
e

usly
lytical or

ématiques
que bien

des

tilise le
tématique
éterminée

ur les
mme un
C. R. Acad. Sci. Paris, Ser. I 337 (2003) 431–436

Mathematical Problems in Mechanics/Mathematical Physics

Derivation of thek–ε model for locally homogeneous turbulenc
by homogenization techniques

Tomás Chacón Rebollo, Daniel Franco Coronil

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, 41012 Sevilla, Spain

Received 25 November 2002; accepted after revision 18 July 2003

Presented by Olivier Pironneau

Abstract

We derive the incompressible and compressiblek–ε model for locally homogeneous turbulence. The model is rigoro
derived on formal mathematical grounds using the MPP modelling technique. This lets us calculate by either ana
numerical means the closure constants of the model.To cite this article: T. Chacón Rebollo, D. Franco Coronil, C. R. Acad.
Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Dérivation du modèle k–ε de turbulence localement homogène par des techniques d’homogénéisation. Nous obtenons
le modèlek–ε de turbulence incompressible et compressible. Le modèle est dérivé rigoureusement sur des bases math
formelles, en utilisant la technique MPP de modélisation. Ceci nous permet de calculer, aussi bien analytiquement,
numériquement, les constantes de fermeture du modèle.Pour citer cet article : T. Chacón Rebollo, D. Franco Coronil, C. R.
Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Version française abrégée

Dans ce travail nous obtenons le modèle de turbulencek–ε pour une turbulence localement homogène, par
techniques mathématiques formelles.

Nous utilisons comme technique de départ le modèle MPP de turbulence (cf. [5]). Ce modèle u
formalisme des techniques d’homogénéisation des matériaux composites. Il constitue une technique sys
pour trouver des équations moyennes des écoulements à deux échelles. La perturbation turbulente est d
comme solution des Equations d’Euler 3D.

La principale difficulté de la procédure MPP est de trouver des conditions initiales et aux limites po
équations d’Euler qui déterminent la perturbation. Ceci a pu conduire à considérer le modèle MPP co
nouveau modèle dans le cadre de la modélisation de la turbulence (cf. [3]).
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1631-073X/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
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Dans ce travail nous proposons de nouvelles conditions initiales et aux limites pour la perturbation. Cec
de la déterminer à partir d’une seule perturbation canonique. En plus, nous identifions les perturbation
résultent comme des fonctions quasi-périodiques. Les propriétés d’invariance de l’opérateur de moyenna
fonctions nous permettent de donner des définitions rigoureuses de turbulence localement homogène et

Comme consequence, nous déterminons complètement la structure des termes de fermeture. Nous
le modèle MPP qui en résulte comme étant le modèlek–ε pour la turbulence localement homogène et, lorsqu
perturbation initiale est invariante par changement de repère, pour la turbulence localement isotrope. De p
formalisme nous permet de calculer par des méthodes numériques les constantes de fermeture du modè

1. Introduction

In this work we derive thek–ε model for locally homogeneous turbulence for incompressible and compre
flows, using only formal mathematical techniques.

For that, as a basic technique, we use the MPP turbulence modelling (cf. [5]). This technique con
formally applying the homogenization techniques to the equations of fluid flows. This provides a systema
of averaging flows in two space scales, with rigorous mathematical definitions of mean flow and pertu
Moreover, this technique allows us to determine the perturbation, which appears to be the solution of a
of partial differential equations (the 3D Euler equations). The closure terms of the model are calculated f
perturbation, as usual when applying homogenization techniques to the analysis of multi-scale materials (c

The main difficulty of the MPP procedure is to set the initial and boundary conditions for the Euler equ
satisfied by the perturbation. In preceding MPP models the perturbation was considered to be periodic an
initial conditions were proposed. This only allowed one to partially determine the structure of the closure
Essentially for this reason, MPP models were considered as new models in the context of turbulence m
although some links with thek–ε model were derived (cf. [3]).

In this work we give new initial and boundary conditions for the perturbation. The basic idea is to let the
flow deform the period cell of the perturbation, and use the invariants of the Euler equations to set th
conditions. This allows us to determine all perturbations in terms of a unique canonical perturbation. In a
we observe that the perturbations that we determine in this way belong to the larger family of almost-p
functions. The invariance properties of the average of almost-periodic functions leads us to rigorously de
notions of locally homogeneous and isotropic turbulence.

