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Abstract

A class of finite measure-valued cadlag superproceXsesth Neveu's (1992) continuous-state branching mechanism is
constructed. To this end, we start from certain supercritieal, 8)-superprocesses?) with symmetrica-stable motion and
(1+ B)-branching and prove convergence on path spage|a8. The log-Laplace equation relatedXdas the locally non-Lip-
schitz functioru logu as non-linear term (instead of1# in the case of¢(#). It can nevertheless be shown to be well-posed.
X has infinite expectation, is immortal in all finite times, prgates mass instantaneously everywhere in space, and has locally
countably infinite biodiversity.
0 2004 Elsevier SAS. All rights reserved.

Résumé

Nous construisons une classe de processus de branchamafgurs mesures finis qui sont une extension naturelle de
processus de branchement a valeurs réelles positives étudiés par Neveu (1992). Pour arriver a ce résultat nous commengc
avec dega, d, B)-superprocessuk (#) qui correspondent aux systémes des particules dans lesquels le déplacement de masse
est décrit par une lak-stable et le branchement par une (di+ B)-stable, et nous prouvons la convergence dans I'espace
des trajectoires cadlag larsq@e] 0. L'équation log-Laplace qui est associée au le processus likhitemparteun terme
non lineaireen u logu, qui n'est pas lipschitzien. Nous pouvons neamains démontrer que cette équation est bigrepbsée.
d’'ésperance infinie, est immortel a temp fini, propage sa mastmbanement dans tout I'espace, et a une diversité biologique
localement infinie.
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1. Introduction
1.1. Motivation, background, and purpose

Bertoin and Le Gall (2000) established in [2] a connection between a particular continuous-state branching
processX = (5(,),20 and a coalescent process investigated by Bolthausen and Sznitman (1998) in [3], by Pitman
(1999) in [28] and recently by Bovier and Kurkova (2003) in [4]. This procEswas actually introduced in
connection with Ruelle’s (1987) [29] probability caseadby Neveu (1992) in the preprint [25], so we call it
henceforthNeveu’s continuous state branching procdsss indeed a strange branching process: Its (individual)
branching mechanisns igiven by the functiom logu, hence belongs to the domain of attraction of a stable law of
index 1. On the other hand, the state at time0 has a stable law of indexeé< 1 varying in time and tending to
0 ast 1 oo. This process is at the borderline of processes with finite/infinite expectations and with explosion/non-
explosion. Actually, it has infinite expectations, but it does not explode in finite time.

Fascinated by this process, we asked the question whether this model can be enriched by a spatial motiol
component. Indeed, imagine the ‘“infinitesimally small parts” of Neveu’s process mo®¢ iaccording to
independent Brownian motions. Can this be made mathematically rigorous? In otherdeasla,super-Brownian
motionX = (X;);>0 exist with Neveu’s branching mechanjsand what properties does it have? Clearly, via log-
Laplace transition functionals, such a superprocésgould be related to the Cauchy problem

1)

%ut(x) = Auy (x) — u; (x) logu; (x) on (0, 00) x RY }

with initial conditionug;: = ¢ >0
(whereA is thed-dimensional Laplacian angis an appropriate function dd?¢). Note that this diffusion-reaction

equation is interesting in itself since the reaction term does not satisfy a local Lipschitz condition (the derivative
has a singularity at 0).

1.2. Approach, sketch of the main results

As Neveu's procesk can be approximated by a family #))o s<1 of supercritical continuous-state branching
processeX ®) of index 1+ g by letting 8 | 0, we try to approximate the desired procésby a family of super-
Brownian motionsx ®) with (14 B8)-branching mechanism. More precisely, we assumexitis a supercritical
super-Brownian motion related to the log-Laplace equation

) 8) 1o, w46, 1 ® d
u,” (x)=Au,""(x) — —(u,”” (x) + —u,""(x) on (0, 0) x R
8t t t ,8 ( t ) ’3 t (2)
with initial conditionugf: =¢=0.

Of course, the relation betweeft?) andu® from (2) is realized via log-Laplace transition functionals:
—logE, [exp(X{”, —p)] = (. u;”). 3)

Here (i, f) denotes the integrafy, f(x)u(dx), and the expectation symbdl, refers to the lawP, of X
starting from the finite measuvééﬁ) = u. We note that

1
—(Ul+ﬂ —v) — vlogv, v=>=0, 4)
B pLO
therefore such set-up seems to be reasonaBdesiists non-trivially at all.
Our purpossis to verify that the family X #))o_s<1 of superprocesses is tight in law As, 0 on the Skorohod
space of cadlag finite measure-valysths, and that each limit point is idéred as the unique process related
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to the log-Laplace equation (1). This then gives convergence to the desired pkb¢sss Theorem 2 below)
with total mass procesk = X (R%). Actually, in the superprocesses we will replace the Brownian migration by a
symmetrice-stable migration0 < a < 2).

Note that many of the standard tools are not available for this route, since the local Lipschitz constants related
to the non-linear term in the log-Laplace equation (2) bignalong (4), or — viewed in probabilistic terms — the
expectations ok ) become infinite ag | 0. On the other hand, a variety of monotonicity properties are available
and serve as a substitute. For the well-posedness of equations as in (1), see Theorem 1 below.

1.3. First properties ofX

Since Neveu's procesk has very special properties, one expects also Xhhts interesting new properties
compared with usual superprocesses. For instance, we suspekt llaat absolutely continuous states at almost
all times inall dimensions. (This conjecture will be confirmed in a forthcoming paper, Fleischmann and Mytnik
(2004) [16].) Recall that théx, d, B)-superprocesses'?) have absolutely continuous states at almost all times in
dimensions! < «/B (see the appendix of Fleischmann (1988) [13] for the case of critical, 8)-superprocesses
starting from Lebesgue measures), and weslgt0. In this paper, however, we will content ourself with more
modest properties of .

Starting from a non-zero (deterministic) state, for eadixed, X, has a stable distribution with index’e
Therefore, X; > 0 almost surely, meaning that the total mass processX;(R%) = X, is immortal. Moreover,
the underlyingx-stable mass flow — more specifically the semigroup with generstoapplied to measures —
propagates mass instantaneously everywhere in space. Thus, our superfricezpected to benmortaland
its mass shoulghropagate instantaneousig space (see Proposition 16 below). This is in sharp contrast to the
approximating supercriticat ®) processes for whiclk ” = 0 with positive probability, for alkr, g and > 0.
Moreover, ifa = 2, thenX® has the compact support property.

As a further consequence of this, we obtain tkidtaslocally countably infinite biodiversitya notion introduced
in Fleischmann and Klenke (2000) [15]. Roughly speaking, this means that, forsfixe@, in the clustering
representation of the infinitely divisible random measie infinitely many clusters contribute to each given
region (see Corollary 18 below). Putting it differently, at time- 0, in every region there are infinitely many
families originating from distinct ancestors at time 0. Again, in the ease2, this contrasts with the (locally)
finite biodiversity of the random states of the approximating superproc&$ées

The furtherlayout of the paper is as follows: We first introduce some notation in Section 2.1, before in
Section 2.2 we rigorously define the proceésand its approximations®). There we also state Theorem 1
concerning the solutions of equations as in (1). The main results concerning existence of and convergence to
are given in Theorem 2. The proofs are worked out in the remaining parts of Section 2 after the concept is explainec
in 2.3. In Section 3 we are concerned with immortality and infinite biodiversity of the constructed p¥celss
appendix gives the proof of an almost sure scaling limikgrass 1 co (see Proposition 10). This follows a sketch
of proof in Neveu'’s unpublished work [25], which uses ideas of Grey (1977) [18] regarding the Galton—Watson
case.

For background on superprocesses we refer to Dawson (1993) [5], Dynkin (1994) [7], Le Gall (1999) [23],
Etheridge (2000) [9] and Perkins (2002) [27].

2. Construction

2.1. Preliminaries

For any metric spacg, let D(R4, E) andC (R, E) denote the space of functioRs. := [0, co) — E, which
are cadlag and continuous, respectively. The former space is endowed with the Skorohod topology, the latter with
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the topology of uniform convergence on compact sets(CBR“) we denote the class of continuous real valued
functions onR? endowed with the supremum notiin ||.. We useC,(R%) for the subspace of functions which
possess a finite limit ds| 1 oo, andCcom(R?) for the subspace of functions with compact support. The subspaces
of functions whose derivatives up to ordeexist and are also i, (R?) are denoted byy (R9). The superscripts
“4"and “++"indicate the respective subspaces of non-negétivetions and functions with positive infimum. We
write Ms := M;(R?) for the finite measures dR¢ equipped with the topology of weak convergence. Throughout,
¢ denotes generic positive constants, whose depeaneewe sometimes cite in parentheses. The attois used

to indicate convergence in law.

