 1 conformally equivalent to ��∗

k gNn ). We use Deligne
Mumford compactification in order to make converge (�, hk) towards a nodal Riemann
surface with punctures (see for instance [13]). We then use the monotonicity formula,
deduced from the stationarity, in order to prove that, away from a so called oscillation set,
the limiting volume density measure on the thick parts of the limiting nodal surface is ab-
solutely continuous with respect to the Lebesgue measure. We then use the monotonicity
formula again in order to prove the quantization result Lemma III.3. This quantization
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result is used in order to show that the limiting volume density measure restricted to the
oscillation set is equal to finitely many Dirac masses. The quantization result is again used
in order to prove that for the weakly converging sequence ��k there is no energy loss nei-
ther in the necks in each thick parts of the limiting nodal surface, nor in the collars regions
separating possible bubbles, which are possibly formed (see Lemma III.6). The previous
results are proved to show the rectifiability of the limiting varifold (see Lemma III.8). We
then prove that there is no measure concentrated on the set of points where the rank of
the weak limit ��∞ on each thick part and on each bubble is not equal to 2. Finally we use
all the previous results to prove a “bubble tree convergence” of the sequence ��k on each
thick part (Lemma III.10) which gives in particular that the limiting rectifiable stationary
varifold is integer. The last lemma, Lemma III.13, establishes that the limiting map is a
conformal target harmonic map on each thick part of the nodal surface and on each bubble.

Theorem I.1 can be used to prove various existence results of optimal varifolds
realizing a min-max energy level. We first define the following notion.

Definition I.2. — A family of subsets A ⊂ P(M) of a Banach manifold M is called ad-
missible family if for every homeomorphism 
 of M isotopic to the identity we have

∀A ∈A 
(A) ∈A.

Example. — Consider M := W2,2p

imm (�,Nn) for some closed oriented surface � and
some closed sub-manifold Nn of Rm and take for any q ∈ N and c ∈ πq(Imm(�),Nn) then
the following family is admissible

A := { �� ∈ C0
(
Sq,W2,2p

imm

(
S2,Nn

)); s.t. [ ��] = c
}
.

Our second main result is the following.

Theorem I.2. — Let A be an admissible family in the space of W2,2p-immersions into a closed

sub-manifold of an Euclidean space Nn. Assume

(I.4) inf
A∈A

max
��∈A

Area( ��)= β0 > 0,

then there exists a closed Riemann surface (S, h0) with genus(S)≤ genus(�) and a conformal integer

target harmonic map ( ��∞,N) from S into Nn such that

1
2

∫
S

N |d ��∞|2h0
dvolh0 = β0.

This general existence result has to be put in perspective with the previous min-
max existence results partly discussed above either in GMT (see [31], [41], [5], [22],
[23], . . .) in harmonic map theory (see [6], [7], [48], [49]) or using level set-PDE approaches
(see [15], [47], [11], [10], [42], [43]). Combined with the main regularity results in [35]
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and [30] Theorem I.2 implies in particular all known results for the realization of arbi-
trary minmax by minimal surfaces. One technical advantage of the present work over
the previous existing literature on minmax theory for surfaces in GMT or harmonic map
theory, is that our proof of Theorem I.2 does not require any “replacement argument”.
The viscosity approach gives moreover, without any additional work, an upper bound
of the genus of the optimal surface. Such lower semicontinuity of the genus has been
established in the GMT approach in [8] in co-dimension 1 and was not given by the
min-max procedure itself. As in the geodesic case studied recently in [25] and where a
passage to the limit in the second derivative is proved, the viscosity approach gives under
the multiplicity one assumption3 (N = 1 a.e. on S) informations on the limiting index (see
[37]). This fact was left open in the GMT, the harmonic map as well as in the level set-PDE

approaches in it’s full generality (see however partial important results in this direction
for the PDE approach in [24]).

The second, and possibly main advantage, of the viscosity method resides in the
fact that one can explore min-max within the space of immersions of fixed closed surfaces.
The spaces Imm(�,Nn) offers a richer topology than the space of integer rectifiable 2-cycles

Z2(Nn) considered by Almgren whose homotopy type is more coarse. The author has
recently taken advantage of the full strength of Theorem I.2 for introducing new families
of minmax problems at the level of immersions called minmax hierarchies (see [37]).

In order to simplify the presentation and in particular the computations of the
Euler Lagrange equation to Aσ we are presenting the proof of Theorem I.1, in the spe-
cial case Nn = S3. There is however no argument below which is specific to that case
and the proof in the general case follows each step word for word of the S3 case. In-
deed, the almost conservation law in general target manifold is perturbed by lower order
terms (see for instance the explicit expression for p = 1 and general target in [26]). In
arbitrary co-dimension each tensor has it’s counterpart which are possibly geometrically
more involved but can be treated analytically identically as in the codimension 1 case.
As soon as the strong W1,2-bubble tree convergence is established, the passage to the
limit in the non-linearity of the harmonic map equation4 is totally independent of the type
of non linearity the target is producing. We keep from this non linearity, usually denoted

3 The multiplicity one condition N ≡ 1 is expected to hold for finite index minmax problems in general. See the
open problem in the first part of the introduction.

4 Recall that the mean-curvature vector of an immersion �� into a closed sub-manifold Nn of an Euclidean space is
given by

2 �H �� =g ��
��+ A( ��)(d ��, d ��)g ��

where g �� is the negative Laplace Beltrami operator with respect to the metric g ��. In conformal coordinates this becomes

2 �H �� = e−2λ
[
 ��+ A( ��)(∇ ��,∇ ��)]

where eλ := |∂xi
��|.
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A( ��)(∇ ��,∇ ��) where A is the second fundamental form of the target Nn, exclusively the
quadratic dependence in the gradient. The conformal nature of the maps makes more-
over the manipulation of the harmonic map equations straightforward independently of
the existence or not of symmetries in the target. We took this point of view in order to
ease a bit the reading of the proof.

II. The viscous relaxation of the area for surfaces

II.1. The Finsler manifold of immersions into the spheres with Lq bounded second fundamental

form. — For k ∈ N and 1 ≤ q ≤ +∞, we recall the definition of Wk,q Sobolev function
on a closed smooth surface � (i.e. � is compact without boundary). To that aim we take
some reference smooth metric g0 on � and we set

Wk,q(�,R) := {f measurable s.t. ∇k
g0

f ∈ Lq(�, g0)
}
,

where ∇k
g0

denotes the k-th iteration of the Levi-Civita connection associated to �. Since
the surface is closed the space defined in this way is independent of g0. Let Nn be a closed
n-dimensional sub-manifold of Rm with 3 ≤ n ≤ m − 1 being arbitrary. The Space of Wk,q

into Nn is defined as follows

Wk,q
(
�,Nn

) := { �� ∈ Wk,q
(
�,Rm

); �� ∈ Nn almost everywhere
}
.

We have the following well known proposition

Proposition II.1. — Assuming kq > 2, the space Wk,q(�,Nn) defines a Banach Manifold.

Proof of Proposition II.1. — This comes mainly from the fact that, under our assump-
tions,

(II.1) Wk,q
(
�,Rm

)
↪→ C0

(
�,Rm

)
.

The Banach manifold structure is then defined as follows. Choose δ > 0 such that each
geodesic ball BNn

δ (z) for any z ∈ Nn is strictly convex and the exponential map

expz : Vz ⊂ TzNn −→ BNn

δ (z)

realizes a C∞ diffeomorphism for some open neighborhood of the origin in TzNn into
the geodesic ball BNn

δ (z). Because of the embedding (II.1) there exists ε0 > 0 such that

∀�u, �v ∈ Wk,q
(
�,Nn

) ‖�u − �v‖Wk,q < ε0

=⇒ ∥∥distN

(�u(x), �v(x))∥∥
L∞(�)

< δ.
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We equip now the space Wk,q(�,Nn) with the distance issued from the Wk,q norm and
for any �u ∈ M = Wk,q(�,Nn) we denote by BM

ε0
(�u) the open ball in M of center �u and

radius ε0.
As a covering of M we take (BM

ε0
(�u))�u∈M. We denote by

E�u := �Wk,q

(�u−1TN
) := { �w ∈ Wk,q

(
�,Rm

); �w(x) ∈ T�u(x)Nn ∀x ∈�
}

this is the Banach space of Wk,q-sections of the bundle �u−1TN and for any �u ∈ M and
�v ∈ BM

ε0
(�u) we define �w �u(�v) to be the following element of E�u

∀x ∈� �w �u(�v)(x) := exp−1
�u(x)
(�v(x)).

It is not difficult to see that

�w �v ◦ ( �w �u)−1 : �w u
(
BM
ε0
(�u)∩ BM

ε0
(�v))−→ �wv

(
BM
ε0
(�u)∩ BM

ε0
(�v))

defines a C∞ diffeomorphism. �

For p > 1 we define

E�,p = W2,2p

imm

(
�2,Nn

) := { �� ∈ W2,2p
(
�2,Nn

); rank (d�x)= 2 ∀x ∈�2
}
.

The set W2,2p

imm (�
2,Nn) as an open subset of the normal Banach Manifold W2,2p(�2,Nn)

inherits a Banach Manifold structure.

We equip now the space W2,2p

imm (�,Nn) with a Finsler manifold structure on it’s tangent
bundle (see the definition of Banach bundle space and Tangent bundle to a Banach man-
ifold in [19]). For the convenience of the reader we recall the notion of Finsler structure.

Definition II.3. — Let M be a normal5 and let V be a Banach bundle space over M.

A Finsler structure on V is a continuous function

‖ · ‖ : V −→ R

such that for any x ∈M

‖ · ‖x := ‖ · ‖|π−1({x}) is a norm on Vx.

Moreover for any local trivialization τi over Ui and for any x0 ∈ Ui we define on Vx the following norm

∀ �w ∈ π−1
({x}) ‖ �w‖x0 := ∥∥τ−1

i

(
x0, ρ

(
τi( �w)))∥∥

x0
,

5 The assumption to be normal is a relatively strong separation axiom which ensures that the defined Finsler struc-
ture generates a distance which makes the topology of the Banach manifold metrizable (see [29], pages 201–202). This
assumption can be weakened to regular but not to Hausdorff only.
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where ρ is the canonical projection ρ : Ui × E → E and there exists Cx0 > 1 such that

∀x ∈ Ui C−1
x0

‖ · ‖x ≤ ‖ · ‖x0 ≤ Cx0 ‖ · ‖x.

In a Cq Banach bundle, the Finsler structure is said to be Cl for l ≤ q if, in local charts, the dependence

of ‖ · ‖x is Cl with respect to x.

Definition II.4. — Let M be a normal Cp Banach manifold. TM equipped with a Finsler

structure is called a Finsler Manifold.

Remark II.1. — A Finsler structure on TM defines in a canonical way a dual
Finsler structure on T∗M.

The tangent space to E�,p at a point �� is the space �W2,2p( ��−1TNn) of W2,2p-
sections of the bundle ��−1TNn, i.e.

T ��E�,p = { �w ∈ W2,2p
(
�2,Rm

); �w(x) ∈ T ��(x)N
n ∀x ∈�2

}
.

We equip T ��E�,p with the following norm

‖�v‖�� :=
[∫

�

[∣∣∇2�v∣∣2
g ��

+ |∇�v|2g ��
+ |�v|2]p dvolg ��

]1/2p

+ ‖|∇�v|g �� ‖L∞(�),

where we keep denoting, for any j ∈ N, ∇ to be the connection on (T∗�)⊗j ⊗ ��−1TN
over � defined by ∇ := ∇ g �� ⊗ ��∗∇h and ∇ g �� is the Levi Civita connection on (�, g ��)
and ∇h is the Levi-Civita connection on Nn.

We check for instance that ∇�v, resp. ∇2�v defines a C0, resp. L2p, section of (T∗�)⊗
��−1TN, resp. (T∗�)2 ⊗ ��−1TN.

The fact that we are adding to the W2,2p norm of �v with respect to g �� the L∞ norm
of |∇�v|g �� could look redundant since W2,2p embeds in W1,∞. We are doing it in order to
ease the proof of the completeness of the Finsler Space equipped with the Palais distance
below.

Observe that, using Sobolev embedding and in particular due to the fact
W2,q(�,Rm) ↪→ C1(�,Rm) for q > 2, the norm ‖ · ‖�� as a function on the Banach
tangent bundle TE�,p is obviously continuous.

Proposition II.2. — The norms ‖ · ‖�� defines a C2-Finsler structure on the space E�,p.

Proof of Proposition II.2. — We introduce the following trivialization of the Banach
bundle. For any �� ∈ E�,p we denote P ��(x) the orthonormal projection in Rm onto the n-

dimensional vector subspace of Rm given by T ��(x)Nn and for any �ξ in the ball B
E�,p
ε1 ( ��) for

some ε1 > 0 and any �v ∈ T�ξE�,p = �W2,2p(�ξ−1TN) we assign the map �w(x) := P ��(x)�v(x).
It is straightforward to check that for ε1 > 0 chosen small enough the map which to �v
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assigns �w is an isomorphism from T�ξE�,p into T ��E�,p and that there exists k �� > 1 such

that ∀�v ∈ TB
E�,p
ε1 ( ��)

k−1
�� ‖�v‖�ξ ≤ ‖ �w‖�� ≤ k �� ‖�v‖�ξ .

The C2-dependence of ‖ · ‖�ξ with respect to �ξ in the chart above is left to the reader. This
concludes the proof of Proposition II.2. �

II.2. Palais deformation theory applied to the space of W2,2p-immersions.

Theorem II.1. — [Palais 1970] Let (M,‖ · ‖) be a Finsler Manifold. Define on

M×M

d(p, q) := inf
ω∈�p,q

∫ 1

0

∥∥∥∥dω

dt

∥∥∥∥
ω(t)

dt,

where

�p,q := {ω ∈ C1
([0,1],M); ω(0)= p ω(1)= q

}
.

Then d defines a distance on M and (M, d) defines the same topology as the one of the Banach

Manifold. d is called Palais distance of the Finsler manifold (M,‖ · ‖).
Contrary to the first appearance the non degeneracy of d is not straightforward

and requires a proof (see [29]). This last result combined with the famous result of Stones
(see [44]) on the paracompactness of metric spaces gives the following corollary.

Corollary II.1. — Let (M,‖ · ‖) be a Finsler Manifold then M is paracompact.

The following result6 is going to play a central role in adapting Palais deformation
theory to our framework of W2,2p-immersions.

Proposition II.3. — Let p > 1 and M := E�,p be the space of W2,2p-immersions of a closed

oriented surface � into a closed sub-manifold Nn of Rm

E�,p = W2,2p

imm

(
�2,Nn

) := { �� ∈ W2,2p
(
�2,Nn

); rank (d�x)= 2 ∀x ∈�2
}
.

The Finsler Manifold given by the structure

‖�v‖�� :=
[∫

�

[|∇2�v|2g ��
+ |∇�v|2g ��

+ |�v|2]p dvolg ��

]1/2p

+ ∥∥|∇�v|g ��

∥∥
L∞(�)

is complete for the Palais distance.

6 As a matter of fact the proof of the completeness with respect to the Palais distance is skipped in various applica-
tions of Palais deformation theory in the literature.
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Proof of Proposition II.3. — For any �� ∈ M and �v ∈ T ��M we introduce the tensor
in (T∗�)⊗2

given in coordinates by

∇�v ⊗̇ d ��+ d �� ⊗̇∇�v =
2∑

i,j=1

[∇∂xi
�v · ∂xj

��+ ∂xi
�� · ∇∂xj

�v] dxi ⊗ dxj

=
2∑

i,j=1

[∇h

∂xi
���v · ∂xj

��+ ∂xi
�� · ∇h

∂xj
���v] dxi ⊗ dxj

where · denotes the scalar product in Rm. Observe that we have

|∇�v ⊗̇ d ��+ d �� ⊗̇∇�v|g �� ≤ 2 |∇�v|g ��.

Hence, taking a C1 path ��s in M one has for �v := ∂s
��

(II.2)

∥∥|d �v⊗̇d ��+ d ��⊗̇d �v|2g ��

∥∥
L∞(�)

=
∥∥∥∥

2∑
i,j,k,l=1

g
ij

��gkl
��∂s(g ��)ik∂s(g ��)jl

∥∥∥∥
L∞(�)

= ∥∥∣∣∂s(gijdxi ⊗ dxj)
∣∣2
g ��

∥∥
L∞(�)

= ∥∥|∂sg ��|2g ��

∥∥
L∞(�)

.

Hence

(II.3)
∫ 1

0

∥∥|∂sg ��|g ��

∥∥
L∞(�)

ds ≤ 2
∫ 1

0
‖∂s

��‖��s
ds.

We now use the following lemma

Lemma II.1. — Let Ms be a C1 path into the space of positive n by n symmetric matrix then

the following inequality holds

Tr
(
M−2(∂sM)2

)= ‖∂s log M‖2 = Tr
(
(∂s log M)2

)
.

Proof of Lemma II.1. — We write M = exp A and we observe that

Tr
(
exp(−2A)(∂s exp A)2

)= Tr (∂sA)2.

Then the lemma follows. �

Combining the previous lemma with (II.2) and (II.3) we obtain in a given chart

(II.4)
∫ 1

0

∥∥∂s log(gij)
∥∥ ds =

∫ 1

0

√
Tr
(
(∂s log gij)2

)
ds ≤ 2

∫ 1

0
‖∂s

��‖��s
ds.
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This implies that in the given chart the log of the matrix (gij(s)) is uniformly bounded for
s ∈ [0,1] and hence ��1 is an immersion. It remains to show that it has a controlled W2,q

norm. We denote

Hessp( ��) :=
∫
�

[
1 + |∇d ��|2g ��

]p
dvolg ��

and we compute

(II.5)

d

ds

(
Hessp( ��)

)= p

∫
�

∂s|∇d ��|2g ��

[
1 + |∇d ��|2g ��

]p−1
dvolg ��

+
∫
�

[
1 + |∇d ��|2g ��

]p
∂s(dvolg ��).

Classical computations give

∂s(dvolg ��)= 〈∇∂s
��, d ��〉g �� dvolg ��.

So we have

(II.6)

∣∣∣∣
∫
�

[
1 + |∇d ��|2g ��

]p
∂s(dvolg ��)

∣∣∣∣≤
∥∥|∇∂s

��|g ��

∥∥∥∥
L∞(�)

∫
�

[
1 + |∇d ��|2g ��

]p
dvolg ��

≤ ‖∂s
��‖��

∫
�

[
1 + |∇d ��∣∣2

g ��
]p dvolg ��.

In local charts we have

|∇d ��|2g ��
=

2∑
i,j,k,l=1

g
ij

�� gkl
��
〈∇h

∂xi
��∂xk

��,∇h

∂xj
��∂xl

��〉
h
.

