NON-COMPACT LAMINATION CONVEX HULLS

ENVELOPPE LAMINEUSEMENT CONVEXE NON COMPACT

Jan KOLÁř ${ }^{1}$
Dept. Math. Anal., Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic
Received 31 July 2001
Dedicated to my friends Renáta and Ivan Zahrádka

AbStract. - For K a compact set of $m \times n$ matrices, let $\mathrm{L}(K)$ denote the lamination convex hull of K.

We give an example of a compact set K of symmetric two by two matrices such that $\mathrm{L}(K)$ is not compact, and similar examples for separate convexity in \mathbb{R}^{3} and bi-convexity in $\mathbb{R}^{2} \times \mathbb{R}$. Furthermore we show that function $\tilde{\mathrm{L}}$, where $\tilde{\mathrm{L}}(K)=\overline{\mathrm{L}(K)}$, is not upper semi-continuous with respect to Hausdorff metric on the space of all compact sets K of diagonal 3×3 matrices.
© 2003 Éditions scientifiques et médicales Elsevier SAS
MSC: 26B25; 52A30
Keywords: Lamination convex hull; Bi-convexity; Separate convexity; Rank-one convexity
RÉSUMÉ. - Si K est un ensemble compact des matrices du type $m \times n, \mathrm{~L}(K)$ signifie le plus petit ensemble lamineusement convexe contenant K. (Un ensemble K est lamineusement convexe si $[a, b] \subset K$ pour tous $a, b \in K$ tels que $a-b$ est une matrice de rang 1.)
Nous démontrons qu'il y a K, un ensemble compact des matrices symétriques d'ordre 2 tel que $\mathrm{L}(K)$ ne soit pas compact. Nous présentons aussi des exemples similaires pour convexité séparée dans \mathbb{R}^{3} et bi-convexité dans $\mathbb{R}^{2} \times \mathbb{R}$. En plus, nous démontrons que l'application $\tilde{\mathrm{L}}: K \mapsto \overline{\mathrm{~L}(K)}$ n'est pas semi-continue superieurement sur l'espace des ensembles compacts de matrices diagonales d'ordre 3 muni de la métrique de Hausdorff.
© 2003 Éditions scientifiques et médicales Elsevier SAS
Mots Clés: Enveloppe lamineusement convexe; Bi-convexité; Convexité separée; Enveloppe convexe de rang un

[^0]
1. Introduction

We denote by $\mathbb{M}^{m \times n}$ the set of all real $m \times n$ matrices with the $\mathbb{R}^{m n}$ norm; $\mathbb{M}_{\text {sym }}^{n \times n}, \mathbb{M}_{\text {diag }}^{n \times n}$ are the sets of symmetric and diagonal $n \times n$ matrices, respectively. A set $K \subset \mathbb{M}^{m \times n}$ is called lamination convex [4] if for all $A, B \in K$, which satisfy $\operatorname{rank}(A-B)=1$, one has $(1-\lambda) A+\lambda B \in K$ for all $\lambda \in(0,1)$. For a given $K \subset \mathbb{M}^{m \times n}$, the lamination convex hull $\mathrm{L}(K)$ is defined as the smallest lamination convex set which contains K [4].

Zhang [6] writes that "it is not clear in general whether for a compact set, the lamination convex hull is closed". In fact, it is easy to obtain a counter-example in $\mathbb{M}^{2 \times 4}$ from a paper of Aumann and Hart [1], see Example 2.4. The main purpose of this paper is to give an example of a compact set $K \subset \mathbb{M}_{\text {sym }}^{2 \times 2}$ such that $\mathrm{L}(K)$ is not compact.

For convenience, we identify $\mathbb{M}_{\text {sym }}^{2 \times 2}$ with \mathbb{R}^{3} by the linear bijection $\phi(x, y, z)=$ $\left(\begin{array}{cc}z+x & z-x \\ y & z-x\end{array}\right)$. We say that $(x, y, z) \in \mathbb{R}^{3}$ is a rank-one direction if $\operatorname{det} \phi(x, y, z)=$ $z^{2}-x^{2}-y^{2}=0$, that points A, B are rank-one connected if $B-A$ is a rank-one direction and that a set $K \subset \mathbb{R}^{3}$ is lamination convex if $(1-\lambda) A+\lambda B \in K$ whenever $A, B \in K$ are rank-one connected and $\lambda \in(0,1)$. Again, the lamination convex hull $\mathrm{L}(K)$ of a set $K \subset \mathbb{R}^{3}$ is the smallest lamination convex set containing K. Obviously, $K \subset \mathbb{R}^{3}$ is lamination convex if and only if $\phi(K) \subset \mathbb{M}_{\mathrm{sym}}^{2 \times 2}$ is lamination convex, and $\mathrm{L}(\phi(K))=\phi(\mathrm{L}(K))$ for every $K \subset \mathbb{R}^{3}$.

THEOREM 1.1. - There is a compact set $K \subset \mathbb{M}_{\text {sym }}^{2 \times 2}$ such that $\mathrm{L}(K)$ is not compact.
Before proving the theorem for the symmetric two by two matrices in Section 3 we would like to consider the easier case of $\mathbb{M}^{m \times n}$ with $\max (m, n)>2$ where examples can be constructed using related notions of separate convexity and bi-convexity. In Section 4 we explain consequences to upper semi-continuity of the mapping $K \mapsto \mathrm{~L}(K)$.

2. Examples

The diagonal matrix $\left(\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$ is of rank one if and only if exactly one of the numbers x, y, z is non-zero. Let us say that $K \subset R^{n}$ is separately lamination convex if K contains every segment with end-points in K which is parallel to one of the coordinate axes. This is equivalent to lamination convexity of the corresponding set of diagonal matrices. The separately lamination convex hull $\mathrm{L}_{\mathrm{sc}}(K)$ is defined to be the smallest separately lamination convex set in \mathbb{R}^{n} that contains K.

Example 2.1 (Separate convexity in \mathbb{R}^{3} and diagonal 3×3 matrices). - Let

$$
\begin{align*}
K= & \{(1,1,1)\} \cup\{(-1,0,0),(0,-1,0),(0,0,-1)\} \\
& \cup \bigcup_{n \in \mathbb{N}}\left\{\left(-1, \frac{1}{n}, \frac{1}{n}\right),\left(\frac{1}{n+1},-1, \frac{1}{n}\right),\left(\frac{1}{n+1}, \frac{1}{n+1},-1\right)\right\} \tag{1}
\end{align*}
$$

By induction, $\mathrm{L}_{\mathrm{sc}}(K)$ contains each of the segments

$$
\left[\left(\frac{1}{n}, \frac{1}{n}, \frac{1}{n}\right),\left(-1, \frac{1}{n}, \frac{1}{n}\right)\right] \ni\left(\frac{1}{n+1}, \frac{1}{n}, \frac{1}{n}\right)
$$

$$
\begin{aligned}
& {\left[\left(\frac{1}{n+1}, \frac{1}{n}, \frac{1}{n}\right),\left(\frac{1}{n+1},-1, \frac{1}{n}\right)\right] \ni\left(\frac{1}{n+1}, \frac{1}{n+1}, \frac{1}{n}\right)} \\
& {\left[\left(\frac{1}{n+1}, \frac{1}{n+1}, \frac{1}{n}\right),\left(\frac{1}{n+1}, \frac{1}{n+1},-1\right)\right] \ni\left(\frac{1}{n+1}, \frac{1}{n+1}, \frac{1}{n+1}\right)}
\end{aligned}
$$

for every $n \in \mathbb{N}$. Consequently, $(0,0,0)$ belongs to the closure of $\mathrm{L}_{\mathrm{sc}}(K)$. On the other hand, it does not belong to $\mathrm{L}_{\text {sc }}(K)$ since the set

$$
\begin{aligned}
& \{(-1,0,0),(0,-1,0),(0,0,-1)\} \\
& \quad \cup\left\{A \in \mathbb{R}^{3}: \text { at least two coordinates of } A \text { are strictly positive }\right\}
\end{aligned}
$$

is separately lamination convex and contains K. Thus $K \subset \mathbb{R}^{3}$ is compact, but $\mathrm{L}_{\mathrm{sc}}(K)$ is not and the same is true for the lamination convex hull of the compact set

$$
\left\{\left(\begin{array}{ccc}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right):(x, y, z) \in K\right\}
$$

Example 2.2 (Separate convexity in \mathbb{R}^{2} and diagonal 2×2 matrices). - The lamination convex hull of a compact subset of $\mathbb{M}_{\text {diag }}^{2 \times 2}$ is always compact. This follows by the next result which is due to Kirchheim [3].

