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Abstract

The asymmetric mean zero simple exclusion process is an example of non-reversible nongradient system. We prove that th
diffusion coefficient of its hydrodynamic equation i€&° function on[0, 1], in all dimension.
0 2004 Elsevier SAS. All rights reserved.

Résumé

Le processus d’exclusion simple asymétrique de moyenne nulle est un exemple de modéle non-réversible nongradient. Nou
démontrons que le coefficient de diffusion de I'équation hydrodynamique est une fo@€tiaur[0, 1], en toute dimension.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The simple exclusion process represents the evolution of particles on the Ztticiéh a hard-core interaction
that prevents more than one particle pite. The evolution can be informaltjescribed as follows: each particle
waits a mean one exponential time. When the clock rirtighaoses a site to jump. The probability that a particle
located atr picks the sitey is given byp(y — x), were p a probability measure i¢. If the chosen site is free,
the particle jumps. Otherwise it remains in its place and waits for a new exponential time. All the particles are
performing this, independently o each other. In this work we focus our attention in the finite range =0
for ||x|| big enough) mean zero case}xp(x) =0.
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Under diffusive scaling, the hydrodynamic equation for the mean zero simple exclusion process evolving in the
torus is described by the non-linear parabolic differential equation

d
dp =Y du{Dij(P)du;p}.
i,j=1
This result was obtained by Xu in dimension 1 [14] exting to the non-reversible setting the nongradient method
developed by Varadhan [12] and Quastel [10].

The main result of this work is that the coefficief3; ; («), 1 <i, j < d} are smooth functions ia. This fact
guarantees the existence of regular solutions for the hydrodynamic equation and permits the derivation of weal
conservation of local equilibrium through the relativerepyy method [15]. We extendly particular, Xu's result
to dimensiord > 2. Furthermore, since the system is attractive, good dependence on the initial condition for the
solution of the hydrodynamic equation allows t@pe conservation of local equilibrium [4].

The method used to prove regularity of the diffusion coefficient was developed by Landim, Olla and Varadhan in
[8], using the generalized duality tegiques introduced by Lanatiand Yau [9] and Sethuraman, Varadhan and Yau
[11]. Bernardin [1] proves regularity of the diffusion coefficient for nongradient reversible models under Bernoulli
measures. A crucial step of the machinery for proving such regularities, consists in controlling the asymmetric
part of the generator by the symmetric one. This is related to the so called sector conditions. We prove in this
article a version of sector condition. The same proves applies to the case assumed by Komoriya in [3] to derive
the hydrodynamic behavior of the mean zero exclusion process. In his work, he also assume regularity of the
diffusion coefficient, main result of this work. Sector condition is the main point in the proof that the Hilbert space
of fluctuations is the direct sum of gradients and local functions in the range of the generator.

To prove the sector condition, we use that every meso probability with finite support may be decomposed
as a convex combination of loop prd#iities. This idea was used by Xua [14] when deducing the hydrodynamic
behavior for the mean zero simple exclusion process and also by Varadhan in [13] when studying the evolution of
the tagged particle in a mean zero exclusion process, in equilibrium. In Appendix A we give a simple proof of this
decomposition.

This work is organized as follows. In Section 2 we introduce the notation and state the main theorem. In Sec-
tion 3 we describe duality tools and describe several spaces and operators which appear in the dual representatic
In Section 4 we state some results related to the sector conditions and give sufficient conditions for solving resol-
vent equation. In Section 5 we study the main properties of the Hilbert space of fluctuations which allow us to get
in Section 6 a new expression for the diffusion coefficient. With this new expression, also in Section 6, we prove
that the diffusion coefficient is a regular function.

2. Notations and results
2.1. The model
Fix a mean zero probability on Z¢ = Z¢ \ {0}, that vanishes outside a finite set and is irreducible. This last

property means thdt: p(x) > 0} generates the whole grod¥. The generator of the simple exclusion process
onZ? associated te acts on local functiong as

wLHM =Y ply—xm@{L=nM}[f0™) = r]. (2.1)
x,yezd
wheren*:Y stands for the configuration obtained franiby exchanging the occupation variablgs), n(y):
nz) ifz#x,y,

"N =ynkx) ifz=y,
n(y) ifz=x.
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For« in [0, 1], denote by, the Bernoulli product measure ol = {0, 1}Zd with densitya. This one-parameter
family of measures is stationary for the simple exclusion dynamics and in the symmetripase, p(—x), these
measures are reversible. Expectation with respegt ie represented by-), and the scalar product ib?(vy) by

< ) ')O( .
Denote bys anda the symmetric and the anti-symmetric parts of the probakhlity
s(x) = (1/2)[p(x) + p(—x)], a(x)=(1/2)[px) — p(-x)].

Let L* andL® be the symmetric and the anti-symmetric part of the generatorL.2(v, ), respectivelyL® andL?
are obtained replacing by s, a in the definition ofL. Also consider the probability*(y) = p(—y) and letL* be
the generator ohined replacing by p* in the definition ofZ (2.1). Observe that* is the adjoint operator ot
in L2(vg).

We will work on the torus. For a positive integat, denote byTy the torus withN pointsTy = Z/NZ and
T4, = (Tn)?. The continuous/-dimensional torus is denoted B and is identified with{0, 1)¢. Consider the

exclusion process evolving in the torﬂ]‘%,. This is a Markov process on the state spage= {0, 1}%, whose
generatolL y acts on a functiory as

LvHM= Y ply—=m{L—aWI[Far") = fm)]. (2.2)

LyET%
2.2. The hydrodynamic equation

In order to deduce the hydrodynamic equation associatdtis system, we look for the equation satisfied
by the empirical measures. For a probability meagugeon xy, denote byP,,, the measure iD([0, co), xn)
induced by the Markov process with generakgy speeded up byw?, with initial distribution given byuy. For
each smooth functiof : [0, T'] x T¢ — R, let M7V (1) = M ¥ (r) be the martingale defined by:

t
MY @)=z}, H) — (n', Ho) — /(as + N2Ly)(xl, Hy) ds,
0

wheren,N =N (n,) is the empirical measuressociated to configuration, and (z, H) is the integral of the
function H respect to the measure In generalzV (7) = N—¢ erT‘fv n(x)éx/n, wheres, is the Dirac measure

concentrated at, and(r, H) = N~ ¢ er’]l“fv n(x)H (x/N). Observe that
1
Lyn(o) =3 ;{foy,x — Wexty)s

where the currenW, ., betweenr andx + y in this model is given by

Wi xay = 1(0)[1=n(x +»)]p(») = n(x + »[1= 1) ]p(=y). (2.3)
A spatial summation by parts and a second order approximation allow us to write

NZ4 3" Hy(x/N)Lyn(x) =y N 3" 8, Hy(x/N) W;

xeT% i xeT%
+1/4Y NN By Ho(x/N)7c G j + O(1/N), (2.4)
i,J xe'ﬂ"[d\,

where

Wi=1/2) yiWoy.  Gij=)_ yiyjWoy
y y
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and{z,, x € Z4} is the group of translations defined, initially, in the space of configuration by the formula

() =n(x+y) (2.5)

and extended in a natural way to the space of functionswitlin) = f (txn). Observe thak,,[G; ;1= 0 forevery

a. This implies that the second term in the right hand side of (2.4) is negligible when deducing the hydrodynamic
equation, thanks to a one block estimate argument. Then, it remains to régldigean object that allows us to

do a second summation by parts. Following the nongradient method presented in Chapter 7 of [2], developed by
Varadhan [12] and Quastel [10], we can prove that there exists a collection of fundtiori®, 1] — R such that

t

/N—d Z H(s,x/N)

d
0 xeTy,

limsuplimsupE,, [

e—~>0 N—o0

d
x N{rx Wi+ [dij(1N (x +¢))) — di.j (WGN(X))], ds

j=1

} —0. (2.6)

This implies that the hydrodynamic behavior of this system is governed by the non-linear equation

d d
o= 9 .di i)=Y du{Di;(P)du;p},
i,j=1 i,j=1

whereD; ;(a) = (d/da)d; j(«). The following goal is to give an explicit form for the diffusion coefficiels;,
appearing in the previous equation.

2.3. The diffusion coefficient and main result

Let introduce a semi-norm i€, the space of local functions with mean zero with respect to all grand canonical
measures, . Denotey (o) = «(1 — «). Forh in Co, consider

d 1 d 2
{hdo = sup Zzai h)a,i — EX(O[) ZS(U) (me) } + SUD{Z«h,g)}a,o —(—L’g, g))a,o}, (2.7)

acR4 i=1 i=1 8<Co
where

(i =D (xin(h),.  (h.ghao= Y (tch &) (2.8)

xezd xeZd

and{z,, x € Z¢} is the group of translations defined in (2.5).