Fix a constantr € (0, 2]. The semigroup associatedttthe fractional Laplaciam, := —(—A)®/2 is denoted
by 7%,
T (x) = / pi(x —e(y)dy, t>0, xR’ (5)
R4

wherep is the (jointly continuous) kernel ofd, co) x R? of the symmetriax-stable motion irR¢ related toA,,
see for example the appendix of Fleischmann and Gartner (1986) [14}. £& we writeT := T2 and p := p?,
which are simply the heat semigroup and the heat kernel corresponding to the Laplacian

2
pi(x) = (4m)d/2exp(—%), t>0, xeR% (6)

Let g7 denote the continuous transition daypgunction of a stable process dR; with indexn € (0, 1), so
normalized that we have for the Laplace transform

oo

/q;?(s)e*” ds =exp(—t6™), >0, 6 >0. 7)
0
Then, in the case < 2, the subordination formula
o0
o _ a/2 d
prx)=|[ q;'"()ps(x)ds, t>0, xeR (8)

0

is well-known. Note thaf'® from (5) is a strongly continuous, positive and conservative contraction semigroup on
Cj (R%), which follows via subordination (8) from the corresponding properties.of

2.2. Main results

The construction of our processis based on the well-posedness of the followiimggral equation:
1

ur(x) =T p(x) — / T2 (8(us)) (x) ds, 9)
0
fort >0,x eR?, ¢ € C; (RY). Here,
g):=pvlogv, v>=0, (10)

is a continuous function oR, andp > 0 is an additional constant (for eventual scaling purposes). For a pjot of
in the case = 1, see the dotted curve in Fig. 1. Note that Eq. (9) istiild formof the following function-valued
Cauchy problem analogous to (1):

(11)

0
ity = Aty — g(ur) 0N (0, 00) }

with initial conditionugy = ¢.
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Fig. 1. Branching mechanisngs$? (v) = v2 — v andg(v) = v logv.

Here a little care has to be taken sinsg is not a differential operator. A mapping Ry — C;/(R?) is called
a solution to(11), if u is continuously differentiable i€, (R¢) on (0, co) (that is, the derivative%m exist in

C¢(R9) for all t > 0 and the mapping%u :(0, 00) — C¢(R?) is continuous)y; is in the domain ofA, for all
t € [0, 00), and (11) holds. In Sections 2.5 and 2.8 we wilbye the following result. (Recall that the indéxn
spaces a6’/ " (R?) refers to existence of some finite limit.)

Theorem 1 (Well-posedness of log-Laplace equation).

(a) (Unique existence in the local Lipschitz regiofjo everyp in C;/*(R9), there is a unique solution = u(¢)
in C(R4, Cf T (RY)) to Eq.(9). It satisfies

inf oM AL<u(@)) < llglloo V1, 120, xeRY. (12)
yeR

Furthermore, ifp € C§’++(Rd), thenu(y) is a solution to the function-valued Cauchy probléi).

(b) (Extension to the non-Lipschitz regionlf ¢, € C;/*(R9), n > 1, such that pointwise, | ¢ € C;(R?) as
n 1 0o, then pointwise:(g,) | someu(p) € C(R4, CZ(R”Z)) asn 1 oo, and the limitu = u(p) solves
Eq.(9), satisfie12), and is independent of the choice of the sequ&pgk,>1 converging tap.

We remark that the bounds in (12) are a direct consequence of the fact thathagges sign at = 1. Here
we leave the question open whether or not solutions f@i(911) with non-negative initial conditions exist other

than the ones constructed via monotone limits in (b) of the theorem. We also remark that the theorem implies

the semigroup property far, meaning that, s (¢) = u; (us(p)) for s,z > 0 (see Dawson (1993) [5], p. 68). The

semigroup property is tantamount to the log-Laplace relation (17) below describing a time-homogeneous Markov

processX.
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The proof of Theorem 1 will start from the well-posedness of the Cauchy problem analogous to (2) in the mild
sense fop € (0, 1] fixed:
t

uP (x) =T (x) — f T (g ) (x) ds, (13)
0
t>0,xeRY, g e Cf(RY). Here,

g(ﬁ)(v) — %(Ulﬂg —v), v>0. (14)

For a plot of g® in the casep = 1 = B, see Fig. 1. To eaclp in C;(R?), there is a unique solution
u® =uP(p) e CRy, Cf (RY) to (13). Eachp € /T (R?) is bounded away from 0 aneb, implying that
the solutions:# (¢) are also bounded away from 0 and, uniformly in 8 (see Lemma 11 below). Therefore,
passing to the limit ag | 0 for such initial conditionp, we end up in a local Lipschitz region of the functign
of (10). This idea is behind part (a) of Theorem 1. (We learned this trick from Watanabe (1968) [31] who worked
however in the simpler case of a compact phase space.)

Theorem 1(a) is sufficient for the construction of the desired prakels Section 2.8 we then use probabilistic
arguments using the log-Laplace transition functionals of order to derive part (b) of the theorem. The extension
in (b) is needed in Section 3 for studying some propertiek .of

As a starting point for the construction of the procéssfor each O< g < 1 we consider the (unique) time-

homogeneous cadlag strong Markov progess’, ]P’ff(?,), u® e M) with log-Laplace transition functional

—IlogE, e [exp(X,(’s), —¢)] = u?, u?, (15)

t >0, ¢eClRY, with u® the unique solution to (13). The constructionXf) is nowadays standard; for
references see, for instance, Iscoe (1986) [20], Fitzsimmons (1988 and 1991) [11,12] and Chapter 4 of Dawsor
(1993) [5]. Note thatx?) is a supercriticala, d, B)-superprocess. Properties @f, d, 8)-superprocesses have

been widely studied in the critical casvhere the branching mechanigiff in (13) is replaced by

s @ =btP, v>0, (16)

with b > 0 a constant, see for example Iscoe (1986), Fleischmann (1988), Dawson and Vinogradov (1994) and
Mytnik and Perkins (2003) [20,13,6,24]. These processes have finite megrcfarbut infinite variance fog < 1.
More preciselyE,, ) (XD )] <ocoforallt >0, g e C;(RY) with ¢ # 0, andu® e My with ® # 0, if and
onlyif0 <6 < 1+ 8 <2 (see also Lemma 9). The case we are interested in correspgfies@dn the sense that
the branching mechanism is in the domain of attraction of a stable law of index 1, see also Remark 4.
Ourmain resultcan now be formulated as follows:

Theorem 2 (Existence, uniqueness and approximation).

(a) (Unigue existence of). For eachu € M; there exists a unique time-homogeneous Markov pro&ess
D(R., My) with log-Laplace transition functional

—logE,[expX;. —¢)] = (w.u;), >0, p € CFRY, (17)
with # the unique solution t9) in the setting of Theorem(a)and (b).

(b) (Approximation theorem)Suppose thaxéﬁ) = Xoin Msasp | 0, as well assugkﬂglE[(Xéﬁ), 1)%] < oo,
for some0 < 6p < 1. Thenin law onD (R, Ms),

XP® = x asplo. (18)
Furthermore, we havE[supy, <7 (X, 1)’] < oo forall T > 0and0 < 6 < 6pe*7.
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We call X thesupere-stable motion with Neveu's branching mechan{amd branching ratg). We would like
to point out that the process$is related to a class of superprocesses considered by El Karoui and Roelly (1991) [8]
who extend the original work by Watanabe (1968) [31]. However, these papers are restricted to a compact phas
space, and existence, uniqueness and appropetdarity of the log-Laplace equation (9)assumedn [8], but
rigorously established in the present work.