Thus in bounding
∫
�
∂s|∇d ��|2g ��

[1 + |∇d ��|2g ��
]p−1 dvolg �� we first have to control terms of

the form

(II.7)

∣∣∣∣
∫
�

2∑
i,j,k,l=1

∂s g
ij

�� gkl
��
〈∇h

∂xi
��∂xk

��,∇h

∂xj
��∂xl

��〉
h

[
1 + |∇d ��|2g ��

]p−1
dvolg ��

∣∣∣∣.

We write
2∑

i,j,k,l=1

∂s g
ij

�� gkl
��
〈∇h

∂xi
��∂xk

��,∇h

∂xj
��∂xl

��〉
h

=
2∑

i,j,k,l,t,r=1

∂s g
ij

�� gjt gtr gkl
��
〈∇h

∂xi
��∂xk

��,∇h

∂xj
��∂xl

��〉
h

= −
2∑

i,j,k,l,=1

( 2∑
t,r=1

∂s gjt gtr

)
g

ij

��gkl
��
〈∇h

∂xi
��∂xk

��,∇h

∂xj
��∂xl

��〉
h
.
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Hence, using (II.2),

(II.8)

∣∣∣∣
∫
�

2∑
i,j,k,l=1

∂s g
ij

�� gkl
��
〈∇h

∂xi
��∂xk

��,∇h

∂xj
��∂xl

��〉
h

[
1 + |∇d ��|2g ��

]p−1
dvolg ��

∣∣∣∣
≤ ∥∥|∂s g ��|g ��

∥∥
L∞(�)

∫
�

[
1 + |∇d ��|2g ��

]p
dvolg ��

≤ 2‖∂s
��‖��s

∫
�

[
1 + |∇d ��|2g ��

]p
dvolg ��.

We have also

∂s

〈∇h

∂xi
��∂xk

��,∇h

∂xj
��∂xl

��〉
h

= 〈∇h

∂s ��
(∇h

∂xi
��∂xk

��),∇h

∂xj
��∂xl

��〉
h
+ 〈∇h

∂xi
��∂xk

��,∇h

∂s ��
(∇h

∂xj
��∂xl

��)〉
h
.

By definition we have

∇h

∂s ��
(∇h

∂xi
��∂xk

��)= ∇h

∂xi
��
(∇h

∂s ��∂xk
��)+ Rh(∂xi

��,∂s
��)∂xk

��,

where we have used the fact that [∂s
��,∂xi

��] = ��∗[∂s, ∂xi
] = 0. Using also that

[∂s
��,∂xk

��] = 0, since ∇h is torsion free, we have finally

(II.9) ∇h

∂s ��
(∇h

∂xi
��∂xk

��)= ∇h

∂xi
��
(∇h

∂xk
��∂s

��)+ Rh(∂xi
��,∂s

��)∂xk
��,

where Rh is the Riemann tensor associated to the Levi-Civita connection ∇h. We have

(II.10) ∇h

∂xi
��
(∇h

∂xk
��∂s

��)= (∇h
)2

∂xi
��∂xk

��∂s
��+ ∇h

∇h

∂xi
��∂xk

��∂s
��.

Hence

(II.11)

〈∇h

∂s ��
(∇h

∂xi
��∂xk

��),∇h

∂xj
��∂xl

��〉
h

= 〈(∇h
)2

∂xi
��∂xk

��∂s
��,∇h

∂xj
��∂xl

��〉
h

+ 〈∇h

∇h

∂xi
��∂xk

��∂s
��,∇h

∂xj
��∂xl

��〉
h
+ 〈Rh(∂xi

��,∂s
��)∂xk

��,∇h

∂xj
��∂xl

��〉
h
.

Combining all the previous and observing that

(II.12)

∣∣∣∣
2∑

i,j,k,l=1

g
ij

�� gkl
��
〈∇h

∇h

∂xi
��∂xk

��∂s
��,∇h

∂xj
��∂xl

��〉
h

∣∣∣∣≤ C |∇∂s
��|g ��|∇d ��|2g ��
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gives then

(II.13)

∣∣∣∣
∫
�

2∑
i,j,k,l=1

g
ij

�� gkl
�� ∂s

〈∇h

∂xi
��∂xk

��,∇h

∂xj
��∂xl

��〉
h

[
1 + |∇d ��|2g ��

]p−1
dvolg ��

∣∣∣∣
≤ C

∫
�

∣∣〈∇2∂s
��,∇d ��〉

g ��

∣∣[1 + |∇d ��|2g ��

]p−1
dvolg ��

+ C
∫
�

|∇∂s
��|g �� |∇d ��|2g ��

[
1 + |∇d ��|2g ��

]p−1
dvolg ��

+ C
∥∥Rh
∥∥

L∞(Nn)

∫
�

|∂s
��|h |∇d ��|g ��

[
1 + |∇d ��|2g ��

]p−1
dvolg ��.

Combining all the above we finally obtain that

(II.14)
∣∣∂sHessp( ��)

∣∣≤ C‖∂s
��‖��

[
Hessp( ��)+ Hessp( ��)1−1/2p

]
.

Combining (II.4) and (II.14) we deduce using Gromwall lemma that if we take a C1

path from [0,1) into E�,p with finite length for the Palais distance d , the limiting map ��1

is still a W2,2p-immersion of � into Nn, which proves the completeness of (E�,p, d). �

The following definition is central in Palais deformation theory.

Definition II.5. — Let E be a C1 function on a Finsler manifold (M,‖ · ‖) and β ∈ E(M).

On says that E fulfills the Palais–Smale condition at the level β if for any sequence un satisfying

E(un)−→ β and ‖DEun
‖un

−→ 0,

then there exists a subsequence un′ and u∞ ∈M such that

d(un′, u∞)−→ 0,

and hence E(u∞)= β and DEu∞ = 0.

The following result is the Palais Smale condition for the functional

Aσ
p (

��) := Area( ��)+ σ 2

∫
�

[
1 + |�I ��|2]p dvolg ��.

Theorem II.2. — Let p > 1 and ��k such that

lim sup
k→+∞

Aσ
p (

��k) <+∞,

and satisfying

(II.15) lim
k→+∞

sup
‖ �w‖ ��k

≤1
DAσ

p (
��k) · �w = 0.
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Then, modulo extraction of a subsequence, there exists a sequence of W2,2p-diffeomorphisms �k such that
��k ◦ �k converges strongly in E�,p for the Palais distance to a critical point of Aσ

p . Moreover, if one

assume that ��k stays inside a fixed ball of the Palais distance one can take �k(x)= x.

Remark II.2. — The first part of this theorem has been proved in [18] (The-
orem 5.1) in the flat framework which does not differ much from our case of W2,2p-
immersions into Nn. See also [4] for a proof making use of the underlying conservation
laws. The second part is a direct consequence of the proof of Proposition II.3 above and
is being used below since in the main Palais theorem II.3 the flow issued by the pseudo-
gradient maintains the image at a finite Palais distance.

Definition II.6. — A family of subsets A ⊂ P(M) of a Banach manifold M is called

admissible family if for every homeomorphism 
 of M isotopic to the identity we have

∀A ∈A 
(A) ∈A.

Example. — Consider M := W2,q
imm(S

2,R3) and take7 c ∈ π1(Imm(S2,R3)) =
Z2 × Z then the following family is admissible

A := { �� ∈ C0
([0,1],W2,q

imm

(
S2,R3

)); ��(0, ·)= ��(1, ·) and [ ��] = c
}
.

We recall the main theorem of Palais deformation theory.

Theorem II.3. — [Palais 1970] Let (M,‖ · ‖) be a Banach manifold together with a

C1,1-Finsler structure. Assume M is complete for the induced Palais distance d and let E ∈ C1(M)

satisfying the Palais–Smale condition (PS)β for the level set β . Let A be an admissible family in P(M)

such that

inf
A∈A

sup
u∈A

E(u)= β,

then there exists u ∈M satisfying

(II.16)

{
DEu = 0

E(u)= β

7 It is proved in [40] and [12] that

Imm
(
S2,R3

)�homotop. SO(3)×�2
(
SO(3)

)
.
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II.3. Struwe’s monotonicity trick. — Because of Theorem II.2, Theorem II.3 can be
applied to each of the Lagrangian Aσ

p for any admissible family A of E�,p satisfying

(II.17) inf
A∈A

max
��∈A

Area( ��)= β0 > 0.

However, beside the difficulty of establishing a convergence of any nature to the corre-
sponding sequence of critical points ��σ given by Theorem II.3, although it is clear that

lim
σ→0

inf
A∈A

max
��∈A

Aσ
p (

��σ)= β0,

nothing excludes a-priori that

lim
σ→0

inf
A∈A

max
��∈A

Area( ��σ) < β0,

and it could be that the smoothing part of the Lagrangian σ 2
∫
�
[1 + |�I ��σ

|2]p dvolg ��σ does
not go to zero. In order to prevent this unpleasant situation where the smoothed min-max
procedure is not approximating properly the limiting min-max procedure, M. Struwe in-
vented a technic—called sometimes “Struwe’s monotonicity trick”—consisting in local-
izing the action of the pseudo-gradient close to the level set Area( ��)= β0 exclusively (see
[45] and [46]). Precisely we have the following result.

Theorem II.4. — Let (M,‖ · ‖) be a complete Finsler manifold. Let Eσ be a family of C1

functions for σ ∈ [0,1] on M such that for every �γ ∈M

(II.18) σ −→ Eσ ( �γ ) and σ −→ ∂σEσ ( �γ ),
are increasing and continuous functions with respect to σ . Assume moreover that

(II.19)
∥∥DEσ

�γ − DEτ
�γ
∥∥

�γ ≤ C(σ )δ
(|σ − τ |)f (Eσ ( �γ )),

where C(σ ) ∈ L∞
loc((0,1)), δ ∈ L∞

loc(R+) and goes to zero at 0 and f ∈ L∞
loc(R). Assume that for

every σ > 0 the functional Eσ satisfies the Palais Smale condition. Let A be an admissible family of

M and denote

β(σ) := inf
A∈A

sup
�γ∈A

Eσ ( �γ ).

Then there exists a sequence σk → 0 and �γk ∈M such that

Eσk( �γk)= β(σk), DEσk( �γk)= 0.

Moreover �γk satisfies the so called “entropy condition”

∂σk
Eσk( �γk)= o

(
1

σk log( 1
σk
)

)
.
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A proof of this theorem is given for instance in [36]. Applying Theorem II.4 to our
framework gives.

Theorem II.5. — Let p > 1 and A be an admissible family in E�,p(Nn) such that

(II.20) inf
A∈A

max
��∈A

Area( ��)= β0 > 0.

Then there exists σk → 0 and a family ��k of critical points of Aσk
p satisfying

lim
k→+∞

Area( ��k)= β0 and σ 2
k

∫
�

[
1 + |�I ��k

|2]p dvolg ��k
= o

(
1

logσ−1
k

)
.

II.4. The first variation of the viscous energies Aσ
p . — Let �� be a smooth immersion

from a closed 2-dimensional manifold � into the unit sphere S3 ⊂ R4, let �w be an in-
finitesimal immersion satisfying �w · ��≡ 0 and denote ��t : a sequence of immersions into
S3 such that d ��/dt(0)= �w. The Gauss map of the immersion is given in local coordinates
by

(II.21) �nt = �R4

(
��t ∧ ∂x1

��t ∧ ∂x2
��t

|∂x1
��t ∧ ∂x2

��t|
)
.

Assuming �� is expressed locally in conformal coordinates and denote eλ = |∂x1
��| =

|∂x2
��|. We have

(II.22) �nt = �n + t (a1�e1 + a2�e2 + b ��)+ o(t),

where �ei = e−λ ∂xi
��. Since �nt · ∂xi

��t ≡ 0 and �nt · ��t ≡ 0 we have

(II.23)

d�n
dt
(0)= −�n · �w ��−

2∑
i=1

�n · ∂xi
�w e−λ �ei

= −�n · �w ��− 〈�n · d �w , d ��〉g ��.

Since gij := ∂xi
�� · ∂xj

��, we have

(II.24)
dgij

dt
(0)= ∂xi

�w · ∂xj
��+ ∂xj

�w · ∂xi
��.

Since
∑

i gki gij = δkj and gki = e2λ δki , we have

(II.25)
dgij

dt
(0)= −e−4λ [∂xi

�� · ∂xj
�w+ ∂xj

�� · ∂xi
�w].
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We have also using (II.23) and (II.25)

(II.26)

d|d�n|2g ��
dt

= d

dt

( 2∑
i,j=1

gij∂xi
�n · ∂xj

�n
)

= −2〈d �� ⊗̇ d �w, d�n ⊗̇ d�n〉g �� + 2
〈
d

d�n
dt

; d�n
〉

g ��

= −2〈d �� ⊗̇ d �w, d�n ⊗̇ d�n〉g �� + 4 �H · �w− 2
〈
d〈�n · d �w, d ��〉g ��; d�n〉

g ��
,

where �H is the mean-curvature vector given by

�H := 1
2

2∑
i,j=1

gij�Iij,

and �I �� denotes the second fundamental form

�I �� =
2∑

i,j=1

�Iij dxi ⊗ dxj = −
2∑

i,j=1

∂xi
�� · ∂xj

�n�n dxi ⊗ dxj.

Finally, we have dvolg �� =
√

g11g22 − g2
12 dx1 ∧ dx2, hence

(II.27)
d

dt
(dvolg ��)(0)=

[ 2∑
i=1

∂xi
�� · ∂xi

�w
]

dx1 ∧ dx2 = 〈d ��; d �w〉g �� dvolg ��.

Using (II.26) and (II.27) we obtain

(II.28)
d

dt
Area( ��t)|t=0 =

∫
�

〈d �� ; d �w〉g �� dvolg ��.

For any p > 1 we denote

Fp( ��) :=
∫
�

[
1 + |�I ��|2g ��

]p
dvolg ��.

Using (II.23) and (II.26) we have

(II.29)

d

dt
Fp( ��t)

∣∣∣∣
t=0

=
∫
�

f p〈d ��; d �w〉g �� dvolg ��

− 2 p

∫
�

f p−1〈d �� ⊗̇ d �w, d�n ⊗̇ d�n〉g �� dvolg ��

− 2 p

∫
�

f p−1
〈
d〈�n · d �w, d ��〉g ��; d�n〉

g ��
dvolg ��

+ 4 p

∫
�

f p−1 �H · �w dvolg ��,

where f := [1 + |�I ��|2].
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II.5. The almost conservation laws satisfied by the critical points of Aσ
p (

��). — The fact that
Aσ

p is C1 in E�,p is quite standard for p > 1. Indeed, in local coordinates the functional
has the form

∫
�

e
( ��,∇ ��,∇2 ��) dx2,

where e is a C∞ function. Let �� be a critical point in E�,p of Aσ
p . We then have

(II.30)
��∧ d

∗g ��
[[

1 + σ 2 f p
]

d ��]− 2 pσ 2 ��∧ d
∗g ��
[
d

∗g ��
[
f p−1 d�n] · d ���n]

− 2 pσ 2 ��∧ d
∗g ��
[
f p−1(d�n ⊗̇ d�n) g �� d ��]+ 4 pσ 2f p−1 ��∧ �H = 0 in D′(�),

where f := [1 + |�I ��|2] as above, (d�n ⊗̇ d�n) g �� d �� is the contraction given in local confor-
mal coordinates by

(d�n ⊗̇ d�n) g �� d �� := e−2λ
2∑

i,j=1

∂xi
�n · ∂xj

�n ∂xj
�� dxi,

and d
∗g �� is the adjoint of d for the L2 norm on � with respect to the metric g �� induced

by the immersion ��. It coincides with −e−2λ div· in conformal coordinates. In conformal
coordinates again the equation becomes then

(II.31)
��∧ div

[[
1 + σ 2f p

]∇ ��− 2 pσ 2e−2λf p−1
〈∇�n ⊗̇∇�n;∇ ��〉

+ 2 pσ 2e−2λ div
[
f p−1∇�n] · ∇ ���n]− 4 pσ 2f p−1 ��∧ �H = 0.

We rewrite the first term in the second line.

(II.32)
2 pσ 2 e−2λ div

[
f p−1∇�n] · ∇ ���n

= 2 pσ 2e−2λ div
[
f p−1[∇�n + H∇ ��]] · ∇ ���n − 2 pσ 2∇[f p−1H

]�n.
The trace free part of the second fundamental form is denoted

�I0 := �I − �H g.

In coordinates and in codimension 1 one has

�I0 = I0 �n = −
2∑

i,j=1

[∂xi
�n · ∂xj

��+ H∂xi
�� · ∂xj

��] dxi ⊗ dxj.
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For any k = 1,2 after some computations we obtain

2∑
i=1

∂xi

[
f p−1

[
∂xi

�n + H∂xi
��]] · ∂xk

���n

= −∂xk

[
f p−1I0

k,k

]�n − ∂xk+1

[
f p−1I0

k+1,k

]�n.
Denoting ∇· := (∂x1·,−∂x2 ·) and (∇)⊥· := (∂x2 ·, ∂x1 ·), we have then

(II.33)
2 pσ 2 e−2λ div

[
f p−1 [∇�n + H∇ ��]] · ∇ ��

= −2 pσ 2 e−2λ
[∇[f p−1 I0

11

]+ (∇)⊥[f p−1 I0
12

]]
.

Combining (II.32) and (II.33) gives

(II.34)

2 pσ 2 e−2λ div
[
f p−1 ∇�n] · ∇ ���n

= −2 pσ 2 ∇[f p−1 �H ]+ 2 pσ 2 f p−1H∇�n

− 2 pσ 2 e−2λ
[∇[f p−1 I0

11

]+ (∇)⊥[f p−1 I0
12

]]�n.
So the equation (II.31) becomes

(II.35)

��∧ div
[[

1 + σ 2f p
]∇ ��− 2 pσ 2∇[f p−1 �H ]

− 2 pσ 2 e−2λ f p−1 〈∇�n⊗̇∇�n;∇ ��〉

+ 2 pσ 2 f p−1 H∇�n − 2 pσ 2 e−2λ
[∇[f p−1 I0

11

]+ (∇)⊥[f p−1 I0
12

]]�n]

= 4 pσ 2 f p−1 ��∧ �H.

The equation (II.35) can be rewritten in an exact divergence free equation of the form
div( �� ∧ · · · ) = 0, that is in an exact conservation law which is coming from the SO(4)
invariance of the problem in the target. However, since we are interested in general tar-
gets, we don’t want to take advantage of the “roundness” of S3 and we shall rewrite (II.35)
in an “almost conservation law” which is more generic and which holds in D′(�). It is
due this time to the translation invariance of the integrand of Fp in R4 in relation with
the Noether theorem as observed in [2]. However the fact that we don’t get exactly get a
conservation law is coming from the fact that the constraint to take values into the closed
sub-manifold S3 is not translation invariant. This pointwise constraint is “generating” ad-
ditional terms (i.e. the last term in the l.h.s. and the full r.h.s. of (II.36)) in comparison to
the identity we would get if we would release this constraint. Nevertheless these additional
terms happen to be of much lower degree and are not going to perturb the arguments in
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the section below as if we would be dealing with an exact conservation law. This is why
we are speaking about an “almost conservation law”.