In Lemma 5.2 we prove that:),, is finite for anyh € Co. Also, it may be proved that-),, verifies the parallel-
ogram identity. Then, there exists a semi-inner produdfgassociated to the semi-norm. Denote iy Hilbert
space induced by, -), on Cp. The techniques developed to study nongradient systems (see Section 7 in [2]),
shows that the matri®> = {D; ; (x)}1<;, j<a IS such that

Wi+ > Dij(@[n(e;) —n(0] € LCo
J

in Hy, for 0 <« < 1, whereW; are the functions defined in (2.3). In other worfls,; («) are characterized by the
following property:

inf <<W,- + Y Dij@)[n(e;) —n(©)] - Lu>> =0.
j

ueCp o
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In the symmetric case, we have a gradient model that allows to perform a second summation by parts wher
deducing the hydrodynamic equation, given by

d

1
hp= Z au,-{icn,ﬂu,p}, (2.9)

i,j=1

where, since the probability is irreducible o = {o; ;} is the strictly positive defined matrix given by

0i =ZS()’))’in~ (2.10)

y
As in Corollary 6.2 in [5], we can prove that

1
B*D* (o) — —ﬁ of=—— sup{Z(aﬂ) (nej) —n(0), L*g)),
( )gECO X

* e )Zakl n(ei) — n(0), L*g), {n(ex) — n(0), L*g), — (L*g. L g»a},

whereD’ (@) is the symmetric part of the matri®(«), given by

! 1
D¥(a) ;= E(D(a)i,j + D(Ol)j,i). (2.11)

The main result of this work is the following.
Theorem 2.1.The functionD; ;(«) is C*° on[0, 1], for 1 < i, j <d.

In order to prove this result, we need to find an appropriate expressidd; fakx). This is done in Section 6,
where we study deeply the structure of the Hilbert spdgeObserve that the first term in (2.7) is easy to compute
and is a smooth function of. The next sections are consecrated to deal with the second term of (2.7).

3. Duality

Considering the second line in formula (2.7), we examine in this section the action of the symmetfi¢ part
of the generator on the space of local functions endowed with the scalar prpdigto. Some notations and
computations of this section are taken from [7]. Fix, once for all, a density (0, 1). All expectations in this
section are taken with respectitp and we omit all subscripts.

3.1. The dual space

For eachn > 0, denote byt, the subsets dZ¢ with n points and le€ = Un>0&n be the class of finite subsets
of Z4. For eachd in &, letw, be the local function

l—[ 77()6)—0!

XeA )((Ol

where x (o) = (1 — ). By convention@, = 1. It is easy to check thgtP,, A € £} is an orthonormal basis
of L?(vy). For eachn > 0, denote byg, the subspace af?(v,) generated by, A € &,}, so thatL?(v,) =
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.09 Functions ing, are said to have degree We user, to denote the projection operator framd (vy) to
the subspacé,. Then, given a functiorf in L?(v,), we may write

=3 _mf= ) f(A)¥a. (3.1)
n=>0 n>0A€g,

Note that the coefficient§ A) depend not only orf but also on the density: f(A) = f(A, ). If f is alocal
function, {: £ — R is a function of finite support. Denote lgythe space of local functions and recall tidatis
the set of local functions that have mean zero with respect to all grand canonical mgasiie have a simple
characterization ofg functions in terms of their Fourier coefficients:

feCo & > f(A.p)=0 VYn=0, VB. (3.2)
Aeé,
For local functionst, v in Co, define the scalar produgt, -) (previously noted by, -)«.0) by
(u,v) =Y (reu, v), (3.3)
xeZd

where {t,, x € Z%} is the group of translations. Sind@ — z,u, v) = 0 for all x in Z¢, this scalar product is
only semi-definite positive (formula (3.6) below guarantéesu) > 0). Denote byL%.’,» (vy) the Hilbert space
generated by the local functions il and the inner product-, -). The scalar product of two local functions

v can be written in terms of the Fourier coefficientsugfv through a simple formula. To this end, fix two local
functionsu, v and write them in the basi@,, A € £}:

U=y uwAWs  v=) 0(A)V4.
Ae& Ae
An elementary computation shows that
(o) =" D" D uw(A)(A+x).
xeZdn>21Ae&,

In this formula,B + z is the set{x + z; x € B}. The summation starts from= 1 because we are working with
functions inCp.

We say that two finite subsets, B of Z¢ are equivalent if one is the translation of the other. This equivalence
relation is denoted by so thatA ~ B if A = B + x for somex in Z¢. Let &, be the quotient of,, with respect to
this equivalence relatior, = &£, /~, £ = £/~. For any summable function £ — R,

D= f(A+2).

Ae€ Aef zeZ4
In particular, for two local functions, v,

(o)=Y D D uA+duA+x+)=) > Hi(A)b(A),

x,z€24n21 pcE, n2l pc€,
where, for a finite seA and a summable functian: £ — R,
i(A)= > uA+2). (3.4)
ze74

We say that a functiofi: £ — R is translation invariant if(A + x) = f(A) for all setsA in £ and all sitesc of
Z4. Of course, the function® are translation invariant. Fix a subsebf Z¢ with n points. There are sets in the
class of equivalence of that contain the origin. Therefore

YA =% > )
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if f(A) =f(A +x) for all A, for all x. Let &, be the class of all finite subsetsf = Z¢ \ {0} and let&, , be the
class of all subsets &¢ with n points. Then, we may write

Z Zu(A)u(A)_Z—Z (AU{0})5(A U{0}).

n>1 Ae&, n>0 A€y
A>0
Summarizing, for a finitely supported functi¢n€ — R, define¥f: . — R by
@THA) =FAU(0}) =) f([AU{0}] +2). (3.5)
774

then we have that

Z— > Tu(A)To(A). (3.6)

n>=0 A€ p

To state some properties of the transformafipwe need some notation. For a subsedf Z¢ andz in Z¢, S. A
is the set defined by

_)A-z if z¢ A,
S = { [(A=2)\{0)JU{-z} ifzeA. (3.7)

Therefore, to obtais, A from A whenz belongs taA, we first translated by —z, getting a new set which contains
the origin, and we then remove the origin and add site

Remark 3.1.

(a) Sincef belongs tcCo, from (3.2) we get that
Ty =Y f({z}) =
z€Z4
(b) Not any functiorf, : £, — R is the image by¥ of some functiorf: £ — R since
(TN(A) = (E)(S;A) (3.8)

forall zin A.
(c) Letf,:& — R be afinitely supported function with (¢) = 0 and satisfying (3.8)(A) = (S, A) for all z
in A. Definef: £ — R by

i(B) = { |B|7Y.(B\ {0} if B30, (3.9)
0 otherwise

An elementary computations shows thgt= ... This choice, which is not unique, makgganish onf;.
(d) The operation that transformi ¥f reduces by one the degree of a function.

To keep notation simple, most of the times, real functions€oor on &, are indistinctively denoted by the
symbolsf, g, u, v.

3.2. Some Hilbert spaces
Forn >0, let

L%(En) = {f:g*,,, >R Y f(A) < oo}

A€y
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and forf, g in L2(E,.,), define(f, g) = Y ace,, f(A)g(A) for everyn. We put|fI% = (f, f) whenevef € L2(&,.,).
Define, analogously,2(&,). Forn > 0 consider the following spaces:

Fp= {f:é’,, — R: f(A) # 0 for a finite number of setd and )~ f(4) = O},

A&,
f(A) # 0 for a finite number of setd,
Fon=1f:&n— R X ycg,, f(A)=0andf(S;B) = f(B)
forall Be&,,, forallze B

From ZAEg* o J(A) =§(#) =0, we get thatF, o = {0}.

Observe that the operat@r, defined by formula (3.5), map8, to F. 1. A functionf € F, or f € F, is
called a finite supported function of degreePutZ, andZ, , for the closure ofF, and ¥, , as subspaces of
L2(&,) andL?(&,.,), respectively. Fof: £, — R define the projection,, by

_[1(A) if|Al=n,
(maP)(A) = [0 otherwise (3.10)
Let
To={f:& = R muf € Ty Yn >0}, (3.11)

Given a local function irCo, take its Fourier coefficients ih2(v,) and apply the operaté to the Fourier coeffi-
cients. The image of this transformation belongs to the space of finite supported functions given by

rimfrem T O TS ) e12)
Consider the inner produdt, -)o  in the spaceF, given by:
(f. gos =Y+ D Hm,f. mag)
n>0
so that
1713 = > (0 + DZ Y, 7). (3.13)
n>0

The term corresponding to= 0 in each of the previous expressions is equal to zerolLbe the Hilbert space
induced by the inner produgt, -)ox andF,. Observe that we have the following embeddings:

0 1 s s+1

An explicit way to construct the spac#sis adding the Hilbert spacds., weighted by(n + 1)%~1:

It = {f €L Yy (n+DF Hmfl® < oo}-

n

With this notation, for local functiong andg, in view of (3.6), we have that

(/. &) = (%%, Tgho,o.
wheref andg are the Fourier coefficients gf andg, respectively.
We now examine the action of the symmetric part of the genedaton the basiq¥,, A € £} (see diagram

(3.31) below as reference). Fix a functiere Cop and denote by its Fourier coefficients. A straightforward com-
putation shows that

L'u=) " (L;uw)(A)Wa, (3.14)
Aef
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whereL; is the generator of finite symmetric random walks evolving with exclusioA‘an
(Lsw)(A) = (1/2) Z s(y —0)[u(Ar,y) —u(4)] (3.15)
x,yezd
andA, , is the set defined by

(A\{xhU{y} ifxeA, y¢A,
Avy=1A\DHUx} ifyeAd, x¢A, (3.16)
A otherwise
Furthermore, an elementary cpmtation, based on the fact that

> H([BU Y] +2) =Ti(S,B)
zez7d

for all subsetsB of Z¢, sitesy not in B and finitely supported functiorjs€ — R, shows that for every set in &,

TLu(B) = £,3u(B), (3.17)
where
(&0)(B)=(1/2) Y s(y—x)[v(Bey) —0B)]+ Y s()[o(SyB)—0(B)]. (3.18)
x.,yeZ‘i y¢B,y#0