The proof of the approximation theorem proceeds via tighs in law and convergence of the finite dimensional
distributions of subsequences combined with the uniqueness of the limit, which follows from the unique existence
of log-Laplace solutions according to Theorem 1{@&)is then also establishes the existenc# of

Remark 3 (Critical processes degeneraté&lote that the “highly supercritical” proce&scannot be attained as the
limit of critical ones. Observe that settimgy= 0 for the branching mechanisgriﬁz from (16) implies the linear
log-Laplace equation

9 (0,crit 0,crit 0,crit
Eut( ,Crit) — Aaut( ,Crit) —buf crl). (19)

Hence, the corresponding measure-valued process is deterministic in this case.

Remark 4 (Index convergence in canonical measyrdhe processX that we derive here can also be seen as
the appropriate one to be considered as the limiting gas€e) in the following sense. Recall that the branching
mechanism¥ of a general continuous state branching process can be written as

W (v) = c1v + cov2 + / (efx” -1+ xvl{xgl})n'(dx), (20)
(0,00)

with constantsc; € R, ¢2 > 0, and where the canonical measurds a Radon measure a0, co) satisfying
f(o,oo)(l/\ x?)m(dx) < oo (see for example Theorem 1 in Chapter Il of Le Gall (1999) [23]). In the case of the

branching mechanismg?, 0 < 8 < 1, we have

o/ =caBp. =0,  aPdx)=caB)px > Fdx, (21)
with some constants (8) € R andcs(8) > 0, whereas for the limiting branching mechanigm
c1=cp, c=0, w(dx) = ,oxfzdx, (22)

with some constant > 0.

Remark 5 (Approximation by particle systeinsX is also expected to be thaigh density limit of suitable
branching particle systenas the number of initial particlg$ tends to infinity. Indeed, consider particles that move
independently according to-stable motions ifR?, leaving a random number of offspring after their exponentially
distributed lifetime with mean/p(1+ log N). Let the number of offspring be described by a random variable with
probability generating function

hy(r):=(1+logN)"(logN +r+ (L —r)log(l—r)), 0<r<1. (23)

The empirical measures of the particle system are give}%y By; 850,,1- , Whereé,""i are the positions of the particles

alive at timer and the sum is taken over all these particles. We noteNhat(1+log N)(hn (1— 5) — (1— ) =

pvlogv. Heuristics drawn from Chapter Il of Le Gall (1999) [23] (although there the non-Lipschitz branching
mechanism considered here is excludeehtifies the left-hand side of thdentity as the expression that should
converge to the nonlinearity of the log-Laplace equation describing the limit process. One expects therefore tha
the aforementioned empiricaleasures converge in law g asN 4 oo (provided that the initial states converge).
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2.3. Concept of proof of Theorem 2

In preparation of the proof, we consider in Section 2.4 properties of Neveu'’s continuous state branching process
X and its approximations ‘¥, We prove some (monotone) convergence of the related branching mechanisms and
log-Laplace functions, and show uniform boundesinef lower order moments, see Lemmas 7-9.

The log-Laplace equations (9) and (13) are studied in Section 2.5. We will deal with uniform convergences,
comparisons, and solutions starting from “runaway” functions.

In order to show tightness in law &f®) in D(R ., Ms) we use Jakubowski's (1986) criterion (see Theorem 4.3
of [21]). Since{(-, ¢); ¢ € Cfr(Rd)} is a family of continuous functions al; that separates points and is closed
under addition, Jakubowski’s criterion states in the presasé that just properties (a) and (b) in the following
claim are sufficient for tightness in law dn(R ., Ms).

Proposition 6 (Tightness of thex#)). Let 6o, ng), and Xg be as in Theorer(b). Then the following statements
hold, implying tightness in law oP (R, Mr) of the family(X#)o_g<1.

(a) (Tightness of one-dimensional processé®r eachy € €,/ (R?), the family((X®), ))o-p<1 is tight in law
on D[R4, R).
(b) (Compact containment)or any T > 0 ande > 0, there exists a compact s&t 7 C Ms such that

inf P[X” eKerfor0<i<T]>1-e (24)
0<p<1

Part (a) is shown in Section 2.6. Compact containment (b) is verified in Section 2.7.
2.4. Neveu's continuous state branching process

We begin with studying the total mags®) = X# (R?) and X = X (R?) of the superprocesses that we are
considering. Their log-Laplace functiom$?’ and i, both independent of a spatial variable, can be calculated
explicitly. Indeed, define fok > 0,

I/_lfﬁ) ()\4) = ()\—ﬁe—/ﬁ +1-— e_pf)_l/ﬁ’ > 0’ (25&)
(A=A teR, (25b)

reading the right-hand side of (25a) as 0 fo& 0. Thenﬁfﬁ)(k) andu, (1) restricted tor > O are the respective
unique non-negative solutions of (13) and (9) §ox= A. The uniqueness follows in the former case by the local
Lipschitz continuity ofg®. The latter case can equivalently be written as in (11), or more generally as

%w, =—g(w,) onRwith w,,=x2>0, (26)
whererg € R is fixed. Althoughg is not locally Lipschitz, (26) has a unique solution. In fact, the funcgos
locally Lipschitz on tke locally compact spad®, oo), hence in a sufficiently small neighborhoodgthe solution
w with w,, = A > 0 is unique, thus coincides with the correspondingRepeating the argument, we get= u
on R in this case. > 0. Indeedjz mapsR into (0, co), thus the boarders 0 arg cannot be reached during the
extensions.

Assume now thatv is a non-zero non-negative solution to (26) witf) = 0. Then there is a > to such that
w; =: 0 > 0. But from the previously mentioned uniqueness, we necessarily abjaiii__s)(0), s <. Thus,
wy, > 0, which is a contradiction.

We thus have for, A, )_(c(,ﬂ), X0 >0,
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E[exp(—)_(t(ﬁ)k)] = ]E[exp(—f(éﬁ)zz;ﬁ)()\))], (27a)
E[exp(—X:1)] = E[exp(—Xoit; (1))]. (27b)

We can right away verify the following properties of the branching mechanigfsndg [introduced in (14)
and (10)].

Lemma 7 (Properties of branching mechanismgpr all v € R,y we haveg® (v) | g(v) as1> 8 | 0.
Furthermore,g® and g are negative on(0, 1) and positive on(1, co), with the only intersection poinig(v) =
g® (v)=0forv=0andv=1.

Proof. Let us start by showing that

3 V18

By = p—_ _ —B

8,Bg W) =p 72 (Blogv—1+4+v ") >=0. (28)
To see the non-negativity, we note that foe 0 the derivative is zero. Otherwise we observe fhbtgv — 1+
v >0 is equivalent to H logv—? < v~# = expllogv=F), which is true. Thusg® is monotonically non-
increasing ag | 0. Actually,g® | g asp | 0. In order to show that the only intersection pointgt? andg are
at 0 and 1, where both functions are zero, we observe thatfdd, ¢» (v) = g(v) is equivalentto ex@’) = 1+’

wherev’ = v# — 1. The only solution is thereforg = 0, which is equivalent te = 1. To see that both functions
are negative oKi0, 1) and positive or(1, co), consider the derivatives of the two functions,

d o d
—gP )y ==(A+pvf —1) and —g@)=p(1+logv). (29)
av B av

Thus, the derivative at = 0 is — for ¢® and—oo for g. Likewise, atv = 1 the derivatives are all 1.0

From the monotone convergence of the branching mechanisms (Lemma 7) we obtain the following monotone
convergence result for the solutions to the corresponding ordinary differential equations.

Lemma 8 (Monotone convergence of solutionBr all A € Ry andr > 0we have?fﬁ)(k) Tu;(r)asp | 0.

Proof. By Lemma 7,8V > ¢#2 on R, for 1> 1 > B» > 0. Thus, by a standard comparison result (see for

example Theorem 6.1 of Hale (1969) [19]), we obtain tﬁ%ﬂ-) ) < ﬁfﬁ” (») for » € Ry Hence,ﬁfﬂ)(k) is
non-decreasing 8% | 0. Fori > 0 we now rewrite (25a) as

1/84-1
" (1) = [(1+;£<<e“"%()\"S - 1))) } : (30)

Since%(k—/S —1) — —logx, it converges to®” 1°9* = 7,(1). O

As an immediate consequence, since tiellaplace transforms converge, for each 0 fixed,f(t(ﬁ) converges
inlaw to X; asg | 0, provided that)_(éﬁ) — Xp in law. We can also prove the following uniform moment bound.