PROPOSITION 2.3. - If $C \subset \mathbb{R}^{2}$ is compact, then $\mathrm{L}_{\mathrm{sc}}(C)$ is compact as well.
Proof (B. Kirchheim). - By x_{1}, x_{2} we denote the two coordinates of $x \in \mathbb{R}^{2}$, and $e_{1}=(1,0), e_{2}=(0,1)$. Let $\mathrm{L}_{\mathrm{sc}}^{(0)}(C)=C$ and for $k \in N$ let

$$
\mathrm{L}_{\mathrm{sc}}^{(k)}(C)=\bigcup\left\{[y, z]: y, z \in \mathrm{~L}_{\mathrm{sc}}^{(k-1)}(C), y_{1}=z_{1} \text { or } y_{2}=z_{2}\right\}
$$

Then $\mathrm{L}_{\mathrm{sc}}^{(k)}(C)$ are compact and $\mathrm{L}_{\mathrm{sc}}(C)=\bigcup_{k} \mathrm{~L}_{\mathrm{sc}}^{(k)}(C)$. We say that gen ${ }_{C}(x)=k$ provided $x \in \mathrm{~L}_{\mathrm{sc}}^{(k)}(C) \backslash \mathrm{L}_{\mathrm{sc}}^{(k-1)}(C)$. Suppose the claim fails. Then we can find a compact set $C \subset \mathbb{R}^{2} \backslash[-1,1]^{2}$ such that

$$
0 \in \overline{\mathrm{~L}_{\mathrm{sc}}(C)} \backslash \mathrm{L}_{\mathrm{sc}}(C)
$$

Obviously, for $i=1,2$ we find $\sigma_{i} \in\{-1,1\}$ such that

$$
\begin{equation*}
t \cdot \sigma_{i} e_{i} \notin \mathrm{~L}_{\mathrm{sc}}(C) \quad \text { whenever } t \geqslant 0 \tag{2}
\end{equation*}
$$

Moreover, we find $\varepsilon>0$ such that

$$
\begin{equation*}
\sigma_{i} x_{i}<-\varepsilon \quad \text { or } \quad\left|x_{3-i}\right|>\varepsilon \quad \text { for all } x \in C, i \in\{1,2\} . \tag{3}
\end{equation*}
$$

Now we set

$$
M_{i}=\left\{x:\left|x_{3-i}\right| \leqslant \varepsilon \text { and } \sigma_{i} x_{i} \geqslant-\varepsilon\right\}, \quad M_{i}^{+}=\left\{x \in M_{i}: \sigma_{i} x_{i} \geqslant 0\right\}
$$

and claim that

$$
\begin{equation*}
\mathrm{L}_{\mathrm{sc}}(C) \cap M_{i}^{+}=\emptyset \tag{4}
\end{equation*}
$$

Let us assume that (4) is not true for an $i \in\{1,2\}$. Let $g=\min \left\{\operatorname{gen}_{C}(x): x \in \mathrm{~L}_{\mathrm{sc}}(C) \cap\right.$ $\left.M_{i}^{+}\right\}$. Due to (3) we know $g \geqslant 1$ and find x in the compact set $M_{i}^{+} \cap \mathrm{L}_{\mathrm{sc}}^{(g)}(C)$ maximizing the non-negative function $x \mapsto \sigma_{i} x_{i}$ over this set. By the definition of $\mathrm{L}_{\mathrm{sc}}^{(g)}(C)$ there are $y, z \in \mathrm{~L}_{\mathrm{sc}}^{(g-1)}(C)$ such that $x \in \mathrm{~L}_{\mathrm{sc}}^{(1)}(\{y, z\})$. From the maximality of $\sigma_{i} x_{i}$ we conclude that $\sigma_{i} y_{i}=\sigma_{i} z_{i}=\sigma_{i} x_{i} \geqslant 0$. The definition of g implies that $y, z \notin M_{i}^{+}$, hence $\left|y_{3-i}\right|,\left|z_{3-i}\right|>$ ε and $y_{3-i} z_{3-i}<0$. Consequently,

$$
\mathrm{L}_{\mathrm{sc}}(C) \cap\left\{t \cdot \sigma_{i} e_{i}: t \geqslant 0\right\} \supset[y, z] \cap\left\{t \cdot \sigma_{i} e_{i}: t \geqslant 0\right\}=\left\{x_{i} e_{i}\right\}
$$

a contradiction to (2) establishing (4).
Finally, denote by $g^{\prime} \geqslant 1$ the minimum of gen ${ }_{C}$ over the nonvoid set $\mathrm{L}_{\mathrm{sc}}(C) \cap M_{1} \cap M_{2}$. Again, let x^{\prime} maximize $\sigma_{1} x_{1}^{\prime}$ over $\mathrm{L}_{\mathrm{sc}}^{\left(g^{\prime}\right)}(C) \cap M_{1} \cap M_{2}$ and suppose $x^{\prime} \in \mathrm{L}_{\mathrm{sc}}^{(1)}\left(\left\{y^{\prime}, z^{\prime}\right\}\right)$ for $y^{\prime}, z^{\prime} \in \mathrm{L}_{\mathrm{sc}}^{\left(g^{\prime}-1\right)}(C)$. As before, we infer that $y_{1}^{\prime}=z_{1}^{\prime}=x_{1}^{\prime},\left|y_{2}^{\prime}\right|,\left|z_{2}^{\prime}\right|>\varepsilon$ and $y_{2}^{\prime} z_{2}^{\prime}<0$. So

$$
\mathrm{L}_{\mathrm{sc}}(C) \cap M_{2}^{+} \supset\left[y^{\prime}, z^{\prime}\right] \cap M_{2}^{+} \neq \emptyset
$$

which together with (4) finishes the proof.
Example 2.4 (Bi-convexity in $\mathbb{R}^{2} \times \mathbb{R}$ and 2×3 matrices). - A set $A \subset \mathbb{R}^{k} \times \mathbb{R}^{l}$ is biconvex [1] if the sections A_{x}, A^{y} are convex for every $x \in \mathbb{R}^{k}$ and $y \in \mathbb{R}^{l}$. The bi-convex hull $\mathrm{L}_{(k, l)}(A)$ is defined accordingly. Obviously, A is bi-convex if and only if the set

$$
\begin{aligned}
& \left\{\begin{array}{cccccccc}
x_{1} & x_{2} & \ldots & x_{k} & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & y_{1} & y_{2} & \ldots & y_{l}
\end{array}\right) \in \mathbb{M}^{2 \times(k+l)}: \\
& \\
& \left.\left(x_{1}, x_{2}, \ldots, x_{k} ; y_{1}, y_{2}, \ldots, y_{l}\right) \in A\right\}
\end{aligned}
$$

is lamination convex. Aumann and Hart [1] constructed a compact set $K \subset \mathbb{R}^{2} \times \mathbb{R}^{2}$ such that $\mathrm{L}_{(2,2)}(K)$ is not compact. We will show that this is possible in $\mathbb{R}^{2} \times \mathbb{R}$ and hence also for matrices of the form $\left(\begin{array}{lll}a & b & 0 \\ 0 & 0 & c\end{array}\right)$.

Let $v_{1}=(0,2), v_{2}=(-1,0), v_{3}=(1,-1), v_{4}=(2,1)$ be the usual four-point configuration. Let $w_{1}=(0,1), w_{2}=(0,0), w_{3}=(1,0), w_{4}=(1,1)$ and

$$
\begin{aligned}
L_{0}= & ([0,1] \times[0,1]) \cup(\{0\} \times[0,2]) \cup([-1,1] \times\{0\}) \cup(\{1\} \times[-1,1]) \\
& \cup([0,2] \times\{1\})=\mathrm{L}_{\mathrm{sc}}\left(\left\{v_{i}, w_{i}\right\}\right)
\end{aligned}
$$

Finally, let $\tilde{K}=\mathcal{I}\left(\left([0,1] \times\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right) \cup\left(\{1\} \times\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}\right)\right)$ and $L=$ $\mathcal{I}\left(\left((0,1] \times L_{0}\right) \cup\left(\{0\} \times\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)\right)$, where $\mathcal{I}(x ; y, z)=(x, y ; z)$ identifies $\mathbb{R} \times \mathbb{R}^{2}$ with $\mathbb{R}^{2} \times \mathbb{R}$. We claim that $\mathrm{L}_{(2,1)}(\tilde{K})=L$ and this is not compact.

