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ABSTRACT. – This paper concerns with two issues. The first issue is the existence and the
uniqueness of the ergodic type numberd which appears in the oblique boundary condition. The
second issue is the application of the number for the study of homogenizations of oscillating
Neumann boundary conditions.
 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Dans cette article, nous traitons deux problèmes. Le premier est l’existence et
l’unicité d’un nombre du type ergodiqued qui apparaît dans la condition oblique sur le bord.
Le second est l’application de ce nombre pour la recherche des homogénéizationses conditions
Neumann sur des bords oscillants.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

First, we are concerned with the existence and uniqueness of the numberd in the
following problem.

F
(
x,∇u,∇2u

)= 0 in�, (1)

d + 〈∇u, γ (x)〉− g(x)= 0 on∂�, (2)

where� is a domain inRn, F is a fully nonlinear uniformly elliptic Hamilton–Jacobi–
Bellman (HJB in short) operator:

F
(
x,∇u,∇2u

)= sup
α∈A

{
−

n∑
i,j=1

aαij (x)
∂2u

∂xi∂xj
−

n∑
i=1

bαi (x)
∂u

∂xi

}
, (3)

satisfying the following conditions. A is a set of controls, and by denotingn×n matrices
Aα = (aαij (x))ij (α ∈A), there existn×m matricesσα such that
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Aα(x)= σα
(
σα

)t
(x) anyx ∈�, α ∈A,

λ1I �Aα(x)��1I anyx ∈�, α ∈A, (4)

where 0< λ1 ��1 positive constants,I then×n identity matrix. There exists a positive
constantL> 0 such that∣∣aαij (x)− aαij (y)

∣∣�L|x − y| any 1� i, j � n, x ∈�, α ∈A,∣∣bαi (x)− bαi (y)
∣∣�L|x − y| any 1� i � n, x ∈�, α ∈A. (5)

There also exists a positive constantγ0, such that for the outward unit normal vector
n(x) (x ∈ ∂�), γ (x) satisfies

〈
γ (x),n(x)

〉
� γ0 > 0 anyx ∈ ∂�. (6)

The domain� is assumed to be either one of the following:

Bounded open domain inRn with C3,1 boundary, (7)

or

Half space inRn, periodic in the firstn− 1 variables withC3,1 boundary:{
(x′, xn)| periodic inx′ = (x1, . . . , xn−1) ∈ (R/Z)n−1, xn � f1(x

′)
}
,

wheref1 ∈ C3,1((R/Z)n−1). (8)

(In the latter case (8), a supplement boundary condition atxn =∞ will be added to
(1)–(2).)

The following example implies the qualitative meaning of the numberd.

Example1.1. – Let� be a domain in(7), andg(x) be a Lipschitz continuous function
on ∂�. Assume that there exists a numberd such that the following problem has a
viscosity solution.

−!u= 0 in�,

d + 〈∇u,n(x)
〉− g(x)= 0 on∂�.

Then,

d = 1

|∂�|
∫
∂�

g(x) dS.

Proof of Example 1.1. –In the Green’s first identity:

∫
�

!uv dx +
∫
�

∇u · ∇v dx =
∫
∂�

v
∂u

∂n
dS,

we putv = 1, and getd|∂�| = ∫
∂� g(x) dS. ✷

Thus,d is a kind of the averaged quantity on∂�. For general HamiltoniansF , the
way to construct the numberd andu(x) in (1)–(2) is the following. Here we assume that
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(7) holds. (The case (8) is more complicated, and will be treated in Section 3 below.) For
anyλ > 0, consider

F
(
x,∇uλ,∇2uλ

)= 0 in�, (9)

λuλ + 〈∇u, γ (x)〉− g(x)= 0 on∂�. (10)

The regularity ofuλ (λ ∈ (0,1)) which will be shown in Section 2 yields, for any fixed
x0 ∈�

lim
λ↓0

λuλ(x)= d uniformly in�, (11)

and by taking a subsequenceλ′ ↓ 0,

lim
λ′↓0

(
uλ′(x)− uλ′(x0)

)= u(x) uniformly in�. (12)

The limit numberd is unique in the sense that with which (1)–(2) has a viscosity solution.
The above limit functionu(x) is one of such solutions. (The solution of (1)–(2) is not
unique, foru + C (C constant) is also a solution.) We shall show in Section 2 these
facts. Now, the meaning of the numberd can be stated by using (11). For any fixed
measurable functionα(t) : [0,∞)→A (control process), let(Xα

t ,A
α
t ) be the stochastic

process defined by

Xα
t = x +

t∫
0

σα
(
Xα

s

)
dWs +

t∫
0

bα
(
Xα

s

)
ds −

t∫
0

γ
(
Xα

s

)
dAs, t � 0,

Aα
t =

t∫
0

1∂�
(
Xα

s

)
dAs is continuous, nondecreasing int � 0, (13)

wherebα = (bαi )i , 1∂�(·) a characteristic function on∂�, Wt (t � 0) anm-dimensional
Brownian motion. The study of the existence and the uniqueness of(Xα

t ,A
α
t ) is called

the Skorokhod problem, and its solvability is known under the preceding assumptions.
We refer the readers to Lions and Sznitman [30], Lions, Menaldi and Sznitman [28], and
Lions [27]. Let

J α
λ (x)=Ex

∞∫
0

e−λtg
(
Xα

t

)
1∂�

(
Xα

t

)
dAt ,

and define

uλ(x)= inf
α(·) J

α
λ (x) in �, (14)

where the infimum is taken over all possible control processes. It is known thatuλ
is the unique solution of (9)–(10). (See, Lions and Trudinger [31], and Freidlin and
Wentzell [21].) Thus,

d = lim
λ↓0

inf
α(·) λEx

∞∫
0

e−λtg
(
Xα

t

)
1∂�

(
Xα

t

)
dAt , (15)



296 M. ARISAWA / Ann. I. H. Poincaré – AN 20 (2003) 293–332

if the right hand side of (11) exists, which represents the fact that the numberd is the
long time averaged reflection force on the boundary. (Each time the tragectory reaches to
∂�, it gains the forceg(x) and is pushed back in the direction of−γ (x).) We remark the
similarity of the convergence (11) to the so-called ergodic problem for HJB equations.
That is, by considering,

λuλ(x)+F
(
x,∇uλ,∇2uλ

)= 0 in�,〈∇uλ(x), γ (x)〉= 0 on∂�,

it is known that an unique numberd ′ exists such that

lim
λ↓0

λuλ(x)= d ′ uniformly in�.

We refer the readers to Arisawa and Lions [6], Arisawa [1,2], Bensoussan [10] for the
various types (operators and boundary conditions) of ergodic problems. As the above
ergodic problem “in the domain”, the existence ofd in (2) “on the boundary” relates to
the ergodicity of the stochastic process (13). Even for some classes of degenerate elliptic
operatorsF , the numberd in (2) exists. We remark this in Section 4, below.

Next, we turn our interests to the homogenization. The unique existence ofd in (1)–
(2) plays an essential role to study the homogenization of oscillating Neumann boundary
conditions. The simplest example is as follows.

Example1.2. – Let c, g, f1(x, ξ1) be functions defined in(x, ξ1) ∈ R2 × R\Z
(periodic inξ1 with period 1). Assume thatf1 � 0, and that there exists a constantc0 > 0
such thatc > c0 > 0. For anyε � 0, let

�ε =
{
(x1, x2) | εf1

(
x,

x1

ε

)
� x2 � b, |x1|� a

}
,

,ε =
{
(x1, x2) | x2= εf1

(
x,

x1

ε

)}
∩ ∂�ε.

Let uε(x) (ε > 0) be the solution of

−!uε = 0 in�ε, (16)〈∇uε(x),nε(x)
〉+ c

(
x,

x1

ε

)
uε = g

(
x,

x1

ε

)
on,ε, (17)

uε = 0 on∂�ε\,ε, (18)

wherenε(x) is the outward unit normal to,ε. Then, asε ↓ 0, uε converges to a unique
functiontu(x) uniformly in �0, which is the solution of

−!u= 0 in�0,〈∇u(x), ν(x)〉+L(x,u,∇u)= 0 on,0, (19)

u= 0 on∂�0\,0,

whereν is the outward unit normal to,0, andL is defined as follows.
Let O(x) = {(ξ1, ξ2) | ξ2 � f1(x, ξ1), ξ1 ∈ R\Z}. Then, for any fixed(x, r,p) ∈

�×R×R2, there exists a unique numberd(x, r,p) such that
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−!ξv ≡−
(
∂2v

∂ξ2
1
+ ∂2v

∂ξ2
2

)
= 0 inO(x),

d(x, r,p)+ 〈∇ξv, γ (ξ)
〉−

(√√√√1+
(
∂f1

∂ξ1

)2

g −
√√√√1+

(
∂f1

∂ξ1

)2

cr − p1
∂f1

∂ξ1

)
= 0

on ∂O(x), whereγ (ξ)= ( ∂f1
∂ξ1

,−1) (ξ ∈ ∂O(x)), and

L(x, r,p)=−d(x, r,p). (20)

In Friedman, Hu, and Liu [22], a similar problem to the above example (linear, three
scales case) was treated by the variational approach. (See also [13].) We shall extend
the result (including Example 1.2.) to nonlinear problems by using the existence of
the long time averaged reflection numberd in (1)–(2). As Example 1.2 indicates, the
effective limit boundary condition (19) is defined by using the long time averaged
number in (20). Our present approach was inspired by the classical method of formal
asymptotic expansions of Bensoussin, Lions, and Papanicolaou [11]. This approach is
closely related to the ergodic problem for HJB equations described in the preceding
part of this introduction. For the application of the ergodic problem [6,1,2] to obtain
the effective P.D.E. in the domain, we refer the readers to Arisawa [3,4], Arisawa and
Giga [5], Evans [18,19], and Lions, Papanicolaou, and Varadhan [29]. As far as we
know, there is no existing reference which treats the homogenization of the oscillating
Neumann boundary conditions from the view point of the ergodic problem.

The plan of this paper is the following.
Section 1. Introduction.
Section 2. Existence and uniqueness of the numberd in the case of the bounded domain.
Section 3. Existence and uniqueness of the numberd in the case of the half space.
Section 4. Some remarks on the degenerate elliptic operators case.
Section 5. Homogenization of the oscillating Neumann boundary conditions.

Throughout of this paper, the gradient and the Hesse matrix ofu(x) (x ∈ � ⊂
Rn) (respectivelyv(ξ) (ξ ∈ �′ ⊂ Rn)) are denoted by∇u(x), ∇2u(x) (respectively
∇ξv(ξ), ∇2

ξ v(ξ) or D2
ξ v(ξ)). For u(x) (x ∈ � ⊂ Rn), the partial derivatives inxi , xj

(1� i, j � n) are denoted by∂u
∂xi
= Diu, ∂2u

∂xi∂xj
= Diju, etc., and the derivatives in the

directions ofy, z ∈ Rn are denoted byDyu =∑n
i=1 yi

∂u
∂xi

, Dyzu = ∑n
i,j=1 yizj

∂2u
∂xi∂xj

,
etc. When a functionw(x, ξ) depends on both variables ofx ∈ Rn and ξ ∈ Rn,
and when we consider the derivatives∂

2w(x,ξ)

∂xk∂ξl
etc., we denote them byDijw(x, ξ)

(1� i, j � 2n), etc. For the twice continuously differentiable functionu(x) (x ∈
� ⊂ Rn), we denote|u|L∞(�) = supx∈� |u|, |∇u|L∞(�) = supx∈� sup1�i�n | ∂u∂xi (x)|,
|∇2u|L∞(�) = supx∈� sup1�i,j�n | ∂2u

∂xi∂xj
(x)|,

|u|β;� = sup
(x,y)∈�×�

|u(x)− u(y)|
|x − y|β ,

|∇u|β;� = sup
1�i�n

sup
(x,y)∈�×�

| ∂u
∂xi

(x)− ∂u
∂xi

(y)|
|x − y|β , 0< β � 1,
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|u|j,β;� =
∣∣∇ju

∣∣
L∞(�)

+ sup
x �=y∈�

|∇ju(x)−∇ju(y)|
|x − y|β , 0< β � 1, j = 1,2.