Lemma 9 (Uniformly bounded lower order moment§uppose

sup E[()_(éﬁ))eo] <oo forsomed <6y < 1. (31)
0<p<1
Then, for allT > 0and0 < 6 < Hpe—*T,
sup E[supXM)?] < co. (32)

0<f<1l  <T
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Proof. Fix 6, 6p, T as in the lemma, and
n > 1 such thave’” + (5 — 1) < 6p andve’’ 5 < bp. (33)
Write || - ||;, for the norm in the Lebesgue spalLé(lP). We use the following identity (see (2.1.11) of Zolotarev

(1986) [33)),

o0
o7 Ir1—6)= / A0 — ey an, (34)
0

which holds for anyx > 0 (and O< 6 < 1) and follows from a scaling of Euler's Gamma functibn Thus, for
constants = c¢(0, n),

00 1/n
X ®)P <C/refld)ﬁ_c/refl(l_e,,zt(m)dA
1/n 0
1/n T
Sc+e / A“DME‘”(M + / e XX PP ) ds:| dr, (35)
0 0
where
t
tsMPo) =1-e X 4 / e X g B B () ds (36)

0
is a martingale, as can be seen by differentiating the Laplace functional in representation (27a). Now,

E[supm;” 0[] < [|suplmP ||, < c|mP o],
t<T t<T

T

2B, -
/e K150 ® ()| ds
0

v (B)
<cll—e X1 4, 4 ¢ (37)

Ui
by Doob’s L"-inequality and the definition of the martingale. Next we apply the elementary inequality
A-rN"<1-r", 0<r<i (38)

In fact, sinceny > 1, both sides coincide at= 0, 1, but the left-hand function is convex whereas the right-hand one
is concave. This gives

E[1—e X7 "] <B[L— e X M) = B[1 - exp(-XPa )], (39)
where we exploited the Laplace relation (27a). By Lemma 8 and (25b),

P ) ity = ) © " < G @D, 0<s<T, (40)
provided that 6< An < 1.Thus, by (39) and (40),

1/n 1/n
Al v -

/ 10— e XM, dn < / 2O E[L— exp(- X 0 © ")) (41)

0 0
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By the substitutior(kr;)(efﬂ) =:  the latter integral can be written as
1 1
~ (B3 ~ ~ ~ 87 ~
c(n, p, T) / 0 L — e X0 )Y g3 = c/r‘)e’” (R — e X0 )] (42)
0 0

Moreover, sinc@e’’ < 0y < 1, the measurg—?¢"" di on [0, 1] is finite, and by Jensen’s inequality the integral
can be bounded from above by

1 1/ 00 1/n
c(/ 50 1R — e—’_fémi]di) < C<E|:/ GO En=1-1pq _ e—féﬁ)i]dXD . (43)
0 0
Using again (34), the latter expectation equals
CE[(XP)0e +1-1 (44)

and is bounded i by our first assumption onin (33), and by (31) concerning the initial statﬁg}).
Since the expectation of the integral in (35) is bounded from above by the second norm expression in (37), to
finish the proof it remains to show that

1/n T
v (B, —
sup [ A0 /e*xs *XPgP ) ds| dr < co. (45)
0<p<1
0 0 n

First of all, by Lemma 7,

8P ()| <1g()| = Alloghl,  sincer <1/y<1. (46)
Next,

T T
B, = _5B, =

/ X3 ® 4| < / [ %)) as. (47)

0 n 0
Clearly,

(CRETO LR c(n))»_(”_l)e_r)‘r, r,A>=0. (48)
Therefore,

E[(e X"+ g By < A=~ VE[e XA g B, (49)
But by (27a),

. _ 9 . 9 _
Ele ¥ X W)= - ~Ele " = - T E[exp(-XP i )]
A A
a _p) O _
=E[exp(—Xéﬁ)u@m)Xéﬁ)Wﬁﬂ)m} (50)

and by (25a),

0 _ _ 148, _

i) = (@ ) Ty Athrgps (51)

Combining (49)—(51) gives

(B, - — _
||e_Xs )»X;ﬁ)”n < ck_(”_l)/nk_(1+ﬁ)/”(E[exd—Xéﬂ)ﬁ@(A))Xéﬂ) (ﬂgﬁ)()\))l"‘ﬁ])l/’?_ (52)
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Using e7ri=% < ¢ for all » > 0, we obtain

||e_X§m’\)_(§ﬁ)||,, < C)L—l—/.‘i/n(ﬁgﬁ)(k))(ﬁ+9o)/n(E[()‘(éﬁ))eo])l/n' (53)
By (31), the latter norm expression is bounde@irMoreover,

AP/ (L-éﬁ)()\))ﬁ/’? <es/n < efT/n— ., (54)
Going back to (45), inserting (46), (47), (53), and (54), it remains to consider

1/n T 1/n

/ A~ logaja~t / @® )" dsdr < e / A0 logaaGo/me™" gy (55)

0 0 0

where we used (40). Butd — 1+ (6p/n)e T > —1 by our second assumption grin (33). Hence, the integral
in (55) is finite. This gives (45), finishing the proofo

Asymptotic properties ast oo of the total mass process have been explored in the Galton—Watson setting,
amongst others by Grey (1977) [18]. This led Neveu (1928] fo sketch the following proposition, whose proof
is given in our appendix:

Proposition 10 (Almost sure limit of total mass proces$pr all (deterministig initial statesXo =m > 0, there
exists an exponentially distributed random variablevith meanl/m, so that ag 1 oo,

e " log(X;) — Iog(%) a.s. (56)

An interestingopen problenis the long-term behaviour of the spatial proc&ssonstructed here. (An answer
will be given in the forthcoming paper Fleischmann and Vakhtel (2004) [17].)

2.5. Log-Laplace equations

In this section we construct solutions to Eg. (9) as the limit of solutions to (13), and investigate properties needed
in the proof of Theorem 2, as well as in Section 3.

Lemma 11 (Approximating solutions)Fix B € (0, 1]. For eachg in C;/ (R9), there is a unique solution'®) =

uP(p) € CRy, CF (RY) to the integral equatiorf13). If additionally ¢ € Cez’+(Rd) (contained in the domain

of Ay), thenu is continuously differentiable if; (R?) on (0, co) with ufﬂ) in the domain ofa,, for everyr > 0,

and it solves the related function-valued Cauchy problem
a

ot =Aatts = g ur) on (0, 00) (57)

with initial conditionugy = ¢.

All solutionsu® satisfy

0< inf M AL1<u (@) <lglloo VL, 120, x eR, (58)
yeR
Also, monotonicity in the initial@enditions holds, mening that forgs, 2 in C;/ (R?),
p1<¢z implies u” (p1) <uP(g2), 1>0. (59)
Furthermore,
lim sup sup [u{(p) — ¢l =0, ¢eC/®RY. (60)

840 0<p<1 0<s<S
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Proof. Let us first observe that#) interpreted as a mappir@j (R?) — C;(R?), is locally Lipschitz continuous,
indeed it is continuously differentiable. Sin€€ is strongly continuous oﬁj (R4), Theorem 6.1.4 of Pazy (1983)
[26] then implies that for any € C,/ (R?) there exists a unique solutia¥’) € C([0, 19), C; (R?)) to (13) up to a
possible “explosion timefy < co. Because?) is continuously differentiable we may further apply Theorem 6.1.5
of Pazy (1983) [26] in order to conclude that if additionaply Cf’*(Rd), thenu® is continuously differentiable
in C¢(R?) on (0, o), all u”’ belong to the domain oA, for 0< < o, andu® solves the Cauchy problem (57)
up to the explosion time.