(II.36)

−div
[[

1 + σ 2f p
]∇ ��− 2 pσ 2 ∇[f p−1 �H]− 2 pσ 2e−2λf p−1 〈∇�n ⊗̇∇�n;∇ ��〉

+ 2 pσ 2 f p−1 H∇�n − 2 pσ 2 e−2λ
[∇[f p−1 I0

11

]+ (∇)⊥[f p−1 I0
12

]]�n]

+ 4 pσ 2 f p−1 �H = [1 + σ 2(1 − p)f p + pσ 2f p−1
]|∇ ��|2 ��.

Finally we end up this section by quoting the following theorem

Theorem II.6. — Let p ≥ 1 and �� be an element in the space E�,p of W2,2p-immersions of a

closed surface �. Assume �� is a critical point of Aσ
p (

��) then �� is C∞ in any conformal parametriza-

tion.

Remark II.3. — A proof of Theorem II.6 has been given in [18] and for C1 into
the Euclidean space. The method of proof in [18] relies on the work of J. Langer with the
decomposition of the immersion into the union of graphs. See also [4] for a proof making
use of the underlying conservation laws.

II.6. Proof of Theorem I.2. — Combine Theorem II.5 and Theorem I.1, this gives
Theorem I.2. �

III. The passage to the limit σ → 0 with controlled conformal class

The goal of the present section is to prove the following theorem

Theorem III.1. — Let p > 1 and let ��k be a sequence of critical points of Aσk
p in the class

E�,p where σk → 0 and satisfying

(III.1) 0 < lim sup
k→+∞

Area( ��k) <+∞,

and

(III.2) σ 2
k Fp( ��k)= σ 2

k

∫
�

[
1 + |I ��k

|2g ��k

]p
dvolg ��k

= o

(
1

log(1/σk)

)
.

Assume moreover that the conformal class associated to (�, g ��k
) is precompact in the moduli space,

then, modulo extraction of a subsequence, there exists a closed Riemann surface (S, h0) with genus(S)≤
genus(�), a weakly conformal map ��∞ from S into Nn and an integer valued map N ∈ L∞(S,N)
such that

lim
k→+∞

Aσk( ��k)= 1
2

∫
S

N |d ��∞|2h0
dvolh0 .
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Moreover the push forward of S by ��∞ together with the multiplicity N defines an oriented stationary

integer varifold and the oriented varifold |Tk| equal to the push-forward by ��k of � converges in the

sense of Radon measures towards the oriented stationary integer varifold associated to ��∞. The surface

S is moreover either equal to the union of � with finitely many copies of S2 or is equal to finitely many

copies of S2.

Remark III.1. — Observe that in Theorem III.1, due to the assumption about the
controlled conformal class, there can be a genus jump genus(S) < genus(�) only if the area
vanishes on the main part of the Riemann surface and �∞(S) is going to be a bouquet
of minimal sphere. This cannot be excluded a priori

In this section we shall then assume that ��k is conformal from a se-
quence of Riemannian surfaces (�, gk) into S3 for which the underlying Rie-
mann structure is pre-compact in the moduli space of �.

In order to prove Theorem III.1 we shall need several lemma.

Lemma III.1. — [Monotonicity formula] Under the assumptions of Theorem III.1

the sequence of varifolds |Tk| equal to the push forward of � by ��k converges, modulo extraction of a

subsequence, towards a stationary varifold. In particular, introducing the Radon measure in S3 given by

(III.3) 〈μk, ϕ〉 :=
∫
�

ϕ( ��k) dvolg ��k
,

μk converges modulo extraction of a subsequence to a limiting Radon measure μ∞ satisfying the following

monotonicity formula

(III.4) ∀�q ∈ supp(μ∞) ∀r > 0
d

dr

[
eC rμ∞(Br(�q))

r2

]
≥ 0

for some C > 0 independent of �q and r.

Proof of Lemma III.1. — The monotonicity formula for the limiting measure μ∞
is a direct consequence of the fact that |Tk| converges towards a stationary varifold (see
[1] and [39]). So it would suffices to prove this last fact in order to get (III.4). However
the proof of both statements (that can be proven independently of each other) are very
similar. In the first case it suffices to prove that for any vector field �X we have

(III.5)

lim
k→+∞

∫
Mk

divMk
�X , dH2

= lim
k→+∞

∫
�

[ 4∑
i=1

〈
∂yi

�X( ��k)∇�i
k,∇ ��k

〉− �X( ��k) · ��k |∇ ��k|2
]

dx2 = 0,
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where Mk := ��k(�) and ��k = (�1
k , . . . ,�

4
k ). The computations for proving (III.5) are

more or less the same as the one for proving (III.4) and we shall only present the later
since we shall revisit them in the forthcoming Lemma III.3.

The explicit mention of the indices σk and k can be deleted when there is no pos-
sible confusion. For any �q ∈ S3 and any radius r small enough, Simon’s monotonicity formula

(see [39], Chapter 4) applied to ��(�) (which is smooth immersion for any k) which is
seen as a varifold from R4 gives

(III.6)

d

dr

[
1
r2

∫
��−1(B4

r (�q))
dvolg ��

]
= d

dr

[∫
��−1(B4

r (�q))

|(�n ∧ ��) ( ��− �q)|2
| ��− �q|4 dvolg ��

]

− 1
2 r3

∫
��−1(B4

r (�q))
( ��− �q) · d∗g d �� dvolg ��

≥ − 1
2 r3

∫
��−1(B4

r (�q))
( ��− �q) · d∗g d �� dvolg ��,

where we have used that the first term in the r.h.s. of (III.6) is non negative.8 Thanks to
equation (II.36) we obtain

(III.7)

−
∫

��−1(B4
r (�q))

( ��− �q) · d∗g d �� dvolg �� =
∫

��−1(B4
r (�q))

( ��− �q) · �� dx2

= −
∫

��−1(B4
r (�q))

( ��− �q) · div
[
σ 2f p−1

[
f ∇ ��− 2 p

(
H∇�n

− e−2λ〈∇�n ⊗̇∇�n;∇ ��〉)]] dx2

+ 2 pσ 2

∫
��−1(B4

r (�q))
( ��− �q) · div

[
e−2λ
[∇[f p−1 I0

11

]+ (∇)⊥[f p−1 I0
12

]]�n] dx2

+ 2 pσ 2

∫
��−1(B4

r (�q))
( ��− �q) ·[f p−1 �H] dx2

−
∫

��−1(B4
r (�q))

[
1 + (1 − p)σ 2f p + pσ 2 f p−1

]
( ��− �q) · �� |∇ ��|2 dx2.

Regarding the last line, observe in one hand that ( ��− �q) · �� = 1 − cos ( ��,�q) = O(r2)

hence

(III.8)

∣∣∣∣ 1
r3

∫
��−1(B4

r (�q))
( ��− �q) · �� |∇ ��|2 dx2

∣∣∣∣≤ C
r

∫
��−1(B4

r (�q))
dvolg ��

8 Indeed we are taking the derivative of an integral of a positive integrand over a bigger and bigger set.
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and in the other hand, again for fixed r and �q, as k → +∞

(III.9)

∣∣∣∣
∫

��−1(B4
r (�q))

[
(1 − p)σ 2f p + pσ 2 f p−1

]
( ��− �q) · �� |∇ ��|2 dx2

∣∣∣∣
≤ Cσ 2 Fp( ��)+ Cσ 2 M(T)1/p

[
Fp( ��)

]1−1/p → 0.

Integrating by parts each of the two first lines in the r.h.s. of (III.7) gives

(III.10)

−
∫

��−1(B4
r (�q))

( ��− �q) · div
[
σ 2 f p−1

[
f ∇ ��− 2 p

(
H∇�n

− e−2λ〈∇�n ⊗̇∇�n;∇ ��〉)]] dx2

+ 2 pσ 2

∫
��−1(B4

r (�q))
( ��− �q) · div

[
e−2λ
[∇[f p−1 I0

11

]+ (∇)⊥[f p−1 I0
12

]]�n] dx2

= σ 2

∫
��−1(B4

r (�q))
f p−1

[
f |∇ ��|2 − 2 p H∇�n · ∇ ��+ 2 p (f − 1) e2λ

]
dx2

− σ 2

∫
��−1
(
∂B4

r (�q)
) f p ∂ν �� · ( ��− �q)− 2 p f p−1 H ∂ν �n · ( ��− �q) dl

+ 2 pσ 2

∫
��−1(∂B4

r (�q))
f p−1

〈
∂ν�n · ∇�n,∇ �� · ( ��− �q)〉 dl

+ 2 pσ 2

∫
��−1
(
∂B4

r (�q)
) e−2λ( ��− �q) · �n [ν1 ∂x1

[
f p−1 I0

11

]− ν2 ∂x2

[
f p−1 I0

11

]]
dl

+ 2 pσ 2

∫
��−1(∂B4

r (�q))
e−2λ( ��− �q) · �n [ν1 ∂x2

[
f p−1 I0

12

]+ ν2 ∂x1

[
f p−1 I0

12

]]
dl,

where ν is the outward unit (in the coordinates) normal to ��−1(B4
r (�q)) and is given ex-

plicitly by

ν = (∂x1| ��− �q| , ∂x2| ��− �q|)/∣∣∇| ��− �q|∣∣.

This is nothing but the normalized gradient of the function distance to �q. We clearly have

(III.11) lim
k→+∞

σ 2

∫
��−1(B4

r (�q))
f p−1

[
f |∇ ��|2 − 2 p H∇�n · ∇ ��+ 2 p e2λ(f − 1)

]
dx2 = 0.
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Multiplying (III.10) by χ(r)/r3 where χ is an arbitrary compactly supported function in
R∗

+ and integrating over R∗
+ gives successively

(III.12)

σ 2

∫
R+
χ(r)

dr

r3

∫
��−1(∂B4

r (�q))

[
f p ∂ν �� · ( ��− �q)− 2 p f p−1 H ∂ν�n · ( ��− �q)] dl

+ 2 pσ 2

∫
R+

χ(r)
dr

r3

∫
��−1(∂B4

r (�q))
f p−1

〈
∂ν�n · ∇�n,∇ �� · ( ��− �q)〉 dl

= σ 2

∫
�

χ
(| ��− �q|)

[
f p |∇| ��− �q||2

| ��− �q|2

− 2 p f p−1 H
∇| ��− �q|
| ��− �q|3 · 〈∇�n · ( ��− �q)〉

]
dx2

+ 2 pσ 2

∫
�

χ
(| ��− �q|) f p−1

〈∇| ��− �q|
| ��− �q|3 · ∇�n,∇�n∇ �� · ( ��− �q)

〉
dx2

−→ 0 as k → +∞,

where we have bound the r.h.s. of (III.12) by a constant depending on χ times σ 2Fp( ��).
We also obtain

(III.13)

−2 pσ 2

∫
R+

χ(r)
dr

r3

∫
��−1(∂B4

r (�q))
e−2λ( ��− �q) · �n[ν1 ∂x1

[
f p−1 I0

11

]]
dl

+ 2 pσ 2

∫
R+

χ(r)
dr

r3

∫
��−1(∂B4

r (�q))
e−2λ ( ��− �q) · �n [ν2 ∂x2

[
f p−1 I0

11

]]
dl

= −pσ 2

∫
�

χ
(| ��− �q|) ( ��− �q)

| ��− �q|4 · �n [e−2λ∂x1| ��− �q|2 ∂x1

[
f p−1 I0

11

]]
dx2

+ pσ 2

∫
�

χ
(| ��− �q|) ( ��− �q)

| ��− �q|4 · �n [e−2λ ∂x2| ��− �q|2 ∂x2

[
f p−1 I0

11

]]
dx2.

Integrating by parts the r.h.s of (III.13), we have

(III.14)

−pσ 2

∫
�

χ
(| ��− �q|) ( ��− �q)

| ��− �q|4 · �n [e−2λ ∂x1| ��− �q|2 ∂x1

[
f p−1 I0

11

]]
dx2

+ pσ 2

∫
�

χ
(| ��− �q|) ( ��− �q)

| ��− �q|4 · �n [e−2λ ∂x2| ��− �q|2 ∂x2

[
f p−1 I0

11

]]
dx2

= pσ 2

∫
�

f p−1 I0
11 ∇[χ(| ��− �q|) ( ��− �q) · �n

| ��− �q|4
]
e−2λ ∇| ��− �q|2 dx2

+ pσ 2

∫
�

f p−1 I0
11 · χ(| ��− �q|)( ��− �q) · �n

| ��− �q|4 ∇[e−2λ ∇| ��− �q|2] dx2.



A VISCOSITY METHOD IN THE MIN-MAX THEORY OF MINIMAL SURFACES 203

We recall that we have respectively

(III.15) ∇ · (e−2λ ∇ ��)= 2 e−2λ �I0
11 and (∇)⊥ · (e−2λ ∇ ��)= 2 e−2λ �I0

12.

Combining these identities with the fact that �� is conformal we deduce that

(III.16)

∇[e−2λ ∇| ��− �q|2]

= 2∇[e−2λ ∇( ��− �q)] · ( ��− �q)+ 2 e−2λ ∇( ��− �q) · ∇( ��− �q)

= 4 e−2λ �I0
11 · ( ��− �q).

Combining (III.14) and (III.16) and observing that we have the following pointwise upper
bound

∣∣∣∣∇
[
χ
(| ��− �q|)( ��− �q) · �n

| ��− �q|4
]∣∣∣∣

≤ C
[‖χ ′‖∞ d−3

χ + ‖χ‖∞d−4
χ

] |∇ ��|(x)+ ‖χ‖∞ d−3
χ |∇�n|(x),

where dχ is the distance of the support of χ to zero we deduce

(III.17)

∣∣∣∣−pσ 2

∫
�

χ
(| ��− �q|) ( ��− �q)

| ��− �q|4 · [e−2λ ∂x1| ��− �q|2 ∂x1

[
f p−1 �I0

11

]]
dx2

+ pσ 2

∫
�

χ
(| ��− �q|) ( ��− �q)

| ��− �q|4 · [e−2λ ∂x2| ��− �q|2 ∂x2

[
f p−1 �I0

11

]]
dx2

∣∣∣∣
≤ Cχ σ

2 Fp( ��)+ Cχ σ
2 M(T)1/p

[
Fp( ��)

]1−1/p → 0.

The control of the last term of the r.h.s. of (III.10) is performed similarly to the preceding
one following each step between (III.13) and (III.17). So finally deduce that for any χ

compactly supported in R∗
+ we have

(III.18)

−
∫

R+
χ(r)

dr

r3

∫
��−1(B4

r (�q))
( ��− �q) · div

[
σ 2 f p−1

[
f ∇ ��

− 2 p
(
H∇�n − e−2λ〈∇�n ⊗̇∇�n;∇ ��〉)]] dx2

+ 2 pσ 2

∫
R+

χ(r)
dr

r3

∫
��−1(B4

r (�q))
( ��− �q) · div

[
e−2λ

[∇[f p−1 I0
11

]

+ (∇)⊥[f p−1 I0
12

]]�n] dx2

→ 0.
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It remains to bound

(III.19)

−
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(B4

r (�q))
( ��− �q) ·[f p−1 �H] dx2

=
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(B4

r (�q))
∇( ��− �q) · ∇[f p−1 �H] dx2

−
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(∂B4

r (�q))
( ��− �q) · ∂ν

[
f p−1 �H] dl.

The last integral in the r.h.s. of (III.19) is equal to

(III.20)

−
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(∂B4

r (�q))
( ��− �q) · ∂ν

[
f p−1 �H] dl

= −σ 2

∫
�

χ
(| ��− �q|)∇| ��− �q| ·

〈
∇[f p−1 �H], ��− �q

| ��− �q|3
〉

dx2.

We observe that since �H · ∇ ��= 0
〈
∇[f p−1 �H], ��− �q

| ��− �q|3
〉
= ∇

〈
f p−1 �H,

��−�q
| ��−�q|3

〉

+ 3
〈
f p−1 �H,

��− �q
| ��− �q|4

〉
∇| ��− �q|.

Hence, after integrating by parts we obtain from (III.20)

(III.21)

−
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(∂B4

r (�q))
( ��− �q) · ∂ν

[
f p−1 �H] dl

= σ 2

∫
�

χ
(| ��− �q|)| ��− �q|

〈
f p−1 �H,

��− �q
| ��− �q|3

〉
dx2

+ σ 2

∫
�

[
χ ′(| ��− �q|)− 3

χ(| ��− �q|)
| ��− �q|

] ∣∣∇| ��− �q|∣∣2

×
〈
f p−1 �H,

��− �q
| ��− �q|3

〉
dx2.

We observe that in the domain where χ(| ��− �q|) �= 0 we have

| ��− �q| = ( ��− �q) · ��
| ��− �q| + |∇ ��|2

| ��− �q| − |∇| ��− �q||2
| ��− �q| ,
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and using the fact that  ��= − �� |∇ ��|2 + �H |∇ ��|2 we finally obtain

(III.22) | ��− �q| = −1 − �q · ��
| ��− �q| + ( ��− �q) · �H |∇ ��|2

| ��− �q| + |∇ ��|2
| ��− �q| − |∇| ��− �q||2

| ��− �q| .

Hence combining (III.20), (III.21) and (III.22) we obtain

(III.23)

∣∣∣∣
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(∂B4

r (�q))
( ��− �q) · ∂ν

[
f p−1 �H] dl|

≤ Cχ σ
2 Fp( ��)+ Cχ σ

2 M(T)1/p
[
Fp( ��)

]1−1/p → 0.

Taking now the first integral in the r.h.s. of (III.19) we have

(III.24)

∫
R+

χ(r)
dr

r3
σ 2

∫
��−1(B4

r (�q))
∇( ��− �q) · ∇[f p−1 �H] dx2

= −
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(B4

r (�q))
 �� · f p−1 �H dx2

+ σ 2

∫
�

χ
(| ��− �q|)∇| ��− �q| · 〈∇( ��− �q), f p−1 �H〉 dx2.

So we have also

(III.25)

∣∣∣∣
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(B4

r (�q))
∇( ��− �q) · ∇[f p−1 �H] dx2

∣∣∣∣
≤ Cχ σ

2 Fp( ��)+ Cχ σ
2 M(T)1/p

[
Fp( ��)

]1−1/p → 0.

Combining (III.19) and (III.23) and (III.25) we have

(III.26)

∣∣∣∣
∫

R+
χ(r)

dr

r3
σ 2

∫
��−1(B4

r (�q))
( ��− �q) ·[f p−1 �H] dx2

∣∣∣∣→ 0.