We consider the solvability of PDEs in the framework of viscosity solutions, and treat the
second-order sub and super differentials of upper and lower semi continuous functions
u(x) andv(x) (x ∈D ⊂Rn) at a pointx̄ in the domainD. We denote them byJ 2,+

D u(x̄)

(the second-order superjets ofu at x̄) andJ 2,−
D v(x̄) (the second-order subjets ofv at x̄)

respectively. (See Crandall and Lions [16], Crandall, Ishii and Lions [15], and Fleming
and Soner [20].) We use the notationB(x, r) (x ∈ �, r > 0) for the open ball centered
atx with radiusr > 0.

2. Existence and uniqueness of the long time averaged reflection force in the
bounded domain

In this section, the existence and uniqueness of the numberd in (1)–(2) is shown in
the case that� satisfies (7). The HamiltonianF(x,∇u,∇2u), given in (3), positively
homogeneous in degree one, is assumed to satisfy (4) and (5); the vector fieldγ on ∂�
is assumed to satisfy (6). For the existence, we further assume that∣∣aαij ∣∣, ∣∣∇aαij ∣∣, ∣∣∇2aαij

∣∣, ∣∣bαi ∣∣, ∣∣∇bαi ∣∣, ∣∣∇2bαi
∣∣�K anyx ∈�, 1 � i, j � n, α ∈A,

(21)
whereK > 0 is a constant, and thatγ , g can be extendable in a neighborhoodU of ∂�
to twice continuously differentiable functions so that

|∇γ |, ∣∣∇2γ
∣∣, ∣∣∇2g

∣∣, ∣∣∇2g
∣∣�K in U, (22)

whereK > 0 is the constant in (21). For the existence ofd, we approximate (1)–(2) by
(9)–(10) (λ ∈ (0,1)) and examine the regularity ofuλ, uniformly in λ. In order to have
(11)–(12), we need the following estimates.

THEOREM 2.1. –Assume that� is (7), and that(4), (6), (21) and (22) hold. Then
there exists a unique solutionuλ ∈C1,1(�)∩C2,β(�) of (9)–(10), whereβ > 0 depends
onn and�1/λ1. Moreover, for any fixedx0 ∈�, there exists a constantC > 0 such that
the following estimates hold.∣∣uλ − uλ(x0)

∣∣
L∞(�)

� C anyλ ∈ (0,1), (23)

|∇uλ|L∞(�) �C anyλ ∈ (0,1), (24)

|∇uλ|1;� �C anyλ ∈ (0,1). (25)

Remark2.1. – One can replace the conditions (21)–(22) to other conditions, for
example those in [24], to have∣∣uλ(x)− uλ(y)

∣∣ �C|x − y|θ anyx, y ∈�, λ ∈ (0,1),
whereC > 0, θ ∈ (0,1) are independent onλ > 0. The proof of this inequality can
be done in a similar way to [24], but by taking account of the Neumann type boundary
conditions, and also by using the estimate (23). We do not write the proof in this direction
here, but shall use the method in a future occassion.
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Proof of Theorem 2.1. –For eachλ > 0, the existence and uniqueness ofuλ ∈
C1,1(�) ∩ C2,β(�) is established in Lions and Trudinger [31]. We are to show the
uniform (in λ ∈ (0,1)) regularity (23)–(25) in the following two steps. In Step 1, (23)
will be shown, and in Step 2, (24) and (25) will be shown.

Step1. We prove (23) by a contradiction argument. Letx0 ∈ � be fixed. Assume, as
λ > 0 goes to 0 ∣∣uλ − uλ(x0)

∣∣
L∞(�)

→∞.

Set

ελ ≡
∣∣uλ − uλ(x0)

∣∣−1
L∞(�)

, λ ∈ (0,1),
and letvλ ≡ ελ(uλ − uλ(x0)). Then,

|vλ|L∞(�) = 1, vλ(x0)= 0 anyλ ∈ (0,1).

From (3), vλ satisfiesF(x,∇vλ,∇2vλ) = 0 in �, and from (4) the Krylov–Safonov
inequality (see [12] for instance) leads: for any compact setV � �, there exists a
constantMV > 0 such that

|∇vλ|L∞(V ) �MV anyλ ∈ (0,1). (26)

We denote

v∗(x)= lim sup
λ↓0, y→x

vλ(y), v∗(x)= lim inf
λ↓0, y→x

vλ(y).

Then, sincevλ(x0)= 0 (∀λ ∈ (0,1)), from (26) we have

v∗(x0)= v∗(x0)= 0, (27)

|v∗|L∞(�) = 1, or |v∗|L∞(�) = 1. (28)

From (2),vλ satisfies

〈∇vλ, γ (x)〉= ελg − λ
(
vλ + ελuλ(x0)

)
,

and by the comparison result for (9)–(10)

∣∣λuλ(x0)
∣∣
L∞(�)

� C anyλ ∈ (0,1),
whereC > 0 is a constant. By lettingλ ↓ 0, v∗ andv∗ are viscosity solutions of〈∇v∗, γ (x)〉� 0 on∂�, (29)〈∇v∗, γ (x)〉� 0 on∂�, (30)

andv∗(x) (respectivelyv∗(x)) (x ∈�) satisfies

F
(
x,∇v∗,∇2v∗

)
� 0,

(
respectivelyF

(
x,∇v∗,∇2v∗

)
� 0

)
in �. (10′)

(We refer the readers to [15] and Barles and Perthame [9] for this stability result.)
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Now we employ the strong maximum principle of Bardi and Da-Lio [7]. Remark that
F(x,p,R) given in (3), satisfying (4) and (21) enjoys the following two properties of
(31) and (32).

(Scaling property) For anyx0 ∈�, for anyη > 0, there exists a functionφ : (0,1)→
(0,∞) such that

F(x, ξp, ξR)� φ(ξ)F (x,p,R) anyξ ∈ (0,1), (31)

holds for anyx ∈ B(x0, η), 0< |p|� η, |R|� η.
(Nondegeneracy property) For anyx0 ∈�, for any small vectorν �= 0, there exists a

positive numberr0 such that

F(x0, ν, I − rν ⊗ ν) > 0 anyr > r0. (32)

We cite the following result for our present and later purposes.

LEMMA A [7] (Strong maximum priciple). –Let�⊂ Rn be an open set and letu be
an upper semicontinuous viscosity subsolution of

F
(
x,∇u,∇2u

)= 0 in �,

which attains a maximum in�. Assume thatF satisfies(31), (32), and for anyx0 ∈ �

there existsρ0 > 0 such that for anyν ∈ B(0, ρ0)\{0}, (32)

holds for some r0 > 0. (33)

Then,u is a constant.

We go back to the proof of (23). Assume that|v∗|L∞(�) = 1 holds in (28). (The another
case of|v∗|L∞(�) = 1 can be treated similarly.) Thus from (27),v∗ is not constant, and
from (10′) and the strong maximum principle (Lemma A),v∗ attains its maximum at a
point x1 ∈ ∂�:

v∗(x1) > v∗(x) anyx ∈�.

Since ∂� is C3,1, the interior sphere condition (see Gilbarg and Trudinger [23]) is
satisfied: there existsy ∈� such that forR = |x1− y|

B(y,R) ∈�, x1 ∈ ∂B(y,R).
Let

φ(x)= e−cR
2 − e−c|x−y|

2
, x ∈�,

wherec > 0 is a constant large enough so that

F
(
x1,∇φ(x1),∇2φ(x1)

)
= F

(
x1,2c(x1− y)e−c|x1−y|2,2ce−c|x1−y|2(I − 2c(x1− y)⊗ (x1− y)

))
= 2ce−c|x1−y|2F

(
x1, x1− y, I − 2c(x1− y)⊗ (x1− y)

)
> 0
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holds. (Here, we used (3), (32) and (33).) By the lower semicontinuity ofF in x, there
existsr ∈ B(0,R) andC ′ > 0 such that

F
(
x,∇φ(x),∇2φ(x)

)
� C ′ > 0 inB(x1, r)∩�. (34)

We claim that

v∗(x)− v∗(x1)− φ(x) � 0 inB(x1, r)∩�. (35)

In fact, if x ∈ B(y,R)c, φ(x) � 0 and (35) holds. Assume that forx′ ∈ B(x1, r) ∩
B(y,R) (35) does not hold, and

v∗(x′)− v∗(x1)− φ(x′)= max
B(x1,r)∩B(y,R)

v∗(x)− v∗(x1)− φ(x).

Then by the definition of the viscosity solution,

F
(
x′,∇φ(x′),∇2φ(x′)

)
� 0,

which contradicts to (34). Therefore, (35) holds. By remarking thatφ(x1) = 0, (35)
indicates thatv∗ − φ takes its maximum atx1 ∈ ∂�. Sincev∗ satisfies (29) in the sense
of viscosity solutions, either 〈

φ(x1), γ (x1)
〉
� 0,

or

F
(
x1,∇φ(x1),∇2φ(x1)

)
� 0

must be satisfied. However from the definition ofφ, (6) and (34), both of the above are
not satisfied. We got a contradiction, and proved (23).

Step2. To obtain (24) and (25), we appply (23) in the argument of [31]. First, we
regularlize the HamiltonianF . Letρ be a mollifier onRn (ρ � 0,ρ ∈C∞0 (Rn),

∫
ρ = 1).

For anyδ > 0, set

hδ(y)= δ−n
∫

RN

ρ

(
y − z

δ

)(
inf

1�k�N
zk
)
dz,

FN
δ [u] ≡ hδ

(
Lα1u, . . . ,LαNu

)
,

where

Lαlu=−
n∑

i,j=1

a
αl
ij

∂2u

∂xi∂xj
−

α∑
i

b
αl
i

∂u

∂xi
, 1� l �N.

Remark that for anyδ ∈ (0,1), the operatorFN
δ (x,p,R) satisfies

λ1I �
(
∂FN

δ

∂rij
(x,p,R)

)
1�i,j�n

��1I, x ∈�, R ∈ Sn, (36)

FN
δ (x,p,R)� µ0

(
1+ |p| + |R|), x ∈�, R ∈ Sn, (37)∣∣∣∣∂FN

δ

∂x

∣∣∣∣,
∣∣∣∣∂FN

δ

∂p

∣∣∣∣,
∣∣∣∣∂FN

δ

∂R

∣∣∣∣� µ1
{(

1+ |p| + |R|)|x| + |p| + |R|}, x ∈�, R ∈ Sn, (38)
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∣∣∣∣∂2FN
δ

∂x2

∣∣∣∣,
∣∣∣∣∂2FN

δ

∂x∂p

∣∣∣∣,
∣∣∣∣∂2FN

δ

∂x∂R

∣∣∣∣
�µ2

{(
1+ |p| + |R|)|x| + |p| + |R|}× |x|, x ∈�, R ∈ Sn, (39)

whereµi (i = 0,1,2) are positive constants, and|p| =max1�i�n |pi| (p = (pi)1�i�n),
|R| =max1�i,j�n |rij | (R = (rij )1�i,j�n).

We need the following a priori estimates.

LEMMA 2.2. –Letuδλ,N ∈ C4(�)∩C3(�) be a solution of

FN
δ

(
x,∇uδλ,N ,∇2uδλ,N

)= 0 in �, (40)

λuδλ,N +
〈∇uδλ,N , γ (x)〉− g(x)= 0 on∂�. (41)

Then, there existsC > 0 such that

∣∣∇uδλ,N ∣∣L∞(�)
,

∣∣∇2uδλ,N
∣∣
L∞(�)

�C anyδ, λ ∈ (0,1), N ∈N, (42)

whereC > 0 depends onn, λ1, �1, µi (i = 0,1,2), �, andK .

Remark2.2. – In the estimates of [31], Theorem 2.1, the above constantC depends
also onλ ∈ (0,1).