Let $w_{i}(t)=\mathcal{I}\left(t, w_{i}\right), v_{i}(t)=\mathcal{I}\left(t, v_{i}\right)$. We have $w_{i}(1) \in \tilde{K}$ and then inductively $w_{i}\left(2^{-k}\right) \in \mathrm{L}_{(2,1)}(\tilde{K})$ for every $i \in\{4,3,2,1\}$ and $k \in \mathbb{N}$, because the following convex combinations are compatible with the definition of bi-convexity: $w_{4}(t / 2)=\frac{1}{2} w_{1}(t)+$ $\frac{1}{2} v_{4}(0)$ and $w_{i}(t)=\frac{1}{2} w_{i+1}(t)+\frac{1}{2} v_{i}(t)$ for $i=3,2,1$. Now it is easy to see that $w_{i}(t) \in \mathrm{L}_{(2,1)}(\tilde{K})$ for every $t \in(0,1]$ and hence $L \subset \mathrm{~L}_{(2,1)}(\tilde{K})$. On the other hand, L is bi-convex, so that $\mathrm{L}_{(2,1)}(\tilde{K}) \subset L$.

3. The proof of Theorem 1.1

Notation. - For $\alpha \in\left[0, \frac{\pi}{2}\right]$ let $e_{i}(\alpha)=\left(\sin \alpha+\cos \alpha,(-1)^{i} \sin \alpha, \alpha+1\right)$ and $\gamma(\alpha)=$ $(\sin \alpha, 0, \alpha)$. Let $E_{0}=\left\{e_{i}(\alpha): \alpha \in\left[0, \frac{\pi}{2}\right], i=1,2\right\}$.

Lemma 3.1. - For every $0<\alpha_{2}<\alpha_{1}<\frac{\pi}{2}, \gamma\left(\alpha_{1}\right) \in \overline{\mathrm{L}\left(E_{0} \cup\left\{\gamma\left(\alpha_{2}\right)\right\}\right)}$.
Proof. - For $i=1,2$, let $\Phi_{i}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\begin{aligned}
\Phi_{i}((a, b, c),(x, y, z))= & \left((a-x)^{2}+(b-y)^{2}-(c-z)^{2}\right. \\
& \sin (z-1)+\cos (z-1)-x \\
& \left.(-1)^{i} \sin (z-1)-y\right)
\end{aligned}
$$

For every $\alpha \in\left[\alpha_{2}, \alpha_{1}\right]$ and $i=1,2$ we have $\Phi_{i}\left(\gamma(\alpha), e_{i}(\alpha)\right)=0$, as well as $\operatorname{det}\left(\frac{\partial \Phi_{i}}{\partial(x, y, z)}\left(\gamma(\alpha), e_{i}(\alpha)\right)\right)=2 \cos ^{2} \alpha-2 \neq 0$. By the implicit function theorem, there is $\delta_{0}>0$ and two smooth functions $\varphi_{1}, \varphi_{2}: \mathcal{U}_{\delta_{0}} \rightarrow R^{3}$ defined on the δ_{0}-neighborhood $\mathcal{U}_{\delta_{0}}$ of $\left\{\gamma(\alpha): \alpha \in\left[\alpha_{2}, \alpha_{1}\right]\right\}$ such that $\Phi_{i}\left(w, \varphi_{i}(w)\right)=0$ for $w \in \mathcal{U}_{\delta_{0}}$ and $\varphi_{i}(\gamma(\alpha))=e_{i}(\alpha)$ for $\alpha \in\left[\alpha_{2}, \alpha_{1}\right]$. Note that by the definition of $\Phi_{i}, \varphi_{i}(w)-w$ is a rank-one direction and $\varphi_{i}(w)=e_{i}(\alpha)$ for all $w \in \mathcal{U}_{\delta_{0}}$, where $\alpha+1$ is the third coordinate of $\varphi_{i}(w)$. By making δ_{0} smaller, we may ensure that $\varphi_{i}(w) \in E_{0}$ for $w \in \mathcal{U}_{\delta_{0}}$. Let $u_{i}(w)=\varphi_{i}(w)-w$. Replacing δ_{0} by a smaller number again, there is $K>0$ such that the functions u_{1}, u_{2} are K-Lipschitz on $\mathcal{U}_{\delta_{0}}$ and $\left\|u_{1}(w)\right\|,\left\|u_{2}(w)\right\| \leqslant K$ for $w \in \mathcal{U}_{\delta_{0}}$.

It is easy to check that γ satisfies the equation

$$
\begin{equation*}
\dot{\gamma}(\alpha)=\frac{u_{1}(\gamma(\alpha))+u_{2}(\gamma(\alpha))}{2} . \tag{5}
\end{equation*}
$$

Next, we will approximate the solution γ by a piecewise linear curve with derivatives given by u_{1} on odd and by u_{2} on even segments. We do an easy error estimate usual in numerical analysis.

Let $\delta>0$ be given. Find $n \in \mathbb{N}$ such that, for $h=\left(\alpha_{1}-\alpha_{2}\right) / n, K h<\delta_{0}$ and

$$
\frac{h}{2}(2 \operatorname{Lip} \gamma+K)\left((1+h K)^{n}-1\right)<\min \left(\delta, \frac{\delta_{0}}{2}\right)
$$

For $k=1, \ldots, n$, define

$$
\begin{equation*}
w_{0}=\gamma\left(\alpha_{2}\right), \quad w_{k-\frac{1}{2}}=w_{k-1}+\frac{h}{2} u_{1}\left(w_{k-1}\right), \quad w_{k}=w_{k-\frac{1}{2}}+\frac{h}{2} u_{2}\left(w_{k-\frac{1}{2}}\right) \tag{6}
\end{equation*}
$$

Let $\varepsilon_{k}=\left\|w_{k}-\gamma\left(\alpha_{2}+k h\right)\right\|, k=0,1, \ldots, n$. Then

$$
\begin{aligned}
\varepsilon_{k+1} & =\left\|w_{k+1}-\gamma\left(\alpha_{2}+(k+1) h\right)\right\| \\
& =\left\|w_{k}-\gamma\left(\alpha_{2}+k h\right)+\int_{\alpha_{2}+k h}^{\alpha_{2}+(k+1) h} \frac{u_{1}\left(w_{k}\right)+u_{2}\left(w_{k+\frac{1}{2}}\right)}{2}-\dot{\gamma}(\alpha) \mathrm{d} \alpha\right\|
\end{aligned}
$$

and hence, by (5),

$$
\begin{aligned}
\varepsilon_{k+1} & \leqslant \varepsilon_{k}+\frac{1}{2} \int_{\alpha_{2}+k h}^{\alpha_{2}+(k+1) h}\left\|u_{1}\left(w_{k}\right)-u_{1}(\gamma(\alpha))\right\|+\left\|u_{2}\left(w_{k+\frac{1}{2}}\right)-u_{2}(\gamma(\alpha))\right\| \mathrm{d} \alpha \\
& \leqslant \varepsilon_{k}+\frac{h}{2}\left(\operatorname{Lip} u_{1}\left(h \operatorname{Lip} \gamma+\varepsilon_{k}\right)+\operatorname{Lip} u_{2}\left(h \operatorname{Lip} \gamma+h\left\|u_{1}\left(w_{k}\right)\right\|+\varepsilon_{k}\right)\right) \\
& \leqslant A \varepsilon_{k}+B
\end{aligned}
$$

where $A=(1+h K)$ and $B=\frac{h^{2} K}{2}(2 \operatorname{Lip} \gamma+K)$. We have $\varepsilon_{0}=0$ and, by induction,

$$
\begin{aligned}
\varepsilon_{k} \leqslant B\left(1+A+A^{2}+\cdots+A^{k-1}\right) & =B\left(A^{k}-1\right) /(A-1) \\
& =\frac{h}{2}(2 \operatorname{Lip} \gamma+K)\left((1+h K)^{k}-1\right) \\
& <\min \left(\delta, \delta_{0} / 2\right)
\end{aligned}
$$

Hence $w_{k}, w_{k+\frac{1}{2}} \in \mathcal{U}_{\delta_{0}}$ (so that the sequence is well defined) and $\left\|\gamma\left(\alpha_{1}\right)-w_{n}\right\|<\delta$.
Furthermore, $w_{k+\frac{1}{2}} \in\left[w_{k}, \varphi_{1}\left(w_{k}\right)\right], w_{k+1} \in\left[w_{k+\frac{1}{2}}, \varphi_{2}\left(w_{k+\frac{1}{2}}\right)\right]$ and the two segments have rank-one directions, so that $w_{0}, w_{\frac{1}{2}}, \ldots, w_{n}$ belong to the lamination convex hull of $E_{0} \cup\left\{w_{0}\right\}=E_{0} \cup\left\{\gamma\left(\alpha_{2}\right)\right\}$. Since $\delta>0$ was arbitrarily small, $\gamma\left(\alpha_{1}\right)$ lies in its closure.