Combining now (III.7), (III.8), (III.9), (III.18) and (III.26) we have that for any fixed non
negative χ(r) compactly supported in R∗

+ and any �q ∈ R4

(III.27)

−
∫ ∞

0
χ ′(r) dr

1
r2

∫
��−1

k (B4
r (�q))

dvolg ��k

≥ −C
∫ ∞

0
χ(r) dr

1
r

∫
��−1

k (B4
r (�q))

dvolg ��k
− Cχ σ

2 Fp( ��)

− Cχ σ
2 M(T)1/p

[
Fp( ��)

]1−1/p
,
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for some constant Cχ depending on χ . Taking μk the Radon measure on R4 given by
(III.3) this can be rewritten as

−
∫ ∞

0
χ ′(r) dr

1
r2
μk

(
B4

r (�q)
)≥ −C

∫ ∞

0
χ(r) dr

1
r
μk

(
B4

r (�q)
)+ ok(1).

We extract a subsequence such that μk converges weakly in Radon measure and we
finally obtain that for any fixed non negative χ(r) compactly supported in R∗

+ and any
�q ∈ R4

−
∫ ∞

0
χ ′(r) dr

1
r2
μ∞
(
B4

r (�q)
)≥ −C

∫ ∞

0
χ(r) dr

1
r
μ∞
(
B4

r (�q)
)
,

which classically implies (III.4) and Lemma III.1 is proved. �

A rather direct consequence of the proof of the limiting monotonicity formula is
given by the following non concentration result.

Lemma III.2. — [Non collapsing lemma] Let p > 1 and 0 < σ < 1. There exists

δ > 0 and ε > 0 such that for any critical point �� of Aσ satisfying

(III.28) σ 2Fp( ��)≤ εArea( ��),
then

(III.29) diam
( ��(�))> δ.

Proof of Lemma III.2. — Assume (III.28) for some ε fixed later. Let 1 > δ > 0 and
choose χδ = (r − δ)+ on [0,1 + δ] identically equal to 1 on [1 + δ,2 + δ] and equal to
(3 + δ − r)+ for r > 2 + δ. Assuming that the whole immersed surface is included in a
ball B4

δ(�q), the inequality (III.27) gives then

(III.30) −Area( ��)
[∫ 1+δ

δ

dr

r2
−
∫ 3+δ

2+δ

dr

r2

]
≥ −CArea( ��)

∫ 3+δ

δ

dr

r
−Cδ ε

1−1/pArea( ��).

Dividing by Area( ��) we obtain

C log
1
δ

≥ 1
δ

− 1
4

− Cδ ε
1−1/p.

Assume that δ is small enough in such a way that C log 1
δ
< 1

δ
− 1, choosing ε > 0 such

that Cδ ε
1−1/p < 3/4 we obtain a contradiction. This proves Lemma III.2. �

The next result establishes a uniform lower bound of the limiting area for any
sequence of immersions satisfying the assumptions of Theorem III.1. This result is the
“work-horse” in our proof of the main theorem and shall be used crucially at several
steps. Precisely we have the following result
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Lemma III.3. — [Global energy quantization] Let p > 1. For every �> 0 there

exists Q0(�) > 0 and σ(�) > 0 such that the following holds. Let � be a closed surface and let ��
be a critical points of Aσ

p for σ < σ(�) and satisfying

(III.31) σ 2 Fp( ��)= σ 2

∫
�

[
1 + |I ��|2g ��

]p
dvolg �� ≤ �

log(1/σ)
Area( ��),

then,

(III.32) Area( ��)≥ Q0(�).

Proof of Lemma III.3. — We denote as usual

f (σ )= σ 2 Fp( ��)
Area( ��) .

Let η > 0 to be fixed later. For any �q ∈ ��(�) we consider the 4-dimensional ball in R4,
B4
σ (�q) centered at �q with radius σ . We consider the subset Eη of ��(�) given by

Eη :=
{
�q ∈ ��(�)⊂ S3;σ−2

∫
B4
σ (�q)∩ ��(�)

dvolg �� < η

}
.

From the covering (B4
σ (�q))�q∈Eη we extract a Besicovitch sub-covering (B4

σ (�qi))i∈I such that
each point in R4 is covered by at most N balls where N is a universal number. A corollary
of Simon’s monotonicity formula (see Corollary 5.12 [32] and take T = σ ) gives for each
i ∈ I

(III.33) σ−2

∫
B4
σ (�q)∩ ��(�)

dvolg �� ≥ 2π
3

− 1
2

∫
B4
σ (�qi)

∣∣ �HR4

��
∣∣2 dvolg ��.

Considering η= π/3 this imposes

(III.34)
∫

B4
σ (�qi)

∣∣ �HR4

��
∣∣2dvolg �� >

2π
3
.

Hence

(III.35)
∫

∪i∈IB4
σ (�qi)

∣∣ �HR4

��
∣∣2dvolg �� ≥ 1

N

∑
i∈I

∫
B4
σ (�qi)

∣∣ �HR4

��
∣∣2 dvolg �� ≥ 2π

3N
card I.

Combining (III.31) and (III.35) we obtain

(III.36) σ 2 2π
3 N

card I ≤ f (σ )Area( ��).
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So we have

(III.37)
∫

Eπ/3

dvolg �� ≤
∫

∪i∈IB4
σ (�qi)

dvolg �� ≤ π

3
σ 2 card I ≤ f (σ )Area( ��).

Let 1 > δ > 0 to be fixed later . Consider now for j ∈ {1,2, . . . , log2 σ
−1}. We use the

notation

A(j,�q) :=
∫

B4
2jσ

(�q)∩ ��(�)
dvolg �� and

F(j,�q) := σ 2

∫
B4

2j σ
(�q)∩ ��(�)

[
1 + |I ��|2g ��

]p
dvolg ��,

Gj

δ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�q ∈ ��(�) \ Eπ/3;
(2−2 j A(j + 1,�q))1/p F(j + 1,�q)1−1/p + F(j,�q)

A(j,�q) ≥ f (σ )

δ

and A(j + 1,�q)≤ 3π 22j+2 σ 2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

For each j ∈ {1,2, . . . , log2 σ
−1} and for any �q ∈ Gj

δ we consider the closed balls B4
2jσ
(�q).

The following covering of Gδ := ∪j∈{1,2,...,log2 σ
−1−1}G

j

δ

((
B4

2jσ
(�q))�q∈Gj

δ

)
j=1,2,...,log2 σ

−1

realizes a Besicovitch covering of Gδ . By the mean of Besicovitch theorem, we extract a
Besicovitch sub-covering

((
B4

2jσ
(�qi)
)

i∈Ij

)
j=1,...,log2 σ

−1

of Gδ such that each point in R4 is covered by at most N balls where N is a universal
number.9 In other words we have

(III.38)

∥∥∥∥
log2 σ

−1−1∑
j=1

∑
i∈Ij

1B4
2jσ

(�qi)

∥∥∥∥
L∞(R4)

≤N .

For any j = 1, . . . , log2 σ
−1 the balls B4

2jσ
(�qi) for i ∈ Ij have all the same radius, moreover

each point of R4 is covered by at most N of such balls. Hence by doubling each of these

9 Observe that it is not clear whether for each j the sub-familly (B4
2jσ
(�qi))i∈Ij covers the whole Gj

δ but at least the
union of these families cover Gδ .
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balls and considering B4
2j+1σ

(�qi), since they all have the same radius there exists a universal
number10 N such that

sup
j=1,...,log2 σ

−1

∥∥∥∥
∑
i∈Ij

1B4
2j+1σ

(�qi)

∥∥∥∥
L∞(R4)

≤N,

where 1B4
2j+1σ

(�qi)
is the characteristic function of the ball B4

2j+1σ
(�qi). We have for any α > 0

that

(III.39)

∥∥∥∥
log2 σ

−1−1∑
j=1

∑
i∈Ij

1B4
2j+1σ

(�qi)
2αj

∥∥∥∥
L∞(R4)

≤ CN

log2 σ
−1∑

j=0

2α j ≤ CNσ−α.

For any j ∈ {1,2, . . . , log2 σ
−1} and �q ∈ Gj

δ , the whole support of ��(�) cannot be in-
cluded in B4

2j σ
(�q) otherwise we would contradict the non collapsing lemma III.2 for σ

small enough. Hence, since �q ∈ ��(�) for any radius r ∈ (2jσ,2j+1σ) we have ��(�) ∩
∂Br(�q) �= ∅ and we can apply Lemma A.1. Hence we deduce

(III.40) 0 < ε0(4) <
∫

B4
2j+1σ

(�q)

∣∣�IR4

��
∣∣2 dvolg ��.

Since A(j + 1,�q)≤ 3π 22j+2 σ 2 inequality (III.40) implies

(III.41)

A(j + 1,�q)
22 j+2

≤ 3π σ 2

ε0(4)

∫
B4

2j+1σ
(�q)

∣∣�IR4

��
∣∣2 dvolg ��

≤ 3π σ 2

ε0(4)
A(j + 1,�q)1−1/p

(∫
B4

2j+1σ
(�q)

[
1 + |I ��|2]p dvolg ��

)1/p

and we deduce that

(III.42)
A(j + 1,�q)

22 j
≤ C

(
2j+1 σ

)2p−2
F(j + 1,�q).

So for �q ∈ Gj

δ we have combining the definition of Gj

δ with (III.42)

(III.43)
f (σ )

δ
A(j,�q)≤ F(j,�q)+ C

(
2j+1 σ

)2−2/p
F(j + 1,�q)

10 Observe that a-priori each point of R4 can be covered by at most N log2 σ
−1 of the double balls

((B4
2j+1σ

(�qi))i∈Ij )j=1,...,log2 σ
−1 .
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summing this identity with respect to j ∈ J we obtain

(III.44)

f (σ )

δ

∫
Gδ

dvolg �� ≤ f (σ )

δ

log2 σ
−1∑

j=1

∫
Gj

δ

dvolg ��

≤ f (σ )

δ

log2 σ
−1∑

j=1

∑
i∈Ij

∫
B4

2jσ
(�qi)

dvolg ��

≤
log2 σ

−1∑
j=1

∑
i∈Ij

σ 2

∫
B4

2ji σ
(�qi)

[
1 + |I ��|2g ��

]p
dvolg ��

+ σ 2

∫
�

log2 σ
−1∑

j=1

∑
i∈Ij

1B4
2j+1σ

(�qi)
2αj σα

[
1 + |I ��|2g ��

]p
dvolg ��,

where α := 2 − 2p. Using now (III.38) and (III.39), we then deduce

(III.45)
f (σ )

δ

∫
Gδ

dvolg �� ≤ Cσ 2

∫
�

[
1 + |I ��|2g ��

]p
dvolg �� = C f (σ )

∫
�

dvolg ��.

We deduce from (III.37) and (III.45)

(III.46)
∫

Eπ/3∪Gδ

dvolg �� ≤ (C δ + f (σ )
)∫

�

dvolg ��.

Since f (σ )→ 0 as σ → 0, by taking any 0 < δ < 1/C we have that for σ small enough
��(�) \ (Eπ/3 ∪ Gδ) �= ∅. Let now �q ∈ ��(�) \ (Eπ/3 ∪ Gδ). Take j0 = j(�q) the largest index
such that ∫

B4
2j0 σ

(�q)
dvolg �� ≥ 22 j0σ 2 π/3.

Since �q ∈ ��(�) \ (Eπ/3 ∪ Gδ) we must have

(III.47)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
B4

2j0 σ
(�q)

dvolg �� ≥ 22 j0σ 2 π/3 and

∀j ≥ j0
f (σ )

δ

∫
B4

2jσ
(�q)∩ ��(�)

dvolg �� ≥ σ 2

∫
B4

2j σ
(�q)∩ ��(�)

[
1 + |I ��|2g ��

]p
dvolg ��

+
[
σ 2

∫
B4

2j+1 σ
(�q)∩ ��(�)

[
1 + |I ��|2g ��

]p
dvolg ��

]1−1/p

×
[

2−2 j

∫
B4

2j+1σ
(�q)∩ ��(�)

dvolg ��

]1/p

.



A VISCOSITY METHOD IN THE MIN-MAX THEORY OF MINIMAL SURFACES 211

Let j ∈ {j0, . . . , log2 σ
−1 − 1} and let χ be an arbitrary smooth function, bounded by 1,

supported in [2j−2σ,2j+1σ ] and such that |χ ′| ≤ C 2−jσ−1. We can estimate each error
terms between (III.6) and (III.27) in the computations of the monotonicity formula at
fixed k between (III.6) and (III.27) by the mean of the area we obtain

(III.48)

−
∫ +∞

0
χ ′(r)

dr

r2

∫
��−1(B4

r (�q))
dvolg ��

≥ −C
∫ +∞

0
χ(r) dr

[
1
r

+ oσ (1)
r2

]∫
��−1(B4

r (�q))
dvolg ��

− C
∫ +∞

0
χ(r)

dr

r3

∫
��−1(B4

r (�q))
σ 2
[
1 + |I ��|2g ��

]p
dvolg ��

− C 2−3j σ−3

[
σ 2

∫
B4

2j+1 σ
(�q)∩ ��(�)

[
1 + |I ��|2g ��

]p
dvolg ��

]1−1/p

×
[

2−2 j

∫
B4

2j+1σ
(�q)∩ ��(�)

dvolg ��

]1/p

.

Using (III.47) we deduce that for any r ∈ [2j0 σ,1/2]

(III.49)

d

dr

[
1
r2

∫
��−1(B4

r (�q))
dvolg ��

]
≥ −

[
C
r

+ oσ (1)
r2

]∫
��−1(B4

r (�q))
dvolg ��

− C
f (σ )

δ

1
r3

∫
��−1(B4

r (�q))
dvolg ��.

Let Y(r) := 1
r2

∫
��−1(B4

r (�q)) dvolg �� , this ordinary differential inequality gives, for σ small
enough, the existence of C > 0 independent of r and σ and δ, such that for r ∈ [2j0σ,1/2]

(III.50)
d

dr

[
eC r r

C f (σ )
δ Y

]≥ 0.

Integrating between 2j0 σ and 1/2 gives

eC/2 Y(1/2)2− C f (σ )
δ ≥ eC 2j0 σ

(
2j0 σ

)C f (σ )
δ Y

(
2j0 σ

)
.

Using the fact that �q ∈ ��(�) \ Eπ/3 we have then using the first line in (III.47)

(III.51) Y(1/2)≥ e−C/2 2
3 C f (σ )

π eC 2j0 σ
(
2j0 σ

) 3 C f (σ )
π

π

3
.

Since f (σ ) log2 σ
−1) ≤ � we have (2j0 σ)

C f (σ )
δ = 2C f (σ ) δ−1 log2(2

j0 σ) ≥ 2C f (σ ) δ−1 log2 σ ≥
2−C δ−1 �. So Q0 := 2−C δ−1 � e−C/2 π/3 satisfies (III.32) and the Lemma III.3 is proved. �

We now introduce two definitions. First we define the Oscillation set.
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Definition III.7. — Let ��k be a sequence of conformal smooth immersions from11 (�, gk),

critical points of

Aσk
p (

��) := Area( ��)+ σ 2
k Fp( ��)=

∫
�

[
1 + σ 2

k

[
1 + |�I ��|2g ��

]p]
dvolg ��

in the space of weak immersions into S3 and for σk → 0. Assume

��k ⇀ ��∞ weakly in W1,2
(
�,S3

)
,

where � is equipped with a reference metric g0. Assume the sequence of Riemann surfaces (�, g ��k
) is

pre-compact in the moduli space of conformal structures on � and assume

νk := |d ��k|2hk
dvolhk

= |∇ ��k|2 dx2 ⇀ν∞ in Radon measures.

The oscillation set O ⊂� is the set of points x ∈� such that

(III.52) O :=

⎧⎪⎪⎨
⎪⎪⎩

x ∈�; ν∞
(
Bρ(x)

) �= 0 ∀ρ > 0

and lim inf
ρ→0

∫
B2ρ(x)

|d ��∞|2g0
dvolg0

ν∞(Bρ(x))
= 0

⎫⎪⎪⎬
⎪⎪⎭
.

Now we define the vanishing set V .

Definition III.8. — Let ��k be a sequence of conformal smooth immersions from (�, gk), critical

points of

Aσk
p (

��) := Area( ��)+ σ 2
k Fp( ��)=

∫
�

[
1 + σ 2

k

[
1 + |�I ��|2g ��

]p]
dvolg ��

in the space of weak immersions into S3 and for σk → 0. We assume (�, gk) to be pre-compact in the

moduli space of conformal structures on �. Denote

(III.53) f (σk) :=
σ 2

k

∫
�

[1 + |I ��k
|2g ��k

]p dvolg ��k∫
�

dvolg ��k

.

We call the “vanishing set” the subset �0 of � given by

(III.54) �0 :=
{

x ∈�; lim inf
r→0

lim sup
k→+∞

f (σk)
∫

Br(x)
dvolg ��k

σ 2
k

∫
Br(x)

[1 + |I ��k
|2g ��k

]p dvolg ��k

= 0

}
.

11 Recall that in this section we are assuming that the underlying conformal class to (�, gk) is precompact in the
moduli space.
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We will need later on the following lemma which justifies the denomination vanish-

ing set.

Lemma III.4. — [No limiting measure on the vanishing set] Let ��k be a

sequence of conformal smooth immersions from (�, gk) into S3, critical points of

Aσk
p (

��) := Area( ��)+ σ 2
k Fp( ��)=

∫
�

[
1 + σ 2

k

[
1 + |�I ��|2g ��

]p]
dvolg ��

in the space of weak immersions into S3 for σk → 0. We assume (�, gk) is strongly pre-compact in the

Moduli space of �. Assume

��k ⇀ ��∞ weakly in W1,2
(
�,S3

)
,

and assume the following sequence of Radon measure weakly converges

νk := |d ��k|2gk
dvolgk

⇀ν∞,

then we have

(III.55) ν∞(�0)= 0.

Proof of Lemma III.4. — We have

(III.56)

∀x ∈�0 ∀δ > 0 ∃ kx,δ ∈ N ∃ rx,δ > 0

s.t. ∀k ≥ kx,δ

f (σk)

∫
Brx (x)

dvolg ��k

σ 2
k

∫
Brx (x)

[1 + |I ��k
|2g ��k

] dvolg ��k

< δ.

For any δ > 0 and j ∈ N we denote

�
j

0(δ) := {x ∈�0; kx,δ ≤ j}.