We are now in a position to define the Hilbspace induced by the local functionsdg, the symmetric part of
the generatof. and the scalar produgt, -). For two local functions, v in Co, let

{u, v)1 = (u, (=L*)v)

and letH; = H1(Co, L*, { -, -))) be the Hilbert space generated by mean zero local funcfi@m the inner product
{-,-)1- By (3.14), (3.6) and (3.17) the previous scalar product is equal to
1 1 1
“2 g 2 THATLYW =)~ D TG TOA) = ) = [T, (— L) Ty)

n+1 n+1
n>0 + Ae&ipn n>0 + Ae&ipn n>=0

becauset; keeps the degree of the functions mapplr?gs*,n) in itself.
Now, for eachn > 0, denote by -, -)1 the scalar product o, ,, defined by

F. o)1 =(f. (—L5)g)

and denote by)1(F. ) the Hilbert space induced by the scalar product); on F, ,. The associated norm is
denoted b)ﬂf”% = (f, (—L£s)f). Furthermore, for an integér> 0, denote by 1 x = H1(Fx, £, k) the Hilbert space
induced by the finitely supported functiofig € F, with scalar product

(. o)1k =, (—L£08)g, = D02 + D Hmuf, (—L)7ag).
n>0
The associated norm is denoted|py]|1« So that
1115 = GF, k-
It follows from the previous notation that
1% = D+ D Hmaflf. (3.19)
n>0

Observe that for every local function v € Co,
{u, vh1 = (Zu, To)10,
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whereu andv are the Fourier coefficients afandv, respectively.
To introduceH_1, the dual space aff1, consider the functions € Cop that define a bounded operator respect to
the|| - ||1 norm and the inner produdt, -): it means that there exists a const@niith

|(u, v)| < Cllvfl1 forallv e Co. (3.20)

The smallesC satisfying the previous condition is denoted [y -1 and satisfies the following variational for-
mula:

)y = sup{2(u, v) — (v, v)1}, (3.21)

where the supremum is taken over all local functioria Co. Denote byH_1 = H_1(Co, L*, (-, -)) the Hilbert
space generated by the local functions and the semi-fjeimj.

SinceL® keeps the degree of a function and since the spgcese orthogonal, for local functions of degree
we may restrict the supremum to local functions of the same degree, so that

2 2
1120 =l fI24
n>1

In the same way, for an integer> 1 and a finitely supported functiane F, ,, let

lull?, = sgp{2<u, v) — (v, 0)1},

where the supremum is carried over all finitely supported functions . ,. Observe that, as when definiif1,
we have thafju||_1 is the smallest constant > 0 verifying

|(o,u)| < Cllofl1 forallve Fy,. (3.22)

Denote by$i_1 = H_1(F« ) the Hilbert space induced by the finitely supported functiorsF, , and the
semi-norm|| - ||_1.
For aintegek > 0, define the| - ||—1x norm of a finite supported functiane F, by

)y, = SEP{Z((u, v)ok — (v, (=£)v)ok},

where the supremum is carried over all finitely supported functiong,.. Denote by$_1 = H_1(Fx, £, k) the
Hilbert space induced by this semi-norm and the space of finite supported functions. Here agait), doee not
change the degrees of a function, for every finitely supparted,,

g ="+ D& Hmu)?y (3.23)
n=1l

and for any local functiom € Co, sincerou = 0, we get that
lull-1 = [Full-1,0, (3.24)

whereu denotes the Fourier coefficient of
We end this subsection summarizing tthifferent norms recently defined. i3 we have

(u,v) =Y (zeu,v),  Nulf = u, —Lsu),

xezd

lul?y = sup{2(u, v) — (v, v)1}. (3.25)

veCy
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In Fin
2
(wo)= Y u(AuA), [ulf=(u—Luw),

Aeg*,n

lully = sup {2(u, v) — (v, v)1}.
veFin

Adding the respective norms with appropriate weightsFinve get that

(w o)k = Y _(n+ D Hmyu, my0),

n

(w01 =Y (n+ D Hmuu, mio)1,

n

)y, =Y 4+ D% muul?,.
n

3.3. The Fourier coefficients of the generator

11

(3.26)

(3.27)

We conclude this section deriving explicit expressions for the genefator the basig¥,, A C Z4}. A long
and simple computation gives the following dual representation: for every local functop , .o u(A)¥4,

Lu=) (Lo (AWa, Lu=Y (Laow)(A)¥a,
Ae€ Ae&

wherely = L+ (1 —20) Ly + Vx@( Ly + L), ﬁa,a =Ly — Ly,

(Law(A)= Y aly—0fu(A,) —uA)},

X€A,y¢A

(Liw(A)=2 Y aly—xu(A\{)),
xeA,yeA

(L-w(A)=2 Y aly—xu(AU{y))
X¢A yEA

and.; is defined by (3.15). Furthermore, for any functior€ — R, TL,u = £,%u, provided
Lo=L+1-20)L5+ v/ x(@){Ly + £}

and, forA € &, v: &, — R afinitely supported function,

L) (A= > aly—x{o(Acy) —o(A)}+ ) a({v(S,A) —v(4)},

Xe€A,y¢A yEA
y#0 y#0
(L40)(A) =2 > aly—xv(A\{y}) +2) a@{o(A\ {x}) —o(S:[A\ {x}])},
x€A,yeA xX€A
(L-0)(A)=2 Y aly—x)p(AU{y}).
YEA yEA

x,y#0

(3.28)

(3.29)

(3.30)
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In fact, we know thattL,u = £,%u, for x = s,d, 4+, —. The following commutative diagram illustrate the
relation between the operators recently dedfinThe first arrow down assigns to each functioa Cg its Fourier
coefficients.

Co—LE=Co
]_‘%]—‘ (331)

|

‘7:*%]:*

4. Sector condition, the resolvent equation and some estimates

We prove in this section three important results. They will be useful to understand the structure of the space
H,, defined in Section 2. The first one, whose proof is postponed to Appendix B, is related to the so-called sector
condition for the generatat. The second result, Theorem 4.6, basednrelementary computation, states that
all functions inCg have finite| - |1 norm. Finally, the last result states that all local functiorCinmay be
approximated inH_1 by local functions in the range of the generator

We start with a result related to the sector condition. In this sectigrwill be use to denote finite constants
depending on the probability.

Theorem 4.1.There exists a finite consta@t such that

(L4, 9)2 < Colf, — L5 (g, —L50)

for eachf, g in Z, ,. The same result remains in forcedj is replaced byZ or £_ with g in Z ,4+1 andZ, ,_1,
respectively.

The proof of this result, as well as the proofs of some other estimates concerning the opkrators £, and
£, are presented in Appendix B. We state some corolldhiasare repeatedly usedtinis work. The first one is a
simple consequence of the definition|of||_1 norm forf € Z, ,, given in (3.22) and Theorem 4.1.

Corollary 4.2. For § € Z, , we have that

1€4Fl-1 < Collfll1,
whereg, stands for the operators;, £4, £+ and£_.

Corollary 4.3. There exists a finite consta€@t such that for everye Z, ,,

€451l < Conlifll, (4.1)
where|| - || is the usual norm onLZ(E*,,l) and £, stands for the operator§;, £4, £+, £_. Then, for every € Z,,
we have

1€4Fllo.x < Collfllofr1s

1 €4fll-1.% < Collfll1 -
Proof. A simple computation shows th&f is a bounded operator on eath, and that there exists a constaht
depending only omp, such that

€571l < Cnllfll,
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for all § € Z, ,. The first statement follows from this observatiand Theorem 4.1. For the second one, just recall
definition of | - lo.x, || - I,k @and| - ||=1,x done in (3.13), (3.19) and (3.23), respectively. Also observeffiat <
Collfllok+1. O

Remark 4.4. The previous corollary is saying that, is a bounded operator froff ™! to T (|| Cifllox <
Colifllo.k+1)- From | £.fll-1.% < Collfll1x We get that there exists a bounded extension for the opegatdérom
N1k t0H 1.

Finally, we get to the last result concerning this kind of estimates. Using the dual representation for the operator
L, presented in formula (3.28), and performing the same kind of computations presented in the proof of Theo-
rem 4.1, given in Appendix B, we cangare the sector condition. Recall that -),, denote the scalar product in
L?(vy), defined in Section 2.

Theorem 4.5.There exists a constant such that
(Lf,8)2 SCIL f, flafL’ g, 8o
for every local functiornf andg, for all « € [0, 1].
We turn now to the spacH_1. We first prove that all function iip belong toH_; and then show that they may
be approximated by functions in the range of the operator
Theorem 4.6.If u € F, ,, we have that
lull-1 < o0
and, from identity(3.24), we conclude that fos € Cg

llull -1 < oo.

Proof. We need to prove that there exists a cons@depending om such that

2
< > u(A)u(A)) < Clo|3, foreveryv € Fi .
Ae&yn

Denote byA the supportofi: A = {A: u(A) # 0}. Sinceu € F; ,, Ais afinite set. Considering that ;. 4 u(B) =
0 and performing a change of variables before apply Schwarz inequality for the last inequality, we get that

2 1 2
<Z u(A)n(A)) =?( > (u(A)—u(B))n(A)) <Cw Y (v(4) —o(B)?
A€y 1Al A,Be A A,Be A

Since A and B are fix sets depending on the supporupfve can go fromA to B changing point by point along
paths with jumps of positive probability, in order to get

3 (o) —vB) < Cu ol O
A,BeA

For the following result, recall the definition of the spa€gegiven in (3.12).

