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Abstract

We consider financial markets with two kinds of small traders: regular traders who perceive the (continuous) asset price
processs through its natural filtration, and insiders who possess some information advantage which makes the filtrations through
which they experience the evolution of the market richer. We discuss the link between (NFLVR), the semimartingale property of
S viewed from the agent’s perspective, and bounded expected utility. We show that whenever an agent’s expected utility is finite,
S is a semimartingale with a Doob—Meyer decomposition featuring a martingale part and an information drift. The expected util-
ity gain of an insider with respect to a regular trader is calculated in a completely general setting. In particular, for the logarithmic
utility function, utility gain is a function of the relative information drift alone, regardless of whether the market admits arbitrage.

0 2005 Elsevier SAS. All rights reserved.

Résumé

On considére un marché financier avec deux sortes de petits investisseurs : des investisseurs réguliers qui pergoivent I'évo-
lution du prix S dans sa filtration naturelle, et des agents initiés ayant des informations supplémentaires et qui ainsi suivent
I'évolution du prix par une filtration plus riche. On discute le rapport entre (NFLVR), la propriété de semimartingaleiele
dans la perspective de I'agent, et la bornitude de I'espérance de I'utilité. Si celle-ci est hasteine semimartingale avec
une décomposition de Doob—Meyer comprenant une martingale et un drift d’'information. On calcule I'utilité supplémentaire
espérée pour I'agent initié sous des conditions générales. On montre, que si la fonction d'utilité est logarithmique, I'utilité
supplémentaire ne dépend que du drift d'information. C’est le cas méme si le marché admet un arbitrage.
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0. Introduction

Asymmetry of information on financial markets has been a subject of increasing interest in recent years. Several
mathematical models have been designed to deal with financial markets on which traders with different information
levels are active. See Wu [32] for an overview. The model to capture basic facts of insider’s action on markets which
motivated this paper is very simple. Two kinds of traders are considered: regular agents who do not know any more
than the natural evolution of the assets of the market, and insiders whose knowledge at any given time in the
trading interval is larger than the-field generated by the asset price process up to that time. The insider may, for
example, possess some additional information on the price of an asset at maturity, or at some later time. He might
anticipate the time when an asset price reaches a favorable level, or be able to stop at the time at which some final
level crossing of the price process occurs. Situations of this type have been modelled for example by Karatzas,
Pikovsky [22], Amendinger [1], Amendinger, Becherer and Schweizer [2], Grorud, Pontier [16], and [3,19,17,18].

In most of these papers, questions of utility gain of the insider relative to the regular trader were discussed. It
turned out that for many types of additional information the expected increment of utility gained by the insider
may become infinite quite easily, and might provide opportunities for free lunch or even arbitrage in an equally
easy way. Baudoin [5,6] and Baudoin, Nguyen-Ngoc [7] develop a model in which additional information on some
random variable unknown to the regular trader is only weakly available, i.e. in the form of some knowledge of its
law instead of the precise anticipation of its value. In this framework the insider’s utility is more likely to be finite
and can be computed for example by means of the fundamental results by Kramkov, Schachermayer [23]. In [10],
the precise observation of some random element by the insider which is inaccessible to the natural trader is blurred
dynamically by some exterior independent noise to produce a weaker information advantage in the same spirit, and
keep the additional utility from getting out of control.

A natural mathematical toolbox to use in the context of the models described contains the techniques of
grossissement de filtratiomeveloped in some deep work mostly by French authors [9,20,21,25,33-36,31]. This is
just one of numerous examples in which the direct impact of Meyer’s Strasbourg school on contemporary financial
mathematics becomes evident. Another example is initiated in a recent paper by Biagini and Oksendal [8]. In this
paper a question is raised which appears to be of purely mathematical interest at first glance: knowing that the
expected utility of an insider is finite, what can be said about the regularity of the asset price process from the
insider’s point of view? The authors show that given finite utility and the existence of an optimal investment strat-
egy for the insider, the asset price process must be a semimartingale in the insider’s enlarged filtration. This way,
they address one of the basic questions of the theory of grossissements de filtrations, and at the same time raise
problem which goes to the heart of stochastic analysis: the relationship between semimartingales and the stochas
tic integrator property. To describe the utility of the insider in his enlarged filtration, they use extended notions of
stochastic integrals investigated in anticipative stochastic calculus, such as Skorokhod'’s integral (see Nualart [26])
and the forward It6 integral introduced by Russo and Vallois [29].