We have clearly �0 = ∪j∈N�
j

0(δ). From the covering (Brx,δ (x))x∈� j

0(δ)
we extract a Besicov-

itch sub-covering of � j

0(δ) that we denote (Brxi ,δ
(xi))i∈I in such a way that any point of �

is covered by at most N balls from this sub-covering. We have for all k ≥ j

∫
Brxi

(xi )

dvolg ��k
≤ δ

f (σk)
σ 2

k

∫
Brxi

(xi)

[
1 + |I ��k

|2g ��k

]p
dvolg ��k

.
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Summing over i ∈ I gives

(III.57)

νk

(⋃
i∈I

Brxi
(xi)

)
≤
∑
i∈I

∫
Brxi

(xi )

dvolg ��k
≤ δ

f (σk)
σ 2

k

∑
i∈I

∫
Brxi

(xi)

[
1 + |I ��k

|2g ��k

]p
dvolg ��k

≤ N
δ

f (σk)
σ 2

k

∫
∪i∈IBrxi

(xi )

[
1 + |I ��k

|2g ��k

]p
dvolg ��k

≤ N δ

∫
�

dvolg ��k
.

This implies that

(III.58) ν∞
(
�

j

0(δ)
)≤ lim sup

k→+∞
νk

(⋃
i∈I

Brxi
(xi)

)
≤ N δ ν∞(�).

This inequality is independent of j and since � j

0(δ)⊂�
j+1
0 (δ) we deduce that

(III.59) ν∞(�0)≤ N δ ν∞(�).

Since this holds for any δ > 0 we have proven

(III.60) ν∞(�0)= 0.

This completes the proof of Lemma III.4. �

The next goal is to prove the following orthogonal decomposition of the limiting
measure ν∞.

Lemma III.5. — [Structure of the limiting measure] Under the assumptions of

Theorem III.1, we have the existence of finitely many points a1, . . . , an in � such that the measure ν∞
decomposes orthogonally as follows

(III.61) ν∞ = m(x)L2 +
n∑

i=1

αi δai
,

where L2 is the Lebesgue measure on � equipped with the reference metric g0, m is an L1 function with

respect to the Lebesgue measure and αi are positive numbers bounded from below by the universal positive

number Q0 = lim�→0 Q0(�) given by Lemma III.3.

Proof of Lemma III.5. — Step 1: We prove that

(III.62)
∫
O

|d ��∞|2g0
dvolg0 = 0.

Indeed, for any ε > 0 to any x ∈O we assign rx such that

(III.63)
∫

Brx (x)

|d ��∞|2g0
dvolg0 ≤

∫
B2 rx (x)

|d ��∞|2g0
dvolg0 ≤ ε ν∞

(
Brx(x)

)
.
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Extracting a Besicovitch covering (Bri(xi))i∈I) such that each point of � is covered by at
most N balls from the covering. We obtain that

(III.64)
∫

∪i∈IBri
(xi)

|d ��∞|2g0
dvolg0 ≤ ε

∑
i∈I

ν∞
(
Bri(xi)

)≤ ε N ν∞(�),

and since this holds for any ε > 0 we obtain (III.62).

Step 2: Proof of the absolute continuity of ν∞ with respect to the Lebesgue measure
away from the oscillation set O. Precisely we prove in this step

(III.65) ν∞ (� \O)= m dL2,

where m ∈ L1(�).

Let ε > 0. Following (III.64), we first include O in an open subset Oε such that

(III.66)
∫
Oε

|d ��∞|2g0
dvolg0 ≤ ε.

Let x ∈�ε :=� \Oε then there exists δx > 0 such that

inf
ρ>0

∫
B2ρ(x)

|d ��∞|2g0
dvolg0

ν∞(Bρ(x))
≥ δx.

We denote Fj := {x ∈� \O ; δx > 2−j}. We then have

� \O =
⋃
j∈N

Fj.

Let G be a closed subset of �ε :=� \Oε such that H2(G)= 0. We claim that

(III.67) ν∞(G)= 0.

Since �ε := � \ Oε is closed G is compact. Let α > 0 to be fixed later on. Since
H2(G)= 0 and since G is compact

∃β > 0 s.t. H2(Gβ)≤ α where Gβ := {x ∈�; dist(x,G) < β
}
.

Indeed the closeness of G implies G := ∩n∈NG1/n, G1/n is decreasing for the inclusion and
fundamental properties of Hausdorff measures give then H2(G) =
limn→+∞H2(∩n∈NG1/n). Let j ∈ N. From the covering (Bβ/2(x))x∈G∩Fj

we extract a Vi-
talli covering (Bβ/2(xi))i∈I in such a way that the balls Bβ/6(xi) are disjoint. Since all the
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balls have the same radius β/2 with centers at distances at least β/3 each point of � is
covered by at most N balls Bβ(xi) where N is a universal number. Since each xj ∈ Fj

(III.68) ν∞
(
Bβ/2(x)

)≤ 2j+1

∫
Bβ(x)

|d ��∞|2g0
dvolg0 .

Since all the balls Bβ(xi) are included in Gβ we have

(III.69) H2
(⋃

i∈I

Bβ(xi)
)

≤ α.

We have moreover

(III.70)
ν∞(G ∩ Fj)≤

∑
i∈I

ν∞
(⋃

Bβ/2(xi)
)

≤ 2j+1
∑
i∈I

∫
Bβ(xi)

|d ��∞|2g0
dvolg0

≤ 2j+1 N
∫

∪i∈IBβ(xi)
|d ��∞|2g0

dvolg0 ≤ 2j+1 N
∫

Gβ
|d ��∞|2g0

dvolg0 .

Since |d ��∞|2g0
dvolg0 is absolutely continuous with respect to the Lebesgue measure, for

any η > 0 there exists α > 0 such that

(III.71) ∀E measurable H2(E)≤ α =⇒
∫

E
|d ��∞|2g0

dvolg0 ≤ η.

Hence we finally get combining (III.69), (III.70) and (III.71)

(III.72) ν∞(G ∩ Fj)≤ 2j+1 Nη.

For any j ∈ N the inequality (III.72) holds for any η > 0 thus ν∞(G ∩ Fj) = 0 and we
deduce (III.67). Since (III.67) holds true for any closed measurable subset of �ε :=
� \Oε, then using the fundamental property of Radon measures saying that

∀G measurable ν∞(G)= sup
{
ν∞(K); K ⊂ G; K compact

}
,

we obtain that ν∞ for any measurable subset G of�\Oε satisfying on�\Oε is absolutely
continuous with respect to the Lebesgue measure. By making ε go to zero this implies
(III.65).

Step 3: Detecting the “bubbles”. In this step we are just splitting the oscillation set
O into it’s vanishing part O0 :=�0 ∩O and the bubble part B where we recall that
the �0 is the so called vanishing set defined in Definition III.8:

B :=O \
(
O
⋂

�0

)
.

Recall that we have proved in Lemma III.4 ν∞(�0)= 0 hence

(III.73) ν∞(O0)= 0.
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Step 4: Finiteness of the bubble set B. Precisely in this step we are proving that for
the constant Q0 > 0 given by Lemma III.3 then

(III.74) ∀x ∈ B ∀r > 0 ν∞
(
Br(x)

)≥ Q0.

Once (III.74) will be established we can then deduce that B is made of finitely many
points. Let then x ∈ B, then there exists δx > 0 and rx > 0 that can be taken as small as
one wants such that

(III.75) ∀r < rx lim sup
k→+∞

f (σk)
∫

Br(x)
dvolg ��k

σ 2
k

∫
Br(x)

[1 + |I ��k
|2g ��k

]p dvolg ��k

≥ δx > 0.

Let 0 < rc < rx to be fixed later, let ��k′ a sequence for which

(III.76) ∀k′ ∈ N
f (σk′)

∫
Brc (x)

dvolg ��
k′

σ 2
k′

∫
Brc (x)

[1 + |I ��k′ |2g ��
k′
]p dvolg ��

k′

≥ δx

2
.

By assumption (III.2) from Theorem III.1 we have that f (σ ) = o(1/ logσ−1) we are
“almost” fulfilling the assumptions of Lemma III.3 except that we have a surface with
boundary Br(x) and not a closed surface. So we have to choose a “nice” cut rc in such a
way to be able to apply the arguments of Lemma III.3.

Since x ∈O, by definition, for any η > 0 there exists ρ < rx such that

(III.77) η ν∞
(
Bρ(x)

)≥
∫

B2ρ

|∇ ��∞|2 dx2.

Using Fubini and the mean-value theorem we can find r ∈ [ρ,2ρ] such that

(III.78)

lim
k→+∞

∥∥ ��k(x)− ��k(y)
∥∥2

(L∞(∂Br(x1)))2
= ∥∥ ��∞(x)− ��∞(y)

∥∥2

(L∞(∂Br(x1)))2

≤
[∫

∂Br(x1)

|∇ ��∞| dl ≤
]2

≤ 8π
∫

B2ρ(x1)

|∇ ��∞|2 dx2.

We take this r = rc to be our “nice cut”. We can assume

s :=
√

8π
∫

B2ρ(x1)

|∇ ��∞|2 dx2 > 0,

the case s = 0 could be treated in a similar way but we would have to introduce a new
small parameter. . . Let �q0 := ��∞(x2) for some fixed arbitrary x2 ∈ ∂Br(x1). For k large
enough we have that

(III.79) ��k

(
∂Brc(x1)

)⊂ B4
2s(�q0).
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Let R > 4 to be fixed later. The monotonicity formula (III.4) and (III.77) imply that

(III.80) μ∞
(
B4

R s(�q0)
)≤ C R2 s2 ≤ C R2 η ν∞

(
Bρ(x)

)
.

Hence for η chosen in such a way that C R2 η < 1/2 we have that for k′ large enough
(recall that k′ is the sequence satisfying (III.76) for our “nice cut” rc which is fixed now)

∫
Brc (x)\( ��k′ )−1(B4

R s(�q0))

dvolg ��
k′

≥ 4−1

∫
Brc (x)

dvolg ��
k′
.

Taking the same notations of the proof of Lemma III.3 where � is replaced by Brc(x) we
can then find �q1 ∈ ��k′(Brc(x)) \ (Eπ/3 ∪ Fδ ∪ B4

R s(�q0)). As in the proof of Lemma III.3 we
shall apply the monotonicity formula centered at this point �q1 but we will remove from
��k′(Brc(x)) the balls B4

t s(�q0) for t ∈ [2,4]. The monotonicity formula with boundary (see
for instance [34]) gives for all r > 0

(III.81)

d

dr

[
1
r2

∫
Brc (x)∩ ��−1(B4

r (�q1)\B4
t s(�q0))

dvolg ��

]

= d

dr

[∫
Brc (x)∩ ��−1(B4

r (�q1)\B4
t s(�q0))

|(�n ∧ ��) ( ��− �q1)|2
| ��− �q1|4

dvolg ��

]

− 1
2 r3

∫
Brc (x)∩ ��−1(B4

r (�q1)\B4
t s(�q0)

( ��− �q1) · d∗g d �� dvolg ��

− 1
r3

∫
R4
< �q − �q1, �ν > dH1

[ ��(Brc(x)
)∩ B4

r (�q1)∩ ∂B4
t s(�q0)

]

≥ − 1
2 r3

∫
Brc (x)∩ ��−1(B4

r (�q1)\B4
t s(�q0))

( ��− �q1) · d∗g d �� dvolg ��

− 1
r3

∫
R4

〈�q − �q1, �ν〉 dH1
[ ��(Brc(x)

)∩ B4
r (�q1)∩ ∂B4

t s(�q0)
]
,

where �ν is the outward unit tangent to the surface ��k(Brc(x))\B4
t s(�q0) along the boundary

∂
( ��k

(
Brc(x)

) \ B4
t s(�q0)

)= ��k

(
Brc(x)

)∩ ∂B4
t s(�q0)

and perpendicular to this boundary.12 We consider χ(t) a smooth non negative function
supported in [1,2] satisfying

∫ 4
2 χ(t) dt = 1, χ ≤ 1 and |χ ′| ≤ 1. We multiply the inequal-

ity (III.81) by χ(t) and we integrate between 2 and 4 this gives, after observing that the

12 Observe that ��k(∂Brc (x))⊂ B4
t s(�q0) so there is no contribution from ��k(∂Brc (x)) outside B4

t s(�q0).
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first term in the r.h.s. of (III.81) is non negative,13

(III.82)

d

dr

[
1
r2

∫ 4

2
χ(t) dt

∫
Brc (x)∩ ��−1(B4

r (�q1)\B4
t s(�q0))

dvolg ��

]

≥ − 1
2 r3

∫ 4

2
χ(t) dt

∫
Brc (x)∩ ��−1(B4

r (�q1)\B4
t s(�q0))

( ��− �q1) · d∗g d �� dvolg ��

− 1
r3

∫ 4

2
χ(t) dt

∫
R4

〈�q − �q1, �ν〉 dH1
[ ��(Brc(x)

)∩ B4
r (�q1)∩ ∂B4

t s(�q0)
]
.

By substituting d∗g d �� with it’s expression deduced from (II.36), exactly as in the proof of
the monotonicity formula (III.4) and as in the proof of Lemma III.3 the new terms involv-
ing σ coming from the boundaries ∂B4

t s(�q0) in the first integral of the r-h-s of (III.82) tend
to zero as k tends to infinity since the distance between the center �q1 and this boundary
is bounded from below by R s > 0 independently of σ . So it remains then to estimate the
last term in (III.82). This is done as follows

(III.83)

∣∣∣∣ 1
r3

∫ 4

2
χ(t) dt

∫
R4

〈�q − �q1, �ν〉 dH1
[
Brc(x)∩ ��−1

(
B4

r (�q1)
)∩ ��−1

(
∂B4

t s(�q0)
)]∣∣∣∣

≤ 2 |�q1 − �q0|
r3

∫ 4

2
dt H1

(
∂B4

t s(�q0)
)

≤ 2 |�q1 − �q0|
r3

∫
��−1(B4

4 s\B4
2 s)

|d| ��− �q0||g ��
s

dvolg �� ≤ C
|�q1 − �q0|

r3
s,

where we used successively the coarea formula for the function | ��−�q0|/s and the mono-
tonicity formula (III.4) in the last inequality. Observe that this term appears only for
r > dist(B4

4 s(�q0),�q1) > |�q0 − �q1|/2. Hence the integral with respect to r between σ and
1/2 gives

(III.84)

∣∣∣∣
∫ 1/2

σ

dr

r3

∫ 4

2
χ(t) dt

∫
R4

〈�q − �q1, �ν〉 dH1
[ ��(Brc(x))∩ B4

r (�q1)∩ ∂B4
t s(�q0)

]∣∣∣∣
≤ C

|�q1 − �q0|2 |�q1 − �q0| s ≤ C
R
.

The rest of the argument of the proof of Lemma III.3 carries through and we get that

ν∞
(
Brc(x)

)≥ Q0 − C/R.

13 Indeed we are taking the derivative of an integral of a positive integrand over a bigger and bigger set.
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Since we can take R as large as we want, we obtain (III.74). Hence ν∞ restricted to
O is equal to a finite sum of Dirac masses and this last step concludes the proof of
Lemma III.5. �

We shall now prove the following lemma

Lemma III.6. — [Absence of energy in the necks] Let ��k satisfying the assump-

tions of Theorem III.1. Let 1 > ηk > 0, 1 > δk > 0 and xk ∈� satisfying

(III.85) lim
k→+∞

log
ηk

δk

= +∞,

and such that

(III.86) lim
k→0

sup
j∈{1,...,log2(ηk/δk)}

νk

(
B2j+1δk

(xk) \ B2jδk
(xk)
)= 0.

Then

(III.87) lim
k→0

νk

(
Bηk

(xk) \ Bδk
(xk)
)= 0.

Proof of Lemma III.6. — We argue by contradiction. If (III.87) does not hold we can
then find a subsequence that we denote still ��k such that

(III.88) lim
k→0

νk

(
Bηk

(xk) \ Bδk
(xk)
)= A > 0.

Let Q0 be the universal constant in the Lemma III.3. We can assume without loss of
generality that

(III.89) A < Q0.

Indeed, if this would not be the case we would replace δk by a larger number that we keep
denoting δk and since (III.86) holds we necessarily have (III.85) for this new δk . We have
for k large enough

(III.90)
σ 2

k

∫
�
[1 + |I ��k

|2g ��k

]p dvolg ��k∫
Bηk

(xk)\Bδk (xk)
dvolg ��k

≤ 2ν∞(�)
A

f (σk).

Following the approach of step 5 of the proof of Lemma III.5, we first select 2 “good
cuts” at the two ends of the annulus. So we choose respectively δk,c ∈ [δk,2δk] and ηk,c ∈
[ηk/2, ηk] such that we have respectively

s2
k :=

[∫
∂Bδk,c (xk)

|∇ ��k| dl

]2

≤ π νk

(
B2 δk

(xk) \ Bδk
(xk)
)−→ 0,
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and

t2
k :=

[∫
∂Bηk,c

(xk)

|∇ ��k| dl

]2

≤ π νk

(
B2ηk

(xk) \ Bηk
(xk)
)−→ 0.

Let x1,k ∈ ∂Bδk,c
(xk) and x2,k ∈ ∂Bδk,c

(xk) arbitrary. We have respectively

(III.91) ��k

(
∂Bδk,c

(xk)
)⊂ B4

sk

( ��k(x1,k)
)

and ��k

(
∂Bηk,c

(xk)
)⊂ B4

tk

( ��k(x2,k)
)
.

Arguing as in the proof of the non collapsing lemma III.2, which is a corollary of the
monotonicity formula, there exists s > 0 fixed such that

max
�q∈R4

μ∞
(
B4

s (�q)
)
< A/4.

We then have for k large enough

μk

( ��k

(
Bηk,c

(xk) \ Bδk,c
(xk)
) \ (B4

s

( ��k(x1,k)
)∪ B4

s

( ��k(x2,k)
)))≥ A/2.

As in the step 5 of the proof of Lemma III.5, we adopt the notations from the proof of
Lemma III.3 and replacing � by the annulus Bηk,c

(xk) \ Bδk,c
(xk), we can find �qk such that

�qk ∈ ��k

(
Bηk,c

(xk) \ Bδk,c
(xk)
) \ (Eπ/3 ∪ Gδ ∪ B4

s

( ��k(x1,k)
)∪ B4

s

( ��k(x2,k)
)
.

We can carry over one by one the computation of the monotonicity formula centered at �q,
controlling the boundary terms induced by the two cuts ��k(∂Bηk,c

(xk)) and ��k(∂Bηk,c
(xk))

which stay at a distance bounded from bellow with respect to �qk , following the approach
of the end of the step 5 of the proof of Lemma III.5. It is here even simpler since the
lengths of the cuts sk and tk shrink to zero in the present case. Hence we obtain

A = lim
k→0

νk

(
Bηk

(xk) \ Bδk
(xk)
)≥ Q0,

which contradicts (III.89). This concludes the proof of Lemma III.6. �

Defining the bubble tree Because of the previous quantization property, together
with the no-neck energy property, following a classical combinatorics argument (in the
style of Proposition III.1 in [3]—see also [27]), after extracting an ad-hoc subsequence,
one can construct a family of sequences of smooth conformal injections (ψ i

k)i=1,...,L from
Si \⋃ni

j=1 Bε(a
i
j) (for any ε for k large enough) into (�, g ��k

), equipped with a strongly
converging constant curvature metric hi

k , in such a way that

ν
j

k := dvolg ��k◦ψ j
k

⇀ν j
∞ = mj dvol

h
j
∞ as Radon measures on Si \

ni⋃
j=1

Bε

(
ai

j

)
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for any ε and

L∑
i=1

ν i
∞
(
Si
)= μ∞

(
S3
)
.

