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Abstract

We derive the incompressible and compressiste model for locally homogeneous turbulence. The model is rigorously
derived on formal mathematical grounds using the MPP modelling technique. This lets us calculate by either analytical or
numerical means the closure constants of the mdaetite this article: T. Chacdn Rebollo, D. Franco Coronil, C. R. Acad.

Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
Résumé

Dérivation du modéle k— de turbulence localement homogene par des techniques d’ homogénéisation. Nous obtenons
le modelek—e de turbulence incompressible et compressible. Le modele est dérivé rigoureusement sur des bases mathématique
formelles, en utilisant la technique MPP de modélisation. Ceci nous permet de calculer, aussi bien analytiquement, que bier
numeériquement, les constantes de fermeture du moEeéle.citer cet article: T. Chacon Rebollo, D. Franco Coronil, C. R.

Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Version francaise abr égée

Dans ce travail nous obtenons le modéle de turbuléregoour une turbulence localement homogeéne, par des
techniques mathématiques formelles.

Nous utilisons comme technique de départ le modéle MPP de turbulence (cf. [5]). Ce modéle utilise le
formalisme des techniques d’homogénéisation des matériaux composites. Il constitue une technique systématiqu
pour trouver des équations moyennes des écoulements a deux échelles. La perturbation turbulente est détermin
comme solution des Equations d’Euler 3D.

La principale difficulté de la procédure MPP est de trouver des conditions initiales et aux limites pour les
équations d’Euler qui déterminent la perturbation. Ceci a pu conduire a considérer le modele MPP comme un
nouveau modéle dans le cadre de la modélisation de la turbulence (cf. [3]).
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Dans ce travail nous proposons de nouvelles conditions initiales et aux limites pour la perturbation. Ceci permet
de la déterminer a partir d'une seule perturbation canonique. En plus, nous identifions les perturbations qui en
résultent comme des fonctions quasi-périodiques. Les propriétés d'invariance de I'opérateur de moyennage de ce
fonctions nous permettent de donner des définitions rigoureuses de turbulence localement homogene et isotrope.

Comme consequence, nous déterminons complétement la structure des termes de fermeture. Nous identifior
le modéle MPP qui en résulte comme étant le modékepour la turbulence localement homogeéne et, lorsque la
perturbation initiale est invariante par changement de repere, pour la turbulence localement isotrope. De plus, notr
formalisme nous permet de calculer par des méthodes numériques les constantes de fermeture du modéle.

1. Introduction

In this work we derive thé&—e model for locally homogeneous turbulence for incompressible and compressible
flows, using only formal mathematical techniques.

For that, as a basic technique, we use the MPP turbulence modelling (cf. [5]). This technique consists in
formally applying the homogenization techniques to the equations of fluid flows. This provides a systematic way
of averaging flows in two space scales, with rigorous mathematical definitions of mean flow and perturbation.
Moreover, this technique allows us to determine the perturbation, which appears to be the solution of a system
of partial differential equations (the 3D Euler equations). The closure terms of the model are calculated from the
perturbation, as usual when applying homogenization techniques to the analysis of multi-scale materials (cf. [2,3]).

The main difficulty of the MPP procedure is to set the initial and boundary conditions for the Euler equations
satisfied by the perturbation. In preceding MPP models the perturbation was considered to be periodic and severe
initial conditions were proposed. This only allowed one to partially determine the structure of the closure terms.
Essentially for this reason, MPP models were considered as new models in the context of turbulence modelling,
although some links with the—s model were derived (cf. [3]).

In this work we give new initial and boundary conditions for the perturbation. The basic idea is to let the mean
flow deform the period cell of the perturbation, and use the invariants of the Euler equations to set the initial
conditions. This allows us to determine all perturbations in terms of a unique canonical perturbation. In addition,
we observe that the perturbations that we determine in this way belong to the larger family of almost-periodic
functions. The invariance properties of the average of almost-periodic functions leads us to rigorously define the
notions of locally homogeneous and isotropic turbulence.

As a consequence, we fully determine the structure of the closure terms: We identify the resulting MPP model as
the k—s model for locally homogeneous turbulence and, for frame-invariant initial perturbations, locally isotropic
turbulence. Furthermore, by our formalism, we obtain the closure constantsiefctineodel.

2. Incompressible model
2.1. Statement of the problem

We consider the initial formal framework of the MPP turbulence model (cf. [5]): we consider flows with two
well-separated space scales of rati@nd turbulent perturbation located in the inertial range. We assume that this
flow is governed by the Navier—Stokes equations for incompressible viscous fluid flows with kinematic viscosity
of orders?:

ul, + (u® - V)u +Vp® — n8?Au’ =0, V-u'=0 inR3xR, 1)
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with initial conditions in two scales given by

u(x,0) = ul(x) = uo(x) + 51/3w0<;—‘, x) in RS 2)
Here,u® andp® respectively denote velocity and pressure of the flow. The congtan positive number of order
one with respect té. Also, ug is a smooth velocity field iiR® andw®(y, x) is a smooth velocity field ilR® x R,

periodic in the variable, with periodic cellY = [—x, 712 and with zero mean in:

(w0>=|—;-|/w0(y)dy=0. 3)
Y

This formalism allows to rigorously define the initial mean field)and the initial turbulent perturbatios(3w°).