By delaying the proof of Lemma 2.2, we shall show how (42) leads (24) and (25). By
the method of continuity, for eachδ > 0 the a priori estimate (42) yields the existence of
uδλ,N ∈ C3(�)∩C2,α(�) of (40)–(41). Putwδ

λ,N = uδλ,N − uδλ,N(x0). The same argument
as in Step 1 works forwδ

λ,N , and

∣∣wδ
λ,N

∣∣
L∞(�)

� C anyδ, λ ∈ (0,1), N ∈N.

From (42), by extracting a subsequence ofδ′ ↓ 0, there existswλ,N ∈C1,1(�) such that

lim
δ′↓0

wδ
λ,N =wλ,N uniformly in�,

lim
δ′↓0
∇wδ

λ,N =∇wλ,N uniformly in�,

and

|wλ,N |L∞(�), |∇wλ,N |L∞(�), |∇wλ,N |1;� � C anyλ ∈ (0,1), N > 0.

On the other hand, from (36) and the Evans–Krylov interior estimate (see, e.g.,
Evans [17], Cabre and Caffarelli [12], Krylov [25,26], and [31]) leads for any�′ ��

∣∣∇2wδ
λ,N

∣∣
α;�′ � C anyδ ∈ (0,1),

whereC > 0 depends on�′ andα ∈ (0,1). Thus, we obtainwλ,N ∈C1,1(�)∩C2,β(�)

of

max
1�l�N

{
Lαlwλ,N

}= 0 in�,

λwλ,N + 〈∇wλ,N, γ (x)
〉− g(x)= 0 on∂�.
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LettingN→∞, we obtain (24) and (25) from the preceding estimates.
In the following, we shall prove Lemma 2.2.

Proof of Lemma 2.2. –Set

vδλ,N ≡
uδλ,N − uδλ,N(x0)

|∇(uδλ,N − uδλ,N(x0))|L∞(�)

. (43)

From (23), there exists a constantM1 > 0 such that

∣∣vδλ,N ∣∣L∞(�)
,
∣∣∇vδλ,N ∣∣L∞(�)

�M1 anyδ, λ ∈ (0,1), N ∈N. (44)

It is clear that

FN
δ

(
x,∇vδλ,N ,∇2vδλ,N

)= 0 in�, (45)

λvδλ,N +
〈∇vδλ,N , γ (x)〉− ḡ = 0 on∂�, (46)

where

ḡ = g − λuδλ,N(x0)

|∇(uδλ,N − uδλ,N(x0))|L∞(�)

. �

We need the following lemma.

LEMMA 2.3. –Letvδλ,N be defined in(43). Then, there existsC > 0 such that

∣∣∇2vδλ,N
∣∣
L∞(�)

� C anyδ, λ ∈ (0,1), N ∈N. (47)

Lemma 2.3 will lead our present goal (42) in Lemma 2.2. In fact, from (43), (47), we
have

sup
�

∣∣∇2uδλ,N
∣∣�C

(
1+ sup

�

∣∣∇uδλ,N ∣∣). (48)

We use the following interpolation inequality in the above.

LEMMA B ([23], Lemma 6.35). –Supposej + β < k + α, wherej = 0,1,2, . . . ;
k = 1,2, . . . , and0� α,β � 1. LetD be aCk,α domain inRn, and assumeu ∈Ck,α(D).
Then, for anyε > 0 and some constantC =C(ε, j, k,D) we have

|u|j,β;D � C|u|L∞(D) + ε|u|k,α;D.
By putting j = 1, k = 2, α = β = 0 in Lemma B, (48) leads (42) in Lemma 2.2.

Finally, we are to prove Lemma 2.3.

Proof of Lemma 2.3. –For simplicity, writeF = Fδ , v = vδλ,N . First, we examine the
regularity ofv on ∂�. By differentiating (45) twice with respect to a vectorξ ∈ Rn,
|ξ | = 1,

n∑
i,j=1

∂F

∂rij

∂2

∂xi∂xj
Dξv+

n∑
i=1

∂F

∂pi

∂

∂xi
Dξv+ ∂F

∂ξ
= 0,
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n∑
i,j=1

∂F

∂rij

∂2

∂xi∂xj
Dξξv+

n∑
i=1

∂F

∂pi

∂

∂xi
Dξξv+ FXX = 0,

whereFXX is the derivarives ofF with respect toX= (ξ,∇(Dξv),∇2(Dξv)). Using the
structure conditions (36)–(39), we obtain from above inequalities

∣∣∣∣∣
n∑

i,j=1

∂F

∂rij

∂2

∂xi∂xj
Dξv

∣∣∣∣∣�C
(
1+ ∣∣∇2v

∣∣), (49)

n∑
i,j=1

∂F

∂rij

∂2

∂xi∂xj
Dξξv � C

(
1+ ∣∣∇2v

∣∣+ ∣∣∇2Dξv
∣∣), (50)

whereC > 0 depends onn, M1, µ1 and µ2. By the usual argument of flattening
the boundary, we may assume that∂� = {(x′, xn) | xn � 0} in a neighborhood of
x = 0∈ ∂�. Although by the change of variables, (45)–(46) is transformed intoF = 0
(F is the new Hamiltonian) etc., we keep to denoteF = F , etc., for simplicity. Denote
B+r = {x ∈ B(0, r) | xn > 0}, and forξ = (ξ1, . . . , ξn−1,0) ∈Rn−1, |ξ |� 1, consider

w(x, ξ)≡ η2(x, ξ)
(
z(x, ξ)+Av′

)
, (51)

whereη is a smooth cut-off function to be precised in below,A a constant,

z(x, ξ)≡Dξξv(x)=
∑
ij

∂2v

∂xi∂xj
ξiξj , v′ ≡

n−1∑
i=1

∣∣∣∣ ∂v∂xi
∣∣∣∣
2

.

By introducing (36), (37), (44) and (45) into (49), we obtain

n∑
i,j=1

(
∂F

∂rij

∂2z

∂xi∂xj
+Cij

∂2

∂xi∂xj
Dξv

)
� C

(
1+ ∣∣∇2v

∣∣′)

where the coefficientsCij are such thatCin = 0, |Cij | � C depending onn, λ1, µi

(i = 0,1,2),M1, and|∇2v|′ = (
∑

i+j<2n | ∂2v
∂xi∂xj

|2)1/2. Using the relations

∂

∂xi
Dξj z= 2

∂2

∂xi∂xj
Dξv, Dξiξj z= 2

∂2v

∂xi∂xj
,

we can take constantsC0 andC such that the following(2n − 1) × (2n − 1) matrix
(F ′ij )ij :

2n−1∑
i,j=1

F ′ijDij z≡
n∑

i,j=1

∂F

∂rij

∂2z

∂xi∂xj
+ 1

2

n∑
i=1

n−1∑
j=1

Cij

∂

∂xi
Dξj z+C0

n−1∑
j=1

Dξj ξj z

�C
(
1+ ∣∣∇2v

∣∣′)
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is uniformly elliptic with minimum eigenvalueλ′ � λ1
2 . From (49),

n−1∑
k=1

∂F

∂rij

∂2v

∂xi∂xk

∂2v

∂xj∂xk
+ 1

2

∂F

∂rij

∂2v′

∂xi∂xj
�C

(
1+ ∣∣∇2v

∣∣′).
By combining the above two inequalities, we arrive at

η2
2n−1∑
i,j=1

F ′ijDijw− 2
2n−1∑
i,j=1

F ′ijDiη
2Djw

�−2Kλ
(∣∣∇2v

∣∣′)2
η4+ 6

(
2n−1∑
i,j=1

F ′ijDiηDjη

)
w− 2η

(
2n−1∑
i,j=1

F ′ijDijη

)
w

−C(1+K)η4(1+ ∣∣∇2v
∣∣′)

�−Aλw2+CA, (52)

where the constantCA depends onn, λ1, µi (i = 0,1,2) andM1. (Remark thatCA does
not depend onλ ∈ (0,1), for we have not yet used the boundary condition (46).)

Next, by differentiating (46) in the direction ofξk , ξl,

λDξkv +
〈∇(Dξkv), γ

〉+ 〈∇v,Dξkγ 〉 =Dξk ḡ, (53)

λDξkξl v+
〈∇(Dξkξl v), γ

〉+ 〈∇(Dξkv),Dξlγ
〉+ 〈∇(Dξl v),Dξkγ

〉
+ 〈∇v,Dξkξl γ 〉 =Dξkξl ḡ. (54)

Since

∂w

∂xi
= 2

w

η

∂η

∂xi
+ η2

(
∂z

∂xi
+A

∂v′

∂xi

)
,

λw+ 〈∇w,γ 〉 − 2
w

η
〈∇η, γ 〉 = η2〈∇z, γ 〉+ η2A〈∇v′, γ 〉 + λη2(z+Av′),

and from (54),

= η2A〈∇v′, γ 〉 + λη2Av′ − η2〈∇v,Dξkξl γ 〉 − 2η2〈∇(Dξkv),Dξkγ
〉
.

From (22) and (44),

|v′|, |Dξkγ |, |Dξkξl γ |�K any 1� k, l � n− 1,

and by (53)〈∇v′, γ 〉 and〈∇(Dξkv),Dξkγ 〉 are bounded. Therefore, we can fixA so that

λw+ 〈∇w,γ 〉 − 2
w

η
〈∇η, γ 〉� C1η

2,

whereC1 > 0 depends onn, λ1, µi (i = 0,1,2), K and M1. (In particular,C1 is
independent ofλ ∈ (0,1).) Now, fix

η(x, ξ)= [
1− 4

{|x′|2+ (xn − εr)2
}
/r2− |ξ |2]+,
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where for

T = {x ∈ Br, xn = 0}, N = {
(x, ξ) ∈R2n−1 | η(x, ξ) > 0

}
,

ε= ζ/

√
1+ ζ 2, ζ = sup

T

|γ |
γn

� C.

Then, onT ∩ ∂N ∩ {w � 0}
〈∇w,γ 〉 + λw � C2,

whereC2 is independent ofλ ∈ (0,1). We takew =w+C3λ1
−1xn so that

〈∇w,γ 〉 = 〈∇w,γ 〉 + γn
C3

λ1
γ �C2− λw+ γn

C3

λ1
� 0.

From the definition ofw, the above constantC3 can be taken uniformly inλ ∈ (0,1). By
applying the maximum principle tow, instead ofw, we obtain

Dξξv(0)� C, (55)

for any ξ = (ξ1, . . . , ξn−1,0) (|ξ | = 1), whereC > 0 depends only onη, λ1, µi (i =
0,1,2),M1,� andK . (C is independent ofλ ∈ (0,1).) As for the remaining inequalities,
the same argument in [31] is available. That is, by regarding

G(x)= λv + 〈∇v, γ 〉 − g(x)

as a function inB(0, r) (0 ∈ ∂�, γ and g are extendable to some neighborhood of
∂� (22)), ∣∣∣∣∣

n∑
i,j=1

∂F

∂rij

∂2G

∂xi∂xj

∣∣∣∣∣� C(1+M2)
(
M2= sup

�

∣∣∇2v
∣∣) in B(0, r),

G= 0 on∂�,

whereC depends onn, M1, µ1, K , and does not depend onλ ∈ (0,1). From this, the
barrier argument leads ∣∣DG(0)

∣∣� C
√

1+M2, (56)

and we can extend the inequality (55) to

Dξξv(0) �C any |ξ | = 1, ξ ∈Rn. (57)

Then, by the uniform ellipticity (36), the usual argument leads

sup
∂�

∣∣∇2v
∣∣�C any|ξ | = 1, ξ ∈Rn, (58)

whereC is independent ofλ ∈ (0,1). From (36), by coupling (58) with the global
Dirichlet bound for (45)–(46) leads (47), and Lemma 2.3 was proved.

We complete the proof of Theorem 2.1.✷
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THEOREM 2.4. –Assume that� is (7), and that(4), (6), (21) and (22) hold. Then
there exists a numberd and a functionu(x) ∈ C1,1(�) ∩ C2,α(�) (α ∈ (0,1)) which
satisfy(1)–(2).