In the case for instance when the conformal class of (�, g ��k
) is controlled, the first bubble

is given by � itself and the others are S2. Except for the next lemma where we are
working in the junction regions between several bubbles, the so called neck regions, we shall
be working on a single bubble that we shall generically denote �.

Lemma III.7. — [Construction of an approximating sequence] Assume

the hypothesis of Theorem III.1 are fulfilled and that we have extracted subsequences such that ��k

converges weakly towards ��∞ in W1,2(�) and νk converges towards ν∞ satisfying (III.61) where

B := {a1, . . . , al} the blow-up set. Let φ be a function in C∞
0 (B

2
1(0)) satisfying

∫
B2

1(0)
φ(x) dx2 = 1

and denote φt(x) := t−2φ(x/t). Then, modulo extraction of a subsequence, the family of smooth maps

φr � ��∞, converging strongly in W1,2
loc (� \B) to ��∞ as r goes to zero, satisfies

(III.92) lim
r→0

lim sup
k→+∞

∫
�\∪n

l=1Bε(al )

| ��k − φr � ��∞| dvolg�k
= 0.

Proof of Lemma III.7. — Let ε > 0. Let x ∈� \ ∪n
l=1Bε(al) arbitrary and r > 0 such

that there exists kx,r such that

(III.93) ∀k ≥ kx,r

∫
B4 r(x)

|∇ ��k|2 dx2 < ε.

As before, we use Fubini and the mean value theorem to extract a slice rk ∈ (r,2r) such
that

∥∥ ��∞(x)− ��∞(y)
∥∥2

L∞(∂Brk
(x))2

≤ C
∫

B2ρ

|∇ ��∞|2 dx2 ≤ ε

and
∫
∂Brk

(x)

|∇ ��k|2 ≤ C
r

∫
B2r(x)

|∇ ��k|2 dx2 <
C ε

r

∥∥ ��∞(x)− ��ρ
∞(x)

∥∥
L∞(∂Brk

(x))
≤ ε where ��ρ

∞(x) := 1
|B2r|

∫
B2r(x)

��∞ dx2.

Because of the weak W1,2 convergence of ��k towards ��∞, and because of the uniform
W1,2-bound on ∂Brk(x) of ��k(rk, θ), by Rellich Kondrachov compact embedding theorem,
��k(rk, θ)− ��∞(rk, θ) converges to zero in L∞ norm. We then choose kx,r such that

∀k ≥ kx,r ‖ ��k − ��∞‖L∞(∂Brk
(x)) ≤ √

ε.
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Denote �r
k(x) := Brk(x) \ ��−1

k (B4
R

√
ε
( ��r

∞(x)) and assume that

σ 2
k

∫
�r

k(x)
(1 + |I ��k

|2)p dvolg ��k∫
�r

k(x)
dvolg ��k

≤ 1

logσ−1
k

.

Again we can then argue word by word as in the proof of Lemma III.3 for the surface
�r

k(x) until (III.47) in order to find a point �q in ��k(�
r
k(x)) \ (Eπ/3 ∪ Gδ). Once we have

this point we perform the rest of the argument of Lemma III.3 but for the surface with
boundary ��k(Brk(xk) \ ��−1

k (B4
Rε(

��r
∞(x))). The boundary is going to generate a new term

in the monotonicity formula

− 1
r3

∫
R4

〈�q − �q1, �ν〉 dH1
[ ��k

(
Brk(x)

)∩ ∂B4
t ε(�q)

]
,

for t ∈ [2,4] that we treat exactly as in (III.83) in order to get that for k large enough∫
Brk

(xk)
|∇ ��k|2 dx2 ≥ Q0 − C/R which is a contradiction for R large enough. Hence we

have

(III.94)
σ 2

k

∫
�
ρ
k (x)

(1 + |I ��k
|2)p dvolg ��k∫

�r
k(x)

dvolg ��k

>
1

logσ−1
k

,

and then

(III.95)

∫
Brk

(x)

| ��k(y)− ��ρ
∞(x)| |∇ ��k|2(y) dy2

≤ R
√
ε

∫
Brk

(x)

|∇ ��k|2(y) dy2 + C logσ−1
k σ 2

k

∫
Brk

(x)

(
1 + |I ��k

|2)p
dvolg ��k

.

Let φ be a function in C∞
0 (B

2
1(0)) satisfying

∫
B2

1(0)
φ(x) dx2 = 1 and denote φt(x) :=

t−2φ(x/t) we have for all y ∈ Br(x)

φr � ��∞(y)− ��r
∞(x)

=
∫

z∈B2r(y)

φr(y − z) ��∞(z) dz2 −
∫

z∈B2r(y)

φr(y − z) ��r
∞(x) dz2.

Hence ∣∣φr � ��∞(y)− ��r
∞(x)

∣∣

≤ C
r4

∫
z∈B2r(y)

∫
v∈B2r(x)

∣∣∣∣φ
(

y − z

r

)∣∣∣∣
∣∣ ��∞(z)− ��∞(v)

∣∣ dz2 dv2

≤ C
r4

∫
z∈B4r(x)

∫
v∈B4r(x)

| ��∞(z)− ��∞(v)| dz2 dv2.
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Thus, using Poincaré inequality on B4r(x)

(III.96)

∀x ∈� \ ∪n
l=1Bε(al)

∥∥φr � ��∞(y)− ��r
∞(x)

∥∥2

L∞(Br(x))
≤ C

∫
B4r(x)

|∇ ��∞|2(y) dy2.

Let r such that

sup
x∈�\∪n

l=1Bε(al )

ν∞
(
B4r(x)

)≤ ε/2.

One takes a finite covering (Br(xi))i∈I of � \ ∪n
l=1Bε(al) by balls of fixed radius r such

that each point is covered by at most a universal number N of balls of size 2r. Summing
(III.95) gives for k large enough

∑
i∈I

∫
Br(xi)

∣∣ ��k(y)− ��r
∞(xi)

∣∣ |∇ ��k|2(y) dy2

≤ RN
√
ε

∫
�\∪n

l=1Bε0 (al )

|∇ ��k|2(y) dy2

+ CN logσ−1
k σ 2

k

∫
�

(
1 + |I ��k

|2)p
dvolg ��k

.

Combining this inequality with (III.96) gives then

(III.97)

∫
�\∪n

l=1B2ε0 (al )

| ��k − φr � ��∞|(y) |∇ ��k|2(y) dy2

≤ C
√
ε

∫
�\∪n

l=1Bε0 (al )

|∇ ��k|2(y) dy2

+ CN logσ−1
k σ 2

k

∫
�\∪n

l=1Bε(al )

(
1 + |I ��k

|2)p
dvolg ��k

.

This concludes the proof of the lemma. �

Lemma III.8. — [Rectifiability of the limit] Let ��k satisfying the assumptions of

Theorem III.1. Then the limiting measure μ∞ is supported by a rectifiable 2-dimensional subset K of

S3 given by the image of the different bubbles by the W1,2 map ��∞. Precisely there exists a uniformly

bounded H2 measurable function θ on K such that

(III.98) μ∞ = θ dH2 K.
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Moreover if we decompose μ∞ =∑L
i=1μ

i
∞ where each μi

∞ is the limiting measure produced by one

bubble we have for each bubble

(III.99) μi
∞(φ)=

∫
�

φ( ��∞) dν i
∞ =

∫
�

φ( ��∞)mi(x) dx2,

where ν i
∞ = mi dL2.

Proof of Lemma III.8. — We first prove (III.99). Let ε > 0. Using (III.97) we have the
existence of r such that, for k large enough

(III.100)

∫
�\∪n

l=1B2ε0 (al )

| ��k − φr � ��∞|(y) |∇ ��k|2(y) dy2

≤ C
√
ε

∫
�\∪n

l=1Bε0 (al )

|∇ ��k|2(y) dy2

+ CN logσ−1
k σ 2

k

∫
�\∪n

l=1Bε(al )

(
1 + |I ��k

|2)p
dvolg ��k

.

Let ϕ ∈ C1(R4) we have

(III.101)

μ1
k (ϕ)=

∫
�\∪n

l=1Bε0 (al )

ϕ( ��k) dvolg ��k
=
∫
�\∪n

l=1Bε0 (al )

ϕ(φr � ��∞) dvolg ��k

+
∫
�\∪n

l=1Bε0 (al )

ϕ( ��k)− ϕ(φr � ��∞) dvolg ��k
,

where μ1
k is the measure issued from ��k restricted to � \B. We have in one hand by the

convergence of Radon measures

(III.102)

lim
k→+∞

∫
�\∪n

l=1Bε0 (al )

ϕ(φr � ��∞) dvolg ��k

= ν∞(ϕ(φr � ��∞))=
∫
�\∪n

l=1Bε0 (al )

ϕ(φr � ��∞)m1(x) dx2,

and in the other hand we have

(III.103)

∣∣∣∣
∫
�\∪n

l=1Bε0 (al )

ϕ( ��k)− ϕ(φr � ��∞) dvolg ��k

∣∣∣∣
≤ ‖∇ϕ‖∞

∫
�\∪n

l=1B2ε0 (al )

| ��k − φr � ��∞|(y) |∇ ��k|2(y) dy2.

Combining (III.100)–(III.103) we obtain

(III.104) lim sup
k→+∞

∣∣μ1
k (ϕ)− ν∞

(
ϕ(φr � ��∞)

)∣∣≤ Cϕ ε.
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By taking ε smaller and smaller as well as ρ gets smaller and smaller we obtain (III.99).
It remains to prove (III.98). Because of the monotonicity formula μ∞ vanishes on any
measurable set of H2 measure zero in S3. Using the quantitative Lusin type property for
Sobolev maps of F.C. Liu (see [21]) we deduce that for any α > 0 there exists a C1 map
�
α from � into14 S3 and an open subset Bα of � such that

(III.105)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H2
(
Bα
)≤ α,

��∞ = �
α on � \ Bα and d ��∞ = d �
α on � \ Bα,

∥∥ ��∞ − �
α
∥∥2

W1,2(�)
≤ α.

The identity (III.99) implies then

μi
∞(ϕ)=

∫
�\Bα

ϕ
( �
α

)
dν i

∞ +
∫
ϕ( ��∞) dν i

∞ Bα.

Since �
α is C1 on � the measurable set Kα := �
α(�) is 2 rectifiable and there exists a
measure τα supported on Kα such that

μi
∞(ϕ)=

∫
Kα

ϕ(�q) dτα(�q)+
∫
ϕ( ��∞) dν i

∞ Bα.

Observe that since ν i
∞ is absolutely continuous with respect to the Lebesgue measure on

� we have

lim
α→0

sup
|E|<α

ν i
∞(E)= 0.

Hence, by taking K := ∪n∈N∗K1/n, there exists a measure τ on K such that μ∞ := τ K.
Because of the monotonicity formula μ∞ vanishes on any measurable set of H2 measure
zero in S3 and hence τ is absolutely continuous with respect to dH2 K and there exist
an H2 measurable function θ on K such that (III.98) holds and this concludes the proof
of Lemma III.8. �

Lemma III.9. — [Vanishing of the limiting measure on the degenerating
set] Let L∇ ��∞ be the subset of � \B of Lebesgue points for ∇ ��∞. We denote by L0

∇ ��∞
the measurable

subset of L∇ ��∞ of points where the Lebesgue representative of ∇ ��∞ has rank strictly less than 2. Then

we have

(III.106) ν∞
(
L

0
∇ ��∞

)= 0.

14 The fact that we can apply Liu’s result for maps into W1,2(�,S3) comes from the fact that smooth maps in
C1(�,S3) are dense in W1,2(�,S3) for the W1,2-topology.
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Proof of Lemma III.9. — Let K be a compact subset of L0
∇ ��∞

such that

ν∞(K)≥ 2−1ν∞
(
L

0
∇ ��∞

)
.

Let α > 0 and consider Bα and �
α satisfying (III.105). We choose α small enough in such
a way that

ν∞
(
K \ Bα

)≥ 2−1ν∞(K).

Since
∫
L0

∇ ��∞
|∂x1

��∞ × ∂x2
��∞| dx2 = 0 and since ∇ ��∞ = ∇ �
α on � \ Bα we have that

H2( �
α(K \ Bα))= 0. Observe that �α := �
α(K \ Bα) is compact in R4. Let Bρi
(�qi) be a

finite covering of �α such that
∑

i∈I ρ
2
i ≤ α. Let ϕα be a C1 non negative function in R4,

identically equal to one on �α , less than one and supported in ∪i∈IBρi
(�qi). Because of the

monotonicity formula we have

(III.107)
∫

R4
ϕα(�q) dμ∞(�q)≤ Cα.

The formula (III.99) and the fact that ϕα( �
α) is identically equal to one on K \ Bα gives

ν∞
(
K \ Bα

)≤
∫

R4
ϕα(�q) dμ∞(�q),

hence we obtain that ν∞(L0
∇ ��∞

) ≤ 4 Cα for any α and this concludes the proof of
Lemma III.9. �

Lemma III.10. — [Convergence to an integer rectifiable varifold] Under

the assumptions of Theorem III.1, we have that one we can extract a subsequence such that the integer

varifold vk associated to the current ( ��k)∗[�] converges to an integer rectifiable varifold supported by a

finite union of the images by W1,2-maps of surfaces. More precisely we have that on each bubble there

exists a function Ni ∈ L∞(Si,N) such that

(III.108) ν i
∞ = Ni |∂x1

��∞ × ∂x2
��∞| dx2.

Proof of Lemma III.10. — Since we have proved that the necks contain no energy
at the limit, it suffices to prove the convergence for ��k restricted to � \ ∪n

l=1Bε(al). We
denote by vε,k the integer varifold associated to the current ( ��k)∗[� \ ∪n

l=1Bε(al)].

The proof of Lemma III.10 is a bit long and is therefore decomposed into two
main parts. In the first part we establish the varifold convergence of vε,k towards a limiting
varifold vε,∞ which is—as a Radon measure on the Grassman bundle of TNn—absolutely
continuous with respect to ( ��∞)∗δT�\∪n

l=1Bε(al ). The second step consists in proving the
integrality of vε,∞.
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Step 1: The convergence of vε,k towards vε,∞ � ( ��∞)∗δT�\∪n
l=1Bε(al ).

We fix α > 0 and we consider the map �
α and the open set Bα given by (III.105).
We choose a Lebesgue point x for ∇ ��∞ in � \ Bα such that

(III.109) lim
r→0

|Br(x) \ Bα|
|Br(x)| = 1.

We assume that x is not in the vanishing set �0.We also assume that x is not in the de-
generating set L0

∇ ��∞
. These restrictions have no consequences since we have respectively

ν∞ � L2, ν∞(�0) = 0 and ν∞(L0
∇ ��∞

) = 0. Such a point is a Lebesgue point for x and
one has

(III.110) lim
r→0

φr � ��∞(x)= �
α(x)= ��∞(x).

Without loss of generality, modulo the action of rotations, we assume that �
α(x) =
��∞(x)= (0,0,1,0), that ∂x1

�
α(x)= ∂x1
��∞(x)= (a,0,0,0) and ∂x2

�
α(x)= ∂x2
��∞(x)=

(b, c,0,0). We have a c �= 0 since ∇ ��∞ has rank 2. Moreover the approximate tangent
plane at ��∞(x) coincides with Span{(1,0,0,0), (0,1,0,0)}. Observe that the existence
of this approximate tangent plane and the fact that �
α(x) is a regular point for �
α forces
Span{∂x1

�
α, ∂x2
�
α} = {(1,0,0,0), (0,1,0,0)} at any point in ( �
α)−1( �
α(x)).

We recall that we adopt the notation �� = (�1,�2,�3,�4). We first have for the
third coordinate

(III.111)

∫
Br(x)

∣∣∇�3
k

∣∣2 dy2 =
∫

Br(x)

∣∣�3
k ∇�3

k

∣∣2 dy2 +
∫

Br(x)

(
1 − ∣∣�3

k

∣∣2) ∣∣∇�3
k

∣∣2 dy2

=
∫

Br(x)

∣∣�3
k ∇�3

k

∣∣2 dy2 +
∫

Br(x)

(∣∣�3
∞(x)

∣∣2 − ∣∣�3
k

∣∣2) ∣∣∇�3
k

∣∣2 dy2.

We have �3
k ∇�3

k = −�1
k ∇�1

k −�2
k ∇�2

k −�4
k ∇�4

k and since also for any i = 1, . . . ,4
we have

(III.112)
∣∣∇�i

k

∣∣2 dy1 ∧ dy2 ≤ 2 dvolg ��k
,

and keeping in mind also |�i
k| ≤ 1, we deduce that (III.111) gives

∫
Br(x)

∣∣∇�3
k

∣∣2 dy2 ≤ 2
∫

Br(x)

[∣∣�1
k (y)
∣∣2 + ∣∣�2

k (y)
∣∣2 + ∣∣�4

k (y)
∣∣2] dvolg ��k

+ 4
∫

Br(x)

∣∣�3
k (y)−�3

∞(x)
∣∣ dvolg ��k

.



A VISCOSITY METHOD IN THE MIN-MAX THEORY OF MINIMAL SURFACES 229

Since �i
∞(x)= 0 for i �= 3 we have then

(III.113)
∫

Br(x)

∣∣∇�3
k

∣∣2 dx2 ≤ 10
∫

Br(x)

∣∣ ��k − ��∞(x)
∣∣ dvolg ��k

.

We have

(III.114)

∫
Br(x)

∣∣ ��k − ��∞(x)
∣∣ dvolg ��k

≤
∫

Br(x)

∣∣ ��k − φr � ��∞(x)
∣∣ dvolg ��k

+ ∣∣ ��∞(x)− φr � ��∞(x)
∣∣νk

(
Br(x)

)
.

For any ε > 0, for r small enough, using (III.95) and (III.96) we have the existence of a
radius rk ∈ (ρ/2, ρ) such that

(III.115)

∫
Brk

(x)

∣∣ ��k(y)− φr � ��∞(y)
∣∣ |∇ ��k|2(y) dy2

≤ C
√
ε

∫
Brk

(x)

|∇ ��k|2(y) dy2 + C logσ−1
k σ 2

k

∫
Brk

(x)

(
1 + |I ��k

|2)p
dvolg ��k

.