The deep and central theorem of Bichteler—Dellacherie—Mokobodski characterizes semimartingalesd as
stochastic integratorsA processS is a semimartingale if and only if the stochastic integrals of uniformly bounded
simple processes, i.e. predictable step processes, with respedomm a bounded set in the topological vector
space of random variables with the%)topology of convergence in probability. This key theorem allows to deal
with the problem posed by Biagini and Oksendal [8] from a different perspective. Suppose an agent invests on a
financial market with asset price procesand measures the utility of his final wealth through a utility function
which is unbounded. Then the hypothesis that the expected utilities the agent is able to attain be a bounded function
of the simple investment strategies he is allowed to use due to his information horizon should be closely related
to the L9-boundedness of the set of stochastic integrals of simple admissible strategies. Hence the theorem should
indicate a direct link between finite utility of agents on financial markets and the semimartingale property of the
asset price processes with respect to the evolution of their information. This basic observation is the starting point
for the analysis presented in this paper.
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A related link is exploited in the fundamental paper by Delbaen and Schachermayer [11]. It is shown that if an
asset price processfulfills the (NFLVR) condition, i.e. allows no admissible simple strategies which lead with
positive probability to a final gain with controllable risk, then the agent vi§vas a semimartingale. In addition,

M being the martingale part ¢f, its Doob—Meyer decomposition is given by the special formula

S=M+a-(M,M).

We start by proving that if an agent has bounded expected utility with respect to his information horizon, then he
cannot have (FLVR). This allows us to hook up to the result by Delbaen and Schachermayer, to show that bounded
utility implies the semimartingale property 6f and to investigate more thoroughly the relationship between the
properties: NFLVR), thesemimartingale propertgf S in the agent’s filtration, andounded expected utility'he
drift densitya may be considered as a function of the agent’s information horizon, i.e. its filtration. Passing from
one filtration to a bigger one while keeping utility finite will changeto 8, and we may well calB — « the
correspondingnformation drift We will keep an attentive eye on logarithmic utility. In this particular case we
will show that a better informed agent’s additional utility is a function of the information drift alone, regardless of
whether we face a complete or an incomplete market. This result is derived in an entirely abstract framework. We
do not have to specify the type of information advantage the insider possesses. Based on the fundamental resul
by Kramkov and Schachermayer [23], we will describe the additional expected utility of an insider in a complete
market setting for all reasonable utility functions and express it as a function of relative information drifts.

Here is a brief outline of the paper. In Section 1, we shall investigate the relationship between (NFLVR), the
semimartingale property, and finite utility. In Section 2 we restrict our attention to logarithmic utility. We calculate
it in general incomplete market settings, and derive the expected utility increment of better informed agents as a
function of the universal information drift of his filtration. In Section 3 we transfer these results to the setting of
more general utility functions in complete markets, and show that the logarithm gives essentially the only way of
measuring utility which allows portfolios that are optimal at any time in the trading interval.

0.1. Preliminaries and notation

Here we collect the most important definitions, notations and conventions needed throughout the paper. Let
(£2, F, P) be a probability space arll = (F;)og:<r an arbitrary filtration satisfying the usual conditions, where
T is the finite time horizon. Suppose th&t [0, T] x £2 — R is a stochastic procesS.will take the role of the
asset price process on our financial market. The wealth of the agent on our market with information fAawilon
be determined in the subsequent section by simple investment strategies (integrands) of the following form.