Proof. –From (23)–(25) and the Evans–Krylov estimate, we can extract a subse-
quenceλ′ ↓ 0 such that there exist a numberd andu(x) ∈ C1,1(�)∩C2,β(�), and

lim
λ′↓0

λ′uλ′(x)= d, lim
λ′↓0

(uλ′ − uλ′)(x0)= u(x) uniformly on�. (59)

From the usual stability result [15], it is clear that the pair(d, u) satisfies (1)–(2). ✷
As for the uniqueness of the numberd, we give the following theorem in which we

consider (1)–(2) in the framework of viscosity solutions.

THEOREM 2.5. –Assume that� is (7), and that(4), (5), (6) and (22) hold. Then,
the numberd such that(1)–(2) has a viscosity solutionu is unique.

Proof. –We argue by contradiction. Let(d1, u1) and(d2, u2) be two pairs satisfying
(1)–(2) in the sense of viscosity solutions. We assumed1 > d2. First, we show the
following lemma.

LEMMA 2.6. –Letv = u1− u2. Then,v satisfies

−M+(∇2v
)+ inf

α∈A

{
−

n∑
i=1

bαi
∂v

∂xi

}
� 0 in �, (60)

〈∇v, γ 〉� d2− d1 < 0 on∂�, (61)

where

M+(X)= sup
λ1I�A��1I

Tr(AX), X ∈ Sn. (62)

Proof. –Let φ ∈ C2(�) be such thatu − φ takes its local strict maxixum at̄x ∈ �.
From the definition of viscosity solutions, we are to show the following.

(i) If x̄ ∈�,

−M+(∇2φ(x̄)
)+ inf

α∈A
{〈−bα(x̄), φ(x)〉}� 0.

(ii) If x̄ ∈ ∂�,

−M+(∇2φ(x̄)
)+ inf

α∈A
{〈−bα(x̄), φ(x̄)〉}� 0,

or 〈
φ(x̄), γ (x̄)

〉
� d2− d1.

Step1. We shall show (i) by the contradiction argument. Thus, assume

−M+(∇2φ(x̄)
)+ inf

α∈A
{〈−bα(x̄), φ(x̄)〉}> 0, (63)

and we shall look for a contradiction. Define, forβ > 0

Hβ(x, y)= u1(x)− u2(y)− φ

(
x + y

2

)
− β|x − y|2 in �×�,
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and let(xβ, yβ) be the maximum point ofHβ . It is well known (see [15]) that

(xβ, yβ)→ (x̄, x̄), β|xβ − yβ |2→ 0 asβ→∞,

and that for anyε > 0, there existX, Y ∈ Sn such that(
1

2
∇φ

(
xβ + yβ

2

)
+ 2β(xβ − yβ),X

)
∈ J 2,+

� u1(xβ),(
−1

2
∇φ

(
xβ + yβ

2

)
+ 2β(xβ − yβ), Y

)
∈ J 2,−

� u2(yβ),

and

−
(

1

ε
+ ‖A‖

)
I �

(
X O

O −Y
)

�A+ εA2, (64)

where by denotingψ(x, y)= φ(x+y2 )+ β|x − y|2,

A=D2ψ(xβ, yβ) ∈ S2n, ‖A‖ = sup
{∣∣〈Aξ, ξ 〉∣∣: |ξ |� 1

}
.

Now, by using the definition of viscosity solution forui (i = 1,2),

F

(
xβ,

1

2
∇φ

(
xβ + yβ

2

)
+ 2β(xβ − yβ),X

)
� 0,

F

(
yβ,−1

2
∇φ

(
xβ + yβ

2

)
+ 2β(xβ − yβ), Y

)
� 0,

and by taking the differences of two inequalities, using the form of (3), for any small
δ > 0 there exists a controlα′ ∈A such that{

−Tr
(
Aα′(xβ)X

)−〈
1

2
∇φ

(
xβ + yβ

2

)
, bα

′
(xβ)

〉}

−
{
−Tr

(
Aα′(yβ)Y

)−〈
1

2
∇φ

(
xβ + yβ

2

)
, bα

′
(yβ)

〉}
� δ. (65)

By taking ε = 1
β

in (64), and multiplying the rightmost inequality in (64) by the
symmetric matrix (

σα′(xβ)
tσ α′(xβ) σ α′(yβ)

tσ α′(xβ)

σ α′(xβ)
tσ α′(yβ) σ α′(yβ)

tσ α′(yβ)

)
,

and taking traces, we have

Tr
(
Aα′(xβ)X

)− Tr
(
Aα′(yβ)Y

)− Tr
(∇2φ(x̄)Aα′(x̄)

)
�L2β|xβ − yβ |2+ o

(
β−1)

asβ→∞, whereL > 0 is the Lipschitz constant in (5) (orK in (21)). (See [15], Ishii
and Lions [24] for this techniques.) Therefore from (65), for anyε > 0 there existsα′ ∈A
such that

−Tr
(∇2φ(x̄)Aα(x̄)

)− 〈∇φ(x̄), bα′(x̄)〉� δ+ o
(
β−1),

which contradicts to (63), sinceδ > 0 is arbitrary. Thus, we showed (i).
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Step2. We shall prove (ii). First of all, from the usual technique to treat the Neumann
boundary condition in the theory of viscosity solutions, we may replace the conditions
to

d1+ 〈∇u1, γ 〉 − g(x)�−δ on∂�, (66)

d2+ 〈∇u2, γ 〉 − g(x)� δ on ∂�, (67)

whereδ > 0 is a small number. (See [15].) Then, we assume that (ii) does not hold, and
shall look for a contradiction. So, let

−M+(∇2φ(x̄)
)+ inf

α∈A
{〈−bα(x̄),∇φ(x̄)〉}> 0, (68)〈∇φ(x̄), γ (x̄)〉> d2− d1. (69)

It is well known, [27] that since∂� is C3,1, by putting

L(x, y)= inf

{ 1∫
0

cij
(
ξ(t)

)
ξ̇i ξ̇j dt

∣∣∣ ξ ∈ C1([0,1];Rn
)
, ξ(0)= y, ξ(1)= x

}
,

wherecij (x) is a smooth function, say inC3(�) such that forn= (ni)i

∑
j

cij (x)γj (x)= ni(x) any 1� i � n, x ∈ ∂�,

we have: 〈
γ (x),∇xL(x, y)

〉
<

1

C
|y − x|2 anyx ∈ ∂�, y ∈�, (70)

whereC > 0 is a constant. Define, forβ > 0

Hβ(x, y)= u1(x)− u2(y)− φ

(
x + y

2

)
− βL(x, y)

+ (d1− g)
〈
γ (x̄), x − y

〉+ |x − x̄|4+ 1

2

〈∇φ(x̄), x − y
〉

in �×�.

Set

ψ(x, y)= φ

(
x + y

2

)
+ βL(x, y)− (d1− g)

〈
γ (x̄), x − y

〉− |x − x̄|4

− 1

2

〈∇φ(x̄), x − y
〉
.

Let (xβ, yβ) be the maximum point ofHβ . As in Step 1, it is known (see [15]) that

(xβ, yβ)→ (x̄, x̄), β|xβ − yβ |2→ 0 asβ→∞,

and that for anyε > 0, there existX, Y ∈ Sn such that

(∇xψ(xβ, yβ),X
) ∈ J 2,+

� u1(xβ),
(−∇yψ(xβ, yβ), Y

) ∈ J 2,−
� u2(yβ),
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which satisfy (64) withA=D2ψ ∈ S2n.
If (xβ, yβ) ∈ ∂�, by using (70) we calculate〈∇ψ(xβ, yβ), γ (xβ)〉+ d1− g(xβ)

=
〈

1

2
∇φ

(
xβ + yβ

2

)
, γ (xβ)

〉

+ 2β
〈
γ (xβ),∇xL(xβ, yβ)

〉− (d1− g)
〈
γ (xβ), γ (x̄)

〉
− 4|xβ − x̄|2〈γ (xβ), xβ − x̄

〉−〈
γ (xβ),

1

2
∇φ(x̄)

〉
+ d1− g

�−β

C
|xβ − yβ |2+O

(|xβ − z|3)� o(1) asβ→∞,〈−∇ψ(xβ, yβ), γ (yβ)〉+ d2− g(yβ)

=
〈
−1

2
∇φ

(
xβ + yβ

2

)
, γ (yβ)

〉

− 2β
〈
γ (yβ),∇yL(xβ, yβ)

〉− (d1− g)
〈
γ (yβ), γ (x̄)

〉
+
〈
γ (yβ),

1

2
∇φ(x̄)

〉
+ d2− g

� β

C
|xβ − yβ |2+ d2− d1+ o(1) � o(1) asβ→∞.

(In the last inequality, we used the assumptiond1 > d2.)
Therefore, by taking account of (66) and (67), regardless the fact thatxβ , yβ ∈ � or

∈ ∂�, we have the following.

F
(
xβ,∇ψ(xβ, yβ),X)� o(1) asβ→∞,

F
(
yβ,−∇ψ(xβ, yβ), Y )� o(1) asβ→∞.

The rest of the argument to obtain a contradiction from the above two inequalities is
similar to that of Step 1, and we omit it here.✷

Now, we go back to the proof of Theorem 2.5, which is immediate from Lemma 2.6.
From the strong maximum principle (Lemma A),v, which is not constant, attains its
maximum at some pointx1 ∈ ∂�

v(x1) > v(x) anyx ∈�.

However, as we have seen in the proof of Theorem 2.1 in Step 1, this is not compatible
with 〈∇v, γ 〉� d2− d1 on∂�, in the sense of viscosity solutions. Thus, we have proved
d1= d2 must be hold. ✷

If we consider the uniqueness ofd in the framework of theC1,1(�) solutions, the
proof is much simpler. We add this as follows.

PROPOSITION 2.7. –Assume that� is (7), and that(4), (5) and(6) hold. Moreover,
assume thatF satisfies the following comparison: for a subsolutionu and a supersolu-
tion v of (1) such thatu� v on ∂�, u � v in �. Then, the numberd such that(1)–(2)
has a solutionu ∈ C1,1(�) is unique.
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Proof. –We assume that there are two pairs(d1, u1) and(d2, u2) which satisfy (1)–(2)
such thatd1 > d2 andui ∈ C1,1(�) (i = 1,2). By adding a constant if necessary, we may
assume that there is a pointx0 ∈ ∂� such thatu1(x0)= u2(x0) and

u1(x)� u2(x) on ∂�.

Putv = u2− u1, which satisfies

〈∇v(x), γ (x)〉= d1− d2 > 0, v(x)� 0 on∂�.

From the comparison for (1),

v(x)� 0 anyx ∈�.
However, atx0 ∈ ∂�, v(x0) = 0 and〈∇v(x0), γ (x0)〉 > 0 in the classical sense. Thus,
we get a contradiction andd1= d2. ✷

3. Long time averaged reflection force in half spaces

In this section, the existence and uniqueness of the numberd in (1)–(2) is shown in the
case that� satisfies (8), with a supplement boundary condition atxn =∞. We denote

�= {
(x′, xn) | xn � f (x′), x′ ∈ (R\Z)n−1},

,0= ∂�= {
(x′, xn) | xn = f (x′), x′ ∈ (R\Z)n−1},

wheref (x′) is periodic inx′ ∈ (R\Z)n−1 and isC3,1. Our goal is to find a unique number
d which admits a viscosity solutionu of (1)–(2) such that

u is bounded and periodic inx′. (71)

We begin with the uniqueness ofd.

THEOREM 3.1. –Assume that� is (8), and that(4), (5), (6) and (22) hold. More-
over, assume that

bαn(x) � 0 anyx ∈�, α ∈A. (72)

Then, the numberd such that(1)–(2) and(71) has a viscosity solutionu is unique.

Proof. –We argue by contradiction. Assume that there exist two pairs(d1, u1) and
(d2, u2) which satisfy (1)–(2) and (71), and thatd1 > d2. By using a similar argument to
the proof of Lemma 2.6,v = u1− u2 is a subsolution of

−M+(∇2v
)+ inf

α

{〈−bα(x),∇v〉}� 0 in�, (73)〈∇v, γ (x)〉= d2− d1 < 0 on∂�, (74)

whereM+ is the Pucci operator defined in (62) (see [14]). ForR > 0 large enough, let

�R = {
(x′, xn) | f (x′)� xn � R

}
,
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and define

MR = sup
�R

|v|.

