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Abstract

In this paper, we obtain the existence and uniqueness of the solution to the perturbed Skorohod equatiofi(r) +
amaxyg < §(s) + h(z) for any real constant < 1 and any given continuous functighy whereg > 0, andh is an increasing
function which only increases at the tingas at zero. As an application, we establish the existence and uniqueness of some
perturbed reflected diffusion processes.

0 2004 Elsevier SAS. All rights reserved.

Résumé

Dans ce papier, nous obtenons un résultat d’existence et d’'unicité pour I'équation de Skorohod pegttyirbég(r) +
amaxgg < &(s) +A(2) étant donnés un réel < 1 et une fonction continug, g est une fonction positive étest une fonction
croissante, strictement croissante aux pointg alannule. A titre d’appptiation, nous obtenons I'exence et l'unicité de

certains processus de diffusion réfléchis perturbés.
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1. Introduction

There now exists a considerable body of literature tevdo the study of “perturbed” versions of familiar
stochastic and deterministic equations; see é:¢1(,12—-14]. An example is the perturbed Skorokhod equation

X,=x+4 B +a max X, +LX, >0, (1)

o<s <t
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whereB is a standard Brownian motion starting fromd < 1 is a real constank, > 0, and LX denotes a local
time at zero ofX. Since fora = 0 the solution is reflected Brownian motion any solution of (1) is referred to as
a perturbed reflected Brownian motion, and the question of its existence and pathwise uniqueness has exercise
several authors. As was pointed out in [10], if eitlver 0 ora < 1/2, an affirmative answer follows from the fact
that the obvious deterministic version of (1) has a unique solution vBhinreplaced by an arbitrary continuous
function, vanishing at zero. The remaining case was settl¢8]; a slightly weaker result being published simul-
taneously in [6]. However neither of these results dealt with the deterministic version withandx € [1/2, 1),
and our first main result, Theorem 3.1 fills this gap, by means of completely different arguments.

Our other main result seems to be the first to deal with the analogous question for a general diffusion. Specifically
we study the equation

t

X,=x+/U(Xs)st+ot mast+LtX, t >0, (2)
0<s <t
0

whereo is a Lipschitz continuous function aR. Again the case > 0 turns out to be relatively straight-forward,
once we have established existence and pathwise uniqueness for perturbed diffusion processes in Theorem 2.
For x = 0 we exploit our result on the Skorohod equation together with Picard iteration to establish existence and
pathwise uniqueness of a solution to (2), but unfortunately only in theccasg/2.

Finally we consider a version of (2) in which the It igtal is replaced by a Stratonovich integral. In this case
we are able to establish existence of a unique solution for all valugscf, under mild assumptions @n

2. Perturbed diffusion processes

Let B;,t > 0 be a standard Brownian motion on a probability sp@eefF, P). F;,t > 0 denotes the filtration
of the Brownian motiorB. Let o (x), b(x) be Lipschitz continuous functions ak, i.e., there exists a constafit
such that

lo(x) —o(»)| < Clx —yl, (3)
|b(x) —b(y)| < Clx —yl. (4)
Fora < 1, consider the following stochastic differential equation:

<
<

t t

Y,=Y0+/U(Ys)st+/b(Y5)ds+a max Y. (5)
0<s <t
0 0

Theorem 2.1.Assume that the random variable Yy is independent of B and E[|Yo|?] < 0o. There exists a unique,
continuous, F;-adapted solution Y;, r > 0 to Eq. (5) such that E [SUR<s<T |Ys|%] < oo for any T > O.