Definition 0.1. A simple integrand is a linear combination of processes of the fotqp, 7,) wheref is a bounded
and Fr,-measurable random variable afigand 7, are stopping times with values [0, T] and with respect to
the filtration .

The collection of simple integrands will be denoted$wnd the stochastic integral process of simple or more
general predictable integrands with respect to a cadlag procdsg 6 - X. We now recall some terminology
introduced in [11]. Ifa is a positive real number, then a stratedis calleda-admissibleif for all ¢ € [0, T] we
have(d - S); > —a almost surely. It will be calleddmissibléf it is a-admissible for some > 0. We put

K ={®-S)7r |6 €S admissiblé

and writeC* for the set of functions dominated by elements®f i.e. C* = K* — L%. Now letC = C* N L®. The
processS is said to satisfy theo free lunch with vanishing risfNFLVR) property for simple integrands, if

CNLY =10},
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whereC denotes the closure @f in L™. If the intersection contains more than the trivial random variable 0, we
shall say thatS satisfies (FLVR) for simple integrands. For the general (NFLVR) condition we refiérdefined
ask’ just with generalF-predictabled with well defined stochastic integral.

If not stated otherwise in the sequel, we mean hiiley functiona functionU : R — [—o0, oco) which is strictly
concave and strictly increasing on d@ih) = {y: U(y) > —oo}. We will interpret the integraEU (x + (6 - S)r)
as the expected utility from terminal wealth of a trader possessing an initial weattl choosing his investments
following the strategy . Note that the integral might not exist. For ease of notation, we use the conveérfion+
- S)r) = —o0, if both the positive and the negative partsofc + (0 - S)7) have infinite expectations.

1. Finite utility and semimartingales

The analysis of this paper is strongly motivated by [8]. With the aim of calculating the expected utility increment
of a better informed agent on a financial market, one of the main topics of [8] consists in showing that boundedness
of (logarithmic) utility implies the semimartingale property of the price processewed from the perspective
of the better informed agent. His additional information is mirrored by his filtrafipthe natural evolution of
information F with respect to whicl$ is adapted, initially enlarged by some extra random element. To reach this
goal, the authors argue as in other papers (see for example Leon et al. [24]) via anticipative calculus embedded
in Malliavin’s calculus in anextrinsicapproach. They view the better informed agent's world from the natural
evolution of information perspective as anticipative, therefore work with an extended version of 1té’s calculus which
needs conversion formulas between Ité’s and Skorokhod's integrals given by Malliavin trace terms by means of
which the additional expected utility of better informed agents is ultimately computed. The authors consequently
are forced to restrict their studies to particular stochastic bases such as Wiener spaces, and in addition require
unnecessary assumptions concerning regularity in terms of the stochastic calculus of variations.

In contrast to this approach, we propose to look at the problem fromtansic point of view. For any agent,
fixing the filtration describing his particular view of information flow, irrespective of other agents’ filtrations, we
propose to compute the maximal expected utility for rather general utility functions with respect to the agent’s
basis, employing the powerful tools of general semimartingale theory already exploited in several deep papers by
Delbaen and Schachermayer. Of course, thereby the semimartingale propertytbe general agent’s filtration
has to play a decisive role. It is tackled by a key observation made in Delbaen and Schachermayer [11] establishing
a link between the (NFLVR) condition and the semimartingale property of an asset price process on a financial
market. So, to find a natural answer to the problem discussed in [8] in a general and natural framework, we have
to complete the study of the relationships between (NFLVR) and the semimartingale property by linking both of
these properties to a third one: finiteness of expected maximal utility. This is the task of the present section. In
fact, the main work load needed thereby is already taken by [11], and we may consider the modest contribution of
our paper in finding the shortcut on the route of arguments used in [8] and other papers through (NFLVR). Only
after doing this, in Sections 2 and 3 we propose to compare the obtained optimal expected utilities starting with the
logarithmic one, and work out the increment of the better informed agent in terms of a universal quantity which we
may callinformation drift