Theorem 4.7.Given® e F, there exists a sequengg in F, such that

lim |6 — £.ball-1,0=0.
r—0
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In view of identity (3.24), the previous result is telling that given a local funcgiamCp, there exists a sequence
hy in Co such that

lim — Lhy||-1=0.
A_)()llg -1

The proof of Theorem 4.7, presented at the end of this section, is based on the analysis of a resolvent equatio
associated to the operatfy,.

Proposition 4.8.Giveng e I¥ with llgll—1x+1 < oo for somek > O, for eachi > O there exists a unique function
fa € I with ||fa llo.x+1 < 00, that solves the resolvent equation
Mi—Lafa=9 (4.2)
in T¥. Furthermore, for each > 0, there exist constants;, depending ory and the probabilityp, such that
MfllPo; <Cjllgl?y; and [If2l5; < Cjllal®y ;. (4.3)
with Co = 1.

The proof of Proposition 4.8 requires some lemmas and some estimates on the opkratbrs £, and £,
presented in Appendix B. Lgf, be the subset of functions iy of degree less or equal than

Tn={f €L §(A) =0if |A| > n}. (4.4)
Consider the inner produgt, -))o,0, restricted to this space. Defifig, as the projection ot/,:
() =Y mi(h. (4.5)
i<n

In order to prove Proposition 4.8, we start doly the resolvent equation restricted §§. Fix « and consider
£, = I, £, 1T, as an operator frony, into itself. Forg, € 7,, consider the resolvent equation given by

A.f)\‘)n — Snfk,n =gn- (46)

Lemma 4.9.Giveg, in J,, there exists a unique solutidgp, € J, for the Eq.(4.6). Furthermore, if||gx|-1,0 IS
finite, then

2 2 2 2
MialZo<lonlPro Il o< lgnlleo (4.7)

Proof. We first show that the operatdy, is bounded and non-positive {7, { -, -)o,0). With these results, exis-
tence and uniqueness of solutions of Eq. (4.6) is proved in the usual way. For the first statement, by Corollary 4.3,
there exists a finite consta@t(n) (also depending oa) such that for alf € 7,

[€afllo.o < C@)fllo.o-

This implies thatf, is bounded operator ifT,,. To see that it is non-positive, by Corollary B.2, we have that for all

§ € Tny (€nf, o0 = (L5, o0 < 0.
To obtain the bounds, take inner produgt fo,0) with f, , on both sides of Eq. (4.6) to get that

MIfn IIao + (=LaTins andoo = (g, frndoo < [Ifi.nllrollgll-1o0.

Observe that the symmetric part of the operalgiis £; only when working with( -, -)o0. O

In fact we can obtain stronger estimates on the solyigrof the truncated resolvent equation (4.6). The following
lemma is taken from Section 5 in [11]. The estimates obtained in Theorem 4.1 are crucial in the proof of this result.
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Lemma 4.10.Letf, , be the solution of the equation

AMan — Lnfan = on- (4.8)
For anyj > 1, there exists a finite consta@t;, depending orj and the probabilityp, such that
)‘”fk,n”Qj < C,,'||Qn||31,j, ”fk,n”l_j < Cj”gn”_]_,j- (4-9)

We are now in the position to prove Proposition 4.8.

Proof of Proposition 4.8. The idea of the proof is to solve the resolvent equation projected’jpntand then to
show that the solutions converge to a functjgin the domain of the operatay, that solves the original equation.
Recall the definition of the projectiaff,, and the operatog, given in (4.5) and just before (4.6), respectively. By
Lemma 4.9, for each > 1 there exist$, ,, solution of

Man = Lnfan =yg. (4.10)
Since|| [T, gl-1.x < llgll-1.k, by Lemma 4.10

IFanll i < CllMTagli® g4 < Cillgl? 140

Ml < CollMTagl®yx < Cellgl® 14

In particular, for each, f, , is a bounded sequence figfo «+1. Then, there exists a subsequeﬂg@j converg-
ing weakly to some functiofy, with [|f, [|0.x+1 finite. We claim that the limit is a solution of the resolvent equation
(4.2). From Remark 4.4, we have thgy : ¥+ — T¥ is a bounded operator and so preserves weakly convergent
sequences. This means ttiatfx,,,j converges weakly t&,f, in Hi. We also have theﬁ,,lj converges weakly tf€,

in Hikand thatlT, g converges t@. All the previous convergences imply tHatis solution of the resolvent equation
onl:

My — Lafr =9.

Take inner product -, -)0,0 With f; in the previous expression and considering frizlongs tdl, use Remark
B.3 to get that

||fk||10 ||E||210, A“fk”oo ||E|| 1,0

Uniqueness of solution follows from the fact that- £, is a strictly positive operator off, for k > 1. To
conclude the proof of Proposition 4.8, it remainsget the bounds announced. Once we have solution for the
resolvent equation, the prove of Lemma 4.10 works. Then we get that dr,

AlflIE; < Cillgl? .
IF11; < CjllglZy .
whereC; are the constants appearing in Lemma 4.10.

We conclude this section with the proof of Theorem 4.7.
Proof of Theorem 4.7. Given® e F,, we know by Theorem 4.6 th§is|| 1 x < oo for all k. Then, by Proposition
4.8, there exist$, solution of the resolvent equation
Ay — Lafr = -6, (4.11)
in TX, for all k > 0. We will see that

lim |6 — £ofall-1.0=0. (4.12)
r—0
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Then approximate€, f, by £455 in || - |10 with b, in F close tof, in the| - |l1,0 norm.
To prove convergence (4.12), we start showing 2. is bounded for thdf - || 1.0 norm. Then we characterize
weak limits. Finally we prove that, f, is Cauchy for thé| - ||_1,0 norm.
Take inner product((-, -)o,0) with f, on both sides of Eq. (4.11) and recall ti{at®, f, )o,0 < |G| =10l fr 1.0,
to get that
31120 < [1B]-1,0,
2(Fas $200.0 < 18112 1 o

Observe, in particular, thatf, converges to O in théd - ||o,0 norm. As £, is a linear combination o£,, for
x=gs,d,+, —, use Corollary 4.3 and Proposition 4.8, to get that

1£afrll-1,0 < C@)lfallz0 < C(@) 1G] -1,0.
Thereforeg,f, is bounded for thgf - | _1.,0 norm. As in Lemma 2.8 of [6], we can prove that
(1) If £4x; converges weakly iff - |10 norm ask; | O, then the limit is&.
(2) There exist$ € 1,0 such thaf, converges strongly tpin 91 o.
Since, by Corollary 4.3,

1€afr — Laf;ll-1.0 < C@) I — 5110,

and sincef;, converges strongly ish1,0, £« 5 is Cauchy for|| - | _1,0. Considering that we have just characterized
all weak limit points, it follows that’, f, converges strongly t& in | - ||-1.0:

I€afr — Bll—1,0— 0.

Take b, in §, such that lim_o[f» — ball1,0 = 0. From Corollary 4.3, we get thatC,fr — Lubhall-1.0 <
C(@)|Ifr — ballro. SinceL,f, convergesta in $)_1 o we can conclude that, b, also converges t® in $_10:

lim [|€4h) — Bll—1,0=0. O
A—0

Remark 4.11.Recall that in Remark 4.4 we said that the operalgradmits an extension from1,o to $_1.0.
Some how, we are saying that we can solve the equafigra= & with { in $1 0.

5. The spaceH,

We prove in this section a structure theor for the Hilbert space of variancd4,, that allows to derive, in the
next section, an explicit formula for the diffusion coefficidht ; (o). Recall thatr = (07, j)1<;, j<a. IS the matrix
defined byo; ; = Zy s(y)yiy; and thaty (o) = «(1 — ). Fora € (0, 1) andh € Co consider

1
() = sup{ZZai ()i — 5x(a)a*oa} + sup{2(g, )e,0 — (—L*g, g)a0}, (5.1)
acR? 8<Co
where
(hhai= Y (xin@h),,  (hehao= Y (th.g),
xezd xezd

anda*oa is matrix product witha* for a line vector inR?. Observe that in each of the previous summations, we
only need to consider a finite number of terms siheeCop.
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It will be useful to denote byj#||, the first term on the right hand side of (5.1).

We prove in Lemma 5.2 thath), < oo for everyh in Co. Recall thatH,, is the Hilbert space induced by the

semi-normy{ «))i/2 onCp. In this section we show that every elementip can be approximated by’ D;[n(e;) —

7(0)]+ Lu for D in R? andu € Co. The main result is the following.
Theorem 5.1.

Hy ={n(ej) —n(0),1< j <d} @ LCo. (5.2)
In fact, giveng e Co, there exist uniquéD; («), 1 < j < d} such that

d
inf <<g +Y Dj@)[nle;) —n(©0)] - Lu>> =0.

ueCp =

Furthermore, considem; € F, 1 given by
m; ({x}) =2a(x)x;. (5.3)
Then

Dj(a) = m«”lg»a,j + Jil)no((fx, m;}o,0,

wheref, solves the resolvent equation
Ar — Lafr =—%g
in Z,., g denotes the Fourier coefficients@hind< is the operator defined i(8.5).

The proof of this result is presented at the end of this section.
We start proving thagh),, is finite forh € Co.
Lemma 5.2.1f h € Cg then(h), < oo.

Proof. We need to see that each term appearing in definition (5.1) is firfite f. For the first one, recall that
1
llAlle = aSElIJ&EJJ{ZZai (hda,i — Ea{l - a}a*aa}. (5.4)

This term may be computed since the matrikas an inverse. Piif for the column vector iiR? whose coordinates
are given byH; = (h),.;. Denote byH* the transposition ofl and byo ~! the inverse of the matrix. Then we
have that

IAlle =2/ x («)H*o ~1H.