Remark 3.2. - Under the assumption of Lemma 3.1 we have that $\gamma\left(\alpha_{1}\right)$ belongs to the rank-one convex hull of $E_{0} \cup\left\{\gamma\left(\alpha_{2}\right)\right\}$. Also, the corresponding laminate μ with barycentre in $\gamma\left(\alpha_{1}\right)$ can be given explicitly:

$$
\begin{equation*}
\mu(A)=\mathrm{e}^{-\left(\alpha_{1}-\alpha_{2}\right)} \delta_{\gamma\left(\alpha_{2}\right)}(A)+\frac{1}{2} \sum_{i=1}^{2} \int_{\left(\alpha_{2}, \alpha_{1}\right) \mathrm{Re}_{i}^{-1}(A)} \mathrm{e}^{-\left(\alpha_{1}-\alpha\right)} \mathrm{d} \alpha \tag{7}
\end{equation*}
$$

where $\delta_{\gamma\left(\alpha_{2}\right)}$ is the Dirac measure at $\gamma\left(\alpha_{2}\right)$.
Indeed, (6) determinates prelaminate μ_{n} with barycentre $w_{n}^{(n)}$ supported by finite set $\left\{\gamma\left(\alpha_{2}\right) ; \varphi_{1}\left(w_{k-1}^{(n)}\right), \varphi_{2}\left(w_{k-\frac{1}{2}}^{(n)}\right), k=1, \ldots, n\right\} \subset K$, recall that $u_{i}(w)=\varphi_{i}(w)-w$ is a rank-one direction. We added indices (n) to emphasize that points w_{s} depend on n as well. A calculation shows that the weak limit of μ_{n} is μ; the barycentre of μ is $\lim w_{n}^{(n)}=\gamma\left(\alpha_{1}\right)$.

Notation. - Let

$$
\begin{aligned}
& x(\alpha, t)=\sin \alpha+t \cos \alpha \\
& y(\alpha, t)=t \sin \alpha \\
& z(\alpha, t)=\alpha+t \\
& \varphi(\alpha, t)=(x(\alpha, t), z(\alpha, t))
\end{aligned}
$$

Also let $P=\left[0, \frac{\pi}{2}\right] \times[0,1]$ and $D=\varphi(P)=\left\{(x, z): z \in\left[0, \frac{\pi}{2}\right], \sin z \leqslant x \leqslant\right.$ $\min (1, z)\} \cup\left\{(x, z): z \in\left[1,1+\frac{\pi}{2}\right], 1 \leqslant x \leqslant \sqrt{2} \sin \left(z+\frac{\pi}{4}-1\right)\right\}$. The function $Y: D \rightarrow$ $[0, \infty)$ is going to be defined by

$$
\begin{equation*}
Y(\varphi(\alpha, t))=y(\alpha, t) \quad(\alpha, t) \in P \tag{8}
\end{equation*}
$$

LEMMA 3.3. - Let $\alpha_{1}, \alpha_{2} \in\left[0, \frac{\pi}{2}\right]$ and $\alpha_{1} \neq \alpha_{2}$. Then $\varphi\left(\alpha_{1}, t_{1}\right)=\varphi\left(\alpha_{2}, t_{2}\right)$ if and only if

$$
\begin{align*}
& t_{1}=t_{1}\left(\alpha_{1}, \alpha_{2}\right)=\frac{\sin \alpha_{1}-\sin \alpha_{2}-\left(\alpha_{1}-\alpha_{2}\right) \cos \alpha_{2}}{\cos \alpha_{2}-\cos \alpha_{1}} \tag{9}\\
& t_{2}=t_{2}\left(\alpha_{1}, \alpha_{2}\right)=\frac{\sin \alpha_{1}-\sin \alpha_{2}-\left(\alpha_{1}-\alpha_{2}\right) \cos \alpha_{1}}{\cos \alpha_{2}-\cos \alpha_{1}}
\end{align*}
$$

If $\alpha_{1}>\alpha_{2}$ then $t_{1}<0$ and $t_{2}>0$.
Proof. - Formulae (9) are obvious. Assume $\alpha_{1}>\alpha_{2}$. Let $f(x)=\sin x-\sin \alpha_{2}-$ $\left(x-\alpha_{2}\right) \cos \alpha_{2}$. Then $f\left(\alpha_{2}\right)=0$ and $f^{\prime}(x)=\cos x-\cos \alpha_{2}<0$ for $\alpha_{2}<x \leqslant \frac{\pi}{2}$, hence $f\left(\alpha_{1}\right)<0$ and $t_{1}=f\left(\alpha_{1}\right) /\left(\cos \alpha_{2}-\cos \alpha_{1}\right)<0$. Similarly, for $g(x)=\sin \alpha_{1}-\sin x-$ $\left(\alpha_{1}-x\right) \cos \alpha_{1}$ we have $g\left(\alpha_{1}\right)=0$ and $g^{\prime}(x)=-\cos x+\cos \alpha_{1}<0$ for $0 \leqslant x<\alpha_{1}$. Thus $g\left(\alpha_{2}\right)>0$ and $t_{2}>0$.

Lemma 3.4. - Let the function t_{2} be defined by formula (9) for $\alpha_{2}<\alpha_{1}$ and by $t_{2}\left(\alpha_{1}, \alpha_{2}\right)=0$ if $\alpha_{1}=\alpha_{2}$. Let $\alpha_{1} \in\left(0, \frac{\pi}{2}\right]$ be fixed. Then

$$
D_{\alpha_{1}}=\left\{\varphi\left(\alpha_{2}, t\right): \alpha_{2} \in\left[0, \alpha_{1}\right], t \in\left[t_{2}\left(\alpha_{1}, \alpha_{2}\right), 1\right]\right\}
$$

is a convex subset of D.
Proof. - It is easily seen that

$$
\chi(z)= \begin{cases}z, & z \in[0,1] \\ \sqrt{2} \sin \left(z+\frac{\pi}{4}-1\right), & z \in\left[1,1+\frac{\pi}{2}\right]\end{cases}
$$

is a concave function on $I=\left[0,1+\frac{\pi}{2}\right]$ and that $D_{\alpha_{1}}$ is the part of its subgraph $\{(x, z): z \in$ $I, x \leqslant \chi(z)\}$ which lies above the segment $\left\{\varphi\left(\alpha_{1}, t_{1}\right): t_{1} \in\left[t_{1}\left(\alpha_{1}, 0\right), 0\right] \cup[0,1]\right\}=$ $\left\{\varphi\left(\alpha_{2}, t_{2}\left(\alpha_{1}, \alpha_{2}\right)\right): \alpha_{2} \in\left[0, \alpha_{1}\right]\right\} \cup\left\{\varphi\left(\alpha_{1}, t\right): t \in[0,1]\right\}$. (Recall that the functions t_{1}, t_{2} came from $\varphi\left(\alpha_{1}, t_{1}\right)=\varphi\left(\alpha_{2}, t_{2}\right)$.)

LEMMA 3.5. - The function $Y: D \rightarrow[0, \infty)$ is well defined by (8). Y is a \mathcal{C}^{∞}-smooth function on the interior of D.

Proof. - By Lemma 3.3, $\varphi: P \rightarrow D$ is a bijection. The Jacobi determinant of φ is $-t \sin \alpha \neq 0$ on int P, so that φ is a \mathcal{C}^{∞}-diffeomorphism of int P onto int D.