Throughout this section, we It have cadlag paths and be adaptedrtd-ollowing our intention to consider
the optimal utility increment of a better informed agent from an intrinsic point of view, we intefptetbe any
agent’s information horizon. Only later we shall distinguish different filtrations. For the moment we do not need
any more assumptions. Only in the end of the Subsection 1.1 we shall sometimes assume local boundgdness of

1.1. Finite utility via simple strategies

In this subsection we explore the relationship between finiteness of utility and the semimartingale property of
the price dynamics allowing only finite combinations of buy-and-hold strategies, i.e. strategies takeh from
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The following is a useful reformulation of the (FLVR) property.

Lemma 1.1. S satisfies th§FLVR) property for simple integrandésee Definitior0.1) if and only if there is a
sequencegd”), o of admissible simple integrands such that the following two conditions are satisfied

) fn=©"-87, n €N, converges a.s. to a nonnegative functipsatisfyingP (f > 0) > 0 and
(i) 11y oo — 0.

Proof. This follows from Proposition 3.6 in [11]. Although the statement there is shown for general integrands the
result pertains if only simple strategies are considered.

The following proposition provides the link between the boundedness of the agent’s utility for simple strategies
and the (NFLVR) condition.

Proposition 1.2. Let U:R — [—o0,00) be a utility function withlim,_, . U(x) = oo. Then for all x >
suply e R: U(y) = —oo} (recall supd = —oo) the following implication holds.
If sup  E[U(x+(0-S)r)] <oo, then(NFLVR for simple integrands

S36 admissible

Proof. Letx > suply € R: U(y) = —o0}. Then there is & > 0 for whichx —§ > suply e R: U(y) = —o0}. We
putD=U(x —§) AO> —o0.

Suppose that the (NFLVR) property for simple integrands is violated. By the preceding lemma we can find a
sequencéd”), n of admissible simple integrands such that the final paygffs (6" - S)r, n € N, satisfy

i) fu=©"-8)r — f as., wheref is nonnegative with? (f > 0) > 0 and
(i) 11/ oo = O.

Forn € N we sete, = || f,” llo. For all but finitely many: € N we havee, < §. To simplify notation we assume
that this holds for alk € N. We now define new simple integrands
n}’l — ien
En
for all n € N. It is clear that all the integraléz” - S)7 exceed the bounds. Furthermore the random variables
U(x + (x" - S)r) are bounded from below by the constd@ntMore formally,

U(x+(7r"-S)T)ZU(x+g(9"~S)T> >U<x+€£(—£n)):U(x—B):D>—oo.

n

Since f,, converges to the nontrivial nonnegative functignone can find an integeiy and real numbers, ¢ > 0
such that

P(("-S)r >b)>c
for all n > ng. Recalling thatD < 0, this is seen to imply

n—oo

L L )
liminf E[U (x + (=" - $)7)] =liminf E[U (x + =" S)Tﬂ
n—00 &n
. )
> liminf E|:Dl{(9n.5)T<b} + U(x + —b) 1{(9”-S)T>b}:|
n—oo En

> liminf |:D(1 —c)+ U(x + ib)c} = 00.
n—00

En
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Hence

sup  E[U(x+(6-97)]=00.

S>6 admissible

This proves the proposition.O
Remark. Proposition 1.2 holds in particular for all increasing functidéhsvith lim,_, o U (x) = oco.

Combining Proposition .2 with the results of the fundamental paper by Delbaen and Schachermayer [11] we
obtain the intuitively plausible relationship between boundedness of the expected utility and the semimartingale
property for the continuous asset price process with respect to the agent’s filtration. Note that this already contains
the natural generalization of the answer to the first main question in [8].

Corollary 1.3. Let S be locally bounded{/ : R — [—o00, 0c0) a utility function withlim,_, ., U(x) = oo and
x >supy e R: U(y) = —oo}. If supssg agm ELU (x + (0 - S)T)] < 00, thenS is a semimartingale with respect
to F.