By a probabilistic argument, we show next the bound on the soluiidhss claimed in (58). The boundedness
of the solutions uniformly inr > 0 implies in particular that the explosion timg = co. Here, we use the
monotonicity in the initial condition stated in (59), whiébllows from the log-Laplace representation (15). Thus,
we may estimata® with thez® given in (25a), related to the total mass process. We obtain faralR? and
t >0,

i (inf o) <u® @) ) < 1 (lllloo). (61)
yeRd

Since as 1 oo, 17 (1) | 1fora > 1 andi'” (1) 1 1 for 0< A < 1, the bounds on‘® as in (58) follow.
In order to prove relation (60) we use (13) and obtain

s

f 7,87 (uP (p))dr
0

ST e = ¢lloo + c(@)s, (62)

o0

4P @) — o], <ITE0 — pllo +

where the second term at the right-hand side of (62) has been estimated by noti thais bounded uniformly
overall0< g <1andve[0,1V [¢ll. The result now follows since sy ;s [I75'¢ — ¢llc — 0 ass | 0, by

the strong continuity of the semigrodj¥ acting onC,/ (RY). O

Lemma 12 (Convergence to a limiting solutionllake ¢ € C;/*(R?). Then there exists a unique solution
u(p) € C(Ry, € (RY)) to (9), which satisfies for an§ > 0,

l B) () — =0. 63
éi%oi,uﬁr”“’ (@) — (@) o, (63)

For all # > 0, the solutioru fulfills

0< inf M ALSu(@@) <llplloo V1 120 xeR, (64)
yeR

and is monotone in the initial conditionsee (59)). Furthermore, forg in Cf’++(Rd), u is continuously
differentiable inC, (R?) on (0, co) with u;, in the domain ofA,, for everyr > 0, and it solveg11).

Proof. Solutions to (13) wth initial conditiong € Cj* (R4) are bounded away from zero and infinity according
to (58) of Lemma 11. We can therefore estimate fer f1 < 82 <1,

t

/ T (592 (u#?) — P9 (u#0)) (x) ds

0
t t

</‘Tttis|g(/-‘52)(u‘£ﬁ2))_g(ﬁz)(ugﬁi)”(x)ds_i_/Tttis|g(/32)(u‘£ﬁ1))_g(ﬁl)(ugﬁi)”(x)ds
0 0

(B1) _ ufﬂZ)l(x) —

|u;




526 K. Fleischmann, A. Sturm / Ann. I. H. Poincaré — PR 40 (2004) 513-537

t
< Clho.9) / 1D — u#D oy ds + 5(By. 2. o)1, (65)

0

Here, we have set
c _ 39g®)
B, ) = sup (v)| < 00, (66a)
infza 9ISV Illoov| OV

8(B1, B2, ¢) == sup 272 (v) — gV (v)] < o0, (66D)

inf, ga 9NNV @l VL

) ‘ . . .
We now note that% converges tog—ﬁ, uniformly on compact intervals i0, co) as g | 0 [recall (29)],

and hence sy g1 C(B.¢) < oo. Likewise, g'¥ tends tog, uniformly on compact sets if0, o), and thus
SUR, p,<e 9(B1, B2, ¢) — 0 ase | 0. But by Gronwall’s Inequality,

suplluf’ — uf™ || < 8(B1. B2, ) TEC 20T (67)
t<T
and so(u‘#"),~1 with g, | 0 form a Cauchy sequence @H[0, 71, C;* (R?)). Of course, the limit, which we
call u, fulfills (64) as well as monotonicity in the initialondition as in (59). We can thefore repeat essentially
the same arguments as in the array (65) to show that

t

lim sup / T,a_s|g(us) - g(ﬁ)(ugﬂ))|ds

=0. (68)
ioth 5

oo

Henceu satisfies (9). Because of the boundedness away from&&securely in the local Lipschitz region gf
Thus, the same arguments concerninghfer regularity for initial conditions € Cf’**(Rd) as detailed in the
proof of Lemma 11 apply. This concludes tlwd@stencepart of the lemma.

It remains to showniquenessf solutions. We first note that for any solutiariy) to (9) with ¢ € C/* (R9)
there exists ag > 0 so thatu, (p)(x) > %infyeRd @(y) >0 for all t < 1 andx € R?. Indeed, forT > O fixed, u
is bounded abovey,; (x) < ||¢lleo + 1SUP,er, (—g()) < C(T) for r < T, where we choos€(T) > 1. Thus, on
[0, T1, we can bound: from below,u;(x) > inf, ¢(y) — g(C(T))t, so that we can find & € (0, T] satisfying
o < (g(C(T)))_l(% inf, ¢(y)) and having the desired property.

The branching mechanisgnis Lipschitz continuous on compact intervalg0f oo) so that uniqueness @, o]
follows by Gronwall's Inequality. Thus, the solution @, 7] must be the one that we constructed above, which
is in fact bounded below by ipfr« ¢(y). Hence, we can reiterate the samgtament to see that uniqueness must

hold on any arbitrary time interval, and that C(Ry, C;/ T (R?)). O

Lemma 13(Comparison of solutionsFix 0 < B1 < B2 < 1, andg in C; (R?) so thatp(x) = 1 for all |x| > ¢, for
some constant > 0. We obtainu#V) () > u#2 (p) on Ry x R?. In particular, if additionallyp € C;* (R?) we

havesupy_s<1 P () <ui(p).

Proof. The proof is an adaptation of standard arguments, see for example Theorem 10.1 of Smoller (1983) [30].
Let us first additionally assume thatbelongs ton’*(Rd). We define the (at this stage possibly signed) function

v =uPY —uP? ¢ >0, which then satisfies according to Lemma 11,

d

v = Anp, — oBD BV (B2) (,,(B2)

oV oV — 8V () + g (), (69)
vor =0,



K. Fleischmann, A. Sturm / Ann. I. H. Poincaré — PR 40 (2004) 513-537 527

onR;. Let f € C(Ry, C/(R?)) be defined byf; = —g B PPy 4 g2 4,72y > 0 (recall that by Lemma 7 the
¢# are non-decreasing j). Then, for somé (7, x) between:? (x) andu'# (x),

—g ) (™ () + P2 (1P (1)) = — (V) (£t 1)) v (¥) + fi () (70)
(with (g®)’ denoting the derivative gf®)). Note that the following double supremum
sup sup|(gy (€@, x))]

teRy xeRd
is finite becausg#? is locally Lipschitz and, by (58) is bounded uniformly over all andx. Also, by (70)
(gPVY(&(-, ) € C(Ry, Ce(RY)) as a difference of functions in this space. Thus, we can find some costant
so that—(g#V)/(£(¢, x)) + R < O for all r andx. Thereforep, := eR’v, satisfies
0

5@=%@+@@%W@n»+MQ+&%,

vo+ =0,

(71)

onR,. Fix T > 0. Suppose thal; (x) < 0 for some(z, x) € (0, T] x R¢. Then? must attain a negative minimum
on (0, 7] x R4 in some pPoiNtzmin, xmin)- This follows from the fact that for anye [0, T'], we haver, (x) — O for

|x] 1 co. To see this, note that for the initial conditiopsonsidered here;,f’s")(x) — 1forijx|to00(i=12).In
fact, using the mild form (13) of the equations, Lemmand the monotonicity (59) in the initial condition,

T (o A D) <uP (o A D(x) <ulP (9)(x) <ulP (@ v 1)) < T (e v Dx), (72)

and the lower and upper bounds converge appropriately tgA| aso.

At the minimum(#min, xmin) We would have thaglt Ut (Xmin) < 0 as well asA, vy, (xmin) = 0 by the positive
maximum principle (cf. Theorem 4.2.2 of E#niand Kurtz (1986) [10]). Recalling the choice Bfand f we
obtain a contradiction to the equality in (71), and therefore may conclude thaincev, is indeed non-negative
on[0, 71 x R4 and so also o, x R<. Finally, to remove the additional requirement tat C,zz’*(Rd), we use the
fact that there exists a sequenggse Cez’+(Rd) suchthatj¢ — ¢, llcc — 0asn 1 co. Arguments analogous to those
in (65) to (67) then show immediately thH’zt,(ﬂi)((p) — ufﬁ")(<p,,)||Oo — 0, and so we are done. The convergence
statement (63) of Lemma 12 now finishes the proafi

In order to show that the mass of the processe8 does not escape to infinity g/ 0, we need to consider
the behaviour of: started fronf'runaway” test functionsry, k > 1. We first define an auxiliary functiorf) for
some fixed O< € < 3 by

1
% f0r|x|<k+€,

©y:=41—k1 —k+1-— 1—e)k 1

M () |4 KFizerd=o fork+e<|x|<k+1l—e, (73)
1-—2¢ 1-—2¢
1 for|x|>k+1—e.

In short,r,ﬁs) is radially symmetric and linearly increasing [in| between its two constant valuésand 1. Note

also thatr,gé) is monotonically non-increasing in Now let® e C**(R?) with support inB(0, ¢), the open ball

around O withe radius, and so thayﬁRd @ (x)dx = 1. We then define

muy=/¢u—w¢Ww@u (74)
Rd
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as the mollification ofr,f). As an immediate consequence of the properties,ﬁ%f we obtain that belongs
to Cf’**(Rd), is also radially symmetric, monotonically non-increasingkinand that it is constantly}g
(respectively 1) fotx| < k (respectivelyix| > k + 1).