As a consequence, we fully determine the structure of the closure terms: We identify the resulting MPP m
thek–ε model for locally homogeneous turbulence and, for frame-invariant initial perturbations, locally iso
turbulence. Furthermore, by our formalism, we obtain the closure constants of thek–ε model.

2. Incompressible model

2.1. Statement of the problem

We consider the initial formal framework of the MPP turbulence model (cf. [5]): we consider flows with
well-separated space scales of ratioδ, and turbulent perturbation located in the inertial range. We assume tha
flow is governed by the Navier–Stokes equations for incompressible viscous fluid flows with kinematic vi
of orderδ2:

uδ
,t + (

uδ · ∇)uδ + ∇pδ − µδ2	uδ = 0, ∇ · uδ = 0 in R
3 × R, (1)
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with initial conditions in two scales given by

uδ(x,0) = u0(x) = u0(x) + δ1/3w0
(

x

δ
, x

)
in R

3. (2)

Here,uδ andpδ respectively denote velocity and pressure of the flow. The constantµ is a positive number of orde
one with respect toδ. Also, u0 is a smooth velocity field inR3 andw0(y, x) is a smooth velocity field inR3 × R

3,
periodic in the variabley, with periodic cellY = [−π,π]3 and with zero mean iny:〈

w0〉= 1

|Y |
∫
Y

w0(y) dy = 0. (3)

This formalism allows to rigorously define the initial mean field (u0) and the initial turbulent perturbation (δ1/3w0).
The MPP technique provides a systematic way to derive a set of partial differential equations that desc

asymptotic behavior of the solution(uδ,pδ) of (1), (2) asδ decreases to zero.

2.2. Averaged equations model

Following the procedure of the MPP model, we consider the following asymptotic expansions:

uδ(x, t) ∼ u(x, t) + δ1/3w

(
a(x, t)

δ
,

t

δ2/3 ;x, t

)
+ O

(
δ2/3

)
,

pδ(x, t) ∼ p(x, t) + δ1/3p(0)

(
a(x, t)

δ
,

t

δ2/3 ;x, t

)
+ δ2/3π

(
a(x, t)

δ
,

t

δ2/3 ;x, t

)
+ O

(
δ2/3

)
 . (4)

Herea(x, t) are the inverse Lagrangian coordinates associated to the velocityu, given by:

a,t + (u · ∇)a = 0, a(x,0) = x in R
3 × R. (5)

The inclusion of the variablea in the expansions (4) is a formalization of the Taylor hypothesis, which state
the turbulent perturbation is transported by the mean flow.

Furthermore,w(y, τ ;x, t), π(y, τ ;x, t) and the other high-order terms in the expansions, are smooth func
defined inR

3 × R × R
3 × R. In preceding MPP models, these functions are assumed to beY -periodic in the

variabley. Here we weaken this condition, and we assume them to be(AY )-periodic, whereA is a regular 3× 3
matrix that depends on the mean field, that we shall define later. From the physical point of view this form
the fact that the mean field deforms the period cell of the perturbation.

All (AY )-periodic functions are almost-periodic (the space of the almost-periodic functions is the clos
trigonometric polynomials in theL2 norm (cf. [1])). Then, for example, the mean value ofw is given by

〈w〉 =
∫

AY w(y) dy∫
AY dy

= lim
R→∞

∫
B(R) w(y) dy∫

B(R) dy
,

whereB(R) is the closed ball ofR3 of radiusR and center the origin. This mean value does not depend o
period cell ofw. Moreover, it is invariant under translations and rotations.

We furthermore assume that the high-order terms in the expansions (4) are uniformly almost-periodic in
time variableτ . This ensures that the(y, τ ) mean value given, by example forw, as