DEFINITION 3.6. - Let $T=\{(x, y, z):(x, z) \in D,|y| \leqslant Y(x, z)\}$ and let $F_{i}(\alpha, t)=$ $\left(x(\alpha, t),(-1)^{i} y(\alpha, t), z(\alpha, t)\right)$ so that $F_{2}(P)$ is the "front" surface of T. Assume $(\alpha, t) \in$ $\operatorname{int} P, S=F_{2}(\alpha, t)$ and $v=A \partial_{\alpha} F_{2}(\alpha, t)+B \partial_{t} F_{2}(\alpha, t)$ where $(A, B) \neq(0,0)$. The line $L=S+\mathbb{R} v$ will be called a tangent at the point S. It is said to be an outer or inner or surface tangent if there is $\varepsilon>0$ such that, for every $r \in(-\varepsilon, 0) \cup(0, \varepsilon), S+r v \notin T$ or $S+r v \in T$ or $S+r v \in F_{2}(P)$, respectively. Tangent L is said to be rank-one if v is a rank-one direction. The same terminology will be used for any segment $L=S+\left[r_{1}, r_{2}\right] v$, $r_{1}<0<r_{2}$.

Remark. - In order to give an interpretation of what follows, let us recall that if $\tilde{Y}: \tilde{D} \rightarrow \mathbb{R}$ is a function which has the second differential $\mathrm{D}^{2} \tilde{Y}$ negatively semi-definite
everywhere on a convex set \tilde{D}, then the set $\tilde{T}=\{(x, y, z):(x, z) \in \tilde{D},|y| \leqslant \tilde{Y}(x, z)\}$ is convex.

In our case, $\mathrm{D}^{2} Y$ is "negatively semi-definite with respect to a set of directions" (see Lemma 3.7) and we are going to prove that T is lamination convex (Proposition 3.11). Note that the set of directions is defined in terms of all variables including the dependent one and therefore it depends on the gradient of Y. Lemma 3.9 says that D is "sufficiently convex" (which is a property of the pair D, Y).

LEMMA 3.7. - With the above notation, assume L is a rank-one tangent. Then either it is an outer tangent, or it is a surface tangent with the direction $v=\partial_{t} F_{2}(\alpha, t)$.

Proof. - Let

$$
\begin{aligned}
& u_{1}=\partial_{\alpha} F_{2}(\alpha, t)=(\cos \alpha-t \sin \alpha, t \cos \alpha, 1) \\
& u_{2}=\partial_{t} F_{2}(\alpha, t)=(\cos \alpha, \sin \alpha, 1)
\end{aligned}
$$

A simple calculation shows that $v=A u_{1}+B u_{2}$ is a rank-one direction if and only if

$$
\begin{equation*}
(A, B)=k\left(2 \sin ^{2} \alpha, t^{2}-\sin ^{2} \alpha-2 t \cos \alpha \sin \alpha\right) \quad(k \in \mathbb{R}) \tag{10}
\end{equation*}
$$

or $A=0$. In the second case, v is a multiple of u_{2} and L is a surface tangent because $F_{2}(\alpha, t)$ is a linear function of t.

Assume (10) holds true. Let us write $\mathrm{D} f$ and $\mathrm{D}^{2} f$ for the first and second differential of a function f at the point $S_{0}=\varphi(\alpha, t)$, respectively. ($\mathrm{D}^{2} f$ is a quadratic form.) We will write $\mathrm{D} f(w)=\langle\mathrm{D} f, w\rangle$ and $\mathrm{D}^{2} f(w)$ when they are applied to a direction w. The set $F_{2}(P)$ can be viewed as the graph of the function Y (with interchanged second and third coordinates) and T is contained in the subgraph. To show that the tangent L is outer it is enough to verify that the second derivative of Y at S_{0} in the direction $v_{0}=A \partial_{\alpha} \varphi\left(S_{0}\right)+B \partial_{t} \varphi\left(S_{0}\right)$ equals

$$
\begin{equation*}
\mathrm{D}^{2} Y\left(v_{0}\right)=-8 k^{2} \sin ^{4} \alpha \cos \alpha<0 \tag{11}
\end{equation*}
$$

Although this could be done directly, we suggest the following way which reduces the size of expressions involved. Let $\omega(s)=\varphi(\alpha+A s, t+B s)$. Then

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial s^{2}} Y(\omega(s))\right|_{s=0}=\mathrm{D}^{2} Y\left(v_{0}\right)+\left\langle\mathrm{D} Y,\left(\mathrm{D}^{2} x(A, B), \mathrm{D}^{2} z(A, B)\right)\right\rangle \tag{12}
\end{equation*}
$$

On the other hand, $Y(\omega(s))=y(\alpha+A s, t+B s)=(t+B s) \sin (\alpha+A s)$, so that

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial s^{2}} Y(\omega(s))\right|_{s=0}=2 A B \cos \alpha-A^{2} t \sin \alpha \tag{13}
\end{equation*}
$$

Differentiating (8) and solving the resulting equation we easily obtain

$$
\begin{equation*}
\mathrm{D} Y=\left(\frac{t \cos \alpha-\sin \alpha}{-t \sin \alpha}, \frac{\cos \alpha \sin \alpha-t}{-t \sin \alpha}\right) \tag{14}
\end{equation*}
$$

The calculation of $\mathrm{D}^{2} x$ and $\mathrm{D}^{2} z$ is straightforward and gives

$$
\begin{equation*}
\mathrm{D}^{2} x(A, B)=-A^{2}(\sin \alpha+t \cos \alpha)-2 A B \sin \alpha, \quad \mathrm{D}^{2} z(A, B)=0 \tag{15}
\end{equation*}
$$

Eqs. (12)-(15) imply

$$
\mathrm{D}^{2} Y\left(v_{0}\right)=-A\left(\frac{A t}{\sin \alpha}-\frac{(A+2 B) \sin \alpha}{t}\right)
$$

Using (10) we get (11).
LEMMA 3.8. $-\operatorname{Let}\left(\alpha_{1}, t_{1}\right) \in P, \alpha_{2} \in\left[0, \frac{\pi}{2}\right]$ and $t_{2}<0$. Let $\varphi\left(\alpha_{1}, t_{1}\right)=\varphi\left(\alpha_{2}, t_{2}\right)$. Then $0 \leqslant y\left(\alpha_{1}, t_{1}\right)<-y\left(\alpha_{2}, t_{2}\right)$.

Proof. - By Lemma 3.3, $\alpha_{1} \leqslant \alpha_{2}$. If $\alpha_{1}=\alpha_{2}$ then $0 \leqslant t_{1}=t_{2}<0$. Thus $\alpha_{1}<\alpha_{2}$ and by (9)

$$
y\left(\alpha_{2}, t_{2}\right)+y\left(\alpha_{1}, t_{1}\right)=\frac{\sin ^{2} \alpha_{2}-\sin ^{2} \alpha_{1}-\left(\alpha_{2}-\alpha_{1}\right) \sin \left(\alpha_{2}+\alpha_{1}\right)}{\cos \alpha_{1}-\cos \alpha_{2}}<0
$$

where the inequality comes from

$$
\begin{aligned}
\left(\alpha_{2}-\alpha_{1}\right) \sin \left(\alpha_{2}+\alpha_{1}\right) & >\sin \left(\alpha_{2}-\alpha_{1}\right) \sin \left(\alpha_{2}+\alpha_{1}\right) \\
& =\frac{1}{2}\left(\cos 2 \alpha_{1}-\cos 2 \alpha_{2}\right) \\
& =\frac{1}{2}\left(1-2 \sin ^{2} \alpha_{1}-1+2 \sin ^{2} \alpha_{2}\right)
\end{aligned}
$$

Thus $y\left(\alpha_{1}, t_{1}\right)<-y\left(\alpha_{2}, t_{2}\right)$.
Lemma 3.9. - Let $A=\left(a_{1}, a_{2}, a_{3}\right) \in T$ and $B=\left(b_{1}, b_{2}, b_{3}\right) \in T$ be such that $B-A$ is a rank-one direction. Then $\left[\left(a_{1}, a_{3}\right),\left(b_{1}, b_{3}\right)\right] \subset D$.

