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Abstract

The asymmetric mean zero simple exclusion process is an example of non-reversible nongradient system. We pro
diffusion coefficient of its hydrodynamic equation is aC∞ function on[0,1], in all dimension.
 2004 Elsevier SAS. All rights reserved.

Résumé

Le processus d’exclusion simple asymétrique de moyenne nulle est un exemple de modèle non-réversible nongrad
démontrons que le coefficient de diffusion de l’équation hydrodynamique est une fonctionC∞ sur[0,1], en toute dimension.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The simple exclusion process represents the evolution of particles on the latticeZd with a hard-core interactio
that prevents more than one particle per site. The evolution can be informallydescribed as follows: each partic
waits a mean one exponential time. When the clock rings, it chooses a site to jump. The probability that a part
located atx picks the sitey is given byp(y − x), werep a probability measure inZd . If the chosen site is free
the particle jumps. Otherwise it remains in its place and waits for a new exponential time. All the partic
performing this, independently oneof each other. In this work we focus our attention in the finite range (p(x) = 0
for ‖x‖ big enough) mean zero case:

∑
xp(x) = 0.
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Under diffusive scaling, the hydrodynamic equation for the mean zero simple exclusion process evolvin
torus is described by the non-linear parabolic differential equation

∂tρ =
d∑

i,j=1

∂ui

{
Di,j (ρ)∂uj ρ

}
.

This result was obtained by Xu in dimension 1 [14] extending to the non-reversible setting the nongradient met
developed by Varadhan [12] and Quastel [10].

The main result of this work is that the coefficients{Di,j (α),1 � i, j � d} are smooth functions inα. This fact
guarantees the existence of regular solutions for the hydrodynamic equation and permits the derivation
conservation of local equilibrium through the relative entropy method [15]. We extend,in particular, Xu’s result
to dimensiond � 2. Furthermore, since the system is attractive, good dependence on the initial condition
solution of the hydrodynamic equation allows to prove conservation of local equilibrium [4].

The method used to prove regularity of the diffusion coefficient was developed by Landim, Olla and Vara
[8], using the generalized duality techniques introduced by Landim and Yau [9] and Sethuraman, Varadhan and
[11]. Bernardin [1] proves regularity of the diffusion coefficient for nongradient reversible models under Be
measures. A crucial step of the machinery for proving such regularities, consists in controlling the asym
part of the generator by the symmetric one. This is related to the so called sector conditions. We prov
article a version of sector condition. The same proves applies to the case assumed by Komoriya in [3] t
the hydrodynamic behavior of the mean zero exclusion process. In his work, he also assume regulari
diffusion coefficient, main result of this work. Sector condition is the main point in the proof that the Hilbert
of fluctuations is the direct sum of gradients and local functions in the range of the generator.

To prove the sector condition, we use that every meanzero probability with finite support may be decompos
as a convex combination of loop probabilities.This idea was used by Xu in [14] when deducing the hydrodynam
behavior for the mean zero simple exclusion process and also by Varadhan in [13] when studying the evo
the tagged particle in a mean zero exclusion process, in equilibrium. In Appendix A we give a simple proo
decomposition.

This work is organized as follows. In Section 2 we introduce the notation and state the main theorem.
tion 3 we describe duality tools and describe several spaces and operators which appear in the dual repre
In Section 4 we state some results related to the sector conditions and give sufficient conditions for solvin
vent equation. In Section 5 we study the main properties of the Hilbert space of fluctuations which allow u
in Section 6 a new expression for the diffusion coefficient. With this new expression, also in Section 6, w
that the diffusion coefficient is a regular function.

2. Notations and results

2.1. The model

Fix a mean zero probabilityp on Zd∗ = Zd \ {0}, that vanishes outside a finite set and is irreducible. This
property means that{x: p(x) > 0} generates the whole groupZd . The generator of the simple exclusion proc
on Zd associated top acts on local functionsf as

(Lf )(η) =
∑

x,y∈Zd

p(y − x)η(x)
{
1− η(y)

}[
f (ηx,y) − f (η)

]
, (2.1)

whereηx,y stands for the configuration obtained fromη by exchanging the occupation variablesη(x), η(y):

(ηx,y)(z) =
{

η(z) if z �= x, y,

η(x) if z = y,
η(y) if z = x.
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For α in [0,1], denote byνα the Bernoulli product measure onX = {0,1}Z
d

with densityα. This one-paramete
family of measures is stationary for the simple exclusion dynamics and in the symmetric case,p(x) = p(−x), these
measures are reversible. Expectation with respect toνα is represented by〈 ·〉α and the scalar product inL2(να) by
〈 ·, ·〉α .

Denote bys anda the symmetric and the anti-symmetric parts of the probabilityp:

s(x) = (1/2)
[
p(x) + p(−x)

]
, a(x) = (1/2)

[
p(x) − p(−x)

]
.

Let Ls andLa be the symmetric and the anti-symmetric part of the generatorL in L2(να), respectively.Ls andLa

are obtained replacingp by s, a in the definition ofL. Also consider the probabilityp∗(y) = p(−y) and letL∗ be
the generator obtained replacingp by p∗ in the definition ofL (2.1). Observe thatL∗ is the adjoint operator ofL
in L2(να).

We will work on the torus. For a positive integerN , denote byTN the torus withN pointsTN = Z/NZ and
Td

N = (TN)d . The continuousd-dimensional torus is denoted byTd and is identified with[0,1)d . Consider the

exclusion process evolving in the torusTd
N . This is a Markov process on the state spaceχN = {0,1}T

d
N , whose

generatorLN acts on a functionf as

(LNf )(η) =
∑

x,y∈T
d
N

p(y − x)η(x)
{
1− η(y)

}[
f (ηx,y) − f (η)

]
. (2.2)

2.2. The hydrodynamic equation

In order to deduce the hydrodynamic equation associatedto this system, we look for the equation satisfi
by the empirical measures. For a probability measureµN on χN , denote byPµN the measure inD([0,∞),χN)

induced by the Markov process with generatorLN speeded up byN2, with initial distribution given byµN . For
each smooth functionH : [0, T ] × Td → R, let MH,N(t) = MH(t) be the martingale defined by:

MH(t) = 〈πN
t ,Ht 〉 − 〈πN

0 ,H0〉 −
t∫

0

(∂s + N2LN)〈πN
s ,Hs〉ds,

whereπN
t = πN(ηt ) is the empirical measure associated to configurationηt and 〈π,H 〉 is the integral of the

functionH respect to the measureπ . In general,πN(η) = N−d
∑

x∈T
d
N

η(x)δx/N , whereδu is the Dirac measur

concentrated atu, and〈π,H 〉 = N−d
∑

x∈T
d
N

η(x)H(x/N). Observe that

LNη(x) = 1

2

∑
y

{Wx−y,x − Wx,x+y},

where the currentWx,x+y betweenx andx + y in this model is given by

Wx,x+y = η(x)
[
1− η(x + y)

]
p(y) − η(x + y)

[
1− η(x)

]
p(−y). (2.3)

A spatial summation by parts and a second order approximation allow us to write

N2−d
∑

x∈T
d
N

Hs(x/N)LNη(x) =
∑

i

N1−d
∑

x∈T
d
N

∂uiHs(x/N)τxWi

+ 1/4
∑
i,j

N−d
∑

x∈T
d
N

∂ui,uj Hs(x/N)τxGi,j + O(1/N), (2.4)

where

Wi = 1/2
∑

yiW0,y , Gi,j =
∑

yiyjW0,y
y y
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and{τx, x ∈ Zd } is the group of translations defined, initially, in the space of configuration by the formula

(τxη)(y) = η(x + y) (2.5)

and extended in a natural way to the space of functions withτxf (η) = f (τxη). Observe thatEνα [Gi,j ] = 0 for every
α. This implies that the second term in the right hand side of (2.4) is negligible when deducing the hydrod
equation, thanks to a one block estimate argument. Then, it remains to replaceWi by an object that allows us t
do a second summation by parts. Following the nongradient method presented in Chapter 7 of [2], deve
Varadhan [12] and Quastel [10], we can prove that there exists a collection of functionsdi,j : [0,1] → R such that

lim sup
ε→0

lim sup
N→∞

EµN

[∣∣∣∣∣
t∫

0

N−d
∑

x∈T
d
N

H(s, x/N)

× N

{
τxWi +

d∑
j=1

[
di,j

(
ηεN(x + ej )

)− di,j

(
ηεN(x)

)]}
ds

∣∣∣∣∣
]

= 0. (2.6)

This implies that the hydrodynamic behavior of this system is governed by the non-linear equation

∂tρ =
d∑

i,j=1

∂2
ui,uj

di,j (ρ) =
d∑

i,j=1

∂ui

{
Di,j (ρ)∂uj ρ

}
,

whereDi,j (α) = (d/dα)di,j (α). The following goal is to give an explicit form for the diffusion coefficientsDi,j ,
appearing in the previous equation.

2.3. The diffusion coefficient and main result

Let introduce a semi-norm inC0, the space of local functions with mean zero with respect to all grand cano
measuresνα . Denoteχ(α) = α(1− α). Forh in C0, consider

〈〈h〉〉α = sup
a∈Rd

{
2

d∑
i=1

ai〈〈h〉〉α,i − 1

2
χ(α)

∑
v

s(v)

(
d∑

i=1

aivi

)2}
+ sup

g∈C0

{
2〈〈h,g〉〉α,0 − 〈〈−Lsg,g〉〉α,0

}
, (2.7)

where

〈〈h〉〉α,i =
∑
x∈Zd

〈
xiη(x)h

〉
α
, 〈〈h,g〉〉α,0 =

∑
x∈Zd

〈τxh,g〉α (2.8)

and{τx, x ∈ Zd } is the group of translations defined in (2.5).
In Lemma 5.2 we prove that〈〈h〉〉α is finite for anyh ∈ C0. Also, it may be proved that〈〈 ·〉〉α verifies the parallel-

ogram identity. Then, there exists a semi-inner product onC0 associated to the semi-norm. Denote byHα Hilbert
space induced by〈〈 ·, ·〉〉α on C0. The techniques developed to study nongradient systems (see Section 7
shows that the matrixD = {Di,j (α)}1�i,j�d is such that

Wi +
∑
j

Di,j (α)
[
η(ej ) − η(0)

] ∈ LC0

in Hα , for 0< α < 1, whereWi are the functions defined in (2.3). In other words,Di,j (α) are characterized by th
following property:

inf
u∈C0

〈〈
Wi +

∑
Di,j (α)

[
η(ej ) − η(0)

]− Lu

〉〉
α

= 0.
j
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In the symmetric case, we have a gradient model that allows to perform a second summation by pa
deducing the hydrodynamic equation, given by

∂tρ =
d∑

i,j=1

∂ui

{
1

2
σi,j ∂uj ρ

}
, (2.9)

where, since the probabilityp is irreducible,σ = {σi,j } is the strictly positive defined matrix given by

σi,j =
∑
y

s(y)yiyj . (2.10)

As in Corollary 6.2 in [5], we can prove that

β∗Ds(α)β − 1

2
β∗σβ = 1

χ(α)
sup
g∈C0

{∑
j

(σβ)j
〈〈
η(ej ) − η(0),L∗g

〉〉
α

+ 1

2χ(α)

∑
k,i

σk,i

〈〈
η(ei) − η(0),L∗g

〉〉
α

〈〈
η(ek) − η(0),L∗g

〉〉
α

− 〈〈L∗g,L∗g〉〉α
}
,

whereDs(α) is the symmetric part of the matrixD(α), given by

Ds(α)i,j = 1

2

(
D(α)i,j + D(α)j,i

)
. (2.11)

The main result of this work is the following.

Theorem 2.1.The functionDi,j (α) is C∞ on [0,1], for 1 � i, j � d .