Proof. We construct the solution by iteration. Let

Y
Y,0=1 0 , 0<t<oo.
—o

Forn > 0 defineY,"** to be the unique, continuous, adapted solution to the following equation:

t t

Y,’“rl =Yo+ / oY) dBs+ / b(YHds + aorga<x YS"“. (6)
st

0 0



R.A. Doney, T. Zhang / Ann. |. H. Poincaré — PR 41 (2005) 107-121 109

Such a solution exists and can be expressed explicitly as

t t N s

yrH 1i_0a +fa(Y;1)st +fb(ys")ds+ 1“ max (/a(Y,f)dBu+/b(Y,:’)du). @)

— o 0<s<t
0 0 0 0

This is a consequence of the reflection principle. We will show tfatonverges uniformly on compact intervals
almost surely. It follows from (7) that

s N N N

Yt —yr < /U(Y,:’)dBu —/a(ygfl)dBu + /b(Y;)du—/b(Y;’*l)du
0 0 0 0
| | v v
o
ma Y"dB b(Y"d
1o ogvés(f"( ") u+f (¥ u)
0 0
v v
— max (/a(ygl)dBu —i—/b(Y,:’l)du)
o<v<s
0 0
s s s
< /a(yg)dBu —/a(y;j—l)dBu +/\b(YLf)du—b(Y;—1)|du
0 0 0
v
+ 4 max /(U(Y")—U(Yn_l))dBu
1— o 0<v<s " "
0
o] [
o
max b(Y") —b(Y" 1)) d 8
g max | [ (b0~ b ) du, ®
0

where we used the fact thamaxc,<s f(v) — MaXgugs §(v)| < MaXgygs | f (v) — g(v)| holds for any two
continuous functiong andg. Thus,

/ (o (¥ —o(¥!1)) dB,

0<s <t
0

o
max|Y;’+1—Y;’|<<1+ o >|: max
0<s<t : Y

13
+/\b(Y;)—b(Y;—1)\du]. (9)
0
In the rest of the proof, we will us€ to denote a generic constant which may change from line to line. By
Burkholder’s inequality,
- 1 t

E[ max Y™ —v!'!] < CE /(a(Y;) - a(Y;—l))zdu] + CE[/(b(Y;) - b(Y;—l))zdu]

0<s <!
“0 0

-t
< CE / |y — Y;1|2du]. (10)
-0

Iterating the inequality we get that for fixgd> 0,

Tl”l
E[ max Y"1 —y")2l<Cc—, 11
[ogngI s S n! (11)
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sinceE[YZ] < co. Consequently,

1 AT)"

P< max Y"1 —yr| > ><C( " (12)
0<s<T 2n n!

By the Borel-Cantelli lemma, we see thét converges uniformly to a continuous, adapted prodess [0, T']

almost surely. Lettingr — oo in (6) it follows thatY is a solution to Eq. (5). Ag' is arbitrary, this proves the

existence. Now suppose that ¢+ > 0 andZ;, ¢t > 0 are two solutions to Eqg. (5). Then we have, by the reflection

principle,

t N S
Yo o
Vo= [oooanr o max( [oan,+ [bdu), (13)
11—« 1— o 0<s<r
0 0 0
t s s
Yo o
Z, = +/U(ZS)dBS+ max /G(Zu)dBu+/b(Zu)du . (14)
l-« 1—aogs<r
0 0 0

Arguing as above, there is a constahsuch that
t

/|b(Yu) —b(Zy)|du. (15)
0

N

/(G(Yu) —0(Zy))dB,|+C
0

¥, = /] < C max

\S \t

Applying Burkholder’s inequality,

E[1Y, - Z/?]<CE /\a(y) o (Zy)| du:|+CE|:/|b(Y) b(Zy)| du] (16)

<CE /lY — du] (17)

which impliesE[|Y; — Z,1%] = 0 by Gronwall's inequality. Hence, the solution is uniquex

3. Perturbed Skorohod equation

SetWo={f € C([0,00) — R); f(0) =0} andW* = {f € C([0, 00) — R); f(¢t) >0 for all t > 0}. The aim
of this section is to prove

Theorem 3.1.Given f € Wp and 0 < « < 1, thereexist unique g € W+ and 2 € W such that

(i) gty = f() +a0r2§<xt g(s) +h(1), (18)

(iiy ~(0)=0and s — h(r) isnon-decreasing,
(iil) fo xtz()=01 dh(s) = h(1).

(g, h) iscalled a solution to the perturbed Skorohod equation for the function f.
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Remark. This gives a simpler proof of Theorem 1 of [3].