(Remark thatv is periodic inx′ ∈ (R\Z)n−1 and the above supremum is well-defined.)
Let x0 ∈ ,0 be a point such thatv(x0)= supx∈,0

v(x)≡M0. Let (x′c, c) ∈ ,0 be a point
such that

c � xn any(x′, xn) ∈ ,0.

We take

wR(x
′, xn)≡ MR −M0

R− c
(xn − c)+M0, (x′, xn) ∈�. (75)

SinceMR−M0
R−c � 0, from (72)

−M+(∇2wR

)+ inf
α

{〈−bα(x),∇wR

〉}
� 0 in�R,

wR|,0 =
MR −M0

R− c
(xn − c)+M0 �M0,

wR|,R =MR.

Thus, by using the comparison argument, we get

v �wR in �R, anyR > 0 large enough.

By (71), tendingR→∞, this yields

v �M0 in �.

Therefore,v takes its maximum on,0. Finally, by using the strong maximum principle
(Lemma A), (73) and (74) yields a contradiction as we argued in the proof of
Theorem 2.1, Step 1. Thus,d1= d2 must hold. ✷

Remark3.1 (Counter example). – If we do not assume the boundary condition at
infinity (71), d is not unique in general. For example, consider

−!u= 0 in {xn � 0} ⊂Rn, (76)

d + 〈∇u,n(x)
〉= 0 on{xn = 0} ⊂Rn, (77)

wheren is the outward unit normal, and the solutionu is periodic inx′ = (x1, . . . , xn−1).
Then, for anyc, d ∈ R, u=−dxn + c is the solution of (76)–(77). Thus, the numberd

in (77) is not unique. (Green’s first identity does not hold in the half space.)
Next, for the existence ofd we approximate (1)–(2) and (71) by

F
(
x,∇uRλ ,∇2uRλ

)= 0 in�R = {
(x′, xn) | f (x′)� xn � R

}
,〈∇uRλ ,n(x)

〉= 0 on,R = {
(x′, xn) | xn =R

}
,

λuRλ +
〈∇uRλ , γ (x)〉− g(x)= 0 on∂�= ,0= {

xn = f (x′)
}
, (78)

whereR > 0 is large enough so that,R and,0 do not intersect, sayR �R0. We examine
the regularity ofuRλ uniformly in λ ∈ (0,1) andR >R0.



M. ARISAWA / Ann. I. H. Poincaré – AN 20 (2003) 293–332 313

PROPOSITION 3.2. –Assume that� is (8), and that(4), (6), (21) and(22) hold. Let
R >R0 be fixed, and letuRλ be the solution of(78). Then, there exists a numberdR and
a functionuR such that

lim
λ↓0

λuRλ (x)= dR,

lim
λ′↓0

(
uRλ′(x)− uRλ′(x0)

)= uR(x) uniformly in�R, (79)

whereλ′ → 0 is a subsequence ofλ→ 0, andx0 is an arbitrarily fixed point in�R0. The
pair (dR,uR) satisfies

F
(
x,∇uR,∇2uR

)= 0 in �R,〈∇uR,n(x)
〉= 0 on,R,

dR + 〈∇uR, γ (x)〉− g(x)= 0 on ∂�= ,0. (80)

The numberdR is the unique number such that(80) has a viscosity solution. Moreover,
there exists a constantM > 0 such that∣∣uR − uR(x0)

∣∣
L∞(�R)

<M anyR >R0, (81)

|∇uR|L∞(�R)
<M anyR >R0. (82)

Proof. –We devide the proof into three steps.
Step1. First, we shall see

∣∣uRλ (x)− uRλ (x0)
∣∣�M anyλ ∈ (0,1), R > R0. (83)

So, putvR = uR − uR(x0). Assume that

(
εRλ
)−1≡ ∣∣vRλ ∣∣L∞(�R)

→∞ asλ→ 0, R→∞,

and we seek a contradiction. PutwR
λ ≡ εRλ v

R
λ which satisfies

F
(
x,∇wR

λ ,∇2wR
λ

)= 0 in�R,〈∇wR
λ ,n(x)

〉= 0 on,R,〈∇wR
λ , γ (x)

〉= εRλ
(
g − λuRλ

)
on,0.

Since|wR
λ |L∞(�R)

= 1 (wR
λ (x0)= 0),

w∗(x)= lim sup
R→∞,λ↓0,y→x

wR
λ (y), w∗(x)= lim inf

R→∞,λ↓0,y→x
wR
λ (y),

are well-definded. From the uniform ellipticity (4) and the Krylov–Safonov interior
estimate, for anyV �� there exists a constantMV > 0 such that

∣∣∇wR
λ

∣∣
L∞(V )

�MV anyλ ∈ (0,1), R > R0.

Thus, sincewλ(x0)= 0 (∀λ ∈ (0,1)),
w∗(x0)=w∗(x0)= 0. (84)
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Moreover from the strong maximum principle (Lemma A), for anyR > R0 and λ ∈
(0,1), wR

λ must take its maximum and minimum on,0. (If it takes a maximun or a
minimum on,R , we have a contradiction to< ∇wR

λ ,n(x) >= 0 (x ∈ ,R) in the sense
of viscosity solutions as we have seen in the proof of Theorem 2.1, Step 1.) Hence,

|w∗|L∞(�R)
= 1 or |w∗|L∞(�R)

= 1 anyR >R0. (85)

Hereafter, we assume that|w∗|L∞(�R)
= 1. (The case of|w∗|L∞(�R)

= 1 can be treated
similarly.) The upper semicontinuous functionw∗ is a viscosity solution of

F
(
x,∇w∗,∇2w∗

)
� 0 in�, (86)〈∇w∗, γ (x)〉� 0 on,0. (87)

We remark thatw∗ takes its maximum on,0, aswR
λ (R > R0, λ ∈ (0,1)) does so.

(w∗ is periodic inx′ ∈ (R\Z)n−1.) Then, by the strong maximum principle (Lemma A)
and the fact thatw∗ is not constant ((84), (85)), (86)–(87) lead a contradiction. (See the
proof of Theorem 2.1, Step 1.) Therefore, there exists a constantM > 0 such that

∣∣uRλ (x)− uRλ (x0)
∣∣�M anyλ ∈ (0,1), R > R0.

Step2. Next, we shall show (79) and (82). For this purpose, we are to have the a priori
estimates of|∇uRλ | and|∇2uRλ |. Put

wR
λ =

uRλ − uRλ (x0)

|∇(uRλ − uRλ (x0))|L∞(�R)

. (88)

Remark thatwR
λ is a solution of

F
(
x,∇wR

λ ,∇2wR
λ

)= 0 in�R,〈∇wR
λ ,n(x)

〉= 0 on,R, (89)

λwR
λ +

〈∇wR
λ , γ (x)

〉− ḡ = 0 on,0, (90)

where

ḡ = g

|∇(uRλ − uRλ (x0))|L∞(�R)

.

Taking account of the periodicity inxi (i = 1, . . . , n− 1), the above problem is reduced
to the case of bounded domains treated in Section 2. Despite the existence of the different
boundary condition (89) on,R , the argument in Section 2 (and [31]) works with a minor
modification. (We do not rewrite it here.) Thus, the a priori estimate:

∣∣∇2wR
λ

∣∣
L∞(�R)

�M anyλ ∈ (0,1), R >R0,

whereM > 0 is a constant, which leads

∣∣∇2uRλ
∣∣
L∞(�R)

�M
(∣∣∇uRλ ∣∣L∞(�R)

+ 1
)

anyλ ∈ (0,1), R >R0. (91)
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As in Section 2, we use the interpolation inequality in Lemma B, with the function
uRλ − uRλ (x0), D =�R, j = 1, k = 2 andα = β = 0. That is, the interpolation inequality
becomes: ∣∣∇uRλ ∣∣L∞(�R)

�Cε

∣∣uRλ − uRλ (x0)
∣∣
L∞(�R)

+ ε
∣∣∇2uRλ

∣∣
L∞(�R)

. (92)

By combining (81), (91) and (92),∣∣∇2uRλ
∣∣
L∞(�R)

�M anyλ ∈ (0,1), R > R0,∣∣∇uRλ ∣∣L∞(�R)
�M anyλ ∈ (0,1), R > R0.

Thus, by extracting a subsequenceλ′ ↓ 0, there exists a numberdR and a functionuR
such that

λ′uRλ′ → dR, uRλ′ − uRλ′(x0)→ uR,

and

|∇uR|L∞(�R)
�M anyR >R0.

Thus, we proved (79) and (82).
Step3. We shall complete the proof by showing that the above limitdR is the unique

number such that (80) has a viscosity solution (and is independent of the choice of
λ′ → 0). We argue by contradiction, and assume that there exist two pairs(dR,uR) and
(d ′R,u′R) (dR > d ′R) satisfying (80). Denotev = uR−u′R . A similar argument used in the
proof of Lemma 2.6 leads

−M+(∇2v
)+ inf

α∈A
{〈−bα(x),∇v〉}� 0 in�R,〈∇v,n(x)

〉
� 0 on,R,〈∇v, γ (x)〉� d ′R − dR on,0.

Sincev is not constant, from the strong maximum principle (Lemma A),v attains its
maximum atx0 ∈ ,0:

v(x0) > v(x) anyx ∈�R.

However, as we have seen in the proof of Theorem 2.1 Step 1, sinced ′R − dR < 0, it is
not compatible with the preceding boundary conditions on,0 and,R . Therefore, we get
a contradiction anddR = d ′R must hold. ✷

THEOREM 3.3. –Assume that� is (8), and that(4), (6), (21) and (22) hold. Then,
there exists a unique numberd such that(1)–(2) and(71) has a viscosity solutionu.

Proof. –By comparison, there exists a constantC > 0 such that

∣∣λuRλ ∣∣L∞(�R)
�C anyλ ∈ (0,1), R > R0,

and thus|dR|< C for anyR > R0. Therefore, by using (81) and (82), we can extract a
subsequenceR′ →∞ such that there exist a numberd and a functionu such that

dR′ → d asR′ →∞,

uR′ → u asR′ →∞, locally uniformly in�.
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From the stability results,

F
(
x,∇u,∇2u

)= 0 in�,

d + 〈∇u, γ (x)〉− g(x)= 0 on,0,

|u|L∞(�) <M.

The uniqueness ofd was proved in Theorem 3.1, and we can end the proof.✷
Remark3.2. – From the view point of the stochastic process (13), the approximating

system (80) gives a kind of boundary condition at infinity. It forces the admissible
trajectories of (13) (corresponding to (1)–(2) and (71)) to be pushed back inward at some
finite xn = R. Therefore, the condition (72) is quite reasonable. (In [10], the ergodic
problem in unbounded domain (not on the boundary like (2)) is solved with the condition
limx→∞ bαn(x)=−∞, which is stronger than (72).)

4. Remarks on some degenerate cases

The numberd in (1)–(2) exists even for degenerate operators. In this section, we give
a sufficient condition for the existence (in a weeker sense) and two classes of operators
satisfying the sufficient condition. The following two examples illustrate the existence
and non-uniqueness ofd. In the case of degenerate operators, the uniqueness does not
hold in general.

Example4.1. – Consider

|∇u| = 0 in�,

d + 〈∇u,n(x)
〉− g(x)= 0 on∂�, (93)

where�⊂Rn is a bounded open domain with a smooth boundary∂�, n is the outward
unit normal to�, andg is Lipschitz continuous on∂�. Then, anyd such that

d � min
x∈∂�g(x)

andu≡ C (constant) satisfies (93) in the sense of viscosity solutions. In fact, it is clear
thatu satisfies the equation in�. To see the boundary condition in the viscosity sense,

max
{|∇u|, d + 〈∇u,n(x)

〉− g(x)
}

� 0 on∂�,

shows thatu is a supersolution on∂�. For anyφ ∈ C1 such thatu− φ takes its strict
maximum atx0 ∈ ∂�, if d � min∂� g then

〈∇φ,n(x)
〉
� 0 � g(x)− d on ∂�.