The second term appearing in definition (5.1Dh$§l, defined in (3.21). In Theorem 4.6 we claimed thvaff—1 <
oo if h € Cp. This completes the proof of the present lemma

Observe that the semi-norir), depends only on the symmetric part of the generator. It may be proved,
as in Chapter 7 of [2], that given a cylinder functidnn Cp and a sequence of positive integéfs such that
0< Ky < (2¢+1)? and limy— o0 K¢/(20)? = «, then

Elem(zz)—d<(—LfAl)‘1 D who Y rxh> = (h)a, (5.5)

IxI<ep IxI<en LKy
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whereLSM represents the symmetric part oéthenerator restricted to the bax = [—¢, £1Y N Z¢, ¢, is such that
ngh 7. h IS measurable with respect {9(x); x € A}, €,/¢ — 1 and we are considering the uniform measure
on the space of configurations in the hax with K, particles. Observe that, sinaes Co, (k)¢ x, = 0 for all Ky,
for ¢ big enough. This fact guarantees that the left hand side inside the brackets in (5.5) is well defined.

Recall from (2.3) thaW, ., andW; stand for the current of the process and the dual process, respectively.
For1<i <d, let

Vit =Y yi[n© —n(»]s), (5.6)
y

Xty

1 1
WrEm =352 yiWs,.  Win =33 yiWoy. (5.7)
y y

As in [5], we present some identities that can be formally derived from (5.5), and the rel&fiphs; n(x)] =
S W and L[> xin(x)] = 1/2> " 7, V;. They will help the reader to follow the references appearing in this
section.

(L*8, Vida = —2(Wi, g)a,0, (Lg, Vi)a = —2(W/, g)a,0,
(Vi,hYa = =2(h)a,i, (Vi.L'g)a =0,
(Vi, Viha = 2x (@) 0i k. (L* f. h)a = —{(fs h)a.0- (5.8)

A crucial difference between symmetric nongradient systems (as the symmetric generalized exclusion process
and asymmetric ones appears when we want to comfuiieLh)), . In the symmetric case, the last line in (5.8)
gives us an explicit formula for this object. In the asymmetric case, the sector condition proved in Theorem 4.5
allows to controk{ Lk, Lh), interms of(LSh, L*h),. The following proposition is a consequence of Theorem 4.5
and (5.5).

Proposition 5.3.There exists a constant depending only o the pobability p such that
(L*h, L*h)o < C{L*h, L°h)q

and
(Lh, Lh)o < C{L°h, L h)q,

for any functiom: € Co.
We start studying the spaces itwed in decomposition (5.2).
Lemma 5.4.{[n(e;) — n(0)], 1 <i < d} are linearly independent i/,

Proof. From {V;, Vi)o = 2x(x)oix we get that{V;,1 < i < d} are linearly independent i&,. On the other
hand, sincer = 7.4 in H, for anyh € Co andx € Z¢, we get that

Vi=Y 3i[nO) —nM]s) = yiyi[n0 —ne)]s) = _oi;[n0) —nie)]-
y v, J
This means thatV;, 1 <i <d} and{[n(e;) — n(0)], 1 <i < d} generate the same linear spacélin O

The following result is, essentially, Lemma 3.6 in [3]. It states that the spaces gend¥ating5.2) are in direct
sum.
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Lemma 5.5.The linear space generated by;, 1 <i < d} in H, does not intersect the closure bfp:

d
:Zaiv,-: aeRd} N LCo = {0}.

i=1

To complete this section, it remains to prove that the spaces presented in the decomposition (5.2) generate th
spaceH,,. Recall that in the space of Fourier coeffidigrwe have defined the projections operatorsL2(£) —
L2(&,) in (3.10). We also use, to denote the projection operator frob?(v,) to the subspacé,, defined in
Section 3. If f =} ¢ f(A)Wa, we userm, f for 3, ¢ f(A)Wa. With this notation, we have that =} 7, f.
Observe thatrg f = E,, [ f] = 0 since we work with functiong € Co. We say that a cylinder function has degree
n if all its Fourier coefficients are zero, except those of degreg= 3", .o f(A)¥a.

The following lemma shows thdtz ||, is relates tari 4, the degree one part of the function, while the second
term in the right hand side of (5.1) is relatedite- w1 4.

Lemma 5.6.For everyh € Co, we have that

(h)a = llm1hlle + (Z(H — w1h)-1,0.
wherel are the Fourier coefficients éf and¥ is the operator defined i(8.5).

Proof. Functions of different degrees are orthogonatfjsince the operatak® preserves degree. Then,
(Y = (m1h)o + (h — T1h) .
We claim that{m1h), = ||71hlle and {h — m1h) = (Eh)—_1.0. For the first identity, observe thatlifandg
denote the Fourier coefficients bfandg, respectively, we have that
(g mihYao= D blx,@) D gy, @) =0,
xeZd yeZd
by (3.2). Then, the second term in (5.1) is equal to zetotihs degree one. So that1h )y = [I71% -
For the second identity, observe that fiox with |[A] > 2 , we have
(Pa)ai= Y _ (xin(x)¥4), =0.
xeZd

Sinceh — mh = Zn>2 ZAEgn h(A)Wa, we get that{h — m1h)e; = 0. In particular,{h — m1h)y = ||T(H —
m1h)ll=1.0 = [|Zhll—-1.0 SinceTr1h = 0, as we observed at the first point of Remark 3.4

Proof of Theorem 5.1. We need to prove that givene Co, there exist uniquéD;(«), 1 < j < d} such that

d
inf <<g +Y Dj@)|[nle;) —n(0)] - Lu>> =0.
ueCo i

o

Uniqueness foD; follows from Lemmas 5.4 and 5.5. From Lemma 5.6, we know that

<<g + Xd:D,-(a)[n(ej) —n(0)] - Lu>>a

j=1

+ 1% — LaFull 1,0, (5.9)

o

d
mg+ Y Dj@)[n(e;) —n(0)] —miLu
j=1
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where, as usualy and g are the Fourier coefficients of and g, respectively. At this point we realize that is
convenient to work in the spadg. Put® = Tg andf = Tu. From Theorem 4.7, we know that there exigtsin
Fi such thaf]l® — £,h,|-1,0 goes to zero ak goes to zero.

Takeu,, € Co such that¥(u,) = b, asin (3.1). We have that

11“0<<g + 3" Dj@[nte)) —n©] - Lux>>a - lm

so we need to find; («) such that

T8+ ZD-/ (@)[n(e;) =n(0)] — w1Luy

9
o

—0. (5.10)

o

lim llmag + > Dj(@)[n(e)) = n(0)] = maLu;

Looking at the explicit formula fof - ||, given in the proof of Lemma 5.2, we reduce the problem to find

Dj(a) such that{mig + " Dj[n(e;) — n(0)] — w1Luy)qx goes to zero fok =1,...,d, asi goes to 0. Since
{n(e;) — n(0) Yok = bk, j x (o), we need to prove that

1 .
Dj(a) = m[_«ﬂlg»a,j + A|ILT10<<711LMA))oz.,j]
is well defined. From the dual representation for the opetatatained in Section 3, we have that

mi(Lu) =Y Lan(0)W +(1—20) Y Loua(x)¥

xeZd xezd

+Vx(@) Y Low0)W +Vx(@) Y L)y,

xezd xezd

where the operators involved in the previous expression where defined in (3.29).
By constructiony, (x) = 0 for everyx in Z¢ (see Remark 3.1) and also

1/2,(x) it y=0, x#0,
1/2h,(y) ifx=0, y#0.

Then, an elementary computation gives that

miLuy =+/x(@) Y Low 20% =Y a(@)hu(x){nx) —n(0)}.

xezd

uA(X,y)={

Since
[n(x) =), ; =xjx(@
we have that

(1L )e,j = x(@) Y a(x)h(x)x),

xeZd

so that

1 _
m A"LnO«ﬂlLu;\))a,j = )[TO«E))” m;)0.0-

with m; defined in (5.3). Recall, from Theorem 4.7, that we tgake F. such thailh, — f,|l1,0 goes to zero ak
goes to zero, with; solution of the resolvent equation (4.11). Simegbelongs taf_1 o, we have that

1@0((17;\, m;)oo0= J@OKTA, m;)o,0. (5.11)
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This last limit exists sincé, is convergingin| - ||1,0 (from the proof of Theorem 4.7) and; belongs taf_1 o.
Finally,

-1
Dj(a) = ——{(m18ha,j + I|m {fr, m; 0,0,
X (@)

with f, solution of (4.11), is well defined and solves the problermm.

6. Regularity of the diffusion coefficient

The goal of this section is to prove Theorem 2.1. In order to do that, we start deriving a convenient expression
for the diffusion coefficient. This new formulation, together with an appropriate way of differentiating, allow to
prove the regularity properties of the diffusion coefficient.