For clarity, we split the proof of the theorem into several lemmas. For a continuous furfctod 0< s < ¢
define

w1 (f) = max (f—f)= L max (|f(u) ). 19)

s<u, vt

Lemma 3.2.Let (g, k) bea solution to the perturbed Skorohod equation for the function f. There exists a constant
C independent of ¢ and f such that

05.1(8) < Cagy(f) forall 0< s <1, (20)

Proof. Fix 0<s <. We observe that i§(v) > 0 for all v € (s, 7) then
g)—gls)=f) — f(s) —|—a( max glu) — Omax g(u)) forall v e [s, t], (21)

and if maxc, <, g(u) = MaXogu<s 8(u)
g(v) —g(s) = fF(v) — f(s)+h(w)—h(s) forallvels,z]. (22)

Without loss of generality we assumg;(g) > 0 andw; ;(g) = g(vo) — g(uo) for someug, vo € [s, 1.
Casel.ug < vo.
Letlo =vo Ainf{v > up; g(v) = MaXogu<o )} AS MaX<u<iy & (1) = MA<u<u, &(1), by (22),

g(v) — g(uo) = f(v) — f(uo) + h(v) — h(ug) forallv € [uo,lo]. (23)
It follows by the reflection principle that far € [uo, lo],

g() — g(uo) = f(v) — f(uo) — u inf {(g(uo) + f(u) — f(uo)) A O}
< f@) — fuo) — |nf {(f(u) — f(u0)) A0}
<[f@ - fwol+ max | f () = f o)}
<2 max {|f) — f(u0)|

<u<v

A
}. (24)

In particular,
g(lo) — g(uo) <2 max {|fw) — fuo)l}. (25)
up<u<lo

On the other hand, we can assum@) > 0 for all u € [lp, vo]. Otherwise, replaceg by g = sugu; u <
vo, g(u) = 0}. Thus, by (21)
g(vo) — g(lo) = f(vo) — f o) + a(onja>§ gu) — Omax g(w)). (26)
<u<vg <u<l

If lo = vo, then (20) follows already from (25). Assume néyw< vg. In this case it is easy to see thatp) =
maXo<u<i, 8(1) andg(vo) = max << g(u). Therefore, we also havgvo) = Maxog, <y, & (). Consequently,

g(vo) — g(lo) = f(vo) — £ (lo) + a(g(vo) — g(l0))- (27)
Hence,
g(vo) — glo) = (f(vo) f o). (28)

Combining (25) and (28) yields
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g(vo) — g(uo) = g(vo) — g(lo) + g(lo) — g(uo)

< L l 2
\m(f(vo)—f( 0))+ uofgaé( {|f(u)—f(u0)|}

<u<lo

11—« s<u, vt

1
< (2+—> max {|fw) — f)|}. (29)

Case 2. vg < ug.
We can assumg(u) > 0 for all u € [vo, uo]. Otherwise, we can replaeg by it = inf{u > vo; g(u) = 0}. Thus,
by (21),

g(uo)—g(vo)=f(uo)—f(vo)+a(0max gu) — max g(u)). (30)

<u<kug <u<vo

Sinceg(vo) = MaX,,<u<ug §(), We have

g(uo) — g(vo) = f(uo) — f(vo) < ws, i (f). (31)

Combining case 1 and case 2 completes the proaf.

Lemma 3.3.Let (g,, h,) be a solution to the perturbed Skorohod equation for a function f,,. If f,, — f uniformly
on compact intervals as n — oo, then a solution (g, /) to the perturbed Skorohod equation for the function f
exists.

Proof. Without loss of generality, we can restrict ourself to the finite intef@al]. Since f, — f asn — oo,
{fu,n > 1} is a bounded set of equicontinuous ftinns. By Lemma 3.2, we see th&t={g,,n > 1} is also a
bounded set of equicontinuous functions. By the ArzAkeeli theorem, there exists a subsequegicek > 1,
that converges uniformly to a continuous functigon [0, 1]. It is seen from (18) thak,, , k > 1 also converges
uniformly to a non-decreasing continuous functioan [0, 1] and

gty = f() +“on§ g(s) +h(1). (32)