Since we are at a point which does not belong to the vanishing set we obtain, modulo
extraction of a subsequence

(III.116) lim
r→0

lim sup
k→+∞

∫
Br(x)

| ��k(y)− ��∞(x)| |∇ ��k|2(y) dy2

∫
Br(x)

|∇ ��k|2(y) dy2
= 0.

Combining (III.113) with (III.116) we obtain

(III.117) lim
r→0

lim sup
k→+∞

∫
Br(x)

|∇�3
k |2 dx2

∫
Br(x)

dvolg ��k

= 0.

Since x is a Lebesgue point for ∇ ��∞ one has

∫
Br(x)

∣∣∇ ��(y)− ∇ �
α(x)
∣∣2 = o

(
r2
)
.
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Then, using Fubini theorem together with the mean value theorem, for any r > 0 and for
each k one can find a “good slice” rk(r) ∈ [2r,4r] such that

(III.118)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 2π

0

∣∣∂θ( ��∞
(
rk(r), θ

)− rk(r) cos θ ∂x1
�
α(x)− rk(r) sin θ ∂x2

�
α(x)
)∣∣ dθ

= o(r),

H1
(
∂Brk(r)(x)∩ Bα

)= o(r),

∫
∂Brk (r)

(x)

|∇ ��k|2 dl∂Brk (r)
≤ 2

r

∫
B4 r(x)

|∇ ��k|2 dx2.

Since

(III.119)

∥∥ �
α
(
rk(r), θ

)− �
α(x)− rk(r) cos θ ∂x1
�
α(x)− rk(r) sin θ ∂x2

�
α(x)
∥∥

L∞([0,2π])

= o(r),

from (III.118) and (III.119) we deduce

(III.120)

∥∥ ��∞
(
rk(r), θ

)− �
α(x)− rk(r) cos θ ∂x1
�
α(x)− rk(r) sin θ ∂x2

�
α(x)
∥∥

L∞([0,2π])

= o(r).

Moreover since ��k(rk, θ)− ��∞(rk, θ) weakly in H1/2([0,2π ]) because of the last condi-
tion of (III.118), there exists kx,r ∈ N such that

(III.121)
∀k ≥ kx,r

∥∥ ��k

(
rk(r), θ

)− �
α(x)− rk(r) cos θ ∂x1
�
α(x)

− rk(r) sin θ ∂x2
�
α(x)

∥∥
L∞([0,2π]) = o(r).

Because of (III.121), there exists kx,r such that

∀k ≥ kx,r
��k

(
∂Brk(r)(x)

)⊂ B4
3 |∇ �
α(x)| r

( ��∞(x)
) \ B4

γ r

( ��∞(x)
)
,

where γ := inf{|∂x1
�
α(x), ∂x2

�
α(x)}. For any τ > 2 |∇ �
α(x)| r we denote by ωk(τ ) the
component of ��−1

k (B4
τ (

��∞(x))) containing ∂Brk(r)(x). Let

�k(τ ) := ωk(τ )∪ Brk(r)(x).

Replacing r by γ −1r/4 |∇ �
α(x)| the corresponding “good cut” at rk(γ
−1r/4 |∇ �
α(x)|) is

sent by ��k outside B4
4 |∇ �
α(x)| r

( ��∞(x)) hence, since ∂�k(τ )⊂ ��−1
k (∂B4

τ (
��∞))

(III.122) ∀ τ ∈ [2 ∣∣∇ �
α(x)
∣∣ r,4

∣∣∇ �
α(x)
∣∣ r] �k(τ )⊂ Bγ−1r/2 |∇ �
α(x)|(x).
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We denote

�k,r :=�k

(
4
∣∣∇ �
α(x)

∣∣ r).
Let χα

r,x be a smooth non negative function on R4 supported in the ball B4
4 |∇ �
α(x)| r

( ��∞(x)),

identically equal to one on B4
3 |∇ �
α(x)| r

( ��∞(x)) and such that ‖dlχα
r,x‖L∞(R4) ≤

r−l |∇ �
α(x)|−l
∞ for l = 0,1,2. We have in particular for j = 1, . . . ,4

(III.123)
∫

B
γ−1r/2 |∇ �
α(x)|(x)

∣∣∇�j

k

∣∣2 dx2 ≥
∫
�k,r

χα
r,x(

��k)
∣∣∇�j

k

∣∣2 dx2 ≥
∫

Br(x)

∣∣∇�j

k

∣∣2 dx2.

Multiplying the 4th coordinate of equation (II.36) by χα
r,x(

��k)�
4
k and integrating over �

gives, arguing exactly as in the proof of Lemma III.1,

(III.124)

∫
�k,r

χα
r,x(

��k)
∣∣∇�4

k

∣∣2 dx2 =
∫
�k,r

χα
r,x(

��k)
∣∣�4

k

∣∣2 ∣∣∇�4
k

∣∣2 dx2

−
∫
�k,r

�4
k ∇(χα

r,x(
��k)
) · ∇�4

k + ok(1).

We shall now define a radius sr = δ(r) r where δ(r) = or(1) in the following way. Using
Poincaré inequality as for proving (III.96) we have

(III.125) ‖φsr
� ��∞ − ��r

∞‖2
L∞(�r,k)

≤ Cx

δ2
r

∫
B
γ−1r/2 |∇ �
α(x)|( ��∞)

|∇ ��∞|2 dx2,

where Cx does not depend on r but on x only. Using the fact that, since �
α is C1,

(III.126)
r−2

∫
B
γ−1r/2 |∇ �
α(x)|(x)

∣∣∇ ��∞ − ∇ �
α
∣∣2 dy2 = ε(r)

and
∣∣∇
α,4

∣∣(x)= 0 ⇒ ∥∥∇
α,4
∥∥

L∞(Br(x))
= or(1),

where ε(r) = or(1) by choosing δ2(r) := max{‖∇
α,4‖L∞(Br(x)), ε(r)
1/2} we deduce from

(III.125)

(III.127)

∥∥∥∥φsr
� �4

∞ − 1
Br(x)

∫
Br(x)

�4
∞

∥∥∥∥
2

L∞(�r,k)

≤ Cx

[√
ε(r)+ ‖∇
α,4‖L∞(Br(x))

]
r2 = o

(
r2
)
.

On Brk(x) we decompose ��∞ − �
α = v + ψ such that v = 0 in Brk(x) and ψ = 0
on ∂Brk(x). Because of (III.120) one has, using respectively the maximum principle and the
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Dirichlet Principle,

(III.128)

‖v‖L∞(Brk
(x)) = o(r) and

∫
Brk

(x)

|∇ψ |2 ≤
∫

Brk
(x)

∣∣∇ ��∞ − ∇ �
α
∣∣2 dy2 = ε(r) r2.

Sobolev–Poincaré inequality gives

1
|Brk(x)|

∫
Brk

(x)

|ψ |2 ≤ C
∫

Brk
(x)

∣∣∇ ��∞ − ∇ �
α
∣∣2 dx2.

Combining this last fact with (III.128) gives

∣∣∣∣ 1
|Brk(x)|

∫
Brk

(x)

[ ��∞(y)− �
α(y)
]

dy2

∣∣∣∣
2

= o
(
r2
)
.

This implies 1
|Brk

(x)|
∫

Brk
(x)

��4
∞(y) = o(r). Observe that similarly to the proof of (III.96) by

the mean again of Poincaré inequality one has

∣∣∣∣ 1
|Brk(x)|

∫
Brk

(x)

�4
∞(y) dy2 − 1

|Br(x)|
∫

Br(x)

�4
∞(y) dy2

∣∣∣∣
2

≤ C
∫

B2r(x)

∣∣∇�4
∞
∣∣2 dy2 = o

(
r2
)
.

Combining these two last estimates with (III.127) we finally obtain

(III.129)
∥∥φsr

� �4
∞
∥∥

L∞(�r,k)
= o(r).

We shall denote simply ��sr
= φsr

� ��∞. Arguing now exactly as in the proof of
Lemma III.1, we have

(III.130)

∫
�k,r

χα
r,x(

��k)
∣∣∇�4

k

∣∣2 dx2

=
∫
�̂ε

χα
r,x(

��k)
∣∣�4

k

∣∣2 ∣∣∇�4
k

∣∣2 dx2 −
∫
�k,r

�4
k ∇(χα

r,x(
��k)
) · ∇�4

k + ok(1).
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Observe that from (III.129) one has |�4
sr
| = o(r) hence |�4

sr
∂zj
χα

r,x(
��sr
))| ≤ o(r) r−1 = o(1).

Thus we have

(III.131)

∫
�k,r

[
χα

r,x(
��k)− or(1)

]∣∣∇�4
k

∣∣2 dx2

=
∫
�k,r

χα
r,x(

��k)
[∣∣�4

k

∣∣2 − |�sr
|2] ∣∣∇�4

k

∣∣2 dx2

−
4∑

j=1

∫
�k,r

[
�4

k

(
∂zj
χα

r,x(
��k)
)−�4

sr
∂zj
χα

r,x(
��sr
)
)]∇�j

k · ∇�4
k + ok(1).

Because of the first line in (III.126) one has

sup
y∈�k,r

∫
Bsr (y)

|∇ ��∞|2(z)dz2 ≤ ε(r)r2 + Cxs
2
r ≤ Cxs

2
r .

Replacing r by sr and ε by s2
r and � \∪n

l=1Bε(al) by �k,r , one can transpose word by word
the arguments from equation (III.93) until equation (III.97) in order to obtain

(III.132)

∫
�k,r

| ��k − φsr
� ��∞|(y) |∇ ��k|2(y) dy2

≤ C sr

∫
�k,r

|∇ ��k|2(y) dy2 + CN logσ−1
k σ 2

k

∫
�k,r

(
1 + |I ��k

|2)p
dvolg ��k

.

Combining (III.131) with (III.132) gives then

(III.133)

∫
�k,r

[
χα

r,x(
��k)− or(1)

]∣∣∇�4
k

∣∣2 dx2

≤ C sr

∫
�k,r

|∇ ��k|2(y) dy2 + CN logσ−1
k σ 2

k

∫
�k,r

(
1 + |I ��k

|2)p
dvolg ��k

+ C
∫
�k,r

∣∣ ��4
k − φsr

� ��4
∞
∣∣(y) ∣∣∂zχ

α
r,x(

��k)
∣∣|∇ ��k|2(y) dy2

+ C
∫
�k,r

∣∣ ��4
sr

∣∣(y) ∣∣∂zχ
α
r,x(

��k)− ∂zχ
α
r,x(

��sr
)
∣∣‖∇ ��k|2(y) dy2.

Using the fact that |∂zχ
α
r,x| ≤ C r−1, that |∂zχ

α
r,x| ≤ C r−2 together with (III.129) and

(III.132) again we finally obtain

(III.134) lim sup
k→0

∫
�k,r

[χα
r,x(

��k)− or(1)]|∇�4
k |2 dx2

∫
�k,r

|∇ ��k|2(y) dy2
≤ C

[
r−1 sr + r−2 s2

r

]
.
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Combining this fact with (III.123) and the fact that sr r−1 = o(1) we finally obtain

(III.135) lim sup
k→0

∫
Br(x)

|∇�4
k |2 dx2

∫
Br(x)

|∇ ��k|2(y) dy2
= or(1).

Combining (III.117) and (III.135) we have then

(III.136) lim
r→0

lim
k→+∞

∫
Br(x)

[|∇ ��1
k |2 + |∇ ��2

k |2] dx2

∫
Br(x)

|∇ ��k|2 dx2
= 1

as well as

(III.137) lim
ρ→0

lim sup
k→+∞

∫
��−1

k (B4
ρ(

��∞(x)))
[|∇ ��1

k |2 + |∇ ��2
k |2] dx2

∫
��−1

k (B4
ρ(

��∞(x)))
|∇ ��k|2 dx2

= 1.

Since ��k is conformal we have then

(III.138) lim
r→0

lim
k→+∞

∫
Br(x)

2 |∂x1
�ζk ∧ ∂x2

�ζk| dx2

∫
Br(x)

|∇ ��k|2 dx2
= 1,

where �ζk := (�1
k ,�

2
k ) and, combining (III.136) with (III.138)

(III.139) lim
r→0

lim
k→+∞

∫
Br(x)

2 |∂x1
�ζk ∧ ∂x2

�ζk| dx2

∫
Br(x)

|∇�ζk|2 dx2
= 1.

One difficulty at this stage is that we can not remove the absolute values inside the up-
per integral of (III.139). If we would be able to do so, we would be proving the strong
convergence for ∇ ��k towards ∇ ��∞ and the lemma would be proven.15 The rest of the
argument consists in proving that the limiting un-oriented varifold associated to the cur-
rent ( ��k)∗[Br(x)] is going to be equal, asymptotically as r goes to zero, to an integer
times �
α

∗Tx�. We formulate that differently. Denote by G̃2(S3) to be the Grassmanian
of oriented 2 dimensional planes of the tangent bundle to S3, TS3. The image by ��k of
�α

ε , induces an oriented integer rectifiable varifold (see [14]) ṽαε,k , where the choice of ori-
entation of the tangent plane is taken to be the one induced by the push forward by the
immersion ��k of the one fixed on �. The sequence of oriented varifolds ṽk converges to a
limiting oriented varifold ṽ∞ which is a limiting measure on the oriented 2-Grassmanian
G̃2(S3). Denote by T+� the tangent bundle to � with the positive orientation and T−�
the same tangent bundle but with the opposite orientation. We see �
α

∗(T
+�̂α

ε ∪ T−�̂α
ε )

15 Unfortunately we still don’t know whether we can exchange the integration and the absolute values in (III.139) at
this stage of our study of the viscosity method.
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as a measurable subset of G̃2(S3). With these notations, the identity (III.136) is in fact
equivalent to

(III.140) ṽαε,∞
(
G̃2

(
S3
) \ �
α

∗
(
T+�̂α

ε ∪ T−�̂α
ε

))= 0.

The goal is now to prove

(III.141) vαε,∞ = Nx δ �
α∗ (Tx�̂α
ε )

where Nx ∈ N∗,

where vαε,∞ is the un-oriented varifold associated to ṽαε,∞ and δ �
α∗ (T�̂α
ε )

is the Dirac mass at

the un-oriented tangent plane �
α
∗(Tx�̂

α
ε ).

Step 2: The integrality of vε,∞: the proof of (III.141).

To simplify the presentation, in order not to have to localize in the domain that
would make the notations heavier, we shall assume that

(III.142)
( �
α

)−1( �
α(x)
)= {x}.

For i = 1, . . . ,4 we denote by ∇�k yi the vector-field tangent to �k(�) given by the pro-
jection of the i-th canonical vector of R4 onto ( ��k)∗T�. We also denote ∗k∇�k yi the
rotation by π/2 of this vector in the tangent plane to �k(�), taking into account the ori-
entation given by the push-forward by ��k of the one we fixed on �. Denote by (�εi)i=1,...,4

the canonical basis of R4. The identity (III.137) implies that

(III.143) lim sup
k→+∞

∫
��−1

k (B4
ρ(

��∞(x)))

dist
(
∂x1

��k ∧ ∂x2
��k

|∂x1
��k ∧ ∂x2

��k|
,± �ε1 ∧ �ε2

)
|∇ ��k|2 dx2 = o

(
ρ2
)
,

recall μ∞(B4
ρ(

��∞(x)))� ρ2. This also implies

(III.144) ∀i = 1,2 lim sup
k→+∞

∫
B4
ρ(

��∞(x))

∣∣∇�k yi − �εi

∣∣ dH2 ��k(�)= o
(
ρ2
)
.

For (∂x1
��k ∧∂x2

��k) ·(�ε1 ∧�ε2) �= 0 we denote Jk = sign((∂x1
��k ∧∂x2

��k) ·(�ε1 ∧�ε2)) otherwise
we simply take Jk = 0. Identity (III.143) and (III.144) imply

(III.145)
lim sup
k→+∞

∫
B4
ρ(

��∞(x))

[∣∣∗k∇�k y1 − Jk ε2

∣∣+ ∣∣∗k∇�k y2 + Jk ε1

∣∣] dH2 ��k(�)

= o
(
ρ2
)
.

Let �Tρ

k be the following vector-valued one dimensional currents
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∀α ∈�1
(
R4
) 〈�Tρ

k , α
〉 :=

∫
B4
ρ(

��∞(x))∩ ��k(�)

α ∧ ∗k d�y

=
∫

��−1
k (B4

ρ(
��∞(x)))

��∗
kα ∧ ∗ d ��k.

Let ϕ be a smooth function in C∞
0 (B

4
1(0)) such that

∫
R4 ϕ(y) dy4 = 1. Denote ϕσk

:=
σ

−4/p

k ϕ(·/σ 1/p

k ). We recall the definition of the σk-smoothing ϕσk
� �Tρ

k of the current �Tρ

k (see
[9], 4.1.2)

∀α ∈�1
(
R4
) 〈

ϕσk
� �Tρ

k , α
〉 :=

∫
B4
ρ(

��∞(x))∩ ��k(�)

(ϕσk
� α)∧ ∗kd�y,

where ασk
:= ϕσk

� α denotes the following convolution operation

ασk
= ϕσk

� α :=
∫

R4
ϕσk

(−z) τ ∗
z α dz4

where τz(y)= y + z. We shall use the following lemma

Lemma III.11. — [Convergence of the σk-approximation of �Tρ

k ] Under the

previous notations we have

(III.146) lim sup
k→+∞

sup
supp(φ)⊂B4

ρ(
��∞(x)); ‖dφ‖∞≤1

〈�Tρ

k − ϕσk
� �Tρ

k , dφ
〉= 0.

Proof of Lemma III.11. — Let φ be a Lipschitz function supported in B4
ρ(

��∞(x))
with ‖dφ‖∞ ≤ 1. We have〈�Tρ

k − ϕσk
� �Tρ

k , dφ
〉

=
∫

R4
dz ϕσk

(−z)

∫
B4
ρ(

��∞(x))∩ ��k(�)

(
dφ − τ ∗

z dφ
)∧ ∗kd�y

= −
∫

R4
dzϕσk

(−z)

∫
B4
ρ(

��∞(x))∩ ��k(�)

(
φ(y)− φ(y + z)

)∧ d ∗k d�y.

Using the fact that ‖dφ‖∞ ≤ 1 and that ϕσk
is supported in B4

σ
1/p

k

(0), we have

∣∣〈�Tρ

k − ϕσk
� �Tρ

k , dφ
〉∣∣≤ σ

1/p

k

∫
�

[| �Hk| + 1
]

dvolg ��k

≤
[
σ 2

k

∫
�

[| �Hk|2p + 1
]

dvolg ��k

]1/2p

Area
( ��k(�)

)1−1/2p

= o(1).