In order to prove this result, we need to find an appropriate expression forDi,j (α). This is done in Section 6
where we study deeply the structure of the Hilbert spaceHα . Observe that the first term in (2.7) is easy to comp
and is a smooth function ofα. The next sections are consecrated to deal with the second term of (2.7).

3. Duality

Considering the second line in formula (2.7), we examine in this section the action of the symmetricLs

of the generator on the space of local functions endowed with the scalar product〈〈·, ·〉〉α,0. Some notations an
computations of this section are taken from [7]. Fix, once for all, a densityα in (0,1). All expectations in this
section are taken with respect toνα and we omit all subscripts.

3.1. The dual space

For eachn � 0, denote byEn the subsets ofZd with n points and letE =⋃
n�0En be the class of finite subse

of Zd . For eachA in E , let ΨA be the local function

ΨA =
∏
x∈A

η(x) − α√
χ(α)

,

whereχ(α) = α(1 − α). By convention,Ψφ = 1. It is easy to check that{ΨA,A ∈ E} is an orthonormal basi
of L2(να). For eachn � 0, denote byGn the subspace ofL2(να) generated by{ΨA,A ∈ En}, so thatL2(να) =



6 M. Sued / Ann. I. H. Poincaré – PR 41 (2005) 1–33

al

h

nce
⊕
n�0Gn. Functions inGn are said to have degreen. We useπn to denote the projection operator fromL2(να) to

the subspaceGn. Then, given a functionf in L2(να), we may write

f =
∑
n�0

πnf =
∑
n�0

∑
A∈En

f(A)ΨA. (3.1)

Note that the coefficientsf(A) depend not only onf but also on the densityα: f(A) = f(A,α). If f is a local
function, f :E → R is a function of finite support. Denote byC the space of local functions and recall thatC0 is
the set of local functions that have mean zero with respect to all grand canonical measureνβ . We have a simple
characterization ofC0 functions in terms of their Fourier coefficients:

f ∈ C0 ⇔
∑
A∈En

f(A,β) = 0 ∀n � 0, ∀β. (3.2)

For local functionsu, v in C0, define the scalar product〈〈 ·, ·〉〉 (previously noted by〈〈·, ·〉〉α,0) by

〈〈u,v〉〉 =
∑
x∈Zd

〈τxu, v〉, (3.3)

where{τx, x ∈ Zd } is the group of translations. Since〈〈u − τxu, v〉〉 = 0 for all x in Zd , this scalar product is
only semi-definite positive (formula (3.6) below guarantees〈〈u,u〉〉 � 0). Denote byL2〈〈 ·,·〉〉(να) the Hilbert space
generated by the local functions inC0 and the inner product〈〈 ·, ·〉〉. The scalar product of two local functionsu,
v can be written in terms of the Fourier coefficients ofu, v through a simple formula. To this end, fix two loc
functionsu, v and write them in the basis{ΨA,A ∈ E}:

u =
∑
A∈E

u(A)ΨA, v =
∑
A∈E

v(A)ΨA.

An elementary computation shows that

〈〈u,v〉〉 =
∑
x∈Zd

∑
n�1

∑
A∈En

u(A)v(A + x).

In this formula,B + z is the set{x + z;x ∈ B}. The summation starts fromn = 1 because we are working wit
functions inC0.

We say that two finite subsetsA, B of Zd are equivalent if one is the translation of the other. This equivale
relation is denoted by∼ so thatA ∼ B if A = B + x for somex in Zd . Let Ẽn be the quotient ofEn with respect to
this equivalence relation:̃En = En/∼, Ẽ = E/∼. For any summable functionf :E → R,∑

A∈E
f(A) =

∑
A∈Ẽ

∑
z∈Zd

f(A + z).

In particular, for two local functionsu, v,

〈〈u,v〉〉 =
∑

x,z∈Zd

∑
n�1

∑
A∈Ẽn

u(A + z)v(A + x + z) =
∑
n�1

∑
A∈Ẽn

ũ(A)ṽ(A),

where, for a finite setA and a summable functionu :E → R,

ũ(A) =
∑
z∈Zd

u(A + z). (3.4)

We say that a functionf :E → R is translation invariant iff(A + x) = f(A) for all setsA in E and all sitesx of
Zd . Of course, the functions̃u are translation invariant. Fix a subsetA of Zd with n points. There aren sets in the
class of equivalence ofA that contain the origin. Therefore∑

A∈Ẽn

f(A) = 1

n

∑
A∈En

f(A)
A
0
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if f(A) = f(A + x) for all A, for all x. Let E∗ be the class of all finite subsets ofZd∗ = Zd \ {0} and letE∗,n be the
class of all subsets ofZd∗ with n points. Then, we may write

〈〈u,v〉〉 =
∑
n�1

1

n

∑
A∈En
A
0

ũ(A)ṽ(A) =
∑
n�0

1

n + 1

∑
A∈E∗,n

ũ
(
A ∪ {0})ṽ(A ∪ {0}).

Summarizing, for a finitely supported functionf :E → R, defineTf :E∗ → R by

(Tf)(A) = f̃
(
A ∪ {0})=

∑
z∈Zd

f
([

A ∪ {0}]+ z
)
, (3.5)

then we have that

〈〈u,v〉〉 =
∑
n�0

1

n + 1

∑
A∈E∗,n

Tu(A)Tv(A). (3.6)

To state some properties of the transformationT, we need some notation. For a subsetA of Zd∗ andz in Zd∗ , SzA

is the set defined by

SzA =
{

A − z if z /∈ A,

[(A − z) \ {0}] ∪ {−z} if z ∈ A.
(3.7)

Therefore, to obtainSzA from A whenz belongs toA, we first translateA by −z, getting a new set which contain
the origin, and we then remove the origin and add site−z.

Remark 3.1.

(a) Sincef belongs toC0, from (3.2) we get that

Tf(φ) =
∑
z∈Zd

f
({z})= 0.

(b) Not any functionf∗ :E∗ → R is the image byT of some functionf :E → R since

(Tf)(A) = (Tf)(SzA) (3.8)

for all z in A.
(c) Let f∗ :E∗ → R be a finitely supported function withf∗(φ) = 0 and satisfying (3.8):f∗(A) = f∗(SzA) for all z

in A. Definef :E → R by

f(B) =
{

|B|−1f∗(B \ {0}) if B 
 0,

0 otherwise.
(3.9)

An elementary computations shows thatTf = f∗. This choice, which is not unique, makesf vanish onE1.
(d) The operation that transformsf in Tf reduces by one the degree of a function.

To keep notation simple, most of the times, real functions onE or on E∗ are indistinctively denoted by th
symbolsf, g, u, v.

3.2. Some Hilbert spaces

Forn � 0, let

L2(E∗,n) =
{
f :E∗,n → R:

∑
A∈E

f2(A) < ∞
}

∗,n
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and forf, g in L2(E∗,n), define〈f,g〉 =∑
A∈E∗,n

f(A)g(A) for everyn. We put‖f‖2 = 〈f, f〉 wheneverf ∈ L2(E∗,n).

Define, analogously,L2(En). Forn � 0 consider the following spaces:

Fn =
{
f :En → R: f(A) �= 0 for a finite number of setsA and

∑
A∈En

f(A) = 0

}
,

F∗,n =

f :E∗,n → R:

f(A) �= 0 for a finite number of setsA,∑
A∈E∗,n

f(A) = 0 andf(SzB) = f(B)

for all B ∈ E∗,n, for all z ∈ B


 .

From
∑

A∈E∗,0
f(A) = f(∅) = 0, we get thatF∗,0 = {0}.

Observe that the operatorT, defined by formula (3.5), mapsFn to F∗,n−1. A function f ∈ Fn or f ∈ F∗,n is
called a finite supported function of degreen. PutIn andI∗,n for the closure ofFn andF∗,n as subspaces o
L2(En) andL2(E∗,n), respectively. Forf :E∗ → R define the projectionπn by

(πnf)(A) =
{

f(A) if |A| = n,

0 otherwise.
(3.10)

Let

I∗ = {
f :E∗ → R: πnf ∈ I∗,n ∀n � 0

}
. (3.11)

Given a local function inC0, take its Fourier coefficients inL2(να) and apply the operatorT to the Fourier coeffi-
cients. The image of this transformation belongs to the space of finite supported functions given by

F∗ =
{
f :E∗ → R:

πn(f) = 0 for all n � n0, for somen0,

andπn(f) ∈ F∗,n for all n � 0

}
. (3.12)

Consider the inner product〈〈 ·, ·〉〉0,k in the spaceF∗, given by:

〈〈f,g〉〉0,k =
∑
n�0

(n + 1)2k−1〈πnf,πng〉

so that

‖f‖2
0,k =

∑
n�0

(n + 1)2k−1〈πnf,πnf〉. (3.13)

The term corresponding ton = 0 in each of the previous expressions is equal to zero. LetIk∗ be the Hilbert space
induced by the inner product〈〈 ·, ·〉〉0,k andF∗. Observe that we have the following embeddings:

I0∗ ←↩ I1∗ · · · ←↩ Is∗ ←↩ Is+1∗ · · · .
An explicit way to construct the spacesIk∗ is adding the Hilbert spacesI∗,n weighted by(n + 1)2k−1:

Ik∗ =
{
f ∈ I∗:

∑
n

(n + 1)2k−1‖πnf‖2 < ∞
}
.

With this notation, for local functionsf andg, in view of (3.6), we have that

〈〈f,g〉〉 = 〈〈Tf,Tg〉〉0,0,

wheref andg are the Fourier coefficients off andg, respectively.
We now examine the action of the symmetric part of the generatorL on the basis{ΨA,A ∈ E} (see diagram

(3.31) below as reference). Fix a functionu ∈ C0 and denote byu its Fourier coefficients. A straightforward com
putation shows that

Lsu =
∑

(Lsu)(A)ΨA, (3.14)

A∈E
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whereLs is the generator of finite symmetric random walks evolving with exclusion onZd :

(Lsu)(A) = (1/2)
∑

x,y∈Zd

s(y − x)
[
u(Ax,y) − u(A)

]
(3.15)

andAx,y is the set defined by

Ax,y =
{

(A \ {x}) ∪ {y} if x ∈ A, y /∈ A,

(A \ {y}) ∪ {x} if y ∈ A, x /∈ A,

A otherwise.
(3.16)

Furthermore, an elementary computation, based on the fact that∑
z∈Zd

f
([

B ∪ {y}]+ z
)= Tf(SyB)

for all subsetsB of Zd∗ , sitesy not inB and finitely supported functionsf :E → R, shows that for every setB in E∗
TLsu(B) = LsTu(B), (3.17)

where

(Lsv)(B) = (1/2)
∑

x,y∈Z
d∗

s(y − x)
[
v(Bx,y) − v(B)

]+
∑

y /∈B,y �=0

s(y)
[
v(SyB) − v(B)

]
. (3.18)

We are now in a position to define the Hilbert space induced by the local functions inC0, the symmetric part o
the generatorL and the scalar product〈〈 ·, ·〉〉. For two local functionsu, v in C0, let

〈〈u,v〉〉1 = 〈〈
u, (−Ls)v

〉〉
and letH1 = H1(C0,L

s, 〈〈 ·, ·〉〉) be the Hilbert space generated by mean zero local functionsf and the inner produc
〈〈 ·, ·〉〉1. By (3.14), (3.6) and (3.17) the previous scalar product is equal to

−
∑
n�0

1

n + 1

∑
A∈E∗,n

Tu(A)TLsv(A) = −
∑
n�0

1

n + 1

∑
A∈E∗,n

Tu(A)(LsTv)(A) =
∑
n�0

1

n + 1

〈
πnTu, (−Ls)πnTv

〉

becauseLs keeps the degree of the functions mappingL2(E∗,n) in itself.
Now, for eachn � 0, denote by〈 ·, ·〉1 the scalar product onF∗,n defined by

〈f,g〉1 = 〈
f, (−Ls )g

〉
and denote byH1(F∗,n) the Hilbert space induced by the scalar product〈 ·, ·〉1 on F∗,n. The associated norm
denoted by‖f‖2

1 = 〈f, (−Ls )f〉. Furthermore, for an integerk � 0, denote byH1,k = H1(F∗,Ls , k) the Hilbert space
induced by the finitely supported functionsf, g ∈ F∗ with scalar product

〈〈f,g〉〉1,k = 〈〈
f, (−Ls )g

〉〉
0,k

=
∑
n�0

(n + 1)2k−1〈πnf, (−Ls )πng
〉
.