To show that(g, 4) is a solution to the perturbed Skorohod equation for the funcfipit remains to prove that
fé Xig(s)=0y dh(s) = h(z) fort > 0. To see this it is enough to show that for any continuous funétigron (0, co)

with compact suppor;[é 1(g(s))dh(s) =0. This in fact follows from
t t

/l(g(s)) dh(s) = k"—>moo/l(g"k (s)) dhy, (s)=0. O (33)
0 0

Proof of Theorem 3.1.
Existence. Again we restrict ourself to the intervgd, 1]. For the existence, by Lemma 3.3 we can assume
f € H3[0, 1], where
1
Hzl[o, 1]:= {f; f:10,1] — R is absolutely continuous an f’(s)zds < oo,, (34)
0
where f’(s) stands for the derivative of. We will use the so called penalized method. Define

0 ifx>0,
¢(x)={ ,

xc ifx <O.
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Consider the following functional equation
8s(1) =f(t)+a0max 8e(s) — —/¢ g:(s))d (35)

whereg¢’ (x) stands for the derivative af.
Note that there is no “local time” term in Eq. (35). The existence of the solution of Eq. (35) can be obtained in
exactly the same way as Theorem 2.1. In fact, let

gso(t) =0, 0<t<oo,
and defin@ﬁ“(r) to be the unique continuous solution of the equation:

o =) - —/¢ gh(s))ds +a [max ().

\S\

By the reflection principle,

n+l(t)—f(t)——/¢ gr(s))ds + max (f(s)—}/¢/(g"(u))du)-
€ 1— o o<gs<e & €
0

Following the proof of Theorem 2.1 sentence by sentence, we arrive at

max lg" () — gﬁ(r)|<<1+—> / ¢/ (2(5)) — ¢/ (g2 (9))| ds

<1+—>C8/|g8 (s) — &' 1 (s)]| ds.

Iterating the above inequality as in the proof of Theorem 2.1, it is seergthatnverges uniformly on any finite
interval[0, T'] to a continuous functiog,, which clearly is a solution of Eq. (35).
PUtA® (1) = maXogs<r 8¢ (5), then

P(g: () + / ¢ (2:(s))° ds = / #'(g:()) f(s)ds +a / @' (g:(s)) dA®(s). (36)

Since¢’ (x) < 0 andA®(¢) is increasing i, it follows from (36) that

y :
/ ¢ (3:(9))° / ¢'(8:()) f/(s)ds < ( / ¢ (2:(5))° ) ( / f’(s)zds) . (37)
0

Consequently,

—/cb g ()’ /f (5)2ds, (38)

and furthermore, by the Holder inequality and (38),
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t
Blee0) < [ #(2:0)F ) ds
0
t % t % t
< (/q)'(gg(s))zds) (/f/(s)zds> gs/f/(s)zds. (39)
0 0 0

Sethé(t) = —% f(; ¢’ (g:(s)) ds. Then by (38) there exists a sequenage- 0 such that®: () converges uniformly
toh(r) € H%[O, 1]. On the other hand, it follows from Eq. (35) that

|86, (1) = ge, ()] < @A™ (1) = A (1) | + | (1) — h*" (1) |

<a [max |86, () — 8e, ()] + [ (1) — K" (1)]. (40)

Hence,
max — < max |h —h . 41
0<S<1|ge,1(s) 8en ()] 1_a0<S<1\ e (8) = he,, (5)] (41)

Therefore{g,, (t),m > 1} is a Cauchy sequence @X[0, 1]). Let g denote the limit. We will show thafg, %) is a
solution to the perturbed Skorohod equation for the funcfiofirst of all, it is clear from the construction that

gty = f() +a0r2§<xtg(s) +h(1), (42)

andh(t) is a non-negative increasing function (becatgeis). Secondly, it follows from (39) that(g(r)) =0,
which implies thatg(z) > 0 for all + > 0. Now for any continuous functiok(z) on (0, co) with compact support,
say that the support is contained i, §»] for somes; > 0, we have

t

/ 1(ge, (5)) dh® (5)

0

t t
1
S / ‘l(gen (s))‘dhgn ()= 8_/ ‘l(gsn (S))H(ﬁ/(gen (s))‘ds
0 0

t

<cC / Xt (86, )| (g6, (5)) | ds =0,
0

since¢’(x) =0 forx > 0.