The MPP technique provides a systematic way to derive a set of partial differential equations that describes the
asymptotic behavior of the solutian?, p®) of (1), (2) ass decreases to zero.
2.2. Averaged equations model

Following the procedure of the MPP model, we consider the following asymptotic expansions:

1)t
uS(x,t)Nu(x,t)JrSWw(a()fS ),m;x,t>+o(52/3),
(4)
5 - 13 ©of e, 23 (e, ) 1 2/3
Po(x, 1)~ p(x, 1) +813p ( 3 ’52/3’x’t + 8%/37 3 ’52/3’x’t +0(5%/3)
Herea(x, t) are the inverse Lagrangian coordinates associated to the velogiyen by:
ar+w@-V)a=0, a(x,0=x in RS x R. (5)

The inclusion of the variable in the expansions (4) is a formalization of the Taylor hypothesis, which states that
the turbulent perturbation is transported by the mean flow.

Furthermorew(y, ; x, t), 7 (y, 7; x, t) and the other high-order terms in the expansions, are smooth functions
defined inR3 x R x R® x R. In preceding MPP models, these functions are assumed o-feriodic in the
variabley. Here we weaken this condition, and we assume them {@il¥g@-periodic, whered is a regular 3x 3
matrix that depends on the mean field, that we shall define later. From the physical point of view this formalizes
the fact that the mean field deforms the period cell of the perturbation.

All (AY)-periodic functions are almost-periodic (the space of the almost-periodic functions is the closure of
trigonometric polynomials in th&2 norm (cf. [1])). Then, for example, the mean valueuofs given by

y < Lar v Jo v

Jay dy R—o0 fB(R) dy
where B(R) is the closed ball oR3 of radiusR and center the origin. This mean value does not depend on the
period cell ofw. Moreover, it is invariant under translations and rotations.

We furthermore assume that the high-order terms in the expansions (4) are uniformly almost-periodic in the fast
time variabler. This ensures that the, ) mean value given, by example fer, as

(W) (x. 1) = lim f_rr fB(R)w(y,G;x,f)dydU
’ _R—>oo,r—>oo 2t fB(R) dy ’

exists for all the terms in the expansions. This space—time averaged operator is translation-invariant (homogeneou:
in space and time, and rotation-invariant (isotropic) in space.
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Following the MPP modelling technique, we deduce the following averaged equations set (see [4] for details):

Ui+ @-VYu+Vp=0, V.u=0 inR3 x R,
k4 w-Vk+8°R:Vu+ us?3y; =0 inR3 xR, (6)
hy+ (u-V)h+ us? 3y, =0 inR3 x R,

and also a system of partial differential equations “in microstructure((im), fast variables), for the perturbation
(w, ): These are the 3D Euler equations,

W+ (@ -V)W+CVyr =0, V, - =0 inR3xR, 7)

wherew = G'w andC = GG with G = Va.
This model appears as a two equations turbulence model, including the mean turbulent kineti¢ emertjye
mean turbulent helicity, respectively defined by:

k=8%3(|w|?)/2; h=283w-r)/2, withr =(GVy) x w. (8)

The closure terms of the model (6) are the Reynolds stress t&sofw ® w) and the scalar functions,
Yy = (1r|?) and Y = (r - ((GV,) x r)), which represent the dissipation of mean turbulent kinetic energy
and mean turbulent helicity, respectively.

In view of (7) and (8), it is reasonable to look for a perturbatiowompletely determined by the mean-field
dataG, h andk. To do this, we propose the following initial condition for Euler equations (7):

ﬁ(y,O):8_1/3«/EG’wO<%(G_’y)>, 9)

and look for a solutioriv (AY)-periodic in space, witid = %G". With these initial and boundary condition, we
may recoveiiv from a unigque canonical fluctuatian*, as states the following result (cf. [4]):

Theorem 2.1. Assume that the canonical Euler problem
w,"r—i—(w*-Vy)w*—i—Vyﬂ*:O, Vy-w*=0 in R3 x R,
w*(y,0) =uwl(y), in RS, (10)

w*, 7* Y-periodic iny, uniformly almost-periodic it
admits a unique solution. Then, the problem

~

W+ (-Vy)h+CVyr =0, V,-w=0 inR3 x R,

~ h .
W(y,0)=5"1/3 \/EwaO<E(G—fy)> in RS, (11)
w, m AY-periodic iny, uniformly almost-periodic in;

with A = %G", admits a unigue solution given by

h h
W( ,r)=5—1/3ﬁwa*<— G~ ,8_1/3—r>,
' k( ?) Vk

h h
7( ,r):8—2/3kn*<— G~! ,8_1/3—r>.
’ k( ?) vk

(12)

In addition, this solution verifies

(w(, 1)) =0, %52/3(|w(., 0’ =k, %52/3((10 1)) = (13)
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wherew = G~'w, at any timer € R.