Proof. By Proposition 1.2, the processsatisfies the (NFLVR) property for simple integrands. Theorem 7.2 in
Delbaen and Schachermayer [11] states that in this Sasealready a semimartingale. Note that Delbaen and
Schachermayer [11] use a slightly different definition of simple integrands than stated in Definition 0.1. They
allow for unbounded processes. But one can show that (NFLVR) for bounded simple integrands is equivalent to
(NFLVR) for all (possibly unbounded) simple processesl

Remark. We can sharpen the result of the preceding corollary. In fact, we can show that boundedness of expected
utility over all simple strategies uniformly bounded by some constant is sufficient for the semimartingale property
of S to hold. For the statement and proof of this property we refer to the thesis by Ankirchner [4], and a forthcoming
paper.

1.2. Simple versus general strategies

In the preceding subsection we have seen that if the expected utility maximized over the set of simple strategies
is finite, the price procesS$ is a semimartingale. As a consequengés a stochastic integrator, and its stochastic
integral is defined not only for simple integrands, but for a much wider clags-pfedictable strategies. A nat-
ural question arising in this context is the following: can a trader increase his optimal utility by using general
S-integrable strategies? While this may be the case for discontinticassis shown by an example at the end of
this subsection, its main result will prove that for continuous asset price procefsesinswer is no.

The utility functionsU : R — [—o0, co) considered in this section have to fulfill the following further require-
ments. We suppose that is strictly increasing, strictly concave and continuously differentiable on(éom-

{y: U(y) > —oo}. Furthermore we assume that inada conditionsare satisfied, i.e.

U'(00) = Jim U'(x)=0 1)
and
U'c) = |iT‘| U'(x) = —o0, (2)

wherec = inf{y: U(y) > —oo} € [—00, 00).



S. Ankirchner, P. Imkeller / Ann. I. H. Poincaré — PR 41 (2005) 479-503 485

We remark at this point that all results of this section could equally well be stated for infinite time horizon. For
homogeneity reasons (some results we refer to in a later section are formulated fd fiweerefrain from doing
so.

Throughout this section we suppose tifatis an F-semimartingale and we denote by the set of all
F-predictable processéswhich are integrable with respect ®in the sense of Protter (see Section 2, Chap-
ter IV in [27]). As in the previous subsection we use foréalt A the conventiorE[U (x + (6 - S)r)] = —oo, if
both the negative and the positive parts are not integrable.

We next define two quantities to be compared to the maximal expected utility taken over simple strategies. Fix
an initial wealthx > sugy: U(y) = —o0}. Let

ug(x)=sup E[U(x+©® 97)],
A36 a-adm

and

u(x)= sup E[U(x+@©®-S)r)].
As60 adm

Before stating the main result of this subsection, some preliminary steps are in order. The following auxiliary
results deal with some aspectssehdmissible strategies.
Lemma 1.4.Let S be a continuous semimartingale satisfyi?hFLVR). If 8 is a-admissible then almost surely
@ - Sr>—-a = @O -8);>—a forall0<r<T.
Proof. Let A = {there exists ac [0, T'] for which (6 - §); = —a}. A is measurable due to continuity 8f We have

to show thatA N {(6 - S)7 > —a} has probability 0. Define the entrance tifie=inf{r > 0: (8- S); = —a} A T.
Observe that the strategy= 141,710 satisfies

(i) @- =100 -7 -0 -r]1=2—-a+a=0,
(i) P((m-S)r>0)=P(T' <T, 0-S)r > —a)=PAN{@-S)r > —a}).

If P(AN{®-S)r > —a}) > 0, then (i) and (ii) would qualifyr as an arbitrage opportunity. But this violates
(NFLVR). O

In a similar way we obtain

Proposition 1.5.Let S be a continuous semimartingale satisfy(iiNFLVR). If (6 - S)r > —a a.s., then the process
6 is a-admissible.
Proof. For everye > 0 define a stopping time by

T,=inf{t>0: (0-5),=—-a—¢e}AT.