Lemma 14 (Runaway solutions\We haveu, (r;)(x) | 0 ask 1 oo, for any0 < < 1/p andx € R¢. The same
statement holds for; replaced by Ay ri| Vv ry and|g(ri)| V r.

Proof. Letr > 0. We note that:, (r;)(x) is monotonically non-increasing infor everyx, and bounded below by
zero, so that a pointwise limit exists, which we aal(r,)(x). From the radial symmetry in the definition Qf as
well as in Eq. (9) we can immeatiely observe that, for all, u; (ry)(0) = min, cga u; (rr) (x).

Now consider a test functiopr € CZ 7+ (R) with v (x) = exp(—|x|) for |x| > 1. We will first show that there
exists a constant = k(o) > 0, such that

Ay (x) <k (x) (75)

for all x € R?. Indeed, fore = 2 this follows from the fact thaty (x) = (1 — %)w(x) < ¢ (x) forall x| > 1.
For 0< « < 2, we use the well-known representation (see, for example, (é) of Section 1X.11 in Yosida (1980)
(32]),

o
Aatr(x) = %M / sy () = Ty ()] ds, (76)
0
where once mor€ is Euler's Gamma function. Thus, we obtain
1 o0
Ag¥r(x) gc/s—l—“/z[l//(x) - Tsl//(x)]ds+c1//(x)/s_l_0‘/2ds. (77)
0 1
Here, the integral of the second term is finite. The first term can be estimated by Taylor’'s Formula,
1 1
fsflfa/z[w(x) — Ty (x)]ds < 0iup1 T AW (x) | s %5 ds < ey (x), (78)
0 = 0

where, in the second inequality, we have used (75fer2 together with the well known fact that

sup Ts¢ < cy. (79)
0<s<1

It is also well known that the mild solutiomto (11) is also a solution in the weak form for an appropriate class
of test functions including ouyr. Thus, we obtain for any> 0,

t

(e (r), W) = (res ) + f (us(ri), Ao — (plogug(rk)) ¥ )ds
0

t
< e W) + (c + plogh) / (45 (). W) ds. (80)
0

Here, we have used th%tt: uo(ry)(0) < u; (rg) (x) < Limplies—logu, (ry)(x) < logk. We also used (75). We can
now apply Gronwall's Inequality in order to obtain for ali> 0,
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1
(u: (ri), ¥7) < ( f ()Y (x) dx>e<"+p'°9k>’ < ( / LY dx+ / w(x)dx)ewkm
R4 |x| <k x| >k
< (cWK 4 ek e H2) e (81)

Now restrict tor < 1/p. Then the latter expression converges to zerb figo. This implies thatu, (r~), ¥) =0,
that isu; (r)(x) = 0 for almost allx. Taken together with the monotonicity jm|, we obtairu; (ro.) = 0.

The statement of the lemma foko 7| v i and|g(r)| v i in CHH(RY) follows by repeating the same line of
arguments. The estimates of (80) hold true unchdrgjgce both initial conditions are still bounded beIow{oy

which is hence also true for the solutiomsThe only changes in the calculations given in (81) occur thus in the
estimates of the initial condition. Since sup,r«| V rr < ¢ < oo, We now estimate

1
/(IAarkIVrk)(X)l//(X)dX< / Y @dxtc / ¥ (x)dx, (82)

R4 x| <k |x[=k

with the additional constamtbeing inconsequential in the cdading calculations. Because sug (rx (x))| Vv ry =
SUR<q<118(@)] < ¢ < 0o, we estimate in this case,

1
/(|g(rk)|vrk)(x)t/f(x)dx< / %(logk)l/f(X)derc / ¥(x)dx. (83)

R4 x| <k x>k

The constant in the second integral on the right-hand side is once again unimportant. The first term now leads tc
kP'~Ylogk (instead ofc”'—1), which still converges to zero (for< 1/p). O

2.6. Tightness of the one-dimensional processes

In order to showpart (a) of Proposition6, we use Aldous’ criterion of tightness (see [1]) in a version stated as
Theorem 3.8.6(c) in Ethier and Kurtz [10]:

Lemma 15(Aldous’ criterion).Let (Y ) 4<; be a family of processes with sample path®iR , , R), and assume
that (¥, is tight in law onR, for any fixed time > 0. Let S(Tﬂ) denote the collection of alf ¥)-stopping
times bounded by > 0. Then(Y®)4¢; is tight in law onD(R+, R), if for somen > 0,

lim sup sup sup E[(IY2, — ¥ A1)"]=0. (84)
5—>0ﬂelT€S(Tﬁ> 0<s<6

So fix ¢ anddg as in Proposition 6. First note the(tXt(ﬁ), ®))o<p<a is tight in law for any given time as a
consequence of Lemma 9. According to Lemma 15, it now suffices to verify thatfat 10,

2
sup sup sup E[(|(XP, ¢) — (xP )| A 1)*] - 0. (85)
0<B<L 5l 0<s<8

For eachm > 0, B, t we define the evemt™ A1 .= {supjgsg,(Xgﬁ), ¢) > m}. We then bound the quantity in (85)
by

sup P[A™A T+ (86a)
0<p<1
+c(m) sup sup sup E[[expx?), —¢) —expix ), —go)\z]. (86b)

0<p<L ;¢ gh) 0<s<H
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Note that the term in (86a) converges to zeranats oo due to Lemma 9. Using conditioning at timethe strong
Markov property, time-homogeneity, as well as the log-Laplace relation (15), we bound the expectation in (86b) by

|]E[exp(X§’i)s, —2¢p) —exp(( Xﬁ’?s, — (X(ﬁ) —-9)]|
+ IE[exp<X£ﬁ), —2¢) — exp( Xi‘?y —g)+(xP, —))]|
< |E[exd X, —u 29)) — expxP, —u&f‘)(w) all
+ [E[expX P, —2p) — expgXP, —ulP (p) — )] (87)
Now take# such that O< # < 6pe~*T. Observe that there exists a consta@) so that, for allx, y > 0, we have
e —e| <c@®)lx -yl (88)

Therefore inequality (87) can be continued by
<O E[XP, [P 2p) - 1P (0) - o) ]+ E[[XP. [uP @) — 0])'])
c@)(|ul? 2p) — 20", + |ulP () - ¢||ZO)E[O<SU<D x?,1)7]. (89)
<t<T

N

Since (89) is independent of the stopping times and converges to zero uniformly ey@r01 and 0< s < 8 as
8 | 0 by Lemmas 9 and 11, we obtain (85). $finishes the proof of Proposition 6(a)

2.7. Compact containment and convergence

In this section, we show Proposition 6(b), thus eksaing tightness in law. The convergence stated in
Theorem 2(b) then follows by identifying the unique limit of any convergent subsequence. This also verifies the
existence of the procesé stated in Theorem 2(a).

Proof of Proposition 6(b). According to the charactisation of compact sets imf; (see Kallenberg (1976) [22]
A 7.5), claim (b) is implied by the following two statements:

(i) Foralle > 0 there exists av, > 1 so that

sup P[ sup x5 Ne] <e. (90)
0<p<l  O<I<T

(ii) Forall € > 0 there exists & such that for the Borel set;, := {x e RY: |x| > ke + 1},

sup ]P’[ sup X,(ﬁ)(Ake) > e] <e. (91)
0<p<l  0<i<T

We remark that (i) is satisfied according terhma 9. For (ii) consider the test functigne Cf’**(Rd) defined
in (74), which has been chosen so that 14,. Thus, it suffices to show (91) with,, replaced by, .