This concludes the proof of Lemma III.11. �
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Lemma III.12. — [Asymptotic vanishing of the boundary of �Tρ

k in
B4
ρ(

��∞(x))] Under the previous notations we have

(III.147) lim sup
k→+∞

sup
supp(φ)⊂B4

ρ(
��∞(x)); ‖dφ‖∞≤1

〈�Tρ

k , dφ
〉= o

(
ρ2
)
,

and for the two first directions i = 1,2 we have

(III.148) lim sup
k→+∞

sup
supp(φ)⊂B4

ρ(
��∞(x)); ‖dφ‖∞≤1

�εi ·
〈�Tρ

k , dφ
〉= O

(
ρ4
)
.

Proof of Lemma III.12. — Because of (III.137) it suffices to prove (III.148). Because
of the previous lemma it suffices to prove (III.147) where �εi · �Tρ

k for i = 1,2 is replaced by
�εi · ϕσk

� �Tρ

k . We assume φ( ��∞(x))= 0 in such a way that ‖φ‖∞ ≤ ρ. We have

(III.149)
〈
ϕσk

� �Tρ

k , dφ
〉=
∫

B4
ρ(

��∞(x))∩ ��k(�)

d(ϕσk
� φ)∧ ∗kd�y.

Integrating by parts and using (II.36) we have, omitting to write explicitly the subscript k,

(III.150)

〈
ϕσ � �Tρ, dφ

〉

=
∫

��−1
k (B4

ρ(
��∞(x)))

∇(ϕσ � φ( ��)) · σ 2 f p ∇ �� dx2

− 2 pσ 2

∫
��−1

k (B4
ρ(

��∞(x)))

e−2λ ∇(ϕσ � φ( ��)) · [∇[f p−1 I0
11

]

+ (∇)⊥[f p−1 I0
12

]]�n dx2

− 2 pσ 2

∫
��−1

k (B4
ρ(

��∞(x)))

∇(ϕσ � φ( ��)) · ∇[f p−1 �H] dx2

+ 2 pσ 2

∫
��−1

k (B4
ρ(

��∞(x)))

∇(ϕσ � φ( ��)) · [f p−1 H∇�n

− e−2λ f p−1 〈∇�n ⊗̇∇�n;∇ ��〉] dx2

−
∫

��−1
k (B4

ρ(
��∞(x)))

ϕσ � φ( ��)
([

1 + σ 2(1 − p)f p + pσ 2 f p−1
] �� |∇ ��|2

− 4 pσ 2 f p−1 �H) dx2.

Observe that ‖∂2
yiyj
(ϕσ � φ)‖∞ ≤ σ−1/p hence integrating by parts ∇ and (∇)⊥ in the sec-

ond line of (III.150) as well as integrating by parts ∇ in the fourth line of (III.150) and
using (III.15) as in the proof of the monotonicity formula, we obtain that all the terms in
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the first, second, third and fourth lines of the r.h.s. of (III.150) vanish as k goes to +∞.
In the fifth line only the term

∫
��−1

k (B4
ρ(

��∞(x)))
ϕσ � φ( ��) �� |∇ ��|2dx2 is not necessarily con-

verging towards 0. Since we are considering the first and second canonical directions and
since �1 and �2 are O(ρ) in ��−1

k (B4
ρ(

��∞(x))) and since ‖φ‖∞ ≤ ρ we obtain (III.148)
and Lemma III.12 is proved. �

Proof of Lemma III.10 continued. — Denote ��′
k := (�3

k ,�
4
k ). By taking φ(y) :=

h(y1, y2) χρ(y3, y4) where χρ is identically equal to ρ on B2
ρ(1,0), is non negative, sup-

ported in B2
2ρ(1,0), we have for i = 1,2

(III.151) lim sup
k→+∞

sup
supp(h)⊂B2

ρ( ��∞(x)); ‖dh‖∞≤ρ−1

�εi ·
∫

B4
4ρ(

��∞(x))

∗kd�y∧(χρ dh+h dχρ)= O
(
ρ4
)
.

Because of the existence of an approximate tangent plane at ��∞(x), which is equal to
Span{�ε1, �ε2}, the asymptotic mass of the current in B4

4ρ(
��∞(x)) contained in the support

of dχρ which is included in B2
4ρ(0,0)× (B2

2ρ(1,0)\B2
ρ(1,0)) is a o(ρ2). Hence we deduce

for i = 1,2

(III.152) lim sup
k→+∞

sup
supp(h)⊂B2

ρ(0,0); ‖dh‖∞≤ρ−1

∫
B2
ρ(0,0)×B2

ρ(1,0)
∂yi

h dH2 ��k(�)= o
(
ρ2
)
.

This implies, using (III.136),

(III.153) lim sup
k→+∞

sup
supp(h)⊂B2

ρ(0,0); ‖dh‖∞≤ρ−1

∫
B2
ρ(0,0)

Nk(y) ∂yi
h dL2 = o

(
ρ2
)
,

where Nk(y) is the number of pre-images of y = (y1, y2) by �ζk . Since M(B2
ρ(0,0) ∩

�ζk(�))� ρ2 we then have

(III.154) lim sup
k→+∞

2∑
i=1

sup
supp(h)⊂B2

ρ(0,0); ‖dh‖∞≤ρ−1

∫
B2
ρ(0,0)

Nk(y) ∂yi
h dy2

∫
B2
ρ(0,0)

Nk(y) dy2
= oρ(1).

The quantity on the numerator of (III.154) is almost but not quite the Flat Norm16 of
the relative boundary in B2

ρ(0,0) of the 2 dimensional integer rectifiable current given by
Ck(ρ) := [Nk(y) dy2] B2

ρ(0,0) while the denominator equals it’s total mass.

16 The flat norm would have been

sup
supp(X)⊂B2

ρ (0,0); ‖divX‖∞≤ρ−1

∫
B2
ρ (0,0)

Nk(y)div(X) dy2

and cannot a-priori be controlled by the numerator of (III.154).
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In [30] the following inequality is proved. For any measurable function f on the 2
dimensional unit ball B1(0) the following inequality holds

(III.155)

∥∥∥∥f − 1
|B1/2(0)|

∫
B1/2(0)

f (y) dy2

∥∥∥∥
L1,∞(B1/2(0))

≤ C sup
{∫

B1(0)
f (y)∇φ(y) dy2; φ ∈ C∞

0 (B1(0)) ‖∇φ‖∞ ≤ 1
}
.

Combining (III.154) and (III.155) gives that

(III.156) lim sup
k→+∞

∥∥∥∥Nk(ρ x)− 1
|B1/2(0)|

∫
B1/2(0)

Nk(ρ y) dy2

∥∥∥∥
L1,∞(B1/2(0))

= oρ(1).

This shows that the average 1
|B1/2(0)|

∫
B1/2(0)

Nk(ρ y) dy2 is oρ(1) close to an integer n
ρ

k ∈ N∗

as ktends to infinity and that

(III.157) lim sup
k→+∞

∥∥Nk(ρ x)− n
ρ

k

∥∥
L1,∞(B1/2(0))

= oρ(1).

Since this integer is bounded and bounded away from zero, modulo extraction of a sub-
sequence we can assume that n

ρ

k = nρ is independent of k and, taking a sequence of radii
ρj → 0 we can also assume that nρj is independent of j and we have the existence of n ∈ N∗

such that

(III.158) lim
j→+∞

lim sup
k→+∞

∥∥Nk(ρj x)− n
∥∥

L1,∞(B1/2(0))
= 0,

this proves (III.141) and this concludes the proof of Lemma III.10. �

Lemma III.13. — [Convergence to a bubble tree of conformal “integer
target harmonic” maps] Under the assumptions of Theorem III.1, we have that one we can

extract a subsequence such that the integer varifold | ��k(�)| converges to an integer rectifiable varifold

supported by a finite union of the images by target harmonic conformal W1,2-maps of Riemann surfaces .

We adopt the same notations as in the proof of Lemma III.10 and assume to sim-
plify the presentation that (III.142) holds where we recall among other things that x is
chosen also to be a Lebesgue point for ∇ ��∞(x). One has

(III.159) lim
ρ→0

lim
k→+∞

∫
��−1∞ (B4

ρ(
��∞(x)))

|∂x1
��k ∧ ∂x2

��k| dx2

�ε1 ∧ �ε2 · ∫ ��−1∞ (B4
ρ(

��∞(x)))
∂x1

��∞ ∧ ∂x2
��∞ dx2

= Nx.



240 TRISTAN RIVIÈRE

Observe also that17 The lower semicontinuity of the norm gives

(III.160)

lim inf
k→+∞

∫
��−1∞ (B4

ρ(
��∞(x)))

|∂x1
��k ∧ ∂x2

��k| dx2 = lim inf
k→+∞

∫
��−1∞ (B4

ρ(
��∞(x)))

2−1 |∇ ��k|2 dx2

≥
∫

��−1∞ (B4
ρ(

��∞(x)))

2−1 |∇ ��∞|2 dx2.

Hence combining (III.159) and (III.160) one gets

lim
ρ→0

∫
��−1∞ (B4

ρ(
��∞(x)))

2−1 |∇ ��∞|2 dx2

∫
��−1∞ (B4

ρ(
��∞(x)))

|∂x1
��∞ ∧ ∂x2

��∞| dx2

≤ Nx = π−1 lim
ρ→0

ρ−2μ∞
(
B4
ρ

( ��∞(x)
))
.

This gives, using the Monotonicity Formula, we have

(III.161)

for ν∞ a.e. x ∈ D2 \B

1 ≤ |∇ ��∞|2(x)
2 |∂x1

��∞ ∧ ∂x2
��∞|(x) ≤ π−1 e2 Cμ∞

(
S3
)= K.

Take gij := ∂xi
��∞ · ∂xj

��∞ and introduce

for a.e. x ∈ D2 \L0
∇ ��∞

μ(x) := g11 − g22 + 2ig12

g11 + g22 + 2
√

g11g22 − g2
12

on D2 \L0
∇ ��∞

, with the above notations (III.161) can be recast in the following way

4 ≤ (g11 + g22)
2

g11g22 − g2
12

≤ 4
π 2

e4 Cμ2
∞
(
S3
)= 4 K2.

Extend μ by zero on the whole C. Observe that we have

‖μ‖2
∞ ≤

∥∥∥∥(g11 + g22)
2 − 4(g11g22 − g2

12)

(g11 + g22)2 + 4(g11g22 − g2
12)

∥∥∥∥
L∞(D2\L0

∇ ��∞ )

≤ K2 − 1
K2 + 1

< 1.

Hence μ defines a compactly supported Beltrami coefficient. Consider the normal solution of
the Beltrami equation given by Theorem 4.24 of [16]

∂zϕ = μ∂zϕ.

17 We recall among other things that x is chosen also to be a Lebesgue point for ∇ ��∞ and that ∇ ��∞(x)= ∇ �
α(x).
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The quasiconformal map ϕ realizes in particular an homeomorphism whose inverse ϕ−1

is also quasiconformal in W1,p
loc (C) for some p > 2 and one has

∂wϕ
−1 = ω∂wϕ

−1,

where ω = −(μ∂zϕ/∂zϕ) ◦ ϕ−1. Being an homeomorphic map of bounded distortion in
W1,2(ϕ(D2)) it is quasi-regular, the chain rule applies with ��∞ (see Theorem 16.13.3
of [17]) and ��∞ ◦ ϕ−1 ∈ W1,2(ϕ(D2)). A classical computation gives

∂w
( ��∞ ◦ ϕ−1

) · ∂w( ��∞ ◦ ϕ−1
)= 0 a.e. on ϕ

(
D2
)
.

“Pasting” together all these conformal charts gives a smooth conformal structure on �

and a global quasi-conformal homeomorphism ψ of � such that ��∞ ◦ψ is weakly con-
formal. Moreover, the condition for the image of � by ��∞ equipped with the integer
multiplicity N to be stationary is equivalent to (I.2). It remains to show that (N, ��∞ ◦ψ)
defines an integer target harmonic map.

We omit to mention the composition by ψ and we simply write ��∞ for ��∞ ◦ ψ .
We can apply Lemma III.1 to � \⋃n

l=1 Brk(al) where rk are “nice cuts” taken between
ε/2 and ε on which ��k converges in C0 to deduce, using because of (III.108), that there
exists n points �ql,ρ such that

∣∣∣∣( ��∞)∗
(
N [�])

(
R4 \

n⋃
l=1

B4
sρ
(�ql,ρ)

)∣∣∣∣
realizes an integer rectifiable stationary varifold in S3 \⋃n

l=1 B4
sρ
(�ql,ρ). This is equivalent

to

(III.162)
∫
�\⋃n

l=1 Br(al )

N
[ 4∑

i=1

〈
∂yi

�X( ��∞)∇�i
∞;∇ ��∞

〉−N �X( ��∞) · ��∞ |∇ ��∞|2
]

dx2 = 0.

We chose a sequence of radii ρk → 0 such that

∀l = 1, . . . , n �ql,ρk
→ �ql,0 ∈ S3.

Since sρk
→ 0, ( ��∞)∗(N [�]) is stationary in S3 \{�q1,0, . . . ,�qn,0}. Let χδ(t)= χ(t/δ)where

χ ∈ C∞
0 ([0,2],R+), χ is identically equal to one on [0,1]. For any arbitrary smooth

vector field �X from �(TS3) we proceed to the following decomposition:

�X(�q)=
n∑

l=1

χδ
(|�q − �ql,0|

) �X + �Xδ(�q) where

�Xδ(�q) :=
[

1 −
n∑

l=1

χδ
(|�q − �ql,0|

)] �X
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Since Supp( �Xδ)⊂ R4 \⋃n

l=1 B4
δ(�ql,0) we have

(III.163)
∫
�

N
[ 4∑

i=1

〈
∂yi

�Xδ( ��∞)∇�i
∞;∇ ��∞

〉− �Xδ( ��∞) · ��∞ |∇ ��∞|2
]

dx2 = 0

and we have

(III.164)

∣∣∣∣
∫
�

N
[ 4∑

i=1

〈
∂yi
( �X − �Xδ)( ��∞) ∇�i

∞;∇ ��∞
〉

− ( �X − �Xδ)( ��∞) · ��∞ |∇ ��∞|2
]

dx2

∣∣∣∣

≤ ‖�X‖∞
1
δ

n∑
l=1

μ∞
(
B4

2 δ(�ql,0)
)+ ‖∇ �X‖∞

n∑
l=1

μ∞
(
B4

2 δ(�ql,0)
)= O(δ)

where we are using the monotonicity formula. Combining (III.163) and (III.164) with
δ → 0 we obtain that

(III.165)
∫
�

N
[ 4∑

i=1

〈
∂yi

�X( ��∞) ∇�i
∞;∇ ��∞

〉− �X( ��∞) · ��∞ |∇ ��∞|2
]

dx2 = 0.

What we have done for the whole � can be done for any subdomain � assuming that
the support of �X is contained in a complement of an open neighborhood of ��∞(∂�).
We deduce that ��∞ is integer target harmonic from � into S3. This concludes the proof
of the Lemma III.13. �

IV. The proof of Theorem I.1

We consider the general case where (�, g ��k
) possibly degenerate in the moduli

space. Modulo extraction of a subsequence, following Deligne–Mumford compactifica-
tion described in section II of [34] we have a “splitting” of the original surface into col-
lars, called also “thin parts” and a Nodal Riemann surface �̃ called also “thick part”.
The parts of the collars that contain no bubbles can be treated exactly as the necks in
Lemma III.6, indeed a collar has the conformal type of a degenerating annulus and,
if such a collar contains no bubble, by definition, it means that on each sub-annulus of
controlled conformal type (in each dyadic annulus in particular) there is no concentration
measure ν∞. Hence in a collar region containing no bubble the statement of Lemma III.6
applies word by word. The “thick parts” as well as the “bubbles” formed either in the
thick parts or in the collars can be treated exactly as the surface � in the compact case
presented in the previous section. So we deduce Theorem I.1.
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Appendix A

Lemma A.1. — There exists a universal number ε0(m) > 0 such that, for any �� smooth

immersion of �, a smooth surface with boundary, into Bm
2 (0) \ Bm

1 (0) and satisfying

(A.1) Area
( ��(�))< 3π,

and

(A.2) ∀r ∈ (1,2) ��(�)∩ ∂Bm
r (0) �= ∅ and ��(∂�)⊂ ∂

(
Bm

2 (0) \ Bm
1 (0)

)
,

then

(A.3)
∫
�

|d�n|2g ��
dvol �� ≥ ε0(m).

Proof of Lemma A.1. — We argue by contradiction. We consider a sequence �k and
��k such that

(A.4) Area
( ��k(�k)

)
< 3π,

such that

(A.5) ∀r ∈ (1,2) ��k(�k)∩ ∂Bm
r (0) �= ∅ and ��k(∂�k)⊂ ∂

(
Bm

2 (0) \ Bm
1 (0)

)
,

and

(A.6) lim
k→+∞

∫
�k

|d�n|2g ��k

dvol ��k
= 0.

Let Vk be the oriented varifold associated to the immersion of ��k with L2-bounded sec-
ond fundamental form (see [14]). Using Theorem 3.1 and 5.3.2 of [14], modulo extrac-
tion of a subsequence Vk varifold converges to an integer oriented varifold V∞ with gen-
eralized second fundamental form equal to zero and without boundary in B2(0) \ B1(0).
V∞ is then stationary and included in an at most countable union of 2-planes. Using
the constancy theorem [39] we deduce that V∞ is an oriented varifold given by at most
countably many intersections of 2-planes with the annulus B2(0)\B1(0) with locally con-
stant integer multiplicities. We claim that the intersection between the closed set given
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by the support of V∞ and ∂Br(0) × G2(Rm) is non empty for any r ∈ (1,2). Indeed,
from the assumption (A.5), using Simon’s monotonicity formula, for any r ∈ (1,2) and
0 < ρ < min{2 − r, r − 1}, there exists xr

k ∈ ∂Br(0) such that

2π
3
ρ2 ≤ M

( ��k(�k)∩ Bm
ρ

(
xr

k

))+ ρ2

2

∫
�k

| �H ��k
|2 dvolg ��k

.

Using (A.6) we deduce that for any ρ < min{2 − r, r − 1}

μV∞
(
Br+ρ(0) \ Br−ρ(0)

)≥ 2π
3
ρ2.

Hence the support of V∞ intersects all the ∂Br(0) × G2(Rm) for any r ∈ (1,2). We
consider a sequence of radii ri > 1 and converging to 1. The 2-planes belonging to
the support of V∞ and intersecting ∂Bri(0) × G2(Rm) has to be constant for i large
enough. This implies that the support of V∞ contains the intersection between the annu-
lus B2(0) \ B1(0) and a plane touching B1(0). This imposes

μV∞
(
B2(0) \ B1(0)

)≥ 3π.

The later contradicts (A.4) and Lemma A.1 is proved. �
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