The associated norm is denoted by‖ · ‖1,k so that

‖f‖2
1,k = 〈〈f, f〉〉1,k .

It follows from the previous notation that

‖f‖2
1,k =

∑
n�0

(n + 1)2k−1‖πnf‖2
1. (3.19)

Observe that for every local functionu,v ∈ C0,

〈〈u,v〉〉1 = 〈〈Tu,Tv〉〉1,0,
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whereu andv are the Fourier coefficients ofu andv, respectively.
To introduceH−1, the dual space ofH1, consider the functionsu ∈ C0 that define a bounded operator respec

the‖ · ‖1 norm and the inner product〈〈·, ·〉〉: it means that there exists a constantC with∣∣〈〈u,v〉〉∣∣ � C‖v‖1 for all v ∈ C0. (3.20)

The smallestC satisfying the previous condition is denoted by‖u‖−1 and satisfies the following variational fo
mula:

‖u‖2−1 = sup
v

{
2〈〈u,v〉〉 − 〈〈v, v〉〉1

}
, (3.21)

where the supremum is taken over all local functionsv in C0. Denote byH−1 = H−1(C0, Ls, 〈〈 ·, ·〉〉) the Hilbert
space generated by the local functions and the semi-norm‖ · ‖−1.

SinceLs keeps the degree of a function and since the spacesGn are orthogonal, for local functions of degreen,
we may restrict the supremum to local functions of the same degree, so that

‖f ‖2
−1 =

∑
n�1

‖πnf ‖2
−1.

In the same way, for an integern � 1 and a finitely supported functionu ∈ F∗,n, let

‖u‖2−1 = sup
v

{
2〈u,v〉 − 〈v,v〉1

}
,

where the supremum is carried over all finitely supported functionsv ∈ F∗,n. Observe that, as when definingH−1,
we have that‖u‖−1 is the smallest constantC > 0 verifying∣∣〈v,u〉∣∣� C‖v‖1 for all v ∈ F∗,n. (3.22)

Denote byH−1 = H−1(F∗,n) the Hilbert space induced by the finitely supported functionsu ∈ F∗,n and the
semi-norm‖ · ‖−1.

For a integerk � 0, define the‖ · ‖−1,k norm of a finite supported functionu ∈F∗ by

‖u‖2−1,k = sup
v

{
2〈〈u,v〉〉0,k − 〈〈v, (−Ls )v〉〉0,k

}
,

where the supremum is carried over all finitely supported functionsv ∈F∗. Denote byH−1,k = H−1(F∗,Ls, k) the
Hilbert space induced by this semi-norm and the space of finite supported functions. Here again, sinceLs does not
change the degrees of a function, for every finitely supportedu ∈F∗,

‖u‖2−1,k =
∑
n�1

(n + 1)2k−1‖πnu‖2−1 (3.23)

and for any local functionu ∈ C0, sinceπ0u = 0, we get that

‖u‖−1 = ‖Tu‖−1,0, (3.24)

whereu denotes the Fourier coefficient ofu.
We end this subsection summarizing the different norms recently defined. InC0 we have

〈〈u,v〉〉 =
∑
x∈Zd

〈τxu, v〉, ‖u‖2
1 = 〈〈u,−Lsu〉〉,

‖u‖2−1 = sup
v∈C0

{
2〈〈u,v〉〉 − 〈〈v, v〉〉1

}
. (3.25)
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In F∗,n

〈u,v〉 =
∑

A∈E∗,n

u(A)v(A), ‖u‖2
1 = 〈u,−Lsu〉,

‖u‖2−1 = sup
v∈F∗,n

{
2〈u,v〉 − 〈v,v〉1

}
. (3.26)

Adding the respective norms with appropriate weights, inF∗ we get that

〈〈u,v〉〉0,k =
∑
n

(n + 1)2k−1〈πnu,πnv〉,

〈〈u,v〉〉1,k =
∑
n

(n + 1)2k−1〈πnu,πnv〉1,

‖u‖2−1,k =
∑
n

(n + 1)2k−1‖πnu‖2−1. (3.27)

3.3. The Fourier coefficients of the generatorL

We conclude this section deriving explicit expressions for the generatorL on the basis{ΨA,A ⊂ Zd }. A long
and simple computation gives the following dual representation: for every local functionu =∑

A∈E u(A)ΨA,

Lu =
∑
A∈E

(Lαu)(A)ΨA, Lau =
∑
A∈E

(La,αu)(A)ΨA, (3.28)

whereLα = Ls + (1− 2α)Ld + √
χ(α)(L+ +L−), La,α = Lα −Ls ,

(Ldu)(A) =
∑

x∈A,y /∈A

a(y − x)
{
u(Ax,y) − u(A)

}
,

(L+u)(A) = 2
∑

x∈A,y∈A

a(y − x)u
(
A \ {y}),

(L−u)(A) = 2
∑

x /∈A,y /∈A

a(y − x)u
(
A ∪ {y}) (3.29)

andLs is defined by (3.15). Furthermore, for any functionu :E → R, TLαu = LαTu, provided

Lα = Ls + (1− 2α)Ld +√
χ(α){L+ + L−}

and, forA ∈ E∗, v :E∗ → R a finitely supported function,

(Ldv)(A) =
∑

x∈A,y/∈A
y �=0

a(y − x)
{
v(Ax,y) − v(A)

}+
∑
y /∈A
y �=0

a(y)
{
v(SyA) − v(A)

}
,

(L+v)(A) = 2
∑

x∈A,y∈A

a(y − x)v
(
A \ {y})+ 2

∑
x∈A

a(x)
{
v
(
A \ {x})− v

(
Sx

[
A \ {x}])},

(L−v)(A) = 2
∑

x /∈A,y /∈A

a(y − x)v
(
A ∪ {y}). (3.30)
x,y �=0
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In fact, we know thatTL∗u = L∗Tu, for ∗ = s, d,+,−. The following commutative diagram illustrate th
relation between the operators recently defined. The first arrow down assigns to each functionu ∈ C0 its Fourier
coefficients.

C0
L C0

F Lα

T

F
T

F∗
Lα F∗

(3.31)

4. Sector condition, the resolvent equation and some estimates

We prove in this section three important results. They will be useful to understand the structure of th
Hα , defined in Section 2. The first one, whose proof is postponed to Appendix B, is related to the so-calle
condition for the generatorL. The second result, Theorem 4.6, based onan elementary computation, states t
all functions inC0 have finite‖ · ‖−1 norm. Finally, the last result states that all local function inC0 may be
approximated inH−1 by local functions in the range of the generatorL.

We start with a result related to the sector condition. In this section,C0 will be use to denote finite constan
depending on the probabilityp.

Theorem 4.1.There exists a finite constantC0 such that

〈Ld f,g〉2 � C0〈f,−Ls f〉〈g,−Lsg〉
for eachf,g in I∗,n. The same result remains in force ifLd is replaced byL+ or L− with g in I∗,n+1 andI∗,n−1,
respectively.

The proof of this result, as well as the proofs of some other estimates concerning the operatorsL+, L−, Ld and
Ls are presented in Appendix B. We state some corollariesthat are repeatedly used inthis work. The first one is a
simple consequence of the definition of‖ · ‖−1 norm forf ∈ I∗,n given in (3.22) and Theorem 4.1.

Corollary 4.2. For f ∈ I∗,n we have that

‖L∗f‖−1 � C0‖f‖1,

whereL∗ stands for the operatorsLs , Ld , L+ andL−.

Corollary 4.3. There exists a finite constantC0 such that for everyf ∈ I∗,n

‖L∗f‖ � C0n‖f‖, (4.1)

where‖ · ‖ is the usual norm onL2(E∗,n) andL∗ stands for the operatorsLs , Ld , L+, L−. Then, for everyf ∈ I∗,
we have

‖L∗f‖0,k � C0‖f‖0,k+1,

‖L∗f‖−1,k � C0‖f‖1,k.

Proof. A simple computation shows thatLs is a bounded operator on eachI∗,n and that there exists a constantC,
depending only onp, such that

‖Ls f‖ � Cn‖f‖,
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for all f ∈ I∗,n. The first statement follows from this observation and Theorem 4.1. For the second one, just re
definition of‖ · ‖0,k, ‖ · ‖1,k and‖ · ‖−1,k done in (3.13), (3.19) and (3.23), respectively. Also observe that‖f‖1,k �
C0‖f‖0,k+1. �
Remark 4.4. The previous corollary is saying thatLα is a bounded operator fromIk+1∗ to Ik∗ (‖L∗f‖0,k �
C0‖f‖0,k+1). From‖L∗f‖−1,k � C0‖f‖1,k we get that there exists a bounded extension for the operatorLα from
H1,k to H−1,k .

Finally, we get to the last result concerning this kind of estimates. Using the dual representation for the o
L, presented in formula (3.28), and performing the same kind of computations presented in the proof o
rem 4.1, given in Appendix B, we can prove the sector condition. Recall that〈 ·, ·〉α denote the scalar product
L2(να), defined in Section 2.

Theorem 4.5.There exists a constantC such that

〈Lf,g〉2
α � C〈Lsf,f 〉α〈Lsg,g〉α,

for every local functionf andg, for all α ∈ [0,1].

We turn now to the spaceH−1. We first prove that all function inC0 belong toH−1 and then show that they ma
be approximated by functions in the range of the operatorL.

Theorem 4.6.If u ∈ F∗,n, we have that

‖u‖−1 < ∞
and, from identity(3.24), we conclude that foru ∈ C0

‖u‖−1 < ∞.

Proof. We need to prove that there exists a constantC depending onu such that( ∑
A∈E∗,n

u(A)v(A)

)2

� C‖v‖2
1, for everyv ∈F∗,n.

Denote byA the support ofu: A = {A: u(A) �= 0}. Sinceu ∈F∗,n,A is a finite set. Considering that
∑

B∈A u(B) =
0 and performing a change of variables before apply Schwarz inequality for the last inequality, we get that( ∑

A∈E∗,n

u(A)v(A)

)2

= 1

|A|2
( ∑

A,B∈A

(
u(A) − u(B)

)
v(A)

)2

� C(u)
∑

A,B∈A

(
v(A) − v(B)

)2
.

SinceA andB are fix sets depending on the support ofu, we can go fromA to B changing point by point alon
paths with jumps of positive probabilityp, in order to get∑

A,B∈A

(
v(A) − v(B)

)2 � C(u,p)‖v‖2
1. �

For the following result, recall the definition of the spaceF∗ given in (3.12).

Theorem 4.7.GivenG ∈ F∗ there exists a sequencehλ in F∗ such that

lim
λ→0

‖G − Lαhλ‖−1,0 = 0.
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In view of identity (3.24), the previous result is telling that given a local functiong in C0, there exists a sequen
hλ in C0 such that

lim
λ→0

‖g − Lhλ‖−1 = 0.

The proof of Theorem 4.7, presented at the end of this section, is based on the analysis of a resolvent
associated to the operatorLα .