〈〈w〉〉(x, t) = lim
R→∞,τ→∞

∫ τ

−τ

∫
B(R)

w(y,σ ;x, t) dy dσ

2τ
∫

B(R)
dy

,

exists for all the terms in the expansions. This space–time averaged operator is translation-invariant (homo
in space and time, and rotation-invariant (isotropic) in space.
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Following the MPP modelling technique, we deduce the following averaged equations set (see [4] for d

u,t + (u · ∇)u + ∇p = 0, ∇ · u = 0 in R
3 × R,

k,t + (u · ∇)k + δ2/3 R :∇u + µδ2/3ψk = 0 in R
3 × R,

h,t + (u · ∇)h + µδ2/3ψh = 0 in R
3 × R,

 (6)

and also a system of partial differential equations “in microstructure” (in(y, τ ), fast variables), for the perturbatio
(w,π): These are the 3D Euler equations,

w̃,τ + (w̃ · ∇y)w̃ + C∇yπ = 0, ∇y · w̃ = 0 in R
3 × R, (7)

wherew̃ = Gtw andC = GtG with G = ∇a.
This model appears as a two equations turbulence model, including the mean turbulent kinetic energyk and the

mean turbulent helicityh, respectively defined by:

k = δ2/3〈|w|2〉/2; h = δ2/3〈w · r〉/2, with r = (G∇y) × w. (8)

The closure terms of the model (6) are the Reynolds stress tensorR = 〈w ⊗ w〉 and the scalar functions
ψk = 〈〈|r|2〉〉 and ψh = 〈〈r · ((G∇y) × r)〉〉, which represent the dissipation of mean turbulent kinetic enerk

and mean turbulent helicityh, respectively.
In view of (7) and (8), it is reasonable to look for a perturbationw completely determined by the mean-fie

dataG, h andk. To do this, we propose the following initial condition for Euler equations (7):

w̃(y,0) = δ−1/3
√

kGtw0
(

h

k

(
G−t y

))
, (9)

and look for a solutioñw (AY )-periodic in space, withA = h
k
G−t . With these initial and boundary condition, w

may recover̃w from a unique canonical fluctuationw∗, as states the following result (cf. [4]):

Theorem 2.1. Assume that the canonical Euler problem

w∗
,τ + (w∗ · ∇y)w∗ + ∇yπ∗ = 0, ∇y · w∗ = 0 in R

3 × R,

w∗(y,0) = w0(y), in R
3,

w∗, π∗ Y -periodic iny, uniformly almost-periodic inτ

 (10)

admits a unique solution. Then, the problem

w̃,τ + (w̃ · ∇y)w̃ + C∇yπ = 0, ∇y · w̃ = 0 in R
3 × R,

w̃(y,0) = δ−1/3
√

kGtw0
(

h

k

(
G−t y

))
in R

3,

w̃, π AY -periodic iny, uniformly almost-periodic inτ ;

 (11)

with A = h
k
G−t , admits a unique solution given by

w̃(y, τ ) = δ−1/3
√

k Gtw∗
(

h

k

(
G−t y

)
, δ−1/3 h√

k
τ

)
,

π(y, τ ) = δ−2/3kπ∗
(

h

k

(
G−t y

)
, δ−1/3 h√

k
τ

)
.

 (12)

In addition, this solution verifies〈
w(·, τ )

〉= 0,
1

δ2/3〈∣∣w(·, τ )
∣∣2〉= k,

1
δ2/3〈(w · r)(·, τ )

〉= h; (13)

2 2



T. Chacón Rebollo, D. Franco Coronil / C. R. Acad. Sci. Paris, Ser. I 337 (2003) 431–436 435

od cell,

e the

nd

use

atrix
more
trix

t.
wherew = G−t w̃, at any timeτ ∈ R.

Notice that the effect of the mean velocity field on the perturbation is to change the shape of the peri
while kinetic energy and helicity modify the size of this cell and of the perturbation itself.

The expression (12) for̃w, together with its almost-periodic character allows us to rigorously determin
structure of the closure terms of our model. This structure is given by the following result:

Theorem 2.2. Under the assumptions of Theorem2.1, we assume in addition thatw∗ ∈ C2(R3 × R) and that
r∗ = ∇y × w∗ and∇y × r∗ are uniformly almost-periodic in time. Then, the closure termsR, ψk andψh of the
model(6) verify

R = δ−2/3k R∗, ψk = δ−2/3h2

k
ψ∗

k , ψh = δ−2/3h3

k2 ψ∗
h ; (14)

where

R∗ = 〈〈w∗ ⊗ w∗〉〉, ψ∗
q = 〈〈|r∗|2〉〉, ψ∗

h = 〈〈
r∗ · (∇y × r∗)

〉〉
, (15)

with r∗ = ∇y × w∗.