Suppose is nota-admissible. Then for some> 0 we must haveP (T, < T) > 0. The strategyr = L1, 710
satisfies

(ﬂ ‘ S)T - 1{T8<T}[(9 . S)T — (9 . S)Tg] 2 O’
P((m-S)r >0)=P(T: <T) >0,

Hencer is an arbitrage opportunity. But this is a contradiction to (NFLVR]

In the following proposition we approximate admissible general strategies by simple ones.



486 S. Ankirchner, P. Imkeller / Ann. I. H. Poincaré — PR 41 (2005) 479-503

Proposition 1.6.Let S be a continuous semimartingale satisfyiilFLVR). For everya-admissible integrand
there is a sequence afadmissible simple processé&s'),, >0 for which

@ -Sr—©@-S)7r a.s.
Proof. Let (7"),cn be an arbitrary sequence of simple integrands such that a.s. the trajectarfesSofonverge
uniformly to those of - S. Forn € N, we put

T, =inf{t > 0: (z" - §); < —a} AT.

We first show thaf;, converges td@” a.s. on the s€f( - S)r > —a}.
According to Lemma 1.4 almost all € {(6 - S)r > —a} satisfy:

©@-8),>—-a forallO<r<T.

Sinced - S is continuous, for almost alb € {(0 - S)7 > —a} there exists @ = §(w) > 0 such that
@ -8)(w)>—a+é.

Since(x" - S) converges uniformly t@6 - S), we find for almost everw € {(6 - S)r > —a} someng such that
#@"-8); >—a forall0<t< T andn > ng.

It follows that7,, — T a.s. on the s€t(® - S)y > —a}.
Furthermore, the simple proces#$¥s= 10, 1,;7", n € N, are obviouslyz-admissible and satisfy
(0" )1 =@ -S)1|=[0" - )1 — 0 - 1|1, <1, 0-57>-a) +[O" - 1 — O - 7T |LT,=1)
<|O" - S)7 = O - )1 |Li1,<1, @0-5)r>—a) + |@" - 1 — @ - 1.
The first summand converges to 0 a.s., becdyseonverges td" on the se{ (6 - S)r > —a}. Since the second
summand also converges to 0, we obtain that S)r convergestdd - S)r a.s. O

The preceding proposition now allows to prove the result we aim at if for a fixeee concentrate om-
admissible strategies.

Proposition 1.7.Let S be a continuous semimartingale satisfyitNFLVR). If a > 0 is such thaty (x — a) > —o0,
then

ug(x)=sup E[Ux+(©-97)]

836 a-adm

Proof. We have to prove that the right-hand side is not smaller than the left-hand side. Let théré®ena-
admissible integrand. Proposition 1.6 states that we can find a sequeneglfissible simple processég'),,cn
such that(6” - S)r — (@ - §)7 a.s. Since the random variabl&g6" - S)r,n € N, are bounded from below by
U(x —a) > —o0, we conclude by using Fatou’s Lemma and the fact thag continuous ory: U(y) > —oo}:

E[U(x+ @ - r)]=E[ im U(x+©"$)r) | <liminf E[U(x + ©" - $)r)]

< sup E[U(x+ @O0 97)] =ua(x). O

S>60’a-adm

Remark. The proposition remains valid if, (x) = co.

We are now ready to state and prove the main result of this section.
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Theorem 1.8.Let S be a continuous semimartingale satisfy{iNFLVR). If x > sugy: U(y) = —oo}, then

u(x)= sup E[U(x+@®-Sr)] (3)
S36 adm

In particular, the maximal expected utilit(x) is infinite if and only ifsug)5s agm E[U (x + (6 - S)7)] = 0o.

Proof. The proof will be executed in several steps. The utility functions admitted by the hypotheses above will be
subdivided into several classes. This leads to distinguishing the following cases.

We start with

Casel:{y: U(y) > —oo}=R.