As we mentioned in Section 2, the techniques dgvetl to prove hydrodynamic behavior of nhongradient sys-
tems show that the diffusion coefficief% ; («) of the hydrodynamic equation for the mean zero simple exclusion
process is characterized by

inf <<W +ZD1,(01) n(e;) —n(0)] — >> =0, (6.1)

ueCo

whereW; and its Fourier coefficient8J; (A) = 20; (A, «), are given by

Wi(m) =1/2) yiWo,=1/2)_ yin(=y)p(») — Y_nOn(a(y)y; (6.2)
y y y
and
—Vx(@)yi(1/2p(—y) +aa(y)) if A={y},
Wi (A, @) = —x(@)a(y)yi if A=1{0,y}, (6.3)
0 otherwise

Theorem 5.1 guarantees the existenc®pf («) satisfying (6.1). Furthermore, as in Section 7 in [2], with the
help of Proposition 5.3, we can prove that

inf su <<W, + D; j(a)|n(ej) —n0)| — Lu>> =0. 6.4

ueCan[oq] ; ’ [ ! ] o (64)
Also, as in Lemma 5.2 of [5], we can prove that

inf  sup <<W,* + D; j(a)|n(ej) —nQ)| — L*u>> =0, (6.5)

UECan[O 1 ; / [ J ] o

whereW? is obtained replacing(y) by p(—y) in formula (6.2).
To get an explicit formula for the diffusion coefficient, go back to Theorem 5.1 to get that

-1
@ ——{m1Wida,j + I|m (s, m;)o.0,

wherem; is given in (5.3) and wherﬁ is the solution of the resolvent equation

l/(a)

Ay — Lofh = -2,

Elementary computations give that
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LW; = —x ()m;,
1 1
(Wi j = =5x (@) Y 3iyjp() = =5 x (@) ),
so that

1 T
D,’)j(Ol) 20’, it Ilm X(Ol)<< f( ) j>> .
0,0

Letf. =fi /x () to obtain thaf! is the solution of the resolvent equation

M — Loff =m
and that
1 . .
D; j(a) = 50 +A||Lnox(01)((f’p m;)o,0. (6.6)

Remark 6.1.As we observed in the proof of Theorem 4.7, there exisis 1o such thaﬁi converges t@;, as
A1 0. Asin Lemma 2.8 in [6], we get that(f: , ; )o,0 converges to zero, a@s| 0. This allows us to prove that
D(a) > 1/20 in the sense of matrix, since

lim > aidf,. mooa; =11 aif I3 0> 0.

Proof of Theorem 2.1. Considering the formula presented in (6.6) for the diffusion coefficient of the hydrody-
namic equation, the proof of its regularities propertieg@rl) is a simple consequence of the following lemma.
At the end of this section we give a reference to understand the behavior at the boundary.

Lemma 6.2.Taker and &, finite supported functions i, with values not depending @n Consider the resolvent
equation

M) — Lafa(@) =t. (6.7)
For eachi > 0, consider the functio®,, : [0, 1] — R defined by
G (@) = (fa(@), Sho.o. (6.8)

Then, there exists a subsequenge| 0 such that®,, converges uniformly to a smooth function [ 1].
Furthermore, the limit is continuous in the whole interval an® in its interior.

Proof. To prove the existence of such subsequence we will show that the funétjoase smooth for each > 0
and we will get uniform bounds, ik > 0, for the L norm of the derivatives:

sup sup &% ()| <Ac Ve, Vk,
A aele,l—¢]

where the upper index indicate théh derivate. Fok = 0 we need to show that the functiotis are continuous
and uniformly bounded ifi0, 1]. In order to get the announced bound fo& 0 bound, take inner produgt, -)o.0
with f, on both sides of Eq. (6.7) and use thét, v)o.o| < |[u]l1.0llv]-1.0 to get that

(2200, 11(@) g 0 = (Lafr (@), fr(@))g o = (v, Fi(@))g -
M@)[2 o+ [fa@)]2 o < |12 @] olltl-vo0.

[f.@) [ o < lIEl-10.
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Then, for every. > 0, we have that
|85 ()| = |(fa (). 6))0,0\ < lel-1,0l161-1,0,

where, by hypothesis, the last term does not depernd on

The following step is to differentiate (and also prove continuity on the whole intgdya]). This is the content
of Lemma 6.3, below. It says that we can differentifit@r) in | - [l1,x. Furthermore: the derivat§, (o) satisfies
the resolvent equation

A (@) — Lo 5 (o) = £ (@) fa(a),

with £'(«r) defined below (formula (6.13)). The#, (o) = (f; (@), G)o,0. Once we have differentiated, we need to
bound. For that, recall Proposition 4.8. and Corollary 4.3 to get that

| @0 < |€@h@]_y o< C@]fr@],
Collecting all these estimates, we get that
|8 (@)] = |(F.(), S))g 0| < [|F5 (@)1 01 SlI-1.0 < C@tl-1,0l1S]-1,0
for C(a) continuousin0, 1). Now, applying to Corollary 4.3, we can check tifato)f; (o) satisfies the hypothesis
of Lemma 6.3. So, iterating the previous argument, we can differentiate and boand.
We end this section with the announced result that gives sense to differentiate.
Lemma 6.3.Considerg(a) with ||g(a)||_1; < oo for everyk. For eachi > 0, let §; («) be the solution of the
resolvent equation
Mi(@) — Lafala) = g(o).
Fix « € (0, 1). If
fim Jote+m) —g]_;, =0
for all k > 0O, then we get that
lim [[f3.(cr + ) = (e[, — O, (6.9)
fim [ + 1) = (e[ g, = O (6.10)
for all k. Furthermore suppose that there exists a functiéux), with | & («)| -1« < oo for everyk, such that

HM —Qj(a)‘ -0 (6.11)
h —1.k
ash — 0Ofor everyk. Then, fora € (0, 1) and fixed, there exis§, («) solution of the resolvent equation
A8 (@) — LT () = B(a) + £, (@), (6.12)
where
£, = 284+ /x (@) {4 + £}, (6.13)
such that
frle+h) —fala) (@) o0
h Lk
fala +h) — fr(@) —F(@) 0
h 0.k

ash — 0, for everyk.
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Proof. We have fixeda € (0,1) and » > 0. Call R(a) = /x(«). By Proposition 4.8, in order to guaran-
tee existence of solution for Eq. (6.12), we need to prove fitste) + £, f,(e)||-1,1 < co. By hypothesis,
B (w)||-1,1 < oo. For the other term, use Corollary 4.3 and Lemma 4.10, for each of the following inequalities

€452 @) _1 4 < Colfa@]y; < Cafla@]_y ;.
where the operata, stands fortlg, £4, £4, £_. Then, we get that
|Cafr@] _py < C@fa@]_y s
Let &, (@) be the unique solution of (6.12). We want to see that the incremental quotigpfin «) converges
to 8. ().
Consider the following resolvent equations:
Mi(@) — Lafala) = g(a),
AMla+h) — Lgamfr(a+h)=gla+h).
Subtracting them we get that
Mfala +h) = fa(@)] = Lo[fale +h) — fa(@)] = gla + h) — g(@) — 2hLafs (@ + h)
+ (R( +h) — R(@)) (L4 + £)fala +h). (6.14)

At this point, using the bounds obtained in Proposition 4.8 and computing-tie; x norm of the right hand
side of (6.14), we get the convergencein (6.9).
Consider the following objects

fala +h) — faler)

fy (e, h) = - Sal@),
g*(a, h) = w — B(a),
R*(a, h) = w — R(a).

Subtract Eg. (6.12) from Eq. (6.14) divided byo get that

A () — Loff (e, h) = g* (@, h) — 284 [l + h) — fa(@)] + R* (o, ) (E4 + £ )l + h)
+ R'(@) (L4 + L) [fale +h) — fa(@)].

Using the hypothesis concerniggx) and®(«), Lemma 4.10 and Corollary 4.3, we can see that|thg_1
norm of each term on the right hand sidettod previous expression vanishegias0. Then, applying Lemma 4.10
we conclude the result.O

Remark 6.4.In order to prove differentiability of the function®; ;(«),1 < i, j < d} at the boundary of the
interval [0, 1], we change the parametrization with= siré(z), with 7 € [0, /2], and reproduce the work done
in [8].
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Appendix A. Decomposition of a mean zero probability as a convex combination of loop probabilities

We start explaining what a loop probability is. Given ..., ay points inZ¢ such thatzf\’:1 a; = 0, consider
the probabilityr that assigns massy & over eachy;, fori =1,..., N. As we do not require the points to be
different, this is not necessarily an uniform probability. Observesthiata mean zero probability; we call it a loop
probability. In order to motivate the name of this probability,;set Z’jzl a;j and observe thaty = 0. This means
that starting from the origin, jumping frony to y; 1 we arrive back to the origin. The poingg =0, y1, ..., yn
form a loop (or cycle)y;+1 — yi = a; is called a jump.

Definition A.1. A probability  is a loop probability if there exists a closed pagh= 0, y1, ..., yy = 0in Z? with
Yi+1 # y; such that

1 N-1
m(x) = N Z lx=yip1—yi)-
i=0

Definition A.2. Given a probabilityp onZ¢, we say thak is in S, the support op, if p(x) > 0:
Sp =[x € Z%; p(x) > 0}. (A.1)
We say thap is compactly supported 8, is finite.

The main object of this appendix is to prove tleaery compactly supported mean zero probabjitpn Z¢
may be written as a convex combination of loop probabilities.

Lemma A.3. Given a mean zero compactly supported probabititgn Z¢, there existsr; >0for j=1,...,s
with Z;:laj = 1 and loop pobabilitiesz; supported inZd such that

s
p:ZOlj]Tj.
j=1

Proof. We will usez; to denote vectors in different spaces ahdor theith coordinate of the vectar;. Observe
that if p(x;) € Q for all x; € S, thenp is itself a loop probability. In this case we get thatx;) = m; /b for all
x; € Sp, withm;, b € N — {0} and)_m; = b. This corresponds to a loopgirability taking the jump; m; times.