Proposition 4.8.Giveng ∈ Ik∗ with ‖g‖−1,k+1 < ∞ for somek � 0, for eachλ > 0 there exists a unique functio
fλ ∈ I∗ with ‖fλ‖0,k+1 < ∞, that solves the resolvent equation

λfλ − Lαfλ = g (4.2)

in Ik∗. Furthermore, for eachj � 0, there exist constantsCj , depending onj and the probabilityp, such that

λ‖fλ‖2
0,j � Cj‖g‖2−1,j and ‖fλ‖2

1,j � Cj‖g‖2−1,j , (4.3)

with C0 = 1.

The proof of Proposition 4.8 requires some lemmas and some estimates on the operatorsL+, L−, Ld andLs

presented in Appendix B. LetJn be the subset of functions inI∗ of degree less or equal thann:

Jn = {
f ∈ I∗: f(A) = 0 if |A| > n

}
. (4.4)

Consider the inner product〈〈 ·, ·〉〉0,0, restricted to this space. DefineΠn as the projection onJn:

Πn(f) =
∑
i�n

πi(f). (4.5)

In order to prove Proposition 4.8, we start solving the resolvent equation restricted toJn. Fix α and consider
Ln = ΠnLαΠn as an operator fromJn into itself. Forgn ∈ Jn, consider the resolvent equation given by

λfλ,n − Lnfλ,n = gn. (4.6)

Lemma 4.9.Givegn in Jn, there exists a unique solutionfλ,n ∈ Jn for the Eq.(4.6). Furthermore, if‖gn‖−1,0 is
finite, then

λ‖fλ,n‖2
0,0 � ‖gn‖2−1,0, ‖fλ,n‖2

1,0 � ‖gn‖2−1,0. (4.7)

Proof. We first show that the operatorLn is bounded and non-positive in(Jn, 〈〈 ·, ·〉〉0,0). With these results, exis
tence and uniqueness of solutions of Eq. (4.6) is proved in the usual way. For the first statement, by Coro
there exists a finite constantC(n) (also depending onα) such that for allf ∈ Jn

‖Lnf‖0,0 � C(n)‖f‖0,0.

This implies thatLn is bounded operator inJn. To see that it is non-positive, by Corollary B.2, we have that fo
f ∈Jn, 〈〈Lnf, f〉〉0,0 = 〈〈Ls f, f〉〉0,0 � 0.

To obtain the bounds, take inner product (〈〈 , 〉〉0,0) with fλ,n on both sides of Eq. (4.6) to get that

λ‖fλ,n‖2
0,0 + 〈〈−Lnfλ,n, fλ,n〉〉0,0 = 〈〈g, fλ,n〉〉0,0 � ‖fλ,n‖1,0‖g‖−1,0.

Observe that the symmetric part of the operatorLα is Ls only when working with〈〈 ·, ·〉〉0,0. �
In fact we can obtain stronger estimates on the solutionfλ,n of the truncated resolvent equation (4.6). The follow
lemma is taken from Section 5 in [11]. The estimates obtained in Theorem 4.1 are crucial in the proof of thi
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Lemma 4.10.Let fλ,n be the solution of the equation

λfλ,n − Lnfλ,n = gn. (4.8)

For anyj � 1, there exists a finite constantCj , depending onj and the probabilityp, such that

λ‖fλ,n‖2
0,j � Cj‖gn‖2−1,j , ‖fλ,n‖2

1,j � Cj‖gn‖2−1,j . (4.9)

We are now in the position to prove Proposition 4.8.

Proof of Proposition 4.8. The idea of the proof is to solve the resolvent equation projected intoJn and then to
show that the solutions converge to a functionfλ in the domain of the operatorLα that solves the original equatio
Recall the definition of the projectionΠn and the operatorLn given in (4.5) and just before (4.6), respectively.
Lemma 4.9, for eachn � 1 there existsfλ,n, solution of

λfλ,n − Lnfλ,n = Πng. (4.10)

Since‖Πng‖−1,k � ‖g‖−1,k , by Lemma 4.10

‖fλ,n‖2
1,k � Ck‖Πng‖2−1,k � Ck‖g‖2−1,k,

λ‖fλ,n‖2
0,k � Ck‖Πng‖2−1,k � Ck‖g‖2−1,k.

In particular, for eachλ, fλ,n is a bounded sequence for‖‖0,k+1. Then, there exists a subsequencefλ,nj converg-
ing weakly to some functionfλ with ‖fλ‖0,k+1 finite. We claim that the limit is a solution of the resolvent equat
(4.2). From Remark 4.4, we have thatLα : Ik+1∗ → Ik∗ is a bounded operator and so preserves weakly conve
sequences. This means thatLαfλ,nj converges weakly toLαfλ in Ik∗. We also have thatfλ,nj converges weakly tofλ
in Ik∗ and thatΠng converges tog. All the previous convergences imply thatfλ is solution of the resolvent equatio
on Ik∗:

λfλ − Lαfλ = g.

Take inner product〈〈 ·, ·〉〉0,0 with fλ in the previous expression and considering thatf belongs toI1∗, use Remark
B.3 to get that

‖fλ‖2
1,0 � ‖g‖2−1,0, λ‖fλ‖2

0,0 � ‖g‖2−1,0.

Uniqueness of solution follows from the fact thatλ − Lα is a strictly positive operator onIk∗, for k � 1. To
conclude the proof of Proposition 4.8, it remains toget the bounds announced. Once we have solution fo
resolvent equation, the prove of Lemma 4.10 works. Then we get that, forj � 1,

λ‖fλ‖2
0,j � Cj‖g‖2−1,j ,

‖fλ‖2
1,j � Cj‖g‖2−1,j ,

whereCj are the constants appearing in Lemma 4.10.�
We conclude this section with the proof of Theorem 4.7.

Proof of Theorem 4.7. GivenG ∈F∗, we know by Theorem 4.6 that‖G‖−1,k < ∞ for all k. Then, by Proposition
4.8, there existsfλ solution of the resolvent equation

λfλ − Lαfλ = −G, (4.11)

in Ik∗, for all k � 0. We will see that

lim ‖G − Lαfλ‖−1,0 = 0. (4.12)

λ→0
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Then approximateLαfλ by Lαhλ in ‖ · ‖−1,0 with hλ in F∗ close tofλ in the‖ · ‖1,0 norm.
To prove convergence (4.12), we start showing thatLαfλ is bounded for the‖ ·‖−1,0 norm. Then we characteriz

weak limits. Finally we prove thatLαfλ is Cauchy for the‖ · ‖−1,0 norm.
Take inner product (〈〈 ·, ·〉〉0,0) with fλ on both sides of Eq. (4.11) and recall that〈〈−G, fλ〉〉0,0 � ‖G‖−1,0‖fλ‖1,0,

to get that

‖fλ‖1,0 � ‖G‖−1,0,

λ〈〈fλ, fλ〉〉0,0 � ‖G‖2−1,0.

Observe, in particular, thatλfλ converges to 0 in the‖ · ‖0,0 norm. AsLα is a linear combination ofL∗, for
∗ = s, d,+,−, use Corollary 4.3 and Proposition 4.8, to get that

‖Lαfλ‖−1,0 � C(α)‖fλ‖1,0 � C(α)‖G‖−1,0.

ThereforeLαfλ is bounded for the‖ · ‖−1,0 norm. As in Lemma 2.8 of [6], we can prove that

(1) If Lαfλj converges weakly in‖ · ‖−1,0 norm asλj ↓ 0, then the limit isG.
(2) There existsf ∈ H1,0 such thatfλ converges strongly tof in H1,0.

Since, by Corollary 4.3,

‖Lαfλ − Lαfλ̃‖−1,0 � C(α)‖fλ − fλ̃‖1,0,

and sincefλ converges strongly inH1,0, Lαfλ is Cauchy for‖ · ‖−1,0. Considering that we have just characteriz
all weak limit points, it follows thatLαfλ converges strongly toG in ‖ · ‖−1,0:

‖Lαfλ − G‖−1,0 → 0.

Take hλ in F∗ such that limλ→0 ‖fλ − hλ‖1,0 = 0. From Corollary 4.3, we get that‖Lαfλ − Lαhλ‖−1,0 �
C(α)‖fλ − hλ‖1,0. SinceLαfλ converges toG in H−1,0 we can conclude thatLαhλ also converges toG in H−10:

lim
λ→0

‖Lαhλ − G‖−1,0 = 0. �
Remark 4.11.Recall that in Remark 4.4 we said that the operatorLα admits an extension fromH1,0 to H−1,0.
Some how, we are saying that we can solve the equationLαf = G with f in H1,0.

5. The spaceHα

We prove in this section a structure theorem for the Hilbert space of variances,Hα , that allows to derive, in the
next section, an explicit formula for the diffusion coefficientDi,j (α). Recall thatσ = (σi,j )1�i,j�d , is the matrix
defined byσi,j =∑

y s(y)yiyj and thatχ(α) = α(1 − α). Forα ∈ (0,1) andh ∈ C0 consider

〈〈h〉〉α = sup
a∈Rd

{
2
∑

ai〈〈h〉〉α,i − 1

2
χ(α)a∗σa

}
+ sup

g∈C0

{
2〈〈g,h〉〉α,0 − 〈〈−Lsg,g〉〉α,0

}
, (5.1)

where

〈〈h〉〉α,i =
∑
x∈Zd

〈
xiη(x)h

〉
α
, 〈〈h,g〉〉α,0 =

∑
x∈Zd

〈
τxh,g

〉
α

anda∗σa is matrix product witha∗ for a line vector inRd . Observe that in each of the previous summations
only need to consider a finite number of terms sinceh ∈ C0.
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It will be useful to denote by|||h|||α the first term on the right hand side of (5.1).
We prove in Lemma 5.2 that〈〈h〉〉α < ∞ for everyh in C0. Recall thatHα is the Hilbert space induced by th

semi-norm〈〈 ·〉〉1/2
α onC0. In this section we show that every element inHα can be approximated by

∑
Dj [η(ej ) −

η(0)] + Lu for D in Rd andu ∈ C0. The main result is the following.

Theorem 5.1.

Hα = {η(ej ) − η(0),1� j � d} ⊕ LC0. (5.2)

In fact, giveng ∈ C0, there exist unique{Dj(α),1 � j � d} such that

inf
u∈C0

〈〈
g +

d∑
j=1

Dj(α)
[
η(ej ) − η(0)

]− Lu

〉〉
α

= 0.

Furthermore, considermj ∈F∗,1 given by

mj

({x})= 2a(x)xj . (5.3)

Then

Dj(α) = −1

χ(α)
〈〈π1g〉〉α,j + lim

λ→0
〈〈fλ,mj 〉〉0,0,

wherefλ solves the resolvent equation

λfλ − Lαfλ = −Tg

in I∗, g denotes the Fourier coefficients ofg andT is the operator defined in(3.5).

The proof of this result is presented at the end of this section.

We start proving that〈〈h〉〉α is finite forh ∈ C0.

Lemma 5.2.If h ∈ C0 then〈〈h〉〉α < ∞.

Proof. We need to see that each term appearing in definition (5.1) is finite ifh ∈ C0. For the first one, recall that

|||h|||α = sup
a∈Rd

{
2
∑

ai〈〈h〉〉α,i − 1

2
α{1− α}a∗σa

}
. (5.4)

This term may be computed since the matrixσ has an inverse. PutH for the column vector inRd whose coordinate
are given byHi = 〈〈h〉〉α,i . Denote byH∗ the transposition ofH and byσ−1 the inverse of the matrixσ . Then we
have that

|||h|||α = 2/χ(α)H∗σ−1H.