The identity[é Xig(s)=0y dh(s) = h(z) for : > 0 can now be proved similarly as in the proof of Lemma 3.3. Thus,
we complete the proof of existence.

Uniqueness: For anys > 0, letgs(¢) be the unique solution to equation

g =A—-a)s+ f(t) +a max gs(s) + hs(t). (43)
0<s <t

Such an equation was studied in [10] and [3]. eth) be a solution to Eq. (18). A “round trip” of is defined
to be a section of the pathlying between two maxima and containing a visit to zero. It follows from the proof of
Lemma 3 in [3] that

sup |gs(s) — g(s)| < 8(e* + 2T, (44)

0<s <t

wherea* = 12, n, is the number of round trips completed pyy time:. This implies thak (¢) = lims_.o gs(¢),
which gives the uniquenessn
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4. Perturbed reflected diffusions

Leto be as in Section 2. Far > 0, consider the stochastic differential equation:

t

X,=x+/U(XS)dBS+Ot max XS+L1. (45)
o<s <t
0

Definition 4.1. We say thatX;, L;,t > 0) is a solution to Eq. (45) if

() Xo=x,X,>0forr >0,
(i) X;, L, are continuous and adapted to the filtratiorBof
(iii) L; is non-decreasing witho =0 and
t
/X{XS:O} dLs =Ly,
0
(iv) (X;, L, t > 0) satisfies Eq. (45) almost surely for every 0.

The cases = 0 andx > 0 are quite different. We will treat them separately.
Theorem 4.2 Assume o < 1 and o isLipschitz If x > 0, there exists a unique solution (X;, L;, t > 0) to Eq. (45).

Proof. We construct the solution iteratively in a similar way to [10]. Defiir‘féto be the unique solution to the
equation:

t

Yo=x+ / o (Y9 dBs +a max Y°. (46)

0

It is known from Section 2 that such a solution exists. et inf{r > 0; Y,0 =0}. ThenTy > 0 a.s. ast > 0.
Define

X =Y/, L;=0 forO0<r<Th. 47
PutB! = B,.1, — By, fort > 0. Itis well known thatB}, 1 > 0 is a standard Brownian motion independenfgf.
Consider the stochastic differential equation with reflecting boundary:

t
7t = / o(zhaBt+ LY,
0
zt>o0, zi=0 (48)
t
0

The definition of a solution to this equation is the same as Definition 4.1 w40 anda = 0. It is known that
a unique solution(Z}, L}) to the Eq. (48) exists, see e.g. [11] or [15]. In general, supposé&XhaL,) has been
defined for 0< t < T»,—1. We can construatX,, L;) for 7,1 < t < Tp,41 as follows. LetZ,Z”‘l be the solution
to the equation:
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thn—l — G(Zgn—l) dBSZn—l + Lt2n—l’

o .

zp >0, zg7t=o, (49)
t

2n—1
Lt=o, / Xgo-igdLZ =17,

0
whereB” ™' = B, 1,, , — Br,,_,. PutTs, =inf{r > Tz, _1; Z,”T; | =MaXg<r,,_, X5} and set
Xt—thnT;, g Li=Lr, 1+Lt Tz, . for o, 1 <t < Toy. (50)

Let ¥>" denote the solution to equation:
t

Y2 =1—a)Xp, +/U(Y52")d33" +a max Y2, (51)
<s<t

0
whereB?" = B;,1,, — Br,, . S€tT,11 = inf{t > Ty, Y,_z, = 0} and

X, =y

—To> L, =Ly, for To, <t < Topy1. (52)

By this procedure, we obtain a sequence of increasing stopping iimes> 0. SetT =lim,_, . T,. ThenT

is again a stopping time, an&;, L,) is a well defined continuous process for alkG < 7. We will show that
(X:, Ly, t < T) satisfies Eq. (45) in the sense of Definition 4.1. To achieve this, it is sufficient to provethadt,)

satisfies Eq. (45) fofp, <t < T2,4+1 andn =0, 1.... We will do this by induction. It is obvious th&¥,, L) is a
solutionto Eq. (45) for K r < T1. f T1 <t < T, it foIIows that