Proof. - By assumptions, $A_{0}=\left(a_{1}, a_{3}\right) \in D$ and $B_{0}=\left(b_{1}, b_{3}\right) \in D$, thus there exist $\left(\alpha_{1}, \tau_{1}\right),\left(\alpha_{2}, \tau_{2}\right) \in P$ such that $A_{0}=\varphi\left(\alpha_{1}, \tau_{1}\right), B_{0}=\varphi\left(\alpha_{2}, \tau_{2}\right)$. Furthermore, $\left|a_{2}\right| \leqslant$ $y\left(\alpha_{1}, \tau_{1}\right),\left|b_{2}\right| \leqslant y\left(\alpha_{2}, \tau_{2}\right)$. If $\alpha_{2}=\alpha_{1}$ then obviously [$\left.A_{0}, B_{0}\right] \subset D$. We may assume e.g. $\alpha_{2}<\alpha_{1}$.

Let $V_{0}=\left\{(x, y, z): x^{2}+y^{2}-z^{2}<0, z<0\right\}$. V_{0} is an open convex cone. A point X is rank-one connected to $(0,0,0)$ if and only if it belongs to ∂V_{0} when it is below $(0,0,0)$ or $X \in-\partial V_{0}$ when X is above $(0,0,0)$ ("below" and "above" refers to the value of the third coordinate). It is easily seen that if L is a line with rank-one direction and $(0,0,0) \notin L$ then L intersects ∂V_{0} in at most one point and, therefore, $L \cap V_{0}$ is either an open half-line directed "downwards" or empty.

Let $V_{A}=A+V_{0}$ and $V_{1}=\gamma\left(\alpha_{1}\right)+V_{0}$. The point $\gamma\left(\alpha_{1}\right)$ is rank-one connected to $F_{i}\left(\alpha_{1}, \tau_{1}\right)$ and $A \in\left[F_{1}\left(\alpha_{1}, \tau_{1}\right), F_{2}\left(\alpha_{1}, \tau_{1}\right)\right]$ hence $A \in-\overline{V_{0}}+\gamma\left(\alpha_{1}\right), \gamma\left(\alpha_{1}\right) \in \overline{V_{A}}$ and $V_{1} \subset V_{A}$.

Let $t_{1}<0, t_{2}>0$ solve the equation $\varphi\left(\alpha_{1}, t_{1}\right)=\varphi\left(\alpha_{2}, t_{2}\right)$, cf. Lemma 3.3. Since $\gamma\left(\alpha_{1}\right)$ is also rank-one connected to the two points $F_{i}\left(\alpha_{1}, t_{1}\right), i=1$, 2, we have $F_{i}\left(\alpha_{1}, t_{1}\right) \in$ $\overline{V_{1}} \subset \overline{V_{A}}$. By Lemma 3.8, with indices 1,2 interchanged, $0 \leqslant y\left(\alpha_{2}, t_{2}\right)<-y\left(\alpha_{1}, t_{1}\right)$. Thus $F_{1}\left(\alpha_{2}, t_{2}\right), F_{2}\left(\alpha_{2}, t_{2}\right)$ are in the open segment $\left(F_{1}\left(\alpha_{1}, t_{1}\right), F_{2}\left(\alpha_{1}, t_{1}\right)\right) \subset V_{A}$.

Since the direction $\partial_{t} F_{i}\left(\alpha_{1}, t\right)$ of the line $\left\{F_{i}\left(\alpha_{2}, t\right): t \in \mathbb{R}\right\}$ is a rank-one vector directed upwards, we have $F_{i}\left(\alpha_{2}, t\right) \in V_{A}$ for every $t \leqslant t_{2}$. Now, $B \in\left[F_{1}\left(\alpha_{2}, \tau_{2}\right), F_{2}\left(\alpha_{2}, \tau_{2}\right)\right]$ is not in V_{A} since it is rank-one connected to A. Therefore $\tau_{2}>t_{2}=t_{2}\left(\alpha_{1}, \alpha_{2}\right)$ and hence $B_{0}=\varphi\left(\alpha_{2}, \tau_{2}\right) \in D_{\alpha_{1}}$.

By Lemma 3.4, it follows that $\left[A_{0}, B_{0}\right] \subset D_{\alpha_{1}} \subset D$.
LEMMA 3.10. - Let $A=\left(a_{1}, a_{2}, a_{3}\right) \in T, B=\left(b_{1}, b_{2}, b_{3}\right) \in T, A_{0}=\left(a_{1}, a_{3}\right), B_{0}=$ $\left(b_{1}, b_{3}\right)$. Assume A and B are rank-one connected. Then the open segment $\left(A_{0}, B_{0}\right)$ does not contain any point $\varphi(\alpha, 0), \alpha \in\left[0, \frac{\pi}{2}\right]$. Furthermore $\left(A_{0}, B_{0}\right)$ contains no point $\varphi(0, t), t \in[0,1]$, unless $[A, B] \subset[(0,0,0),(1,0,1)] \subset T$.

Proof. - Let $v=\left(v_{1}, v_{2}, v_{3}\right)=B-A$. Assume there is $\alpha \in\left[0, \frac{\pi}{2}\right]$ such that $S_{0}=$ $\varphi(\alpha, 0) \in\left(A_{0}, B_{0}\right)$. Clearly $\alpha \neq 0$, because $D \subset \mathbb{R} \times \mathbb{R}^{+} \cup\{(0,0)\}$. Since S_{0} is a smooth point of the boundary of D and $\left[A_{0}, B_{0}\right] \subset D$ by Lemma 3.9, we have $\left(v_{1}, v_{3}\right)=$ $k \partial_{\alpha} \varphi(\alpha, 0)=k(\cos \alpha, 1)$ for some k. Thus $v_{2}= \pm k \sin \alpha$ because v is assumed to be a rank-one direction. There is no loss of generality in assuming $v_{2}>0$, so that $v=k .(\cos \alpha, \sin \alpha, 1)$.

Note that $v=k \partial_{t} F_{2}(\alpha, 0)$ and F_{2} is linear in t. Thus $F_{2}(\alpha, t)=A$ or $F_{2}(\alpha, t)=B$ for some $t<0$. However, Lemma 3.8 immediately implies that $F_{2}(\alpha, t) \notin T$ for every $t<0$ which is a contradiction.

The second assertion is obvious since segment $M=[(0,0),(1,1)]$ is extremal in $D \subset\{(x, z): z \geqslant x\}$ and $Y=0$ on M.

Proposition 3.11. - The set T is lamination convex. Any set \tilde{T} such that $T \backslash$ $\left\{\gamma(\alpha): \alpha \in\left(0, \frac{\pi}{2}\right)\right\} \subset \tilde{T} \subset T$ is lamination convex, too.

Proof. - Assume that T is not lamination convex. Then there is $A=\left(a_{1}, a_{2}, a_{3}\right) \in T$, $B=\left(b_{1}, b_{2}, b_{3}\right) \in T$ such that segment $[A, B]$ is not a subset of T and $B-A$ is a rankone direction. We will gradually change the segment with the goal to find an inner tangent parallel to the original $[A, B]$.

Let $A_{0}=\left(a_{1}, a_{3}\right), B_{0}=\left(b_{1}, b_{3}\right)$ and $A_{0}^{\prime}=\left(a_{1}, 0, a_{3}\right), B_{0}^{\prime}=\left(b_{1}, 0, b_{3}\right)$. Obviously $A_{0} \neq B_{0}$. By Lemma 3.9, $\left[A_{0}, B_{0}\right] \subset D$.

We claim that $\left(A_{0}, B_{0}\right) \subset$ int D and thus $\left(A_{0}^{\prime}, B_{0}^{\prime}\right) \subset \operatorname{int} T$. If not, then there is a point $\left(c_{1}, c_{2}, c_{3}\right) \in(A, B)$ such that $\left(c_{1}, c_{2}\right)=\varphi\left(\alpha_{3}, t_{3}\right) \in \partial D$. Hence $\left(\alpha_{3}, t_{3}\right) \in \partial P$. The shape of domain D rules out that $t_{3}=1$. By Lemma 3.10, $t_{3} \neq 0$ and $\alpha_{3} \neq 0$. Thus $\alpha_{3}=\frac{\pi}{2}$ and $a_{1}=b_{1}=c_{1}=1, c_{3} \geqslant \frac{\pi}{2}$. Assume $a_{3} \geqslant c_{3} \geqslant \frac{\pi}{2}$ (otherwise $b_{3} \geqslant c_{3} \geqslant \frac{\pi}{2}$ which is similar). Then $\left|a_{2}\right| \leqslant Y\left(1, a_{3}\right)=y\left(\frac{\pi}{2}, a_{3}-\frac{\pi}{2}\right)=a_{3}-\frac{\pi}{2}$. If $b_{3}<\frac{\pi}{2}$ then, by Lemma 3.8, $\left|b_{2}\right| \leqslant Y\left(1, b_{3}\right)<-y\left(\frac{\pi}{2}, b_{3}-\frac{\pi}{2}\right)=\frac{\pi}{2}-b_{3}$, hence $\left|a_{2}-b_{2}\right| \leqslant\left|a_{2}\right|+\left|b_{2}\right|<a_{3}-b_{3}$ and, in consequence, A and B are not rank-one connected. If $b_{3} \geqslant \frac{\pi}{2}$ then $Y(1, z)=z-\frac{\pi}{2}$ is linear on $\left[b_{3}, a_{3}\right]$ and $[A, B] \subset T$. Since any case leads to a contradiction, we see that, indeed, $\left(A_{0}, B_{0}\right) \subset \operatorname{int} D$.