1°(Proof of (91) on a small time interval We will first show this statement faf =: r < 1/p since we want to
use Lemma 14. For eadti > 1, we define a stopping timex = 7k (k, B) :=inf{r > 0: (X,(ﬁ), [Agri| + 18(re)])
> K}. For each sample, eithertx < T or tx > T, hence we can make the following estimate involving the
process stopped ak :

P[ sup (X, r) > €] <Plex <T1+P[ sup (X£h . r) > €]. (92)
o<t<T o<t<T

Since there is a constanindependent ok so that| A, | + |g(r)| < ¢, Lemma 9 implies that a& 1 oo,

sup supP[rk (k, B) <T] < sup IP[ sup XP > }—> 0. (93)
0<p<1k>1 0<p<1 Lo<i<r ¢
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In order to deal with the second probability in (92), we define the martingale
t
t> MP () 1= 1— exp(X{”, —n) + / expX P, —r) (X, —Aari + g (r0) ds. (94)
0
Thus, the stopped proceas’- ™) (), defined by
IATK

MP ™ (1) i= 1 — expX (), —ri) + / expX P, —r) (X, —Agric + P (r)) ds, (95)

INTEK
0
is also a martingale. For soraé> 0, the second term in (92) is equal to

B[ sup (1- expX B —r)) > €] (96)

INTK
]P’|: sup (Mfﬁ”’f)(rk)— / eXp(X§ﬂ),—rk)<X§ﬂ),—Aark+g(ﬂ)(rk)>ds) >e/:|
0<t<T 4

INTK
€ €
<JP’[ sup M7 () > —}HP’ sup / expX P —r ) (X P | = Aari + g () |) ds > =

0<I<T 2 osi<T 2

T Atk

2
o (E[IM(T‘?’”)(m)I] + E[ / exp(X®, —r)(x P,
0

N

—Agrk + g(’s)(rk)|>dsi|)

T Atk
2
< = (B[ - exptx ™, —r)] + 28 exp(X P, —ri) (X | Agri] + |gro)]) ds | ).
€
0

Here, we have used the martingale as well as Markov’s Inequality for the second inequality. Consider now the first
expectation of the last expression. It is bounded by

Plex < T1+E[1—exp(X, —u (r0))]. (97)

By (93), the probability term becomes small Est oo, uniformly in 8 andk. The rest of the expression can be

bounded byE[1 — exp(Xéﬂ), —ur(ry))] by Lemma 13. Asi7 (1) < 1, the expectation converges to zerdasoo

for eachg, by Lemma 14 and Lebesgue’s Dominatedn@ergence Theorem. Furthermd(éf’) = Xo and the

convergence ofr (r¢) | 0 is monotone ik yielding convergence of the expectation uniformly over ai @ < 1.
Using the fact that syp , < x a(1 — exp(—a)) "1 =: ¢(K) < oo, the expectation in the last line of the array (96)

is bounded by

T
c(K)/IE[l—equlﬁ,ﬁ),—|Aark| —|gri)|)] ds
0
T

< ¢(K) / E[1— exp x5, —u® ((18arel v re) + ()| v ri)))] ds
0



532 K. Fleischmann, A. Sturm / Ann. I. H. Poincaré — PR 40 (2004) 513-537

T

<e(K) / E[1—exp X, —us((1aarel v i) + (|g(ro)| v 7i)))] ds. (98)
0

Here, we have exploited the log-Laplace representation (15) and the monoton?nj@ of the initial condition
in the first inequality, as well as Lemma 13 in the second inequality. Again, by Lemma 14 together with the
convergence in law oﬁ(éﬁ) to Xo and the uniform boundedness of the solutionsjrwe obtaing-uniform
convergence of the integrand to zeroka$ oo for eachs < T. Since the integrand is bounded by 1 a further
application of Lebesgue’s Dominated Convergence Theorem leads to the appropriate convergence of the entir
expression.

Thus, we can finally conclude that there exists auch that the left-hand side of (92) is smaller tedar all .
First, chooseX large enough keeping in mind (93) and thgrlarge enough. This concludes the proof of (91) and
hence of claim (ii) forT =7 < 1/p.

2°(Tightness on a small time interyalfaken together with Proposition 6(a) we obtain tightness in law on the
path spaced ([0, 7], Ms).

3°(Convergence of the finite dimensional distributions on finite time intervals show subsequently that any
subsequence, denoted &y#") wherepg, | 0 asn 1 oo, convergent in law on the spad®([0, T], Ms), tends to a
unique limit X that satisfies the log-Laplace relation (17)[@7]. It suffices to identify the finite dimensional
distributions ofX. As {(-, ¢): ¢ € C/ " (RY)} is separating in;, any X, € M; can be characterised k¥, ¢) for
g e C/TRY).

Form>1,1et0< 11 < <ty < T, as wellasy € C; 1 (RY) (1<i < m)and define recursively

Uttt (DL <oy Om) = sy, 1 (PLs - oy @1 + Uty —1,, 1 (@m)). (99)

Analogously, we define,(ﬁ?__’,m (91, - - ., om) and note that by the Markov property and (15),

m
E[ l_[ exp(Xt(iﬁ), —cpi)] —E[exdx, —uif),m (o1, ... om)]- (100)
i=1
We can further show that as?t oo,
Hufﬁr_l,)_,tm ((p17 LR (pm) - utj_,...,t,,1 ((p17 LR (Pm) HOO - O (101)
This follows by induction using (58) and (64) upon noting that for any sequémngg;1 of continuous functions

in C;* (RY) with 0 < ¢1 < ¢, < 2 < 00 and ¢, — ¢lloc — 0 we havel|u’ (9,) — u, (@) ]|oc — O for anyr > 0.

To see this, consider that the expression is bounded by

P (on) — s (on) | o + e (o) — s (@) . (102)

where the first term converges to zero as in (65) to (67) in the proof of Lemma 12. The convergence to 0 of the
second term usdl* ¢, — T ¢lloc — 0 along with similar arguments. We may now conclude that

|

m
]E[l_[ eXp(Xt,' ) _(pl> - eXF(XOa _Mll,...,lm ((pla L) (pm)>:|
i=1

= lim
ntoo

m
]E|: l_[ eXp(X,(,.ﬂ”), —@i) — exp(Xo, —usy, .0, (01, - .., §0m)>:| ‘
i=1

wtm

= r!'/rrglo‘E[quX(()ﬁn), —u;ﬁn) ((p]_, ey ¢n1)> - quX07 _utl,...,tm ((plv ey §0m)>]|

0 [
”;5),1,” (@1, 0m) — Uty ...ty (o1,..., §0m)|> 0]

< lim (cGoE[xg".
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o+ [E[eXBX S, s 01, o)) — EXEX0, —tts .1 (1. s )] ), (103)

where we have used (100) for the second equality and (88) for the third inequality. Both terms in the last
expression converge to 0 as oo, the first by the fact (101) since s,ylﬁ[(xg”, 1)%] < oo by assumption. But
Uy, (@1, - ., o) IS unique and so any limit point in law of thel #)o_s<1 has the same distribution as the
unique proces¥ in D([0, T1, My) satisfying (17) forp € C,/* (RY).

4°(Extension of convergence #®,). We can now reiterate these arguments in order to lift the restriction
of the assumptiorf =7 < 1/p. From the above, we know thaitfﬁ) = X;, and from Lemma 9 we obtain

supb<ﬁ<1E[(th’3), 1)?] < 0o for any 0< 6 < 60’ . Thus, we can apply the same arguments to the process
started atr which converges again on the next interval of lengtfrhis implies convergence of the processes
in D([0, 271, Ms). Further reiteration yields convergence on an arbitrary finite time intgdyl], and therefore on

R . This completes the proof of Proposition 60

Note that with the previous proof we also verified Theorem 2(b). The completion of the proof of Theorem 2(a)
is postponed to the end of Section 2.8.