Thus,

min
{|∇u|, d + 〈∇u,n(x)

〉− g(x)
}

� 0 on∂�,

in the sense of viscosity solutions, andu is a subsolution on∂�.
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Example4.2. – Let�= (R/Z)× (0,1)⊂R2 (periodic inx1). Consider

−∂2u

∂x2
1
+
∣∣∣∣ ∂u∂x2

∣∣∣∣= 0 in�,

d + 〈∇u,n(x)
〉− g(x)= 0 on∂�, (94)

wheren is the outward unit normal to�, g is Lipschitz continuous on∂�. Then, anyd
such that

d � min
x∈∂�g(x)

andu≡C (constant) satisfies (94) in the sense of viscosity solutions. In fact clearly,u is
a viscosity solution in�. To see thatu is a supersolution on∂�, suppose forφ ∈ C1,
u− φ takes its strict minimum atx0 ∈ ∂�. Sinceu = C on x1 = 0,1, we remark that
suchφ ∈ C2 must not satisfy− ∂2φ

∂x2
1
(x0)� 0. Thus,

−∂2φ

∂x2
1
(x0)+

∣∣∣∣ ∂φ∂x2
(x0)

∣∣∣∣� 0,

andu is a viscosity super solution on∂�. The fact thatu is a subsolution on∂� is same
to Example 4.1.

Remark4.1. – In the above examples the numbersd are not unique.

The operatorsF studied here are given in (3) with degenerate coefficients. For such
operators, we approximate (1)–(2) by

−ε!uε + F
(
x,∇uε,∇2uε

)= 0 in�, (95)

dε + 〈∇uε, γ (x)〉− g(x)= 0 on∂�, (96)

whereε ∈ (0,1). The domain� is either (7) or (8), and in the case of (8) the condition
at infinity (71) is added. For anyε > 0, the existence and the uniqueness ofdε and the
existence ofuε come from Theorems 2.4, 2.5, and 3.3, for (95) is uniformly elliptic.

PROPOSITION 4.1. –Let� be a domain either(7) or (8). In the case of(7), assume
all conditions but(4) in Theorems2.4 and2.5. In the case of(8), assume all conditions
but (4) in Theorem3.3. (Thus,F is possibly degenerate.) Let dε (ε > 0) be the number
such that(95)–(96) (and (71) in the case of(8)) has a viscosity solutionuε. Assume
that there is a numberM > 0 such that

∣∣uε − uε(x0)
∣∣
L∞(�)

<M anyε ∈ (0,1). (97)

Then, there exists a numberd (not necessarily unique) such that(1)–(2) (and (71) in
the case of(8)) has a viscosity subsolutionu and a supersolution̄u.

Proof. –Put vε = uε − uε(x0). Since dε is bounded inε ∈ (0,1), we can take a
subsequenceε′ → 0 such that limε′→0 dε = d holds for a constantd. From (97),

v∗(x)= lim sup
ε′↓0, y→x

vε(y), v∗(x)= lim inf
ε′↓0, y→x

vε(y)
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are well-definded. Then, from the usual stability result (see [15]),(d, v∗) and(d, v∗) are
respectively viscosity sub and super solutions of (1)–(2) (and (71) in case of (8)).✷

Remark4.2. – In the above propositionv∗ �= v∗ in general, and thus the result is
weaker than uniformly elliptic cases.

Next, we give a class of operators satisfying (97). The first class admits the existence
of the uniformly elliptic part:

there exists a pointx0 ∈� such that in a small neighborhoodB(x0, r)⊂� (r > 0),
there exist constantsλ2 and�2 such that 0< λ2 ��2 and

λ2I �
(
aαij

)
1�i,j�n

��2 anyα ∈A, x ∈ B(x0, r). (98)

The second class admits the existence of the “controllability” part (see [2]):

there exists a pointx0 ∈� such that for a small neighborhoodB(x0, r)⊂� (r > 0),

lim|p|→∞F(x,p,X)→∞ uniformly in x ∈�, X ∈ Sn. (99)

THEOREM 4.2. –Let� be a domain either(7) or (8). In the case of(7), assume all
conditions but(4) in Theorems2.4 and 2.5. In the case of(8), assume all conditions
but (4) in Theorem3.3. (Thus,F is possibly degenerate.) Assume also thatF satisfies
(31), (32) and(33), and that either(98) or (99) holds. Then, the solutionsuε (ε > 0) of
(95)–(96) (and (71) in the case of(8)) satisfy(97). Moreover, there exists a numberd
(not necessarily unique) such that(1)–(2) (and (71) in the case of(8)) has a viscosity
subsolutionu and a supersolution̄u.

Proof. –Assume that (97) does not hold, and we shall look for a contradiction. Letx0

be a point satisfying (98) or (99), and assume that|uε − uε(x0)|L∞(�) →∞ as ε > 0
goes to 0. Put

vε = uε − uε(x0)

|uε − uε(x0)|L∞(�)

.

The functionvε satisfies

−ε!vε + F
(
x,∇vε,∇2vε

)= 0 in�,

〈∇vε, γ 〉 = g(x)− dε

|uε − uε(x0)|L∞(�)

on ∂�.

Since|vε|L∞(�) = 1,

v∗(x)= lim sup
ε↓0, y→x

vε(y), v∗(x)= lim inf
ε↓0, y→x

vε(y),

are well definded. Now, in the case of (98), we use the Krylov–Safonov inequality as
before to have

v∗(x0)= v∗(x0)= 0. (100)
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In the case of (99), by using the argument in [24,27] we have also the uniform continuity
of uε (ε ∈ (0,1)) in B(r, x0), and (100) holds. In conclusion, (100) holds in both cases
of (98) and (99).

We continue the proof, and see easily either|v∗|L∞(�) = 1 or |v∗|L∞(�) = 1 holds. If
|v∗|L∞(�) = 1, since

F
(
x,∇v∗,∇2v∗

)
� 0 in�,

〈∇v∗, γ 〉� 0 on∂�,

the strong maximum principle (Lemma A) leads a contradiction, forv∗ is not
constant (100). (See the proof of Theorem 2.1, Step 1.) If|v∗|L∞(�) = 1, the same
argument works, too. Therefore,uε satisfies (97), and Proposition 4.1 leads the remained
claim. ✷

As for the uniqueness ofd, we do not have the general result, and shall give the
following example in which the uniqueness holds.

Example4.3. – Let�= {(x1, x2) | x1 ∈ R\Z, x2 > 0} ⊂ R2 (periodic inx1). Assume
that there exists a numberd such that

−∂2u

∂x2
2
− ∂u

∂x1
= 0 in�,

d + 〈∇u,n(x)
〉− g(x)= 0 on∂�,

whereu is bounded, andn is the outward unit normal to�. Then,d = ∫ 1
0 g(x1,0) dx1.

In fact, by integrating the above problem inx1 ∈ [0,1], u(x2) = ∫ 1
0 u(x1, x2) dx1

satisfies

−∂2ū(x2)

∂x2
2

= 0 in (0,∞),

d − ∂ū(0)

∂x2
−

1∫
0

g(x1,0) dx1= 0 onx2= 0,

and ū is bounded. From Theorem 3.3, we know that such a numberd is unique. Since
d = ∫ 1

0 g(x1) dx1 andu≡ C (constant) satisfy the above, we proved the claim.

5. Homogenization of oscillating Neumann type boundary conditions

In this section, we study the following homogenization problem.

G
(
x,∇uε,∇2uε

)= sup
α∈A

{
−

2∑
ij=1

aαij (x)
∂2uε

∂xi∂xj
−

2∑
i=1

bαi (x)
∂uε

∂xi

}
= 0 (101)

in �ε =
{
(x1, x2) | −a � x1 � a, f0(x1)+ εf1

(
x1,

x1

ε

)
� x2 � b

}
⊂R2,

〈∇uε,nε〉 + c

(
x1,

x1

ε

)
uε = g

(
x1,

x1

ε

)
(102)
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on ,ε =
{
(x1, x2) | −a � x1 � a, x2= f0(x1)+ εf1

(
x1,

x1

ε

)}
,

uε = 0 on∂�ε\,ε, (103)

whereε > 0, aαij (x), b
α
i (x) are Lipschitz inx satisfying (5),nε(x) is the outward unit

normal to�ε,

c, g, f1(x1, ξ1) are defined in�ε ×R, periodic inξ1 ∈R\Z, (104)

0� f1(x1, ξ1), 0<C < c(x, ξ1) in �ε ×R\Z, (105)

whereC > 0 is a constant,

f ′0(±a)= 0,
∂f1

∂ξ1
(±a, ξ1)= 0, (106)

denotingAα = (aαij (x))1�i,j�n,

λ1 �Aα ��1 anyα ∈A. (107)

We are interested in the limit ofuε of (101)–(103) asε goes to 0. Remark that this
problem is a straightforward generalization of Example 1.2, a similar case of which was
treated in [22] by the variational method. For our nonlinear problem, we need further
assumptions listed in the following. These assumptions come from the formal asymptotic
expansion ofuε which we describe in below. (See also Remark 5.1 and Lemma 5.1 in
below.)

bα1 ≡ 0, bα2 = aα11f
′′
0 anyα ∈A, x ∈�ε, (108){

aα11

(
1+ f ′20

)− 2aα12f
′
0+ aα22

}2 � 4
(
aα11a

α
22− aα12

2) for all α ∈A, x ∈�ε, (109)

and for

O(x1)= {
(ξ1, ξ2) | ξ2 � f1(x1, ξ1), periodic inξ1

}
,

∂O(x1) is C3,1. (110)

The existence and uniqueness ofuε (ε > 0) is established in the general viscosity
solutions theory. (See [15].) Our goal is to show the existence ofu(x) such that

lim
ε→0

uε(x)= u(x) uniformly in�, (111)

where� = {(x1, x2) | −a � x1 � a,f0(x1) � x2 � b}, and to find the effective limit
P.D.E. and B.C. foru. As for (111), we remark that our convergence is inL∞, while
in [22] the convergence was inH 1. The limit (effective) P.D.E. and B.C. are given by
using the long time averaged result in Section 3. Let us begin by deriving the cell problem
for (101)–(103) by the formal asymptotic expansions method:

uε = u(x)+ εv

(
x1

ε
,
x2− f0(x1)

ε

)
+O

(
ε2), (112)
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where we are assuming that “the corrector”v depends only onξ1= x1
ε

andξ2= x2−f0(x1)

ε

(ξ1, ξ2 are rescaled variables). From (112), we obtain

∂uε

∂x1
= ∂u

∂x1
+ ∂v

∂ξ1
− f ′0(x1)

∂v

∂ξ2
+O(ε),

∂uε

∂x2
= ∂u

∂x2
+ ∂v

∂ξ2
+O(ε), (113)

∂2uε

∂x2
1
= ∂2u

∂x2
1
− f ′′0 (x1)

∂v

∂ξ2
+ 1

ε

{
∂2v

∂ξ2
1
− 2f ′0(x1)

∂2v

∂ξ1∂ξ2
+ (f ′0)

2∂
2v

∂ξ2
2

}
+O(ε),

∂2uε

∂x1∂x2
= ∂2u

∂x1∂x2
+ 1

ε

(
∂2v

∂ξ1∂ξ2
− f ′0(x1)

∂2v

∂ξ2
2

)
+O(ε),

∂2uε

∂x2
2
= ∂2u

∂x2
2
+ 1

ε

∂2v

∂ξ2
2
+O(ε). (114)

First, by introducing (113) and (114) into

−
2∑

i,j=1

aαij
∂2uε

∂xi∂xj
−

2∑
i=1

bαi
∂uε

∂xi

=−
{
aα11

∂2u

∂x2
1
+ 2aα12

∂2u

∂x1∂x2
+ aα22

∂2u

∂x2
2
− aα11f

′′
0 (x1)

∂v

∂ξ2

+ bα1

(
∂u

∂x1
+ ∂v

∂ξ1
− f ′0

∂v

∂ξ2

)
+ b2

(
∂u

∂x2
+ ∂v

∂ξ2

)}

− 1

ε

[
aα11

{
∂2v

∂ξ2
1
− 2f ′0(x1)

∂2v

∂ξ1∂ξ2
+ (f ′0)

2∂
2v

∂ξ2
2

}
+ 2aα12

(
∂2v

∂ξ1∂ξ2
− f ′0(x1)

∂2v

∂ξ2
2

)

+ aα22

∂2v

∂ξ2
2

]

and by using (108),

=−
(
aα11

∂2u

∂x2
1
+ 2aα12

∂2u

∂x1∂x2
+ aα22

∂2u

∂x2
2

)

− 1

ε

[
aα11

∂2v

∂ξ2
1
+ 2

(
aα12− aα11f

′
0(x1)

) ∂2v

∂ξ1∂ξ2
+ {

aα11(f
′
0)

2− 2aα12f
′
0+ aα22

}∂2v

∂ξ2
2

]
. (115)

Remark5.1. – The condition (108) was used to efface the dependence onξ (micro-
scopic variable) in the ordinary order (O(1)) part in (115).