The second term appearing in definition (5.1) is‖h‖2−1, defined in (3.21). In Theorem 4.6 we claimed that‖h‖−1 <

∞ if h ∈ C0. This completes the proof of the present lemma.�
Observe that the semi-norm〈〈 ·〉〉α depends only on the symmetric part of the generator. It may be pro

as in Chapter 7 of [2], that given a cylinder functionh in C0 and a sequence of positive integersK� such that
0 � K� � (2� + 1)d and lim�→∞ K�/(2�)d = α, then

lim
�→∞(2�)−d

〈
(−Ls

Λ�
)−1

∑
τxh,

∑
τxh

〉
�,K�

= 〈〈h〉〉α, (5.5)

|x|��h |x|��h
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4.5
whereLs
Λ�

represents the symmetric part of the generator restricted to the boxΛ� = [−�, �]d ∩ Zd , �h is such that∑
|x|��h

τxh is measurable with respect to{η(x);x ∈ Λ�}, �h/� → 1 and we are considering the uniform meas
on the space of configurations in the boxΛ� with K� particles. Observe that, sinceh ∈ C0, 〈h〉�,K� = 0 for all K�,
for � big enough. This fact guarantees that the left hand side inside the brackets in (5.5) is well defined.

Recall from (2.3) thatWx,x+y andW∗
x,x+y stand for the current of the process and the dual process, respec

For 1� i � d , let

∇i (η) =
∑
y

yi

[
η(0) − η(y)

]
s(y), (5.6)

W∗
i (η) = 1

2

∑
y

yiW
∗
0,y, Wi(η) = 1

2

∑
y

yiW0,y . (5.7)

As in [5], we present some identities that can be formally derived from (5.5), and the relationsL[∑xiη(x)] =∑
τxWi andLs [∑xiη(x)] = 1/2

∑
τx∇i . They will help the reader to follow the references appearing in

section.

〈〈L∗g,∇i 〉〉α = −2〈〈Wi,g〉〉α,0, 〈〈Lg,∇i〉〉α = −2〈〈W∗
i , g〉〉α,0,

〈〈∇i , h〉〉α = −2〈〈h〉〉α,i, 〈〈∇i ,L
sg〉〉α = 0,

〈〈∇i ,∇k〉〉α = 2χ(α)σi,k , 〈〈Lsf,h〉〉α = −〈〈f,h〉〉α,0. (5.8)

A crucial difference between symmetric nongradient systems (as the symmetric generalized exclusion
and asymmetric ones appears when we want to compute〈〈Lh,Lh〉〉α . In the symmetric case, the last line in (5.
gives us an explicit formula for this object. In the asymmetric case, the sector condition proved in Theor
allows to control〈〈Lh,Lh〉〉α in terms of〈〈Lsh,Lsh〉〉α . The following proposition is a consequence of Theorem
and (5.5).

Proposition 5.3.There exists a constantC depending only on the probabilityp such that

〈〈L∗h,L∗h〉〉α � C〈〈Lsh,Lsh〉〉α
and

〈〈Lh,Lh〉〉α � C〈〈Lsh,Lsh〉〉α,

for any functionh ∈ C0.

We start studying the spaces involved in decomposition (5.2).

Lemma 5.4.{[η(ei) − η(0)],1� i � d} are linearly independent inHα .

Proof. From 〈〈∇i ,∇k〉〉α = 2χ(α)σi,k we get that{∇i ,1 � i � d} are linearly independent inHα . On the other
hand, sinceh = τxh in Hα for anyh ∈ C0 andx ∈ Zd , we get that

∇i =
∑
y

yi

[
η(0) − η(y)

]
s(y) =

∑
y,j

yiyj

[
η(0) − η(ej )

]
s(y) =

∑
j

σi,j

[
η(0) − η(ej )

]
.

This means that{∇i ,1 � i � d} and{[η(ei) − η(0)],1� i � d} generate the same linear space inHα . �
The following result is, essentially, Lemma 3.6 in [3]. It states that the spaces generatingHα in (5.2) are in direct

sum.
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Lemma 5.5.The linear space generated by{∇i ,1� i � d} in Hα does not intersect the closure ofLC0:{
d∑

i=1

ai∇i : a ∈ Rd

}
∩ LC0 = {0}.

To complete this section, it remains to prove that the spaces presented in the decomposition (5.2) gen
spaceHα . Recall that in the space of Fourier coefficients, we have defined the projections operatorsπn :L2(E) →
L2(En) in (3.10). We also useπn to denote the projection operator fromL2(να) to the subspaceGn, defined in
Section 3. Iff = ∑

A∈E f(A)ΨA, we useπnf for
∑

A∈En
f(A)ΨA. With this notation, we have thatf = ∑

πnf .
Observe thatπ0f = Eνα [f ] = 0 since we work with functionsf ∈ C0. We say that a cylinder function has degr
n if all its Fourier coefficients are zero, except those of degreen: f =∑

A∈En
f(A)ΨA.

The following lemma shows that|||h|||α is relates toπ1h, the degree one part of the function, while the sec
term in the right hand side of (5.1) is related toh − π1h.

Lemma 5.6.For everyh ∈ C0, we have that

〈〈h〉〉α = |||π1h|||α + 〈〈T(h − π1h〉〉−1,0,

whereh are the Fourier coefficients ofh andT is the operator defined in(3.5).

Proof. Functions of different degrees are orthogonal inHα since the operatorLs preserves degree. Then,

〈〈h〉〉α = 〈〈π1h〉〉α + 〈〈h − π1h〉〉α.

We claim that〈〈π1h〉〉α = |||π1h|||α and〈〈h − π1h〉〉α = 〈〈Th〉〉−1,0. For the first identity, observe that ifh andg

denote the Fourier coefficients ofh andg, respectively, we have that

〈〈g,π1h〉〉α,0 =
∑
x∈Zd

h(x,α)
∑
y∈Zd

g(y,α) = 0,

by (3.2). Then, the second term in (5.1) is equal to zero ifh has degree one. So that〈〈π1h〉〉α = |||π1h|||α .
For the second identity, observe that forΨA with |A| � 2 , we have

〈〈ΨA〉〉α,i =
∑
x∈Zd

〈
xiη(x)ΨA

〉
α

= 0.

Sinceh − π1h = ∑
n�2

∑
A∈En

h(A)ΨA, we get that〈〈h − π1h〉〉α,i = 0. In particular,〈〈h − π1h〉〉α = ‖T(h −
π1h)‖−1,0 = ‖Th‖−1,0 sinceTπ1h = 0, as we observed at the first point of Remark 3.1.�
Proof of Theorem 5.1. We need to prove that giveng ∈ C0, there exist unique{Dj(α),1 � j � d} such that

inf
u∈C0

〈〈
g +

d∑
j=1

Dj(α)
[
η(ej ) − η(0)

]− Lu

〉〉
α

= 0.

Uniqueness forDj follows from Lemmas 5.4 and 5.5. From Lemma 5.6, we know that〈〈
g +

d∑
j=1

Dj (α)
[
η(ej ) − η(0)

]− Lu

〉〉
α

=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣π1g +

d∑
Dj (α)

[
η(ej ) − η(0)

]− π1Lu

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ + ‖Tg − LαTu‖−1,0, (5.9)
j=1 α



20 M. Sued / Ann. I. H. Poincaré – PR 41 (2005) 1–33

is

find
where, as usual,u and g are the Fourier coefficients ofu and g, respectively. At this point we realize that
convenient to work in the spaceI∗. PutG = Tg andf = Tu. From Theorem 4.7, we know that there existshλ in
F∗ such that‖G − Lαhλ‖−1,0 goes to zero asλ goes to zero.

Takeuλ ∈ C0 such thatT(uλ) = hλ, as in (3.1). We have that

lim
λ→0

〈〈
g +

∑
Dj(α)

[
η(ej ) − η(0)

]− Luλ

〉〉
α

= lim
λ→0

∣∣∣∣
∣∣∣∣
∣∣∣∣π1g +

∑
Dj (α)

[
η(ej ) − η(0)

]− π1Luλ

∣∣∣∣
∣∣∣∣
∣∣∣∣
α

,

so we need to findDj (α) such that

lim
λ→0

∣∣∣∣
∣∣∣∣
∣∣∣∣π1g +

∑
Dj(α)

[
η(ej ) − η(0)

]− π1Luλ

∣∣∣∣
∣∣∣∣
∣∣∣∣
α

= 0. (5.10)

Looking at the explicit formula for||| · |||α given in the proof of Lemma 5.2, we reduce the problem to
Dj (α) such that〈〈π1g + ∑

Dj [η(ej ) − η(0)] − π1Luλ〉〉α,k goes to zero fork = 1, . . . , d , asλ goes to 0. Since
〈〈η(ej ) − η(0)〉〉α,k = δk,jχ(α), we need to prove that

Dj(α) = 1

χ(α)

[−〈〈π1g〉〉α,j + lim
λ→0

〈〈π1Luλ〉〉α,j

]
is well defined. From the dual representation for the operatorL obtained in Section 3, we have that

π1(Lu) =
∑
x∈Zd

Lsu1(x)Ψx + (1− 2α)
∑
x∈Zd

Ldu1(x)Ψx

+√
χ(α)

∑
x∈Zd

L−u2(x)Ψx +√
χ(α)

∑
x∈Zd

L+u0(x)Ψx,

where the operators involved in the previous expression where defined in (3.29).
By construction,uλ(x) = 0 for everyx in Zd (see Remark 3.1) and also

uλ(x, y) =
{

1/2hλ(x) if y = 0, x �= 0,

1/2hλ(y) if x = 0, y �= 0.

Then, an elementary computation gives that

π1Luλ =√
χ(α)

∑
x∈Zd

L−uλ,2(x)Ψx =
∑

a(x)hλ(x)
{
η(x) − η(0)

}
.

Since〈〈
η(x) − η(0)

〉〉
α,j

= xjχ(α)

we have that

〈〈π1Luλ〉〉α,j = χ(α)
∑
x∈Zd

a(x)hλ(x)xj ,

so that

1

χ(α)
lim
λ→0

〈〈π1Luλ〉〉α,j = lim
λ→0

〈〈hλ,mj 〉〉0,0,

with mj defined in (5.3). Recall, from Theorem 4.7, that we tookhλ ∈ F∗ such that‖hλ − fλ‖1,0 goes to zero asλ
goes to zero, withfλ solution of the resolvent equation (4.11). Sincemj belongs toH−1,0, we have that

lim 〈〈hλ,mj 〉〉0,0 = lim 〈〈fλ,mj 〉〉0,0. (5.11)

λ→0 λ→0
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This last limit exists sincefλ is converging in‖ · ‖1,0 (from the proof of Theorem 4.7) andmj belongs toH−1,0.
Finally,

Dj(α) = −1

χ(α)
〈〈π1g〉〉α,j + lim

λ→0
〈〈fλ,mj 〉〉0,0,

with fλ solution of (4.11), is well defined and solves the problem.�

6. Regularity of the diffusion coefficient

The goal of this section is to prove Theorem 2.1. In order to do that, we start deriving a convenient exp
for the diffusion coefficient. This new formulation, together with an appropriate way of differentiating, all
prove the regularity properties of the diffusion coefficient.

As we mentioned in Section 2, the techniques developed to prove hydrodynamic behavior of nongradient s
tems show that the diffusion coefficientDi,j (α) of the hydrodynamic equation for the mean zero simple exclu
process is characterized by

inf
u∈C0

〈〈
Wi +

∑
j

Di,j (α)
[
η(ej ) − η(0)

]− Lu

〉〉
α

= 0, (6.1)

whereWi and its Fourier coefficients,Wi (A) = Wi (A,α), are given by

Wi(η) = 1/2
∑
y

yiW0,y = 1/2
∑
y

yiη(−y)p(y) −
∑
y

η(0)η(y)a(y)yi (6.2)

and

Wi (A,α) =
{−√

χ(α)yi(1/2p(−y) + αa(y)) if A = {y},
−χ(α)a(y)yi if A = {0, y},
0 otherwise.