Observe that the exponential utility functidi(x) = —e~**, x € R, with ¢ > 0, is covered by case 1.

If the domain ofU is R, any admissible strategy leads to a utility bounded from below. This is the main obser-
vation needed to prove the assertion in this case¢ et any admissible integrand. According to Proposition 1.7
the expected utilityE U (x + (¢ - S)7) is not greater than sup, ,gm ELU (x + (@ - S)7)]. Hence we have

u(x)< sup E[U(x+@©-S7)]
S>30 adm
Since the left-hand side is obviously not smaller than the right-hand side, equality holds.

Case2: ¢ =supy: U(y) = —oo} e RandU(c) > —oo.

Think of the power utility functionU (x) = x“/a, x > 0, extended to be-oco for x < 0, wherea € (0, 1), as
a typical example. It is (x — ¢)-admissible, then by Proposition 1.7 the expected utifity (x + (¢ - S)7) is
dominated by sup., aqm ELU (x + (6 - S)7)]. Suppose now that is not (x — c¢)-admissible. By Proposition 1.5
we have(® - §)7 < —x + ¢ on a set of positive probability. Sindé(z) = —oo for all z < ¢, the expected utility
EU(x + (¢ - S)r) must equal-oco. This provides the asserted equation in this case.

Case3:c=supy: U(y) = —oo} e RandU(c) = —o0.

For example the logarithmic utility function is covered by this case.

To simplify notation we assume that= 0. We make use of Theorem 2.1 in [23], according to which the
following statement holds true. If(xg) < oo for somexg > 0, thenu(x) < oo for all x > 0 and the function is
continuously differentiable o0, co). With the help of this result we are able to prove the assertion in the given
case.

Letx > 0. Assume first thai(x) < co. Due to the quoted resultis continuous or0, co). Hence for any > 0
there exists a & y < x such that.(x) — u(y) < 5. Let¢ be an admissible strategy satisfying

u(y) = EU(y+ @ $)1) < 5.

Proposition 1.5 guarantees thats y-admissible. Starting with the initial wealth, the utility processU (x +
(¢ - 8);) will be bounded from below by the constabt= U (x — y) > —oo. Again with Proposition 1.7 we obtain

u(x)— sup E[U(x+©-S7)]<u(x)—EU(x+(-S)r)
S>30 adm

= [u@) —u]+[u(y) = EU(x + (¢ - 7]
< [u@) —u]+[u0) - EU(Y + (¢ - 9)7)]

8+ _
2 =E&.

N
N ®

Sinces was arbitrary, the assertion follows.
Next suppose that(x) = co. Then by the quoted Theorem 2.1 in [23] forQy < x the maximal utilityu(y) is
also infinite. Chooseg-admissible integrand®’, n € N, such that

EU(y+®"-S)r)>n forneN.
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Given the initial wealthx we have
Ux+©"-9)2Ux—y)>—00
forall > 0,n € N. Hence we can apply Proposition 1.7 to obtainfer N

sup E[U(x+©-S)7)] = EU(x+©®"-S)r) = EU(y+©"-S)r) >n.
S50 adm
This shows that sup,y aqm E[U(x + (0 - S)7)] =00
This completes the proof in the final casex

Combining Theorem 1.8 with the results of Subsection 1.1 we obtain a simple proof of the following general-
ization of one of the structure results fSrderived in the framework of Wiener space with tools of anticipative
calculus in [8] that was alluded to in the introductory remarks.

Corollary 1.9. Let S be an arbitrary adapted continuous process indexed®y'], U a utility function with
limy_ 00 U(x) =00 and x > supy: U(y) = —oo}. If SUPssp agm E[U(x + (6 - S)1)] < o0, then S is a semi-
martingale and the expected utility maximized over general admissible integrands is either infinite or given by
SURSg agm ELU (x + (0 - S)7)].