X,:Ztlle

t—T1

= / o(Z)dB} + L} 1,
0
t—T1

= / o(Z})dByir, + Ly
0
t

Z/U(Xu)dBu+Lt
T

t

=Xr +/U(Xu)dBu + L

I
Ty t
:x+/U(X )dBs +a max X, +/U(Xu)dBu+L,
0<s<T
0 T

t

:x—l—/a(X )dBs +a max X + Ly, (53)
<s<t

0
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since mayg < Xy = MaXogs<r Xs for Ty <t < Tz, andXp, =0.
Furthermore ifly <t < T», we see that

t t t—T1

/X{xs=0}dLs = / Xix,=0ydLy_g, = / Xizi—oydLy = Li_g, = L. (54)
0 Ty 0

Thus we have showed that,, L;) is a solution to Eq. (45) for & ¢ < T». Suppose thatX,, L,) satisfies Eq. (45)
for0 <t < Topy. If To, <t < Top41, it follows that

-Xl—'Y?nﬂh
t—To,
=1-a)Xp, + / o(Y?)dB” +a max YZ
0<s<t—To,
0
Ton t=Tp,
:x+/a(X)dB +a max X,+Lr, —aXr, + / o(Y?)dBsi1,, +a  max Y%
0<s< o, 0Ks<r—Ta, °
0 0

:x—l—/a(XS)dBS—i—a max X;+ L;

EASE Y

=x /O’(X YdBs; +a max X + Ly, (55)

<<t

where we have used the fact thiég,, = mad<,<z, X5 and¥Z" = X, from their definitions. Sincex, # 0 for
T2, <t < T2,41, We also have

t T,
/X{Xs=0}dLs = / Xix;=0ydLs =Lz, = L;.
0 0
So(X;, L,) satisfies Eq. (45) also fd, < t < T2,+1. Repeating similar arguments as for (53), we also can show

that(X,, L,) satisfies Eq. (45) fofp,4+1 <t < Ton42.
Finally we show thaf" = co a.s. By the construction of, we have that

Ton+1
0=X max X o(X5)dB max X,— max X L Ly, . 56
o1 = 0 <, +/ (Xo)dBs +a(,_max Xs— o Max X +Ln., =L, (56)

T2n

Supposd’ < oo with positive probability. Letting: — oo in (56), we get 6= maxy,<r X Which contradicts the
fact thatXo = (1 — ) ~1x > 0. The proof of existence is complete.
On the other hand, it is easily seen that the Bofuis unique since it is unique on each interVBl, 7,+1]. O

Theorem 4.3.Assumex =0.1f0<a < % then there exists a unique solution (X, L;, t > 0) to Eq. (45).
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Proof. We will use the Picard iteration method. Defik@ = 0 and(x*1, L"*1) to be the unique solution to the
equation:

t

X+l — / o (X")dBs +a max X" 4 Lt (57)
0<s<t
0

The existence and uniqueness of this solution follow from Section 3. Observe that by the reflection principle,

N
L'l = —inf {(/a(XZ)dBu +a max XZ“) /\0}. (58)
s<t o<u<s
0
Now (57) and (58) imply that
13 N
|xm+H— x1 < /(a(xg’) —o(X" 1) dB| +sup /(a(xg) —o (X)) dB,
0 St
+ 20 sup| X"+ — x™. (59)
s<t
Consequently,
N

sup| X"t — x| < sup /(a(x;’) —a (X" 1)) dB,|. (60)

s<t 1-2¢ s<t o
By Burkholder’s inequality,

t t
E[sup|X"*! — X" 2] < C,E [/(a(xg) — a(xgl))zdu] < CyE |:/(X;’ — X?l)zdu:|. (61)
s 0 0
Thus, we deduce that for any fixgd> 0,
n
E[sup|x"™ — x"?] < (Car)” (62)
s<T n!
which yields
1 4Cq,7)"
P< SUplX;H_l _ X:ll - _) < M (63)
s<T qn n'