(6.3)

Theorem 5.1 guarantees the existence ofDi,j (α) satisfying (6.1). Furthermore, as in Section 7 in [2], with
help of Proposition 5.3, we can prove that

inf
u∈C0

sup
α∈[0,1]

〈〈
Wi +

∑
j

Di,j (α)
[
η(ej ) − η(0)

]− Lu

〉〉
α

= 0. (6.4)

Also, as in Lemma 5.2 of [5], we can prove that

inf
u∈C0

sup
α∈[0,1]

〈〈
W∗

i +
∑
j

Di,j (α)
[
η(ej ) − η(0)

]− L∗u
〉〉

α

= 0, (6.5)

whereW∗
i is obtained replacingp(y) by p(−y) in formula (6.2).

To get an explicit formula for the diffusion coefficient, go back to Theorem 5.1 to get that

Di,j (α) = −1

χ(α)
〈〈π1Wi〉〉α,j + lim

λ→0
〈〈f̃iλ,mj 〉〉0,0,

wheremj is given in (5.3) and wherẽfiλ is the solution of the resolvent equation

λf̃
i
λ − Lα f̃

i
λ = −TWi .

Elementary computations give that
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TWi = −χ(α)mi ,

〈〈π1Wi〉〉α,j = −1

2
χ(α)

∑
yiyjp(y) = −1

2
χ(α)σi,j ,

so that

Di,j (α) = 1

2
σi,j + lim

λ→0
χ(α)

〈〈
f̃iλ

χ(α)
,mj

〉〉
0,0

.

Let fiλ = f̃iλ/χ(α) to obtain thatfiλ is the solution of the resolvent equation

λfiλ − Lαfiλ = mi

and that

Di,j (α) = 1

2
σi,j + lim

λ→0
χ(α)〈〈fiλ,mj 〉〉0,0. (6.6)

Remark 6.1.As we observed in the proof of Theorem 4.7, there existsfi in H1,0 such thatfiλ converges tofi , as
λ ↓ 0. As in Lemma 2.8 in [6], we get thatλ〈〈fiλ, fiλ〉〉0,0 converges to zero, asλ ↓ 0. This allows us to prove tha
D(α) � 1/2σ in the sense of matrix, since

lim
λ→0

∑
ai〈〈fiλ,mj 〉〉0,0aj = ‖

∑
aif

i‖2
1,0 � 0.

Proof of Theorem 2.1. Considering the formula presented in (6.6) for the diffusion coefficient of the hydr
namic equation, the proof of its regularities properties on(0,1) is a simple consequence of the following lemm
At the end of this section we give a reference to understand the behavior at the boundary.�
Lemma 6.2.Taker andS, finite supported functions inF∗ with values not depending onα. Consider the resolven
equation

λfλ(α) − Lαfλ(α) = r. (6.7)

For eachλ > 0, consider the functionGλ : [0,1] → R defined by

Gλ(α) = 〈〈fλ(α),S〉〉0,0. (6.8)

Then, there exists a subsequenceλk ↓ 0 such thatGλk converges uniformly to a smooth function on[0,1].
Furthermore, the limit is continuous in the whole interval andC∞ in its interior.

Proof. To prove the existence of such subsequence we will show that the functionsGλ are smooth for eachλ > 0
and we will get uniform bounds, inλ > 0, for theL∞ norm of the derivatives:

sup
λ

sup
α∈[ε,1−ε]

∣∣Gk
λ(α)

∣∣� Ak ∀ε, ∀k,

where the upper index indicate thekth derivate. Fork = 0 we need to show that the functionsGλ are continuous
and uniformly bounded in[0,1]. In order to get the announced bound fork = 0 bound, take inner product〈〈 ·, ·〉〉0,0
with fλ on both sides of Eq. (6.7) and use that|〈〈u,v〉〉0,0| � ‖u‖1,0‖v‖−1,0 to get that〈〈

λfλ(α), fλ(α)
〉〉
0,0 − 〈〈

Lαfλ(α), fλ(α)
〉〉
0,0 = 〈〈

r, fλ(α)
〉〉
0,0,

λ
∥∥fλ(α)

∥∥2
0,0 + ∥∥fλ(α)

∥∥2
1,0 �

∥∥fλ(α)
∥∥

1,0‖r‖−1,0,∥∥fλ(α)
∥∥ � ‖r‖−1,0.
1,0
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Then, for everyλ > 0, we have that∣∣Gλ(α)
∣∣= ∣∣〈〈fλ(α),S

〉〉
0,0

∣∣� ‖r‖−1,0‖S‖−1,0,

where, by hypothesis, the last term does not depend onα.
The following step is to differentiate (and also prove continuity on the whole interval[0,1]). This is the conten

of Lemma 6.3, below. It says that we can differentiatefλ(α) in ‖ · ‖1,k. Furthermore: the derivate,f′λ(α) satisfies
the resolvent equation

λf′λ(α) − Lαf′λ(α) = L′(α)fλ(α),

with L′(α) defined below (formula (6.13)). ThenG′
λ(α) = 〈〈f′λ(α),S〉〉0,0. Once we have differentiated, we need

bound. For that, recall Proposition 4.8. and Corollary 4.3 to get that∥∥g′
λ(α)

∥∥
1,0 �

∥∥L′(α)fλ(α)
∥∥−1,0 � C(α)

∥∥fλ(α)
∥∥

1,0.

Collecting all these estimates, we get that∣∣G′
λ(α)

∣∣= ∣∣〈〈f′λ(α),S
〉〉
0,0

∣∣� ∥∥f′λ(α)
∥∥

1,0‖S‖−1,0 � C(α)‖r‖−1,0‖S‖−1,0

for C(α) continuous in(0,1). Now, applying to Corollary 4.3, we can check thatL′(α)fλ(α) satisfies the hypothes
of Lemma 6.3. So, iterating the previous argument, we can differentiate and bound.�

We end this section with the announced result that gives sense to differentiate.

Lemma 6.3.Considerg(α) with ‖g(α)‖−1,k < ∞ for everyk. For eachλ > 0, let fλ(α) be the solution of the
resolvent equation

λfλ(α) − Lαfλ(α) = g(α).

Fix α ∈ (0,1). If

lim
h→0

∥∥g(α + h) − g(α)
∥∥−1,k

= 0

for all k � 0, then we get that

lim
h→0

∥∥fλ(α + h) − fλ(α)
∥∥

1,k
→ 0, (6.9)

lim
h→0

∥∥fλ(α + h) − fλ(α)
∥∥

0,k
→ 0 (6.10)

for all k. Furthermore: suppose that there exists a functionG(α), with ‖G(α)‖−1,k < ∞ for everyk, such that∥∥∥∥g(α + h) − g(α)

h
− G(α)

∥∥∥∥−1,k

→ 0 (6.11)

ash → 0 for everyk. Then, forα ∈ (0,1) andλ fixed, there existFλ(α) solution of the resolvent equation

λFλ(α) − LαFλ(α) = G(α) + L′
αfλ(α), (6.12)

where

L
′
α = −2Ld +√

χ(α)
′{L+ + L−}, (6.13)

such that∥∥∥∥ fλ(α + h) − fλ(α)

h
− Fλ(α)

∥∥∥∥
1,k

→ 0,∥∥∥∥ fλ(α + h) − fλ(α)

h
− Fλ(α)

∥∥∥∥
0,k

→ 0

ash → 0, for everyk.
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Proof. We have fixedα ∈ (0,1) and λ > 0. Call R(α) = √
χ(α). By Proposition 4.8, in order to guara

tee existence of solution for Eq. (6.12), we need to prove that‖G(α) + L′
αfλ(α)‖−1,1 < ∞. By hypothesis,

‖G(α)‖−1,1 < ∞. For the other term, use Corollary 4.3 and Lemma 4.10, for each of the following inequalit∥∥L∗fλ(α)
∥∥−1,1 � C0

∥∥fλ(α)
∥∥

1,1 � C1
∥∥g(α)

∥∥−1,1,

where the operatorL∗ stands forLs , Ld , L+, L−. Then, we get that∥∥L′
αfλ(α)

∥∥−1,1 � C(α)
∥∥g(α)

∥∥−1,1.

LetFλ(α) be the unique solution of (6.12). We want to see that the incremental quotient offλ(α) (in α) converges
to Fλ(α).

Consider the following resolvent equations:

λfλ(α) − Lαfλ(α) = g(α),

λfλ(α + h) − L(α+h)fλ(α + h) = g(α + h).

Subtracting them we get that

λ
[
fλ(α + h) − fλ(α)

]− Lα

[
fλ(α + h) − fλ(α)

] = g(α + h) − g(α) − 2hLd fλ(α + h)

+ (
R(α + h) − R(α)

)
(L+ + L−)fλ(α + h). (6.14)

At this point, using the bounds obtained in Proposition 4.8 and computing the‖ · ‖−1,k norm of the right hand
side of (6.14), we get the convergence in (6.9).

Consider the following objects

f∗λ(α,h) = fλ(α + h) − fλ(α)

h
− Fλ(α),

g
∗(α,h) = g(α + h) − g(α)

h
− G(α),

R∗(α,h) = R(α + h) − R(α)

h
− R′(α).

Subtract Eq. (6.12) from Eq. (6.14) divided byh to get that

λf∗λ(α,h) − Lαf∗λ(α,h) = g∗(α,h) − 2Ld

[
fλ(α + h) − fλ(α)

]+ R∗(α,h)(L+ + L−)fλ(α + h)

+ R′(α)(L+ + L−)
[
fλ(α + h) − fλ(α)

]
.

Using the hypothesis concerningg(α) andG(α), Lemma 4.10 and Corollary 4.3, we can see that the‖ · ‖−1,k

norm of each term on the right hand side ofthe previous expression vanishes ash ↓ 0. Then, applying Lemma 4.1
we conclude the result.�
Remark 6.4. In order to prove differentiability of the functions{Di,j (α),1 � i, j � d} at the boundary of the
interval [0,1], we change the parametrization withα = sin2(t), with t ∈ [0,π/2], and reproduce the work don
in [8].
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Appendix A. Decomposition of a mean zero probability as a convex combination of loop probabilities

We start explaining what a loop probability is. Givena1, . . . , aN points inZd∗ such that
∑N

i=1 ai = 0, consider
the probabilityπ that assigns mass 1/N over eachai , for i = 1, . . . ,N . As we do not require the pointsai to be
different, this is not necessarily an uniform probability. Observe thatπ is a mean zero probability; we call it a loo
probability. In order to motivate the name of this probability, setyi =∑i

j=1 aj and observe thatyN = 0. This means
that starting from the origin, jumping fromyi to yi+1 we arrive back to the origin. The pointsy0 = 0, y1, . . . , yN

form a loop (or cycle).yi+1 − yi = ai is called a jump.

Definition A.1. A probabilityπ is a loop probability if there exists a closed pathy0 = 0,y1, . . . , yN = 0 in Zd with
yi+1 �= yi such that

π(x) = 1

N

N−1∑
i=0

I{x=yi+1−yi }.

Definition A.2. Given a probabilityp onZd , we say thatx is in Sp , the support ofp, if p(x) > 0:

Sp = {
x ∈ Zd;p(x) > 0

}
. (A.1)

We say thatp is compactly supported ifSp is finite.

The main object of this appendix is to prove thatevery compactly supported mean zero probabilityp on Zd∗
may be written as a convex combination of loop probabilities.

Lemma A.3. Given a mean zero compactly supported probabilityp on Zd∗ , there existsαj > 0 for j = 1, . . . , s

with
∑s

j=1 αj = 1 and loop probabilitiesπj supported inZd∗ such that

p =
s∑

j=1

αjπj .

Proof. We will usezj to denote vectors in different spaces andzi
j for the ith coordinate of the vectorzj . Observe

that if p(xl) ∈ Q for all xl ∈ Sp , thenp is itself a loop probability. In this case we get thatp(xl) = ml/b for all
xl ∈ Sp, with ml, b ∈ N − {0} and

∑
ml = b. This corresponds to a loop probability taking the jumpxl ml times.