Proof. To simplify the notation, let us denoteq = δ−2/3k, l = δ−2/3h. We shall prove, for instance, the seco
identity in (14), the remaining follow from the same basic arguments.

We observe at first thatr(y, τ ) = l√
q
r∗( l

q
G−t y, l√

q
τ ). Then,

ψk = lim
(R,τ )→∞

1

2τ |B(R)|
τ∫

−τ

∫
B(R)

|r|2(y, σ ) dy dσ

= l2

q
lim

(R,τ )→∞
1

2τ |B(R)|
τ∫

−τ

∫
B(R)

|r∗|2
(

l

q
G−t y,

l√
q

σ

)
dy dσ.

Now, we write 2τ |B(R)| = ∫ τ

−τ

∫
B(R) dy dσ , and make the change of variablesz = l

q
G−t y andα = l√

q
σ . Then,

since Det(Gt ) = 1 (because∇ · u = 0),

ψk = l2

q
lim

(R,τ )→∞

( l√
q

τ∫
− l√

q
τ

∫
KR

|r∗|2(z,α) dz dα

)( l√
q

τ∫
− l√

q
τ

∫
KR

dz dα

)−1

,

whereKR = Gt B(| l
q
|R) = RK1.

Now, K1 is a bounded set, andr∗ is Y -periodic in space, uniformly almost-periodic in time. Then, we may
the properties of almost-periodic functions (cf. [1]) to ensure that

ψk = l2

q

〈〈|r∗|2〉〉,
and the conclusion follows.✷

With respect to MPP turbulence models, here we drop the dependence of the closure terms upon the mG,
and we explicit its dependence uponk andh. We stress that the main difference between MPP models and
classical turbulence models has been the dependence upon the Lagrangian co-ordinates (through this maG) of
the closure terms. Our analysis shows that the perturbation itself depends uponG, while the closure terms do no
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Let us remark that the structure ofψk andψh in terms ofk andh is just the same as that obtained by dimensio
analysis.

2.3. Ak–ε-MPP incompressible model

Model (6) is equivalent to a two equations model for the statisticsk andε, with ε = µψk = δ−2/3µh2

k
ψ∗

k , with
ψ∗

k = ψ∗
k (I ). Indeed, we may combine the equations in (6) to replace the equation forh by an equation forε. The

pair of equations for(k,h) in (6) is found to be equivalent to

k,t + (u · ∇)k + k R∗ :∇u + ε = 0 in R
3 × R,

ε,t + (u · ∇)ε + d
ε2

k
− ε R∗ :∇u = 0 in R

3 × R;

 with d = 2
ψ∗

h

ψ∗
k

− 1. (16)

In view of the equation fork, we identifyε as the rate of viscous dissipation of the turbulent kinetic energy.
above model turns out to be the standardk–ε model for locally homogeneous turbulence.

This model is simplified if the turbulence is isotropic. This follows from the result:

Theorem 2.3. Assume that the initial perturbationw0 is invariant under all the rotations that leave invariant th
cubeY : w0(Qy) = Qw0(y), ∀y ∈ R

3, for all matrix rotationsQ such thatQY = Y . Then, the perturbationw∗
also is invariant in the same sense.

This result follows from the invariance under rotations of Euler equations (10).
As a consequence, the canonical tensorR∗ is also invariant under the same rotations:
R∗ = QTR∗Q for all matrix rotationsQ such thatQY = Y . In turn, a careful choice of some matricesQ

satisfying this property allows to prove that this impliesR∗ = 2
3I . Then, model (16) is reduced to:

k,t + (u · ∇)k + ε = 0 in R
3 × R,

ε,t + (u · ∇)ε + d
ε2

k
= 0 in R

3 × R.

 (17)

We identify these equations as the standardk–ε model for locally homogeneous and isotropic turbulence
the classical turbulence modelling theory, this model is obtained by dimensional analysis, and the consd is
calculated from experimental measurements. In our case,d is obtained fromw∗. A numerical solution of (10
with 64× 64× 64 degrees of freedom provides the valued � 1.58 (cf. [4]), to be compared to the experimen
values, ranging from 1.72 to 2.01 (cf. [6]). Notice that from our analysis this constantd depends upon the initia
perturbationw0.
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