Let (x, r,p) ∈�×R×R2 (p = (p1,p2)) be arbitrarily fixed, and define the following
operators.

Pα
x,r,p

(
D2

ξ v(ξ1, ξ2)
)

≡−
[
aα11

∂2v

∂ξ2
1
+ 2

(
aα12− aα11f

′
0

) ∂2v

∂ξ1∂ξ2
+ {

aα11(f
′
0)

2− 2aα12f
′
0+ aα22

}∂2v

∂ξ2
2

]
(116)
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in O(x1), and

Px,r,p

(
D2

ξ v(ξ1, ξ2)
)≡ sup

α∈A

{
Pα
x,r,p

(
D2

ξ v(ξ1, ξ2)
)}

in O(x1). (117)

Next, by introducing (113) into (102), we have

1√
1+ (f ′0+ ∂f

∂ξ1
)2

{(
f ′0+

∂f1

∂ξ1

)
∂u

∂x1
− ∂u

∂x2

}

= g(x, ξ1)− c(x, ξ1)u− 1√
1+ (f ′0+ ∂f1

∂ξ1
)2

{(
f ′0+

∂f1

∂ξ1

)(
∂v

∂ξ1
− f ′0

∂v

∂ξ2

)
− ∂v

∂ξ2

}
.

By denoting the outward unit normal to the boundary of

�= {
(x1, x2) | −a � x1 � a, x2 � f0(x1)

}
as

ν = 1√
1+ (f ′0)2

(f ′0,−1),

the above equation on the boundary becomes

〈∇u, ν〉 = 1√
1+ (f ′0)2

[
− ∂u

∂x1

∂f1

∂ξ1
−
√√√√1+

(
f ′0+

∂f1

∂ξ1

)2

(cu− g)

−
(
f ′0+

∂f1

∂ξ1

)
∂v

∂ξ1
+
{
f ′0
(
f ′0+

∂f1

∂ξ1

)
+ 1

}
∂v

∂ξ2

]
. (118)

Let

γ (ξ1, ξ2)=
(f ′0+ ∂f1

∂ξ1
,−{f ′0(f ′0+ ∂f1

∂ξ1
)+ 1})√

1+ (f ′0)2
on ∂O(x1), (119)

and for(x, r,p) ∈�×R×R2

H(x, r,p, ξ)= 1√
1+ (f ′0)2

{
−
√√√√1+

(
f ′0+

∂f1

∂ξ1

)2 (
c(x, ξ1)r − g

)− p1
∂f1

∂ξ1

}
. (120)

Then, (118) becomes

〈∇u, ν〉 = −{〈γ,∇ξv〉 −H(x, r,p, ξ)
}
. (121)

From (115), (116), (117) and (121), the cell problem for (101)–(103) should be the
following: for any fixed(x, r,p) ∈ �× R× Rn, find a unique numberd(x,p, r) such
that the following problem has a viscosity solution (corrector)v(ξ1, ξ2).
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Px,r,p

(
D2

ξ v(ξ1, ξ2)
)= 0 inO(x1),

d(x, r,p)+ 〈∇ξ v, γ 〉 −H(x, r,p, ξ)= 0 on∂O(x1),

v is bounded inO(x1). (122)

LEMMA 5.1. –Let(109) hold. Then, the operatorsPα
x,r,p(ξ1, ξ2) are uniformly elliptic

operators uniformly inα ∈A: there exist constants0< λ′1 <�′1 such that

λ′1I �
(

aα11 aα12− aα11f
′
0

aα12− aα11f
′
0 aα22− 2aα12f

′
0+ aα11f

′
0

)
��′1I anyα ∈A.

Proof. –The claim can easily confirmed by an elementary calculation. And we leave
it to the readers. ✷

LEMMA 5.2. –Letα ∈ A and (x, r,p) be fixed, and letO(x1), Pα
x,r,p(D

2
ξ ), γ (ξ) and

H(x, r,p, ξ) be defined in(110), (116), (119) and (120). Assume that(104)–(110)
hold. Then, there exists a unique numberdα(x, r,p) such that the following problem has
a viscosity solutionv(ξ1, ξ2).

Pα
x,r,p

(
D2

ξ v(ξ1, ξ2)
)= 0 in O(x1),

dα(x, r,p)+ 〈∇ξ v, γ 〉 −H(x, r,p, ξ)= 0 on ∂O(x1),

v is bounded inO(x1). (123)

Proof. –From (119), we confirm easily that there exists a positive constantγ1 > 0
such that

〈γ, ζ 〉> γ1 > 0 on∂O(x1),

where ζ = (
∂f1
∂ξ1

,−1)/
√
(
∂f1
∂ξ1

)2+ 1 the outward unit normal to∂O(x1). Then from
Theorem 3.3, there exists a unique numberdα(x, r,p) such that (123) has a viscosity
solutionv. ✷

LEMMA 5.3. –We assume the same assumptions as in Lemma5.2. For any fixed
(x, r,p), there exists a unique numberd such that (122) has a viscosity solution
v(ξ1, ξ2). Moreover,

d(x, r,p)� dα(x, r,p) anyα ∈A. (124)

Proof. –From Theorem 3.3, there exists a unique numberd(x, r,p) such that (122)
has a viscosity solutionv. The inequality (124) comes from the construction of the
numberd anddα in the proofs of Proposition 3.2 and Theorem 3.3. That is,

d = lim
R→∞dR, dα = lim

R→∞dαR,

whered and dR (R ∈ N) are characterized by the following: forOR(x1) = O(x1) ∩
{ξ2 �R}

Px,r,p

(
D2

ξ vR(ξ1, ξ2
)= 0 inOR(x1),

dR(x, r,p)+ 〈∇ξ vR, γ 〉 −H(x, r,p, ξ)= 0 on∂O(x1),〈∇ξ vR,n
〉= 0 on{ξ2=R},
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and

Pα
x,r,p

(
D2

ξ v
α
R(ξ1, ξ2)

)= 0 inOR(x1),

dαR(x, r,p)+
〈∇ξ v

α
R, γ

〉−H(x, r,p, ξ)= 0 on∂O(x1),〈∇ξ v
α
R,n

〉= 0 on{ξ2=R},
where n is the outward unit normal to∂OR(x1) on {ξ2 = R}. From the stochastic
representations (15) ofdR anddαR in the approximating problems (78), we see that

dR � dαR anyR ∈N.

Therefore, (124) was proved.✷
Since the oscillating Neumann boundary condition prevent us from obtaining the

uniform gradient bounds ofuε (ε > 0), we need to treat the upper and lower envelopes.

LEMMA 5.4. –Assume that(5), (104)–(110) hold. Letuε be the solution of(101)–
(103). Then, there exists a constantM > 0 such that

|uε|<M anyε ∈ (0,1). (125)

Proof. –Let x0= (0, b+ r) ∈R2, wherer > 0. Define

v(x)=A
(
r−p − |x − x0|−p) x ∈�ε.

Then, forA > 0 large enough,v is a super solution of (101)–(103) for anyε ∈ (0,1).
From the comparison result for (101)–(103), we get (125).✷

From (125),

u∗(x)= lim sup
ε↓0, y→x

uε(y), u∗(x)= lim inf
ε↓0, y→x

uε(y) x ∈�,

are well-definded. Moreover, from (107) and the Krylov–Safonov inequality we can
extract a subsequenceε′ → 0 such that

lim
ε′↓0

uε′ = u locally uniformly in�, u∗ � u� u∗. (126)

We claim the following.

LEMMA 5.5. –Assume that(104)–(110) hold. Then,u∗ and u∗ are respectively
viscosity sub and super solutions of the following problem.

sup
α∈A

{
−

n∑
i,j=1

aαij
∂2u

∂xi∂xj
−

n∑
i=1

bαi
∂u

∂xi

}
= 0 in �, (127)

〈∇u, ν〉 +L(x,u,∇u)= 0 on,0, (128)

whereν is the outward unit normal to� defined on

,0= {
(x1, x2) | −a � x1 � a, x2= f0(x1)

}
,
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and for(x, r,p) ∈�×R×R2,

L(x, r,p)=−d(x, r,p), (129)

whered(x, r,p) is defined in(122).

Proof. –From (126) and by the usual stability results of the viscosity solutions, it is
clear that (127) holds. In the following, we shall see (128).

Step1. We shall show thatu∗ satisfies

〈∇u∗, ν〉 +L
(
x,∇u∗,∇2u∗

)
� 0 on,0,

in the sense of viscosity solutions. Remark that�ε ⊂� for anyε ∈ [0,1). Letφ ∈C2(�)

be such thatu∗−φ takes its strict maximum atx0= (x01, x02) ∈ ,0 with u∗(x0)= φ(x0).
From the definition of the Neumann type boundary condition in the sense of viscosity
solutions, we are to show either

sup
α∈A

{
−∑

ij

aαij
∂2φ

∂xi∂xj
(x0)−

∑
i

bαi
∂φ

∂xi
(x0)

}
� 0, (130)

or 〈∇φ(x0), ν
〉+L

(
x0,∇φ(x0),∇2φ(x0)

)
� 0. (131)

We shall assume that both (130) and (131) are not true, and shall seek a contradiction.
Thus, assume there exist constantsθ1 andθ2 such that

sup
α∈A

{
−∑

ij

aαij
∂2φ

∂xi∂xj
(x0)−

∑
i

bαi
∂φ

∂xi
(x0)

}
≡ θ1 > 0, (132)

〈∇φ(x0), ν
〉+L

(
x0,∇φ(x0),∇2φ(x0)

)≡ θ2 > 0. (133)

For (x0, r0,p0) = (x0, φ(x0),∇φ(x0)), from Lemma 5.2 there exists a number
d(x0, r0,p0) andv of

Px0,r0,p0

(
D2

ξ v(ξ1, ξ2)
)= 0 inO(x01),

d(x0, r0,p0)+ 〈∇ξ v, γ 〉−H(x0, r0,p0, ξ )= 0 on∂O(x1). (134)

Sinceξ2 � f1(x1, ξ1) for any(ξ1, ξ2) ∈O(x1), we may define

φε(x1, x2)= φ(x1, x2)+ εv

(
x1

ε
,
x2− f0(x1)

ε

)
in �ε.

We claim thatφε is the viscosity supersolution of

sup
α∈A

{
−∑

ij

aαij
∂2φε

∂xi∂xj
−∑

i

bαi
∂φε

∂xi

}
>

1

4
θ1 in B(x0, r)∩�ε, (135)

〈∇φε,nε〉 + c

(
x,

x1

ε

)
φε − g

(
x,

x1

ε

)
>

1

4
θ2 onB(x0, r)∩ ,ε, (136)
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in the sense of viscosity solutions in some small neighborhood ofx0, B(x0, r) (r > 0 is
uniform in ε ∈ (0,1)). To see this, assume forψ ∈C2(�), φε −ψ takes its minimum at
(x1, x2) with φε(x1, x2)=ψε(x1, x2).