Using the Borel-Cantelli lemma, it follows th&t’ converges uniformly to a continuous, adapted process
[0, T almost surely. Again by the Borel-Cantelli argument, it is also seen\hét) := fé o (X¥})d B, converges

uniformly on[0, T] to M(¢t) = f(; o (Xy)d By almost surely. Thus, by (57), we see tligtconverges uniformly to
a continuous non-decreasing procéssn [0, 7] almost surely. Letting — oo in (57) gives

t

XIZ/U(XS)dBS + o max XS+L[. (64)

0<s<t
0

To show that X, L,) is a solution to (45), we need to prove

t

/X{X5=0}dLs =L;.
0
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This will follow if we can show that for any € Co(0, c0)
t
/ f(X;)dLy =0. (65)
0
Indeed,
t t
/f(XS)dLS = lim /f(xg’)dLg =0.
n—00
0 0

Next we show the uniqueness. L@t} L,l),(X,z, L,z) be two solutions to Eq. (45). Using similar arguments as
above, it can be shown that

1
E[supl X! — X??] < C4E |:/(X‘} - Xf)zdu]. (66)
0

s<t
By Gronwall’'s inequality, it follows tha&k* = X2, and hencé.l = L2. O

Remark 4.4.Under the conditions in Theorem 4.3 the existence can also be obtained from Theorem 4.2 by letting
x — 0 and showing the corresponding solutions form a Cauchy sequencelid2¢-space.

Now, consider the stochastic differential equation:
t
thx—i—/cr(XS)odBS—i—a max X + Ly, (67)

st

0

whereo means the Stratonovich integration. A solution to this equation is defined as in Definition 4.1 with Ito
integration replaced by thetfatonovich integration.

Theorem 4.5.Assume that there exists a constant ¢ > 0 such that o (x) > ¢, and % is continuous. Then for any
0<a <1landx > Othereexists a unique solution (X;, L;, t > 0) to Eq. (67).

Proof. We prove the theorem far= 0. Other cases are similar. Introduce two functiéné), F2(x) on R defined
by

X X

1
Fﬂx):/mdu, Fz(x)=/cr(F2(u))du.

0 0
Note thatFy, F> € C?(R), F1 = F; *, and
Fi(x)=0& x =0, Fi1(x)>0& x >0, (68)
F(x)=0&x=0, Fo(x) 20 x 20. (69)
It follows from Section 3 (also [3]) that there is a unique solution, denote(dd?yL?), to the equation

X0=B, +a max X°+ LO. (70)

o<s <t
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DefineX, = F2(X?) andL, = [y o (X,) dL?. Putm? = maxc,<, X0. By Itd's formula, we have that
t 13 13
X, = / F3(X%) 0dx? =/a(xs) odB +a/a(xs)dm§? + L. (71)
0 0 0
SinceF» is a monotone increasing function, it follows that

max X; = max Fa(X%) = Fo(mP). (72)
0<s <t O<S\t

On the other hand,

t 1

Fz(m9)=/Fé(m?)dm?:/cr(Fz(m?))dms

0 0
t t
= / o (F2(X2)) dm? = / o (X,)dm?, (73)
0 0

where we have used the fact that the meagur® does not charge the sgt m > x }. Thus (71) becomes

t

Xt:/o(XS)odBS—i-oe ma<x Xs+ L;. (74)
<s<t

0
Itis clear thatZ,, r > 0 is a continuous, non-decreasing process. Moreover,

t t t

/ xi0y(Xs)dLs = / xio (X dLs = / x0/ (X0 (X5)dL0 = L,.
0 0 0

This shows thatX;, L, r > 0) is a solution to Eq. (67).

On the other hand similar arguments also show that for any soldfen’,,: > 0) to Eq. (67), (X0
F1(Xy), L0 fo o X ETo ) dLy) is a solution to Eq. (70). Thus, the uniqueness of the solution to Eq. (67) is a con-
sequence of the unlqueness of the solution to Eq. (70). The proof is compiete.
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