We will prove the lemma by induction inn, the number of points in the support of the probabilityp: n = #Sp.
Observe that, since the probability is defined onZd∗ and has mean zero, the support has at least two elemen
0 /∈ Sp . Because of that, we start the induction withn = 2.

(1) n = 2. In this case we get that existx1, x2 ∈ Zd∗ such

x1p(x1) + x2p(x2) = 0 and p(x1) + p(x2) = 1.

This two equations determinep. Solving forp(x1), p(x2), we get that

p(x1) = −xi
2/(x

i
1 − xi

2) and p(x2) = xi
1/(x

i
1 − xi

2),

independently ofi. This shows that the probabilityp takes values inQ and then it is a loop probability.
(2) Inductive step: considerp supported in a set of cardinalityn > 2. We would like to write

p = c1π1 + (1− c1)p̃

for some 0< c1 < 1, π1 a loop probability,p̃ a mean zero probability onZd∗ , supported in a set with less tha
n points. In this case, by the inductive hypothesis, we will be able to decomposep̃ as a convex combination o
loop probabilities and therefore, the same holds forp.
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The problem is reduced to prove the existence ofπ1, a loop probability concentrated inSp = {x1, . . . , xn}. If
suchπ1 exists, take

c1 = min
i

p(xi)/π1(xi).

Since bothp andπ1 are probabilities,c1 � 1. If c1 = 1 thenp = π1 andp is a loop probability. Otherwise,̃p
defined by

p̃(xi) = p(xi) − c1π1(xi)

1− c1

is a mean zero probability onZd∗ whose support is smaller than the support ofp, as we wanted.
We will now prove the existence of a loop probability concentrated inx1, . . . , xn. We are looking for a linea

combination ofxi with rational positive coefficients that adds up to zero, i.e.,qi ∈ Q, qi > 0 such that
∑

qixi = 0.
Then, we normalize and obtain the desired probability.

Since
∑n

i=1 p(xi)xi = 0 with p(xi) > 0 for i = 1, . . . , n, we know that the vectorsx1, . . . , xn are linearly
dependent inRd . Without loss of generality, we may suppose that{x1, . . . , xs} is a basis ofV , the linear subspac
in Rd generated byx1, . . . , xn, with s < n. LetA be thed ×s matrix defined byAi,j = x

j
i . Observe thatA :Rs → V

is one to one and that it inverse assignees to each vectorv ∈ V its coordinates in base{x1, . . . , xs}. Consider the
functionf :Rn−s → Rs , given by

f (u1, . . . , un−s ) := −A−1(u1xs+1 + u2xs+2 + · · · + un−sxn).

Note that

n∑
i=1

uixi = 0 ⇔ (u1, . . . , us) = f (us+1, . . . , un). (A.2)

In particular, since
∑n

i=1 p(xi)xi = 0, we get that

p(x1), . . . , p(xs) = f
(
p(xs+1), . . . , p(xn)

)
,

with all the entries ofp(xi) for 1 � i � n positive. By continuity of the linear transformationf , we can choose
(qs+1, . . . , qn) close to(p(xs+1), . . . , p(xn)), positive and rational, such thatf (qs+1, . . . , qn) is also positive (and
clearly it is rational becauseA−1 is a rational matrix). Then

ũ1, . . . , ũs = f (qs+1, . . . , qn) and ũs+i = qs+i, for i = 1, . . . , n − s

are the coefficient that we are looking for.�

Appendix B. Estimates on the operatorsLd , L+ and L−

In this appendix we prove some results involving the operatorsLs , Ld , L+ andL−. Most of them were presente
in Section 4.

Recall that forf ∈F∗ f(SzA) = f(A) for all z in A.
A simple computation shows that the operatorsLs andLd sendI∗,n into them self, whileL+ andL− mapI∗,n

into I∗,n+1 andI∗,n−1, respectively.
The following identity illustrates the fact that the spaceI∗ enjoys some special properties. For everyf :E∗,1 → R,

(L−f)(φ) = −2
∑

a(x)f
({x}).
x �=0
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In particular,(L−f)(φ) = 0 for all f in I∗,1 because in this spacef({x}) = f({−x}) anda(·) is anti-symmetric. In
contrast,(L+g)({x}) = 0 for all functionsg :E∗,0 → R so that, for allf in I∗,1 and allg :E∗,0 → R,

L−f = 0, L+g = 0. (B.1)

Other important consequences of working on the spaceI∗ are stated in the following lemma.

Lemma B.1.For everyn � 1 and every finitely supported functionsu,v ∈ F∗,n

〈Ldu,v〉 = −〈u,Ldv〉.
For every finitely supported functionsf, g in F∗,n−1, F∗,n, respectively,

1

n + 1
〈L+f,g〉 = −1

n
〈f,L−g〉.

Proof. The first identity relies on the fact that
∑

x,y∈A a(y−x) = 0. Note, however, that both pieces of the opera
are needed.

For the second statement, observe that for each fixed densityα, givenf andg in C0, we have that

〈〈Lsf,g〉〉 = 〈〈f,Lsg〉〉 and 〈〈Laf,g〉〉 = −〈〈f,Lag〉〉. (B.2)

The second identity implies that〈〈
(Lα − Ls )f,g

〉〉
0,0 = −〈〈

f, (Lα − Ls)g
〉〉
0,0,

for f,g ∈ F∗. Considering the first identity of the present lemma and choosingf ∈F∗,n−1, andg ∈F∗,n get that

1

n + 1
〈L+f,g〉 = −1

n
〈f,L−g〉. �

Corollary B.2. The operatorsL+ + L− andLd are anti-symmetric with respect to the inner product〈〈 ·, ·〉〉0,0:〈〈
f, (L+ + L−)g

〉〉
0,0 = −〈〈

(L+ + L−)f,g
〉〉
0,0,

〈〈f,Ldg〉〉0,0 = −〈〈Ld f,g〉〉0,0

for all finitely supported functionsf, g in F∗. The same statement remains in force ifL+ +L− andLd are replaced
byΠn(L+ + L−)Πn andΠnLdΠn, respectively, for everyn � 1 with f andg in Jn, defined in(4.4).

Remark B.3.From the previous corollary, we get that, for everyf in F∗, 〈〈Lαf, f〉〉0,0 = 〈〈Ls f, f〉〉0,0. Considerk � 1.
Given f ∈ Ik∗, takefn ∈ F∗ such that‖fn − f‖0,k goes to zero asn ↑ ∞. SinceLα andLs are bounded operato
from Ik∗ to I0∗, we get that〈〈Lαf, f〉〉0,0 = 〈〈Ls f, f〉〉0,0.

Recall Theorem 4.1 from Section 4. Hereafter the constantC0 may change from line to line.

Theorem B.4.There exists a finite constantC0, depending only on theprobabilityp, such that

〈Ld f,g〉2 � C0〈f,−Ls f〉〈g,−Lsg〉
for eachf,g in I∗,n. The same result remains in force ifLd is replaced byL+ or L− with g in I∗,n+1 andI∗,n−1,
respectively.

The proof of Theorem B.4 is divided in several lemmas.Before starting, we need to introduce some definiti
and recall some results. Since the‖ · ‖1 norm plays a crucial role, we give its explicit form. Forf ∈ I∗,n, from the
definition of the operatorLs given in (3.18), we get that

〈f,−Ls f〉 = 1/4
∑

d

s(y − x)
∑

B∈E

[
f(Bx,y) − f(B)

]2 + 1/2
∑
y

s(y)
∑

B: y /∈B

[
f(SyB) − f(B)

]2
, (B.3)
x,y∈Z∗ ∗,n
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whereBx,y was defined in (3.16) andSyB in (3.7). Observe that first term of the previous expression, ma
written as

1

2

∑
b∈Zd

s(b)
∑
x∈Z

d∗

∑
A∈E∗,n−1

A∩{x,x+b}=∅

[
f
(
A ∪ {x + b})− f

(
A ∪ {x})]2. (B.4)

Theorem B.4 will be proved for loop probabilities. Since we proved in Appendix A that every mean
probabilityp may be decomposed as a convex combination of loop probabilities, considering formula (B.3
is no loss of generality in the proof of Theorem B.4 assuming thatp is a loop probability.

For a loop probability we proveTheorem B.4 by induction on the length of the loop. For the inductive step, w
need to relate the‖ · ‖1 norms corresponding to different probabilities. For this purpose, we define the followin
objects. Recall that thesupport of theprobabilityp was defined as

Sp = {
x: p(x) > 0

}
. (B.5)

We say thatx is attainable if it may be connected with the origin in the following sense: there exists a seq
z0 = 0, z1, . . . , zn = x with p(zi+1 −zi) > 0. We say thatx is attainable afterm steps ifm is the length of a shortes
path connectingx with the origin. We note byAp the set of attainable points for the probabilityp. Observe tha
for mean zero probabilities,Ap = As wheres is the symmetric part of the probabilityp. This result is clear for a
loop probability and then, by the decomposition result, the same holds for every mean zero probability.

A straightforward computation considering that we are working inI∗,n, shows that Dirichlet forms associate
to different probabilities are related in the following way:

Remark B.5. Given two mean zero probabilitiesp1 andp2 with Sp1 ⊆ Ap2, there exists a finite constantC such
that

〈f,−L
p1
s f〉 � C〈f,−L

p2
s f〉,

whereL
pi
s are the operators defined in (3.18), corresponding tothe probabilitiespi for i = 1,2.

In what follows, we deal with the operators defined in (3.30), associated to different probabilities. In o
avoid confusions, we will useLπ∗ for ∗ = s, d,+,−, to denote the corresponding operators related to the probabilit
π . We are now able to start proving Theorem B.4. Almost all the computations are obtained performin
change of variables and considering that we are working with functions in the spaceI∗.

Lemma B.6. Given a loop probabilityπ there exists a finite constantC0, depending only on theprobability π ,
such that

〈g,Lπ+f〉2 � C0〈f,−L
π
s f〉〈g,−L

π
s g〉,

for eachf ∈ I∗,n−1, g ∈ I∗,n.

Proof. The proof of this result is by induction in the length of the loop. We show the inductive step and pro
result for a loop of length three, since for smaller loop the operator vanish. Note that the constantsC andC0 may
change from line to line.

Fix a loop probabilityπ = {y0, . . . , ym}, with ai = yi − yi−1, for i = 1, . . . ,m. An elementary computatio
shows that

〈g,Lπ+f〉 = 2
∑

A∈E∗,n

∑
x,y∈A

a(y − x)g(A)f
(
A \ {y})

+ 2
∑

A∈E

∑
x∈A

a(x)g(A)
[
f
(
A \ {x})− f

(
Sx

(
A \ {x}))]. (B.6)
∗,n
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Observe thata(y − x) = ±1/2m for y − x = ±ai anda(y − x) = 0 otherwise. Then, except fory − x = ai or
y − x = −ai , a(y − x) = 0. Thus, the first term in the right hand side of (B.6) is equal to

1

m

m∑
i=1

∑
x �=0,−ai

∑
A∈E∗,n−2

A∩{x,x+ai}=∅

f
(
A ∪ {x})g(A ∪ {x, x + ai}

)

− 1

m

m∑
i=1

∑
x �=0,ai

∑
A∈E∗,n−2

A∩{x,x−ai}=∅

f
(
A ∪ {x})g(A ∪ {x, x − ai}

)
.

We perform a change of variables in the second term of the previous expression and get that the difference is e
to

1

m

m∑
i=1

∑
x �=0,−ai

∑
A∈E∗,n−2

A∩{x,x+ai}=∅

[
f
(
A ∪ {x})− f

(
A ∪ {x + ai}

)]
g
(
A ∪ {x, x + ai}

)
.