First, let us assume that(x1, x2) ∈�ε. We write

η(ξ1, ξ2)≡ 1

ε
(ψ − φ)

(
εξ1, εξ2+ f0(εξ1)

)
(ξ1, ξ2) ∈O(x1),

ξ1≡ x1

ε
, ξ2≡ x2− f0(x1)

ε
. (137)

Hence,

(v− η)(ξ1, ξ2)� (v− η)(ξ1, ξ2),

in a neighborhood of( x01
ε
, x02−f0(x01)

ε
) ≡ (ξ01, ξ02). Now, from (137),

∂η

∂ξ1
= ∂

∂x1
(ψ − φ)+ ∂

∂x2
(ψ − φ)f ′0(εξ1),

∂η

∂ξ2
= ∂

∂x2
(ψ − φ), (138)

∂2η

∂ξ2
1
= ε

{
∂2

∂x2
1
(ψ − φ)+ 2

∂2

∂x1∂x2
(ψ − φ)f ′0+

∂2

∂x2
2
(ψ − φ)(f ′0)

2

+ ∂

∂x2
(ψ − φ)f ′′0

}
,

∂2η

∂ξ1∂ξ2
= ε

{
∂2

∂x1∂x2
(ψ − φ)+ ∂2

∂x2
2
(ψ − φ)(f ′0)

}
,

∂2η

∂ξ2
2
= ε

∂2

∂x2
2
(ψ − φ). (139)

Sincev(ξ1, ξ2) is the viscosity solution of (134), by (137), (138) and (139), for anyδ > 0
there exists a controlα ∈A such that

−
[
aα11

{
∂2

∂x2
1
(ψ − φ)+ 2

∂2

∂x1∂x2
(ψ − φ)f ′0+

∂2

∂x2
2
(ψ − φ)(f ′0)

2+ ∂

∂x2
(ψ − φ)f ′′0

}

+ 2
(
aα12− aα11f

′
0

){ ∂2

∂x1∂x2
(ψ − φ)+ ∂2

∂x2
2
(ψ − φ)(f ′0)

}

+ (
aα22− 2aα12f

′
0+ aα11(f

′
0)

2) ∂2

∂x2
2
(ψ − φ)(x1, x2)

]
�−δ.

We can simplify the above by usingaα11f
′′
0 = bα2 ((108)) to(

−∑
ij

aαij (x0)
∂2ψ

∂xi∂xj
−∑

i

bαi (x0)
∂ψ

∂xi
+∑

ij

aαij (x0)
∂2φ

∂xi∂xj

+∑
i

bαi (x0)
∂φ

∂xi

)
(x1, x2)�−δ.
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Thus, sinceδ > 0 is arbitrary,

sup
α∈A

{
−∑

ij

aαij (x0)
∂2ψ

∂xi∂xj
−∑

i

bαi (x0)
∂ψ

∂xi

}
(x1, x2)

�
(
−∑

ij

aαij (x0)
∂2ψ

∂xi∂xj
−∑

i

bαi (x0)
∂ψ

∂xi

)
(x1, x2)

�−δ+
(
−∑

ij

aαij (x0)
∂2φ

∂xi∂xj
−∑

i

bαi (x0)
∂φ

∂xi

)
(x1, x2)� θ1

2
,

for (x1, x2) is near tox0, and forr > 0 small enough. Therefore, (135) was shown.
Next, we assume

(x1, x2) ∈ ,ε. (140)

Again, we use the same functionη defined in (137) and denoteξ1= x1
ε

, ξ2= x2−f0(x1)

ε
,

(ξ1, ξ2)=
(
x1

ε
,
x2− f0(x1)

ε

)
, (ξ01, ξ02)=

(
x01

ε
,
x02− f0(x01)

ε

)
.

Thus,

(v− η)(ξ1, ξ2)� (v− η)(ξ1, ξ2), (141)

in a small neighborhood of(ξ01, ξ02). By (140)x2= f0(x1)+ εf1(x̄,
x1
ε
), and

ξ2= f1(x̄, ξ1), (ξ1, ξ2) ∈ ∂O(x1).

Sincev satisfies (134), from the definition of the viscosity solution

Px0,φ(x0),∇φ(x0)

(
D2

ξ η
)
(ξ1, ξ2)� 0, (142)

or

d
(
x0, φ(x0),∇φ(x0)

)+ 〈∇ξη, γ 〉(ξ1, ξ2)−H
(
x0, φ(x0),∇φ(x0), ξ1, ξ2

)
� 0. (143)

In the case of (142), as before we obtain

sup
α∈A

{
−∑

ij

aαij (x̄)
∂2ψ

∂xi∂xj
(x̄)−∑

i

bαi (x̄)
∂ψ

∂xi
(x̄)

}
>

1

4
θ1. (144)

In the case of (143), from (129), (120) and (143),

−L(x0, φ(x0),∇φ(x0)
)+ 1√

(f ′0)2+ 1

〈
∇ξη,

(
f ′0+

∂f1

∂ξ1
,−f ′0

(
f ′0+

∂f1

∂ξ1

)
− 1

)〉

− 1√
(f ′0)2+ 1

(
−
√√√√1+

(
f ′0+

∂f1

∂ξ1

)2

c(x, ξ1)φ
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− ∂φ

∂x1

∂f1

∂ξ1
+
√√√√1+

(
f ′0+

∂f1

∂ξ1

)2

g

)
� 0. (145)

Introducing (138) to (145)

−L(x0, φ(x0),∇φ(x0)
)+ 1√

(f ′0)2+ 1

〈
∇(ψ − φ)(x0),

(
f ′0+

∂f1

∂ξ1
,−1

)〉

− 1√
(f ′0)2+ 1

(
−
√√√√1+

(
f ′0+

∂f1

∂ξ1

)2

cφ

− ∂φ

∂x1

∂f1

∂ξ1
+
√√√√1+

(
f ′0+

∂f1

∂ξ1

)2

g

)
� o(ε),

and deviding the both hands sides of the above by
√

1+ (f ′0+ ∂f1
∂ξ1

)2, by remarking that

nε =
(

f ′0+ ∂f1
∂ξ1√

1+ (f ′0+ ∂f1
∂ξ1

)2
,

−1√
1+ (f ′0+ ∂f1

∂ξ1
)2

)
+ o(ε),

we have

1√
(f ′0)2+ 1

〈∇ψ(x0),nε

〉− L(x0, φ(x0),∇φ(x0))√
1+ (f ′0+ ∂f1

∂ξ1
)2

� 1√
1+ (f ′0+ ∂f1

∂ξ1
)2
〈∇φ, ν〉 − 1√

(f ′0)2+ 1
cφ + 1√

(f ′0)2+ 1
g+ o(ε).

By using (133) and multiplying the both hands sides of the above by
√
(f ′0)2+ 1, we get

〈∇ψ(x0),nε

〉+ cφ(x0)− g � L
(
x0, φ(x0),∇φ(x0)

)+ 〈∇φ(x0), ν
〉≡ θ2 > 0,

and forr > 0 andε > 0 small enough,

〈∇ψ(x1),nε

〉+ cφ(x1)− g � 1

2
θ2. (146)

We have proved (136). Thus, inB(x0, r) ∩ �ε, we have (135)–(136) and (1)–(2).
Therefore,

max
B(x0,r)∩�ε

(uε − φε)= max
∂(B(x0,r)∩�ε)

(uε − φε).

From (102) and (136), by using a similar argument in the proof of Lemma 2.6,

〈∇(uε − φε),nε

〉+ c(uε − φε) <−1

4
θ2 < 0 on,ε ∩B(x0, r),
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in the sense of viscosity solutions. By lettingε tends to zero, max(uε − φε) goes to zero
and there existsε0 > 0 such that

〈∇(uε − φε),nε

〉
<−1

8
θ2 < 0 on,ε ∩B(x0, r) anyε ∈ (0, ε0).

From this, ifuε − φε (ε ∈ (0, ε0)) takes its local maximum on,ε ∩ Br(x0) the strong
maximum principle (Lemma A) leads a contradiction. Thus,uε − φε must take its
maximum on∂B(x0, r)∩�ε\,ε, that is on∂B(x0, r). However this contradicts to the
fact thatu− φ takes its strong maximum inB(x0, r)∩� at x0. Thus, we proved (130)–
(131).

Step2. The fact thatu∗ is a supersolution of

〈∇u∗, ν〉 +L
(
x,∇u∗,∇2u∗

)
� 0 on,0,

in the sense of viscosity solutions can be shown similarly to (and slightly easier than)
Step 1. We omit the details, since the argument is parallel.

From the above, we complete the proof of Lemma 5.5.✷
LEMMA 5.6. –Assume that(104)–(110) hold. Then,

u∗ = u∗ = 0 x ∈ ∂�\,0.

Proof. –Let x0 ∈ ∂�ε\,ε be arbitrarily fixed. We can takev and v, sub and super
solutions of

sup
α∈A

{
−∑

ij

aαij
∂2v

∂xi∂xj
−∑

i

bαi
∂v

∂xi

}
� 0 in�ε,

〈∇v,nε〉 + cv � g on,ε,

v(x0)= 0, v(x) � 0 on∂�\,ε,

and

sup
α∈A

{
−∑

ij

aαij
∂2v

∂xi∂xj
−∑

i

bαi
∂v

∂xi

}
� 0 in�ε,

〈∇v,nε〉 + cv � g on,ε,

v(x0)= 0, v(x) � 0 on∂�\,ε.

From the comparison,

v � uε � v anyε ∈ (0,1),
and thus

v � u∗ � u∗ � v anyx ∈�.
In particular, atx0,

v(x0)= u∗(x0)= u∗(x0)= v(x0)= 0. �
LEMMA 5.7. –The functionL(x, r,p) is increasing inr .
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Proof. –From the definition ofL, we are to show thatd(x, r,p) is decreasing inr . As
we mentioned in the proof of (124) in Lemma 5.3, this fact is clear from the construction
of d and its meaning in (15). ✷

From Lemmas 5.5–5.7, we arrive at the following result.

THEOREM 5.8. –Assume that(104)–(110) hold. Then, there exists a unique function
u(x) such that

lim
ε↓0

uε(x)= u(x) locally uniformly in�,

which is the unique solution of(127), (128), and(103).

Proof. –From Lemmas 5.5, 5.6 and 5.7, the limitu∗ = u∗ = u is unique and is a
solution of the above problem. Moreover, since from Lemma 5.7 the uniqueness holds
for (127)–(128) and (103),u is the unique solution. (We refer the readers to [15] and
Barles [8] for such uniqueness results.) And, we proved the claim.✷

Remark5.2. – The effective boundary condition (128) is in general nonlinear.
However, for the linear problem as in Example 1.2, (128) is lenear and matchs to the
result in [22].

Example5.1. – Letf ′0≡ 0, and assume thata11= a22= 1, a12= 0. Then,

L(x, r,p)=−d(x, r,p),
is obtained by the following long time averaged problem:

Px,r,p

(
D2

ξ v(ξ1, ξ2)
)=−∂2v

∂ξ2
1
− ∂2v

∂ξ2
2
= 0 inO(x1),

d(x, r,p)−
〈
∇ξ v,

(
∂f1

∂ξ1
,−1

)〉
−
{
−
√√√√1+

(
∂f1

∂ξ1

)2 (
c(x, ξ1)r − g

)− p1
∂f1

∂ξ1

}
= 0

in O(x1),

where

O(x1)= {
(ξ1, ξ2) | periodic inξ1 ∈R\Z, ξ2 � f1(x, ξ1)

}
.

By integrating the above problem inξ1 ∈ [0,1], and by remarking thatf1 and v are
periodic inξ1, we have

d(x, r,p)=−r
1∫

0

√√√√1+
(
∂f1

∂ξ1

)2

c(x, ξ1) dξ1+
1∫

0

√√√√1+
(
∂f1

∂ξ1

)2

g dξ1.

Therefore,L(x, r,p) is linear inr .

Remark5.3. – Although in this paper we considered a particular example of the
oscillating Neumann condition (102) inR2, we can apply the same method to more
general homogenization of the oscillating boundary conditions inRn. We shall give more
general formulation of this kind of problem in the future occassion.
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