We will prove the lemma by induction im, the number of points irhe support offie probabilityp: n = #S,.
Observe that, since the probability is definedZgnand has mean zero, the support has at least two elements and
0¢S,. Because of that, we start the induction with- 2.

(1) n =2. In this case we get that exisf, x2 € Z¢ such
x1p(x1) +x2p(x2) =0 and p(x1) + p(x2) = 1.
This two equations determine Solving for p(x1), p(x2), we get that
p(x1) = —xp/(x} —x3) and p(x) =xi/(x] — xh),

independently of. This shows that the probabilify takes values if) and then it is a loop probability.
(2) Inductive step: consider supported in a set of cardinality> 2. We would like to write

p=cim+Q—c1)p

for some O< ¢1 < 1, 71 a loop probability,5 a mean zero probability o/, supported in a set with less than
n points. In this case, by the inductive hypothesis, we will be able to deconfpasea convex combination of
loop probabilities and therefore, the same holdsgfor
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The problem is reduced to prove the existencergfa loop probability concentrated By, = {x1, ..., x,}. If
suchmy exists, take

c1= rq,inp(xi)/ﬂl(xi).

Since bothp and 1 are probabilities¢; < 1. If ¢c1 = 1 thenp = 71 and p is a loop probability. Otherwise;
defined by

. p(x;) — cima(x;)
p(xi) = T 1o
e

is a mean zero probability i’ whose support is smaller than the supporppéis we wanted.

We will now prove the existence of a loop probability concentratedhin. ., x,. We are looking for a linear
combination ofx; with rational positive coefficients that adds up to zero, ges Q, ¢; > 0 such thad_g;x; =0.
Then, we normalize and obtain the desired probability.

SinceY_!_; p(xi)x; = 0 with p(x;) > 0 fori =1,...,n, we know that the vectors, ..., x, are linearly
dependent iiR¢. Without loss of generality, we may suppose that . . ., x,} is a basis o, the linear subspace
inR? generated byy, .. ., x,, With s < n. Let A be thed x s matrix defined bW, ;= xi]. Observethat : RS — V
is one to one and that it inverse assignees to each ve&dr its coordinates in basgsy, ..., x;}. Consider the
function f:R"™* — RS, given by

flut, . ung) = — A" urxg 1+ upxsio 4 - A o).
Note that
n
Zuix,'zo < (U1, ... us) = f(Usq1,---,Up). (A.2)

i=1
In particular, sincé_;_; p(x;)x; =0, we get that

px1), ..., p(xg) = f(p(xs-i-l)a cees p(xl‘l))a

with all the entries ofp(x;) for 1 < i < n positive. By continuity of the linear transformatigh we can choose
(gs+1, - --»qn) close to(p(xs+1), - .., p(xy)), positive and rational, such th@i(gs1, ..., gn) is also positive (and
clearly it is rational becausé 1 is a rational matrix). Then

Uty ..., us= f(gs+1,---,qn) and iz =gqsyi, fori=1,....,n—s

are the coefficient that we are looking foro

Appendix B. Estimates on the operators€,, £4 and £_

In this appendix we prove some results involving the operatpr€,, £+ and£_. Most of them were presented
in Section 4.

Recall that forf € F; f(S;A) =f(A) for all z in A.

A simple computation shows that the operatdysaand £, sendZ, , into them self, while€; and£_ mapZ, ,
into Z. ,+1 andZ, ,_1, respectively.

The following identity illustrates the fact that the spdge=njoys some special properties. For evieil§, 1 — R,

(E-P(¢)=-2)_a@)f(ix}).
x#0
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In particular,(£_)(¢) = 0 for all f in Z, 1 because in this spad€{x}) = f({—x}) anda(-) is anti-symmetric. In
contrast(£+g)({x}) = 0 for all functionsg: £,,0 — R so that, for allf in Z,. 1 and allg: £, 0 — R,

£_§=0, L£.g=0. (B.1)
Other important consequences of working on the sflace stated in the following lemma.

Lemma B.1.For everyr > 1 and every finitely supported functionso € F
<£du1 U) = _(uv Sdn>
For every finitely supported functiofisg in F. ,—1, F«.n, respectively,
1

1
m(£+f7 g)= —;ﬁ: £_9).

Proof. The firstidentity relies on the factthat, |, a(y —x) = 0. Note, however, that both pieces of the operator
are needed.
For the second statement, observe that for each fixed dengiiyen f andg in Co, we have that

(L°f.g)=(f.L'g) and {(Lf g)=—(f L ). (B.2)
The second identity implies that

(e = £, )0 = ~{. (2« = )l o
for §, g € F.. Considering the first identity of the present lemma and chogsing. ,—1, andg € F. , get that

1 1
m(£+f’9>=—;<fa £_g). U

Corollary B.2. The operator; + £_ and.£; are anti-symmetric with respect to the inner prodyet-)o,o:

(1. (€4 +L£g)g 0= —((L+ + £)f. g)y o
(F, Lagho,0=—{(Laf, 8)o,0

for all finitely supported functionfs g in F.. The same statement remains in forcé_f+ £_ and £, are replaced
by IT,(£+ + £)1IT, and IT, £, 1T, respectively, for every > 1 with f andg in 7, defined in(4.4).

Remark B.3.From the previous corollary, we get that, for eveig Fy, (£f, f)o.0 = (£sf, f)o.0. Considerk > 1.
Givenf e Hi, takef, € F. such that||f, — fllox goes to zero as 1 oo. Sincef, and £, are bounded operators
fromIX to 12, we get that{L,§. f)o.0 = (£f, oo

Recall Theorem 4.1 from Section 4. Hereafter the congtgmhay change from line to line.

Theorem B.4.There exists a finite consta@t, depending onyl on theprobability p, such that

(L4, 9)2 < Colf, —Ls) (g, —L5)

for eachf, g in Z, ,. The same result remains in forcedj is replaced by2 or £_ with g in Z ,4+1 andZ, ,_1,
respectively.

The proof of Theorem B.4 is divided in several lemniasfore starting, we need to introduce some definitions
and recall some results. Since the||1 norm plays a crucial role, we give its explicit form. Hog Z,. ,,, from the
definition of the operatog; given in (3.18), we get that

F.-&h=1/4 Y so-x Y [[Bey — B +1/2> st Y. [i(5,B) - (B (B.3)

x,yeZ‘j Be&y y B: y¢B
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where B, , was defined in (3.16) an#l, B in (3.7). Observe that first term of the previous expression, may be
written as

% Z s(b) Z Z [[(AU{x +b}) —§(AU {x})]z. (B.4)
beZd XEZf{ Aeg*,n—l
AN{x,x+b}=0

Theorem B.4 will be proved for loop probabilities. Since we proved in Appendix A that every mean zero
probability p may be decomposed as a convex combination of loop probabilities, considering formula (B.3), there
is no loss of generality in the proof of Theorem B.4 assuming phiata loop probability.

For a loop probability we prov&heorem B.4 by induction on the lengthtbe loop. For the inductive step, we
need to relate th¢ - |1 norms corresponding to differeprobabilities. Forhis purpose, we define the following
objects. Recall that theupport of theprobability p was defined as

Sy = {x: p(x) > O}. (B.5)

We say thak is attainable if it may be connected with the origin in the following sense: there exists a sequence
20=0,z1,...,2z, = x With p(z;+1 —z;) > 0. We say that is attainable aftem steps ifm is the length of a shortest
path connecting with the origin. We note byA, the set of attainable points for the probability Observe that
for mean zero probabilities), = A, wheres is the symmetric part of the probabilify. This result is clear for a
loop probability and then, by the decomposition result, the same holds for every mean zero probability.
A straightforward computation considering that we are working.in, shows that Dirichlet forms associated
to different probabilities are related in the following way:

Remark B.5. Given two mean zero probabilitigs and p, with S,; € A,,, there exists a finite consta@tsuch
that
(f. —£) < C{f. =L,

whereg! are the operators defined in (3.18drresponding tthe probabilities; fori =1, 2.

In what follows, we deal with the operators defined in (3.30), associated to different probabilities. In order to
avoid confusions, we will uséf for x = s, d, 4+, —, to denote the corresponding opera related to the probability
. We are now able to start proving Theorem B.4. Almost all the computations are obtained performing some
change of variables and considering that we are working with functions in the $pace

Lemma B.6.Given a loop probabilityr there exists a finite constagly, depending oyl on theprobability 7,
such that

(g, L1172 < Colf, —£7 f){g, —£7 9),
for eachf € Z -1, § € Zs .

Proof. The proof of this result is by induction in the length of the loop. We show the inductive step and prove the
result for a loop of length three, since for smaller loop the operator vanish. Note that the co@ssautt§y may
change from line to line.