Recall thata(x) = 1/2m for x = ai , a(x) = −1/2m for x = −ai and use this fact to write the second term
the right hand side of (B.6) as

1

m

m∑
i=1

∑
A∈E∗,n−1
A∩{ai }=∅

[
f(A) − f(SaiA)

]
g
(
A ∪ {ai}

)− 1

m

m∑
i=1

∑
A∈E∗,n−1

A∩{−ai }=∅

[
f(A) − f(S−ai A)

]
g
(
A ∪ {−ai}

)

= 2
1

m

m∑
i=1

∑
A∈E∗,n−1
A∩{ai}=∅

[
f(A) − f(Sai A)

]
g
(
A ∪ {ai}

)
,

where we performed a change of variables in the second line (B = S−ai B) and used that forg ∈ I∗ we have that
g(Sai B ∪ {−ai}) = g(Sai (B ∪ {ai})) = g(B ∪ {ai}) to obtain the last identity. Let

Nb =
∑

x �=0,−b

∑
A∈E∗,n−2

A∩{x,x+b}=∅

[
f
(
A ∪ {x})− f

(
A ∪ {x + b})]g(A ∪ {x, x + b}), (B.7)

Mb =
∑

A∈E∗,n−1
A∩{b}=∅

[
f(A) − f(SbA)

]
g
(
A ∪ {b}), (B.8)

so that

〈g,Lπ+f〉 = 1

m

m∑
i=1

Nai + 2

m

m∑
i=1

Mai .

We are ready to perform the inductive step. Letz = ∑m
i=3 ai and consider the loop probabilitiesπ1 =

{y0, y1, y2, y0} andπ2 = {y0, y2, y3, . . . , ym} corresponding to jumpsa1, a2, z and−z, a3, . . . , am, respectively.
Observing thatN−b = −Nb andM−b = −Mb we get that

〈g,Lπ+f〉 = 1/m

[
(Na1 + Na2 + Nz) + N−z +

m∑
i=3

Nai

]
+ 1/m

[
(Ma1 + Ma2 + Mz) + M−z +

m∑
i=3

Mai

]

= 3/m〈g,L
π1+ f〉 + m − 1/m〈g,L

π2+ f〉.
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SinceSπi ⊂ Aπ , by Remark B.5 we get that〈f,−L
πi
s f〉 � C〈f,−Lπ

s f〉 for i = 1,2. This fact and the inductiv
hypothesis give that

〈g,Lπ+f〉2 � C
{〈f,Lπ1

s f〉〈g,Lπ1
s g〉 + 〈f,Lπ2

s f〉〈g,Lπ2g
s 〉}� C〈f,Lπ

s f〉〈g,Lπ
s g〉,

which concludes the inductive step.
Now, we need to prove the estimate for a loop probability of length three. Considerπ corresponding to jumpsai

for i = 1,2,3 with a1 + a2 + a3 = 0. We start showing that{∑3
i=1 Nai }2 � C〈f,Lπ

s f〉〈g,Lπ
s g〉 and then we prove

the same kind of bound for{∑3
i=1 Mai }2. To keep notation simple, letd = 1 and takea1 = 1, a2 = 2 anda3 = −3.

According to definition (B.7) forNb, we get that

3∑
i=1

Nai =
∑

x �=0,−1

∑
A∈E∗,n−1

A∩{x,x+1}=∅

[
f
(
A ∪ {x})− f

(
A ∪ {x + 1})]g(A ∪ {x, x + 1})

+
∑

x �=−1,−3

∑
A∈E∗,n−1

A∩{x+1,x+3}=∅

[
f
(
A ∪ {x + 1})− f

(
A ∪ {x + 3})]g(A ∪ {x + 1, x + 3})

+
∑

x �=0,−3

∑
A∈E∗,n−1

A∩{x,x+3}=∅

[
f
(
A ∪ {x + 3})− f

(
A ∪ {x})]g(A ∪ {x, x + 3}), (B.9)

where for the second and last line we performed a change of variable. We will decompose this sum in thre∑3
i=1 Nai = T1 + T2 + T3. The decomposition appears because we want to add over the same values ofx and then

we work for adding in the same setsA. For T1, take from (B.9)x = −3 in the first line,x = 0 in the second line
andx = −1 in the last one.T2 is obtained takingx �= 0,−1,−3 in the three sums of (B.9) and imposingA to
containx + 3, x andx + 1 in each line, respectively. Finally,T3 is obtained takingx �= 0,−1,−3 in all the sums
and imposingA not to contain each of the previous elements. Recall that we are working with finite setsA in Zd∗ .
Sometimes we omit from the notation the cardinal ofA. Some others we put in evidence thatA ∩ {0} = ∅. ForT1,
we get

T1 =
∑

A∩{−3,−2,0}=∅

[
f
(
A ∪ {−3})− f

(
A ∪ {−2})]g(A ∪ {−2,−3})

+
∑

A∩{0,1,3}=∅

[
f
(
A ∪ {1})− f

(
A ∪ {3})]g(A ∪ {1,3})

+
∑

A∩{−1,0,2}=∅

[
f
(
A ∪ {2})− f

(
A ∪ {−1})]g(A ∪ {−1,2}). (B.10)

Let S3A = B in the second line of (B.10) andS2A = B in the third one to get that

T1 =
∑

A∩{−3,−2,0}=∅

[
f
(
A ∪ {−3})− f

(
A ∪ {−2})]g(A ∪ {−2,−3})

+
∑

A∩{−3,−2,0}=∅

[
f
(
S−3A ∪ {1})− f

(
S−3A ∪ {3})]g(S−3A ∪ {1,3})

+
∑

A∩{−3,−2,0}=∅

[
f
(
S−2A ∪ {2})− f

(
S−2A ∪ {−1})]g(S−2A ∪ {−1,2}).

Recall that, by definition ofSz, S−2A ∪ {−1,2} = S−2(A ∪ {−2,−3}). In this case, sincef andg belong toI∗, we
get thatg(S−2A∪{−1,2}) = g(S−2(A∪{−2,−3})) = g(A∪{−2,−3}). It is not difficult to check, using this kind
of identities, that the previous expression vanishes. ForT2, we get that
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subtract
T2 =
∑∑[

f
(
A ∪ {xx + 3})− f

(
A ∪ {x + 1, x + 3})]g(A ∪ {x, x + 1, x + 3})

+
∑∑[

f
(
A ∪ {x, x + 1})− f

(
A ∪ {x, x + 3})]g(A ∪ {x, x + 1, x + 3})

+
∑∑[

f
(
A ∪ {x + 1, x + 3})− f

(
A ∪ {x, x + 1})]g(A ∪ {x, x + 1, x + 3}),

where the first sum in each line is forx �= 0,−1,−3 and the second one is forA ∈ E∗,n−3 such thatA ∩ {x, x +
1, x + 3} = ∅. ThenT2 vanishes too. Finally, forT3, we get

T3 =
∑∑[

f
(
A ∪ {x })− f

(
A ∪ {x + 1})]g(A ∪ {x, x + 1})

+
∑∑[

f
(
A ∪ {x + 1})− f

(
A ∪ {x + 3})]g(A ∪ {x + 1, x + 3})

+
∑∑[

f
(
A ∪ {x + 3})− f

(
A ∪ {x})]g(A ∪ {x, x + 3}), (B.11)

where the first sum in each line is forx �= 0,−1,−3 and the second one is forA ∈ E∗,n−3 such thatA ∩ {x, x +
1, x + 3} = ∅. Add and subtractf(A ∪ {x + 1}) in the first factor of the last line in (B.11) to get that

T3 =
∑∑[

f
(
A ∪ {x + 3})− f

(
A ∪ {x + 1})][g(A ∪ {x, x + 3})− g

(
A ∪ {x + 1, x + 3})]

+ [
f
(
A ∪ {x + 1})− f

(
A ∪ {x})][g(A ∪ {x, x + 3})− g

(
A ∪ {x, x + 1})].

By Schwarz inequality, the previous expression is bounded byC〈f,−Lπ
s , f〉〈g,−Lπ

s ,g〉, in view of formula
(B.3).

We turn now to the expression
∑3

i=1 Mai (see (B.8) for definition ofMb). It may be rewritten as

3∑
i=1

∑
A∩{0,ai}=∅

[
f(A) − f(SaiA)

]
g
(
A ∪ {ai}

)=
∑

A∩{0,1}=∅

[
f(A) − f(S1A)

]
g
(
A ∪ {1})

+
∑

A∩{1,3}=∅

[
f(S1A) − f

(
S3A

)]
g
(
S1A ∪ {2})

−
∑

A∩{0,3}=∅

[
f(A) − f(S3A)

]
g
(
S3A ∪ {−3}), (B.12)

where the last two terms in the previous expression are obtained after the change of variableS2A = B and
S−3A = B, respectively. We decompose each expression intwo, to obtain sums carried over the same sets
the following expression, the first three terms correspond to the terms obtained by imposingA not to contain 3,
0 and 1, respectively in each of the three last lines of (B.12). The sum over the setsA that contain 3, 0 and 1
correspond to the last three lines. Therefore,

3∑
i=1

Mai =
∑

A∩{0,1,3}=∅

[
f(A) − f(S1A)

]
g
(
A ∪ {1})+ [

f(S1A) − f(S3A)
]
g
(
S1A ∪ {2})

− [
f(A) − f(S3A)

]
g
(
S3A ∪ {−3})+ [

f
(
A ∪ {3})− f

(
S1A ∪ {2})]g(A ∪ {1,3})

+ [
f
(
S1A ∪ {−1})− f

(
S3A ∪ {−3})]g(S1A ∪ {2,−1})

− [
f
(
A ∪ {1})− f

(
S3A ∪ {−2})]g(S3A ∪ {−3,−2}).

After some operations recalling the definition ofSz and the fact thatf andg belong toI∗ (as we did when
working with T1), we get that the sum of the last three terms vanishes. For the three remaining, add and
f(S1A) in the third line, to get
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1 (1)

ntal

ab.

. 24

at. 31
∑
A∩{0,1,3}=∅

[
f(A) − f(S1A)

][
g
(
A ∪ {1})− g

(
A ∪ {3})]

+
∑

A∩{0,1,3}=∅

[
f(S1A) − f(S3A)

][
g
(
S1
(
A ∪ {3}))− g

(
S3
(
A ∪ {3}))].

By Schwarz inequality, this expression is bounded byC‖f‖1‖g‖1, in view of expression (B.3) for‖ · ‖1. This
concludes the proof of the lemma.�
Lemma B.7. Given a loop probabilityπ there exists a finite constantC0, depending only on theprobability π ,
such that

〈g,Lπ−f〉2 � C0〈f,Lπ
s f〉〈g,Lπ

s g〉,
for eachf ∈ In+1, g ∈ In.

Proof. This result follows from Lemmas B.1 and B.6.�
Lemma B.8. Given a loop probabilityπ there exists a finite constantC0, depending only on theprobability π ,
such that

〈g,Lπ
d f〉2 � C0〈f,Lπ

s f〉〈g,Lπ
s g〉

for eachf,g ∈ In.

Proof. We follow the strategy used in the previous case. Observe that

〈g,Lπ
d f〉 = 1/(2m)

m∑
i=1

Nai + 1/(2m)

m∑
i=1

Mai ,

where

Nb =
∑

x �=0,−b

∑
A∈E∗,n−1

A∩{x,x+b}=∅

[
f
(
A ∪ {x + b})− f

(
A ∪ {x})][g(A ∪ {x})+ g

(
A ∪ {x + b})],

Mb =
∑

A∈E∗,n

A∩{b}=∅

[
f(SbA) − f(A)

][
g(A) + g(SbA)

]
.

This decomposition allows us to repeat the same kind of computation performed when proving Lemma B�
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