2.8. Log-Laplace equations (continued)
Recall that Theorem 1(a) was proved with Lemma 12.

Completion of proof of Theoret(b). The uniqueness of the extensionron-negative initial conditions relies

on the existence of the proceX¥saccording to Theorem 2(a), constructed before. By Lemma:{@,) exists

for all n > 1 and is bounded below by infrs ¢(x) A 1. From the log-Laplace representation (17) we see
that the sequence is monotonically non-increasing: gsco and that, for eachr, x) € R, x R?, the limit

lim, 100 1 (@n) (x) 1= u; (¢)(x) exists. Clearly, the limit is independent of the choice of the sequendg>1 since

the left-hand side of (17) converges to a unique limit by the Dominated Convergence Theorem. This implies
that g (u; (¢,)(x)) converges boundedly pointwise $@u,(¢)(x)). Thus by Lebesgue’s Dominated Convergence
Theorem,

//pt s(x — )8 (us (@) (y)) dy ds — //p, s = 0g(us(@)(x))dyds
0 R4 0 R4
asn 1 oco. Henceu(y) fulfills (9) pointwise.
Like the approximating sequende, x) — u;(¢)(x) is a uniformly bounded non-negative function®n x R?.
It only remains to show joint continuity in andx. The right continuity at = 0 follows immediately from the
strong continuity of7,* as well as the boundedness of the solutions. Otherwise, we consider for some: T,
e <t <t <Tandx,x eRY,

t/
g (x) — ur (x)] < /Ip?i(x’ )= plx—y e dy+ / / po_ ("= y)|g(us ()| dyds

R4 t Rd
t

+ //\pﬁ_s (' —y) = pi (x = »)||g(us(»)) | dyds

0 R4

C</\p,“/(x'—y)—pf‘(x—y)ldy+|t’—t| (104a)
Rd
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t
+ //‘pf‘_s "=y —p¥(x— y)‘ dy ds). (104b)
0 R4
Now, let|t’ —¢] | 0 as well agx’ — x| | 0. We note that

sup sup pf(x) < oo, (105)
e<t<T xeRd

and thatp{ (x) is jointly continuous on(0, oo) x R? (see, for instance, Appendix in Fleischmann and Géartner
(1986) [14]). Thus, by Lebesgue’s Dominated Convergence Theorem, the spatial integrals in (104a) and (104b
converge to zero, the latter for all< ¢. Since the spatial integral in (104b) is further bounded by 2, another
application of Lebesgue’s Theorem concludes the proof of Theorem 1(b).

Completion of proof of Theore®(a). It remains to verify that the uniquely constructed limit proc&sslso
satisfies the log-Laplace relation (17) withe Cgr (R4) andu(¢) the unique solution in the setting of Theorem 1(b).
This can be seen by consideripg | ¢ with ¢, € Cfr(Rd). In this case, both sides of the representation (17)
converge appropriately due to Lebesgue’s Dominated Convergence Theorem, and we arexone.

3. Immortality and infinite biodiversity
As already mentioned in Section 1.3, our prock¥ds immortal and propagates instantaneously:

Proposition 16 (Immortality and instantaneous propagatiofgke i € Ms\{0}, > 0, and ¢ € C&,,\{0}. Then
(X:,9)>0,Py-a.s.

In other words, almost surely the Lebesgue measure is absolutely continuous with reshe®egall that in
the caser = 2 this is quite different from the behaviour of the approximating supercrikié&l processes.

Proof. By the Markov property of(, we may fix O< ¢t < 1/p. Clearly,
. — th9 _ .
P.[(X:,¢)=0]= lim By [e X160} = exp[—(yTTo(M, ur (09))]. (106)

Hence, by Monotone Convergence it suffices to show that for eacR?,
u; (0g)(x) 1 0o ash 1 oo. (107)

Let us now consider a sequen@g),>1 with g, € C;/*(RY) andg, | ¢ pointwise as well aggy oo — ll¢ |-
By the Feynman-Kac representation of solutions to (9) in the local Lipschitz region,

t

ur(Opn)(x) =0 E, |:(ﬂn (€3] eXp<— / o lOg[utfs (99011)(53)])] ) (108)
0

where(&, Py) is a motion with “generatorA,, started atc. Consequently, by the estimate (64) in Lemma 12, for
6 large enough, so that|¢ |l > 1,

us(990n)(§s) < 9”%1”007 5,0 >0. (109)
Therefore,
u(0@n) (x) = 0 Ex[@n (&) exp(—pt 10g[0]|¢nllsc ]) ]
=00l ¢nlloc) " Ex[0n(EN] = 60X l@n oL T o (x). (110)
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By Theorem 1(b) the left-hand side convergest®¢)(x) asn 1 co. The right-hand side converges by assumption
implying

1 (Opa)(x) = 67 ol T o (x), (111)
which becomes infinite a1 oo sinceg # 0 giving (107). This completes the proofn

Proposition 16 implies that has countably infinite biodiversity. This we want to make precise now. Recall that
an infinitely divisible random measutee M; has aclustering representation

Y=y+) X (112)

(see, for instance, Lemma 6.5 in Kallenberg (1976) [22]). HeeeM; is the deterministic component &f(or the
essential infimum of), and the clusterg; € Ms are the “points” of a Poissonian point measureMa(R4) \ {0}
with some intensity measui@, which is called thecanonical measuref Y. We can reformulate (112) as the
classical Lévy—Hincin formuléor log-Laplace transforms,

—logE,[e "] = (y,p) + f QUdx)(1—e ‘19 (113)
M;i(RY)

(see Theorem 6.1 of Kallenberg [22]). L&t be a bounded Borel subset &. If y =0, then the number
#{i: x;(B) > 0} of clusters inB has a Poisson distribution with expectati@iy: x(B) > 0) < oco. If y(B) >0
then one could say a “continuum of clusters”contribute¥ {®). Therefore in Fleischmann and Klenke (2000)
[15] the following terminology was introduced:

Definition 17 (Biodiversity. We say that the (locabiodiversityof the infinitely divisible random measutigis

o finite, if y =0 andQ(x: x(B) > 0) < oo for every compact sek,
e countably infiniteif y =0 andQ(x: x(B) > 0) = oo for every open seB # @,
e uncountably infiniteif y (B) > 0 for every open seB # (.

Armed with this terminology, we can now prove the following result:

Corollary 18 (Countably infinite biodiversity)For every fixedu # 0 and ¢ > 0, the random measur&,; has
(locally) countably infinite biodiversity.

Recall that this is in contrast to the finite biodivigyf the random states of the approximating processés.

Proof. ForY to have finite local biodiversity, it is necessary and sufficient that

P.[Y(B)=0]>0 forany compact sek. (114)
This follows from the simple observation that

Q(x: x(B)>0)=—logP,[Y(B)=0], (115)

provided thaty = 0. Then from Proposition@lit follows that theX; have infinite biodiversity. Finally, the random
measureX,; does not have a deterministic component, sikiggk?) has a stable distribution with index & [recalll
(25b) and (27b)]. This finishes the prooft

Remark 19 (Genealogy. Recall that in genealogical terms Corollary 18 means that at timneeach bounded
region the families of individuals have countably infiniteany different ancestors at time 0. It would also be
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very interesting to study the more detailed genealogy of our superpricd@see genealogy of Neveu’s branching
processX was worked out in Bertoin and Le Gall (2000) [2]. It is connected with the Bolthausen—Sznitman
coalescent and the description of the generalized random energy model of spin glasses (see Neveu (1992) [25]).
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Appendix A

Proof of Proposition 10. We first note that > M, (1) := exp(—ii_, (M) X;) = exp(—1€) X,) is a martingale, for
eachi > 0, since fors <,

En[exp(—ii— (W) X;) | Fs] = exp(—it;—s (ii— (1)) X;) = exp(—ii—s (1) X) (A1)

by the Markov and branching property of the procé&ssnd the semigroup property of the solutidnSince
M, ()) takes values ifi0, 1] the limit ast 4 oo exists a.s., and we denote it by()). By Lebesgue’s Dominated
Convergence Theorem, for @ll> 0,

En[Wf )] = fim B [exp(—0i—, (M) X;)]

= lim exp(—t; (0i—; (1))m)

t1oo
= lim exp(— (@A NE " ) = e A2
lim exp(—(64=")" " m) (A.2)
This implies thatW (1) takes the value 1 with probability¢” and is 0 otherwise. Sinc#; (1) is monotonically
non-increasing in. for eachr > 0, the limit W()) is non-increasing im. Also note thatW (i) is defined
a.s. for all rationalr. With the exception of a null set, we canetiefore define the threshold variable:=

inf{rationalx: W) = 0}. From P,,[V < A] = lim; 4, Pp[W(Q) =0] =1 — e M we obtain thatV is
exponentially distributed with mearyi. It follows that a.s.

CAYT, 0 forr <V,
AT X = {oo fora>V, (A-3)
ast 1 oco. This implies that for any random variabl&s and V1 with rational values so thafp < V < Vi,
_@Pt = __ ot
Vi <X <y (A4)

a.s. forr =t (w) large enough. Hence, we have

Iog<i> < liminf e log(X;) < limsupe ' log(X;) < Iog(i) (A.5)
% 1100 1100 Vo

almost surely. The statement now follows by letting almost suvglsgnd V; tend toV'.
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