Eventually truncating the segment at a point $(x, 0, z) \in T$, with $(x, z) \in D$, we may assume $a_{2} b_{2} \geqslant 0$. We lose no generality assuming $0 \leqslant a_{2}, 0 \leqslant b_{2}$ because T is symmetric. Finally, we can exchange A, B to have $0 \leqslant a_{2} \leqslant b_{2}$.

Now, we will shift the segment $[A, B]$. For $\tau \in\left[0, b_{2}\right]$, let $A_{\tau}=\left(a_{1}, a_{2}-\tau, a_{3}\right), B_{\tau}=$ $\left(b_{1}, b_{2}-\tau, b_{3}\right)$, and $L_{\tau}=\left[A_{\tau}, B_{\tau}\right] \cap\{(x, y, z): y \geqslant 0\}$. That means $L_{\tau}=\left[\tilde{A}_{\tau}, B_{\tau}\right]$ where
$\tilde{A}_{\tau}=A_{\tau}$ for $\tau \leqslant a_{2}$ and $\tilde{A}_{\tau} \in\left(A_{0}^{\prime}, B_{0}^{\prime}\right)$ for $a_{2}<\tau<b_{2}$. Recall that $\left(A_{0}^{\prime}, B_{0}^{\prime}\right) \subset$ int T. Let $\operatorname{int}_{D} T$ be the interior of T relative to $\{(x, y, z):(x, z) \in D\}$. For $\tau>0, \tilde{A}_{\tau}, B_{\tau} \in \operatorname{int}_{D} T$.

Let $\tau_{1}=\sup \left\{\tau \in\left[0, b_{2}\right]: L_{\tau} \backslash T \neq \emptyset\right\}$. Obviously $L_{b_{2}} \subset T$ and hence $\tau_{1} \leqslant b_{2}$. Since T is closed we have $L_{\tau_{1}} \subset T$ and $\tau_{1}>0$. Since the endpoints of $L_{\tau_{1}}$ are in int ${ }_{D} T$, $L_{\tau_{1}}$ must have an interior point $S=\left(s_{1}, s_{2}, s_{3}\right)$ which belongs to the boundary of T, i.e. $s_{2}=Y\left(s_{1}, s_{3}\right)$. Since $\left(s_{1}, s_{3}\right) \in \operatorname{int} D$ and Y is a smooth function on int $D, L_{\tau_{1}}$ is a rank-one inner tangent.

By Lemma 3.7, we know that $L_{\tau_{1}}$ must be a surface tangent with the direction $\partial_{t} F_{2}\left(\varphi^{-1}\left(s_{1}, s_{3}\right)\right)$. Since F_{2} is linear in $t, L_{\tau_{1}}$ is in the surface $F_{2}(P)$. However, $\tilde{A}_{\tau_{1}}, B_{\tau_{1}} \in$ $\operatorname{int}_{D} T$. Thus there exists no segment $[A, B]$ as above and T is lamination convex.

As regards points $\gamma(\alpha), \alpha \in\left(0, \frac{\pi}{2}\right)$, the first part of Lemma 3.10 says that they may be freely removed from T and the set remains lamination convex.

Remark. - For $\alpha \in\left(0, \frac{\pi}{2}\right)$, not only the set $T \backslash\{\gamma(\alpha)\}$ is lamination convex. Also for $\hat{T}=T \backslash\left\{F_{i}(\alpha, t): t \in[0,1), i=1,2\right\}$ the same is true. Indeed if $t \in(0,1)$ and $F_{2}(\alpha, t) \in(A, B)$ where the segment (A, B) has rank-one direction and $A, B \in \hat{T}$, then by Lemma 3.7, (A, B) is a surface tangent with the direction $\partial_{t} F_{2}(\alpha, t)$. Hence A, B are in the segment we removed from T, a contradiction.

Proof of Theorem 1.1. - Let $0<\alpha_{2}<\alpha_{1}<\frac{\pi}{2}$ and

$$
\begin{aligned}
K & =E_{0} \cup\left\{\gamma\left(\alpha_{2}\right)\right\} \\
& =\left\{\left(\sin \alpha+\cos \alpha,(-1)^{i} \sin \alpha, \alpha+1\right): \alpha \in\left[0, \frac{\pi}{2}\right], i=1,2\right\} \cup\left\{\left(\sin \alpha_{2}, 0, \alpha_{2}\right)\right\} .
\end{aligned}
$$

Then the point $\left(\sin \alpha_{1}, 0, \alpha_{1}\right)$ does not belong to the lamination convex hull of K (Proposition 3.11) but does belong to its closure (Lemma 3.1). For symmetric two by two matrices, the set

$$
\left\{\left(\begin{array}{cc}
z+x & y \\
y & z-x
\end{array}\right):(x, y, z) \in K\right\}
$$

serves as an example.

Remarks. -

(1) It is very easy to see that for every compact set $K, \mathrm{~L}(K)$ is an F_{σ}-set. Is it always a G_{δ}-set?
(2) We believe that in some classes of compact subsets of $\mathbb{M}_{\text {sym }}^{2 \times 2}$ it is typical, in a sense, for a compact K to have non-closed $\mathrm{L}(K)$. For example if K consists of two curves (or segments) and a point which is rank-one connected to both curves, it is likely that the solution of an equation similar to (5) will move outside $\mathrm{L}(K)$ unless the critical area is covered by other rank-one connections (far from or closely related to the one in (5)). Note, however, that the convex combination coefficients on the right-hand side of (5) have to be properly chosen and, in general, they will depend on α. If the above works when the two curves are segments with rank-one directions, K could be replaced by a five-point set.
(3) The first compact $K \subset \mathbb{R}^{3} \cong \mathbb{M}_{\text {sym }}^{2 \times 2}$ for which we had proven non-compactness of $\mathrm{L}(K)$ was

$$
K=\left\{(x, y, 0): 4(x-1)^{2}+y^{2} \leqslant 4\right\} \cup\left\{\left(a_{0}, 0, \sqrt{8\left(a_{0}-2\right)}\right)\right\}
$$

where $a_{0} \in(2,4]$. The lamination convex superset T of this compact is $\{r((1-$ $\left.t) x+t(4-x), \pm(1-t) \sqrt{4-4(x-1)^{2}}, t \sqrt{8(2-x)}\right): r \in[0,1], t \in[0,1], x \in$ $[0,2]\}$. The method of the proof was quite similar: Contracting a "bad" segment towards point $(0,0,0)$, an inner rank-one tangent would be found, but none exists except "canonical" surface tangents. The sin-based curves in our example were chosen because they lead to much easier calculations at the cost of some additional reasoning.
(4) We do not know whether the set T from Definition 3.6 (considered as a subset of $\mathbb{M}^{2 \times 2}$) is rank-one convex or even quasiconvex. Therefore we do not know what are rank-one convex and quasiconvex hulls of K. In the case T would be rankone convex, the question Q1 of [2, p. 87 (§ 4.1.2)] would be answered negatively with an impact on understanding of rank-one extreme points.
The set T is not polyconvex. Indeed, taking three matrices $M=\left\{\gamma(0), e_{1}\left(\frac{\pi}{2}\right)\right.$, $\left.e_{2}\left(\frac{\pi}{2}\right)\right\}$ and $t=\left(\frac{\pi^{2}}{2}+2 \pi-2\right) /\left(\pi^{2}+4 \pi\right) \doteq 0.41$, the matrix $X=(1-2 t) \gamma(0)$ $+t e_{1}\left(\frac{\pi}{2}\right)+t e_{2}\left(\frac{\pi}{2}\right)$ belongs to the polyconvex hull of M since the determinants of the three matrices are $d_{0}=0, d_{1}=d_{2}=\frac{\pi^{2}}{4}+\pi-1$ and it is easy to check that determinant of the matrix X equals $(1-2 t) d_{0}+t d_{1}+t d_{2}$. On the other hand, $X \notin T$ since it does not lie "above" D. Without giving any details we note that X can be separated from K by a translate of the quasiconvex function F_{0} defined in [5], so that the quasiconvex and polyconvex hulls of K are different.
(5) In a future paper we plan to give another proof of Theorem 1.1 as well as some results related to rank-one convexity, namely a version of Krein-Milman type theorem and the proof that rank-one convex hull and quasiconvex hull in $\mathbb{M}_{\text {sym }}^{2 \times 2}$ have infinite Carathéodory number. Also, we will provide a proof for formula (7) "different" from direct calculation of the limit of corresponding prelaminates.