Notice that the effect of the mean velocity field on the perturbation is to change the shape of the period cell,
while kinetic energy and helicity modify the size of this cell and of the perturbation itself.

The expression (12) fow, together with its almost-periodic character allows us to rigorously determine the
structure of the closure terms of our model. This structure is given by the following result:

Theorem 2.2. Under the assumptions of Theoréhi, we assume in addition that* € C2(R3 x R) and that
r* =V, x w* andV, x r* are uniformly almost-periodic in time. Then, the closure teRps/, and 1, of the
model(6) verify

—2/3; o Lol ol
R =6"%3kR*, Vi =879 Yn =875 s (14)
where
R*=(w*@w),  vr=(r?). vr={" v, xr) (15)

with r* =V, x w*.
Proof. To simplify the notation, let us denote= §=%/3k, | = §~2/3h. We shall prove, for instance, the second

identity in (14), the remaining follow from the same basic arguments.
We observe at first that(y, ) = ﬁr*(éG—’y, ﬁr). Then,

T
1
= &M ZB®R) 2(y.0)dyd
V= (e 2z|B(R)|/ / Ir1°(y, ) dy do

~T B(R)
/ [ reGets or)ors
, —O o
q (R, t)—>oo 2t |B(R)| |B(R)| Y Nz Y
Now, we write Z|B(R)| = [*, [, dvdo, and make the change of variables: éG"y anda = ﬁo. Then,

since DetG") =1 (becaus& -u =0),

wkz— lim (//Ir|(zoz)dzda)<
q (R,t)—00

whereKg = GfB(|3|R) = RK;.
Now, K1 is a bounded set, and is Y-periodic in space, uniformly almost-periodic in time. Then, we may use
the properties of almost-periodic functions (cf. [1]) to ensure that

Vi = g«v*ﬁ»,

and the conclusion follows. O

T

/dzda) |

KR

§|\\§|“

With respect to MPP turbulence models, here we drop the dependence of the closure terms upon tlig matrix
and we explicit its dependence upbrandhi. We stress that the main difference between MPP models and more
classical turbulence models has been the dependence upon the Lagrangian co-ordinates (through t&isahatrix
the closure terms. Our analysis shows that the perturbation itself depend&uptiile the closure terms do not.
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Let us remark that the structurevf andy;, in terms ofk ands is just the same as that obtained by dimensional
analysis.

2.3. Ak—-MPP incompressible model

Model (6) is equivalent to a two equations model for the statigtiaade, with ¢ = pyy = 8—2/3;1,’}(—210;, with
Vi =y (I). Indeed, we may combine the equations in (6) to replace the equatiarbfoan equation foe. The
pair of equations fortk, &) in (6) is found to be equivalent to

k;+@-V)k+kR*:Vu4+e=0 inR3 x R, "
h

) withd =2-2 — 1. (16)
€ : o3 Vi
e,t—i—(u-V)e—i—d?—eR*.Vu:O inR° x R; k

In view of the equation fok, we identifye as the rate of viscous dissipation of the turbulent kinetic energy. The
above model turns out to be the standard model for locally homogeneous turbulence.
This model is simplified if the turbulence is isotropic. This follows from the result:

Theorem 2.3. Assume that the initial perturbation® is invariant under all the rotations that leave invariant the
cubeY: w®(Qy) = QwO(y), Vy € R3, for all matrix rotationsQ such thatQY = Y. Then, the perturbatiom*
also is invariant in the same sense.

This result follows from the invariance under rotations of Euler equations (10).

As a consequence, the canonical terl®bdis also invariant under the same rotations:

R* = QTR*Q for all matrix rotationsQ such thatQY = Y. In turn, a careful choice of some matricés
satisfying this property allows to prove that this implRs= %I. Then, model (16) is reduced to:

ki4+ @ -Vk+e=0 inR3 x R,

g2 (17)
e,t—i—(u-V)e—i—d? =0 inR3xR.

We identify these equations as the standarel model for locally homogeneous and isotropic turbulence. In
the classical turbulence modelling theory, this model is obtained by dimensional analysis, and the doisstant
calculated from experimental measurements. In our case,obtained fromw™. A numerical solution of (10)
with 64 x 64 x 64 degrees of freedom provides the value 1.58 (cf. [4]), to be compared to the experimental
values, ranging from 1.72 to 2.01 (cf. [6]). Notice that from our analysis this congtdapends upon the initial
perturbatiorw?.
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