Fix a loop probabilityr = {yo, ..., ym}, With @; = y; — y;_1, fori =1,...,m. An elementary computation
shows that

(@ LH=2 " Y aly—x)gf(A\{y})

A€&yy x,yEA

+2 ) D ama@[f(A\ {x) = f(Se(A\ (x))]. (B.6)

A€y, xeA
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Observe thati(y — x) = £1/2m for y — x = +a; anda(y — x) = 0 otherwise. Then, except for— x = a; or
y —x = —a;, a(y — x) = 0. Thus, the first term in the right hand side of (B.6) is equal to

%Z Y AuG)e(AU xx +a))

i=1x#0,—a; A€&,_2
AN{x,x+a;}=0

_%i Z Z f(AU{x})g(AU{x, x —a;}).

i=1x#0,a; A€ 2
AN{x,x—a;}=0

We perform a change of variables in the second term of teei@us expression and get that the difference is equal
to

%i 3 > [HAu)) —fAUufx+ai))]a(AU {x. x +a;)).

i=1x#0,—aq; Aep_2
AN{x,x+a;}=0

Recall thata(x) = 1/2m for x = a;, a(x) = —1/2m for x = —a; and use this fact to write the second term on
the right hand side of (B.6) as

1 m 1 m
~> 2 [Ww-iGuala(avtal) == > [((A)—§6S-aA]s(AU{-al)

i=1 Acn1 i=1 Act,,1
Anta:}=0 AN{—a;)=¥
1 m
=223 3 [~ (S A)]a(4 U i),
i=1 Aeg*,n—l
Aﬂ{a,-}:(/)

where we performed a change of variables in the second Bne §_,, B) and used that fog € Z,, we have that
9(Sy; BU{—a;}) = g(Sq; (B U {a;})) = g(B U {a;}) to obtain the last identity. Let

No= Y > [HAut) = §(AUx+b))]a(AUx, x +b)), (B.7)
x7é0>7b Aeg*,n—Z
AN{x,x+b}=0
My= Y [f(A)—§(SpA)]a(AU b)), (B.9)
Aeg*,n—l
AN{b}=0
so that

m m
<g7£1ﬂ=12Na, +EZMQ,
n i=1 n i=1

We are ready to perform the inductive step. lzet= )" ;a; and consider the loop probabilities; =
{yo, ¥1, ¥2, yo} andm2 = {yo, y2, ¥3, ..., ym} corresponding to jumpas, a2,z and —z, as, ..., a,, respectively.
Observing thatv_, = —N;, andM_, = — M, we get that

m m
(g, £1f) = 1/m[(zva1 + Nop + No) + N + ZNa,} + 1/m[(Ma1 + Moy + M) + M, + ZMa,.]
i=3 i=3
=3/m(g, &) +m — 1/m(g, £7%f).
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SinceS,, C A, by Remark B.5 we get thaf, —£{'f) < C(f, —£7f) for i = 1, 2. This fact and the inductive
hypothesis give that

(g, L1H? < CL(, L) (g, £700) + (F, £72)(8, £729)} < C(f, £ P (g, £7 ),

which concludes the inductive step.

Now, we need to prove the estimate for a loop probability of length three. Consicaresponding to jumpsg
fori =1, 2, 3 with aj + a2 + az = 0. We start showing the{tzle Ny, 12 < Cf, £71)(g, £7 g) and then we prove
the same kind of bound quf’zl M, 2. To keep notation simple, let= 1 and take:; = 1, ap = 2 andaz = —3.
According to definition (B.7) fowv,, we get that

iNa,: > > AU —f(AUtx+1})]e(A U {x, x + 1))

x#0,—1  Ae&, 1
AN{x,x+1}=0

+ 2 Yo [HAUG+1) —fAU{x+3))]g(AUtx+1,x +3})
)C;ﬁ*l,f?, AEg*'n_l
AN{x+1,x+3}=0

+ 2 > [HAUtx+3) — AU {x)]e(AU x, x +3}), (B.9)
x#0,—3 A€,
AN{x,x+3}=0

where for the second and last line we performed a change of variable. We will decompose this sum in three terms
21'3:1 Ny, = T1 + T»> + T3. The decomposition appears because we want to add over the same valaegidhen

we work for adding in the same seds For Ty, take from (B.9)x = —3 in the first line,x = 0 in the second line

andx = —1 in the last oneT> is obtained taking: # 0, —1, —3 in the three sums of (B.9) and imposidgto
containx + 3, x andx + 1 in each line, respectively. Finall§z is obtained taking: # 0, —1, —3 in all the sums

and imposingA not to contain each of the previous elemeRscall that we are working with finite setsin Z¢.
Sometimes we omit from the notation the cardinaofSome others we put in evidence than {0} = @. For Ty,

we get

= Y  [f(Au{=3})—f(Au{-2})]a(AU({-2 -3})

AN{—-3,-2,0}=0

+ > [HAUW) - §(AUE)]e(AU{L3)

AN{0,1,3}=0
+ Y [fau@)-faui-1})]s(Au(-1.2). (B.10)
AN{-1,0,2}=0
Let S34 = B in the second line of (B.10) ang A = B in the third one to get that
Ty = > [HAu{=3) - HAu{-2)]g(AU{-2.-3})

AN{—-3,-2,0}=0

+ > [H(S-3AU{1}) — f(S_3AU(3})]g(S-sA U{L.3})
AN{—3,—-2,0}=¢

+ > [H(S24U{2) — f(S_2AU{-1})]a(S24 U{-1.2}).
AN{=3,—2,0}=0

Recall that, by definition of;, S_2A U {—1, 2} = S_2(A U {—2, —3}). In this case, sincgandg belong toZ,, we
getthatg(S_2AU{—1,2}) = g(S_2(AU{=2, —=3})) = g(AU{-2, —3}). Itis not difficult to check, using this kind
of identities, that the previous expression vanishesIgpwe get that
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o= Y (AU +8) = f(AU{x+1,x+3))]a(AU{x, x + 1,1 +3))
+Y Y [HAUfrx+1) —f(AU (x, x +3)]g(AU (x,x + 1,5+ 3))
+3 ST HAU G+ Lx 4+ 3) = (AU . x + 1) Ja(A U o, x + L x + 3)),

where the first sum in each line is for£ 0, —1, —3 and the second one is fdre &, ,_3 such thatd N {x, x +
1, x + 3} = ¢¥. ThenT» vanishes too. Finally, forfs, we get

T3 = ZZ[f(A U{x})—f(AU{x+1}))]g(AU{x,x +1})
+ Y AU +1) —f(AUx+3})]g(AU {x +1,x +3})
+2 D [f(AULxr+3) —f(AU{x})]a(A U {x. x +3}). (B.11)

where the first sum in each line is for 0, —1, —3 and the second one is fdre &, ,—3 such thatd N {x, x +
1, x 4+ 3} = ¢¥. Add and subtradi(A U {x + 1}) in the first factor of the last line in (B.11) to get that

T3=Y Y [f(AU{x+3}) =AU {x+1)][a(AU{x, x +3}) —g(AU{x + 1 x +3})]
+[fAUfx+1) —f(AU )] [8(A U fx, x +3}) —g(A U fx, x + 1})].

By Schwarz inequality, the previous expression is bounded y—£7, f)(g, —£7 . g), in view of formula
(B.3).
We turn now to the expressioﬁ?=l M, (see (B.8) for definition oM},). It may be rewritten as

3
Yoo (A - §Sad]g(AUtal) = Y [fA) —f(S14)]g(A U {1})

i=1 AN{0,a; }=0 AN{0,1}=¢
+ Y [f(S14) — §(S34)]g(S1A U {2})
AN{1,3}=0
= Y [f(A) = (S3A)]a(SsA U {-3}), (B.12)
AN{0,3}=¢

where the last two terms in the previous expression are obtained after the change of \&riableB and
S_3A = B, respectively. We decompose each expressiomvd) to obtain sums carried over the same sets. In
the following expression, the first three terms correspond to the terms obtained by imgosoigo contain 3,

0 and 1, respectively in each of the three last lines of (B.12). The sum over tha de#$ contain 3, 0 and 1,
correspond to the last three lines. Therefore,

3
D oMy= Y [fA)—fS1A)]a(A UL} + [§(S14) — f(S3A) e (S14 U (2))
i=1

AN{0,1,3}=¢

= [1(A) = f(S3A)]a(S34 U {=3}) + [§(A U {(3}) — f(S14 U {2})]g(A U{1.3})
+ [(S14 U{—1}) — f(S3A U {=3})]a(S14 U {2, —1})

—[f(AU{1}) —§(S3A U {—2})]a(S3A U {-3,—2}).

After some operations recalling the definition $f and the fact thaf and g belong toZ, (as we did when
working with T1), we get that the sum of the last three terms vanishes. For the three remaining, add and subtract
f(S1A) in the third line, to get
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> ) —fsia)][a(Au ) —g(Au3))]

AN{0,1,3}=0
+ ) [§514) = £(S34)|[a(S1(A U (3))) — a(S3(A U (3Y))].
AN{0,1,3}=¢

By Schwarz inequality, this expression is boundedjf||1||gll1, in view of expression (B.3) foff - ||1. This
concludes the proof of the lemmanr

Lemma B.7.Given a loop probabilityr there exists a finite constagly, depending oyl on theprobability =,
such that

(g, £7§)% < Colf, £7 (g, £7 9),
foreachf € 7,11, g € Z,.

Proof. This result follows from Lemmas B.1 and B.60O

Lemma B.8.Given a loop probabilityr there exists a finite constagl, depending oyl on theprobability
such that

(g, £7)% < Colf, £7)(g, £7 9)
for eachf, g € Z,,.

Proof. We follow the strategy used in the previous case. Observe that

(9, L3f) =1/(2m) Y Ny +1/(2m) Y My,

i=1 i=1
where

Np = Z Z [F(AU{x +b}) — (AU {x})][8(A U x}) + g(AU {(x +b})],
x#0,—b  Ae&, ;1
AN{x,x+b}=0

My= 3 [f(Sp4) — ()] [a(A) + a(Sp4)].

Aeg*,n
AN{b}=0

This decomposition allows us to repeat the same kind of computation performed when proving Lemma B.6.
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