4. Upper semi-continuity

Let X be a metric space. For $\varepsilon>0$, the ε-neighborhood of a set $A \subset X$ will be denoted by $\mathcal{U}_{\varepsilon}(A)=\{x \in X$: $\operatorname{dist}(x, A)<\varepsilon\}$.

On $\mathcal{K}(X)$, the set of all nonempty compact subsets of X, the Hausdorff metric is defined by $\varrho\left(K_{1}, K_{2}\right)=\inf \left\{\varepsilon: K_{1} \subset \mathcal{U}_{\varepsilon}\left(K_{2}\right)\right.$ and $\left.K_{2} \subset \mathcal{U}_{\varepsilon}\left(K_{1}\right)\right\}$. This definition can be extended for non-compact sets A_{1}, A_{2}, but it turns out that $\varrho\left(A_{1}, A_{2}\right)=\varrho\left(\bar{A}_{1}, \bar{A}_{2}\right)$.

We say that a function $f: \mathcal{K}(X) \rightarrow \mathcal{K}(X)$ is upper semi-continuous (with respect to Hausdorff metric) if for every $\varepsilon>0$ and $K_{0} \in \mathcal{K}(X)$ there is $\delta>0$ such that $f(K) \subset \mathcal{U}_{\varepsilon}\left(f\left(K_{0}\right)\right)$ whenever $K \in \mathcal{K}(X)$ and $\varrho\left(K, K_{0}\right)<\delta$.

Let $\mathrm{Q}(K)$ denote the quasiconvex hull of a set $K \subset \mathbb{M}^{m \times n}$. In [6], it is shown that the function $K \mapsto \mathrm{Q}(K)$ is upper semi-continuous with respect to Hausdorff metric on the space of all compact subsets of $\mathbb{M}^{m \times n}$. Lamination convex hull and separately lamination convex hull do not share this property.

Proposition 4.1. - Function $K \mapsto \overline{\mathrm{~L}_{\mathrm{sc}}(K)}$ is not upper semi-continuous with respect to Hausdorff metric on $\mathcal{K}\left(\mathbb{R}^{3}\right)$. Function $K \mapsto \overline{\mathrm{~L}(K)}$ is not upper semi-
continuous on $\mathcal{K}(X)$ (with respect to Hausdorff metric) where

$$
X=\mathbb{M}_{\text {diag }}^{3 \times 3} \quad \text { or } \quad X=\left\{\left(\begin{array}{lll}
a & b & 0 \\
0 & 0 & c
\end{array}\right)\right\}
$$

We do not know what the cases of $\mathbb{M}_{\text {sym }}^{2 \times 2}$ and $\mathbb{M}^{2 \times 2}$ look like.
Proof sketch. - Let K be as in (1), $\varepsilon=\frac{1}{3}, J=(0,-1,0), x_{n}=\left(-\frac{1}{2}, \frac{1}{n}, \frac{1}{n}\right) \in \mathrm{L}_{\mathrm{sc}}(K)$, $x=\left(-\frac{1}{2}, 0,0\right) \in \overline{\mathrm{L}_{\mathrm{sc}}(K)} \backslash \mathrm{L}_{\mathrm{sc}}(K), K_{0}=K \cup\{x+J\}, K_{n}=K \cup\left\{x_{n}+J\right\}$. Then $\varrho\left(K_{n}, K_{0}\right) \rightarrow 0$. On the other hand

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{sc}}\left(K_{0}\right) \subset \mathrm{L}_{\mathrm{sc}}(K) \cup[x+J,(0,-1,0)] \quad \text { (a separately lamination convex set) } \\
& \mathrm{L}_{\mathrm{sc}}\left(K_{n}\right) \supset\left[x_{n}, x_{n}+J\right]
\end{aligned}
$$

hence $\mathrm{L}_{\mathrm{sc}}\left(K_{n}\right) \not \subset \mathcal{U}_{\varepsilon}\left(\mathrm{L}_{\mathrm{sc}}\left(K_{0}\right)\right)$. Thus $K \mapsto \overline{\mathrm{~L}_{\mathrm{sc}}(K)}$ is not upper semi-continuous on \mathbb{R}^{3} and after a transformation we see that $K \mapsto \overline{\mathrm{~L}(K)}$ is not upper semi-continuous on $\mathbb{M}_{\text {diag }}^{3 \times 3}$.

For the last case we start with \tilde{K} and L from Example 2.4 and set $J=(0,0 ;-2)$, $x_{n}=\left(\frac{1}{n}, \frac{1}{2} ; 0\right) \in \mathrm{L}_{(2,1)}(\tilde{K}), x=\left(0, \frac{1}{2} ; 0\right), K_{0}=\tilde{K} \cup\{x+J\}, K_{n}=\tilde{K} \cup\left\{x_{n}+J\right\}$. Again, the segment $\left[x_{n}, x_{n}+J\right]$ is contained in $\mathrm{L}_{(2,1)}\left(K_{n}\right)$ but $[x, x+J]$ does not belong to $\mathrm{L}_{(2,1)}\left(K_{0}\right)$ (nor to its closure) because K_{0} is contained in the bi-convex set $L \cup\{x+J\}$.

Remark. - Let $\mathrm{L}^{\mathrm{c}}(K)$ be the closed lamination convex hull of $K \subset \mathbb{M}^{m \times n}$, i.e., the smallest closed lamination convex set containing K. Similarly, the closed separately lamination convex hull $\mathrm{L}_{\mathrm{sc}}^{\mathrm{c}}(K)$ is defined for $K \subset \mathbb{R}^{n}$. There are compacta K such that $\mathrm{L}^{\mathrm{c}}(K) \neq \overline{\mathrm{L}(K)}$ and $\mathrm{L}_{\mathrm{sc}}^{\mathrm{c}}(K) \neq \overline{\mathrm{L}_{\mathrm{sc}}(K)}$, respectively. The two sets named K_{0} above serve as an example. We do not know whether $\mathrm{L}^{\mathrm{c}}(K)=\overline{\mathrm{L}(K)}$ for every compact $K \subset \mathbb{M}_{\text {sym }}^{2 \times 2}$ or $K \subset \mathbb{M}^{2 \times 2}$.

REFERENCES

[1] R.J. Aumann, S. Hart, Bi-convexity and bi-martingales, Israel J. Math. 54 (1986) 159-180.
[2] B. Kirchheim, Geometry and rigidity of microstructures, Habilitation thesis, Universität Leipzig, 2001.
[3] B. Kirchheim, Private communication.
[4] S. Müller, V. Šverák, Attainment results for the two-well problem by convex integration, in: J. Jost (Ed.), Geometric Analysis and the Calculus of Variations, International Press, Cambridge, MA, 1996, pp. 239-251.
[5] V. Šverák, New examples of quasiconvex functions, Arch. Rat. Mech. Anal. 119 (1992) 293300.
[6] K. Zhang, On the stability of quasiconvex hulls, Preprint Max-Plank Inst. for Mathematics in the Sciences, Leipzig, 33/1998.

[^0]: E-mail address: kolar@karlin.mff.cuni.cz (J. Kolář).
 ${ }^{1}$ Research was partially supported by Max Planck Institute for Mathematics in the Sciences in Leipzig.