Proof. SupposeS is a semimartingale. By applying similar arguments one can show that the conclusions of
Lemma 1.1 and Proposition 1.2 hold for the set of general strategies, too. Hen¢e) i finite, thensS satis-
fies (NFLVR) for general integrands. The result now follows by combining Corollary 1.3 and Theoreml.8.

In Example 2.11 we shall exhibit a continuous price procgfs which u(x) = oo, but SUg5g agm ELU (x +
© - S)r)] is finite. We close this section with an example inspired by Example 7.5 in [11] and showing that in
Theorem 1.8 the requirement thats continuous cannot be dropped.

Example 1.10.Let (X,,),en be a sequence of Gaussian unit variables@ng, <y a sequence of random variables
satisfying P(¢, = 1) = 27" and P(¢, = 0) = 1 — 27", Furthermore suppose thatis a random variable with
distribution P(Z =a) = P(Z =b) = % where O< a < 1 andb > 1. We assume that all these random variables
are independent. Choose an enumeratign, cn of the rationals irf0, 1[. The process defined by

S=loy® +ZLny®)+ Y ¢aXu 0<r<L
{n: gn<t}
is cadlag. We start by showing théiis a semimartingale satisfying the (NFLVR) property. For this purpose denote
by P the restriction ofP to o(Z). Itis obvious, that there is a probability meas@ev P ono (Z) such that the

expectation ofZ with respect toQ is equal to 1. Note that the extensio® &= 3% dP is a probability measure
such that

() 0=0ona(2),
(i) Q=Pono(¢,X,,neN)and
(i) 9~ P.

Hence the proces$ is a Q-martingale with respect to its natural filtration. By the fundamental theorem of asset
pricing (see Corollary 1.2 in [12]) this implies th&tis a semimartingale satisfying the (NFLVR) property.

As in example 7.5 in [11] one can show tliat O is the only simple integrand which is admissible foHence
we have

sup E[U(x+©-8)1)]=U).
S360 adm
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However, the non-simple strategy= 1;1; has as final payoff
x+0@-H1=x+S1—-S1-)=x+(Z-1) as.

If lim y_ o0 U(x) = 00, choosex, a andb such that
EU(x+(0-8)1) = %U(x +a—-1)+ %U(x +b—-1)>U(x).

For example ifU = log, x = 1, a andb are such thatb = €2, then
EU(x+(6-95)1) = %Iog(a) + % log(b) = %Iog(ab) =1>0=U(®x).

Thus we have

u(x)# sup E[U(x+@©®-8)1)].
&30 adm

2. The expected logarithmic utility increment of an insider

In this section we uniquely consider the case of logarithmic utility. So let

logx if x >0,
—oo ifx<0

U(x):{

throughout the section. According to the previous section bounded utility< oo for an agent with an informa-

tion horizonF implies (NFLVR). Under this condition, Delbaen and Schachermayer [12] show that for continuous
semimartingales the bounded variation part in the Doob—Meyer decomposition must be controlled by the mar-
tingale (ncertainty part M of S, i.e. there is aiF-predictable process such that

S=M+a-(M,M). )

Equipped with this knowledge we now return to the setting of a financial market with small agents, i.e. agents not
able to influence the price dynamics, possessing asymmetric information, to perform the second part of our task
of calculating the expected utility increment of a better informed agent in a fairly general setting using basic and
natural tools, in particular generalizing Theorem 3.7 of [8]. So we assume that each of the agents (regular and
better informed trader) takes his portfolio decisions on the basis of his individual information horizon, given by
different filtrationsF andgG. We just suppose that the insider’s filtration is bigger, but do not specify at all what the
sources for the additional information ¢hare. The asset price proceswill be assumed to be continuous. The
starting point of our analysis according to the previous section have to be the agents who possess finite utility from
investing intoS on the basis of their knowledge, which is therefore described by the following type of filtrations.

Definition 2.1. Let H be a filtration satisfying the usual conditiorsa H-semimartingale with decomposition
S=M+a- -{M,M), andL%(PM) the space of alH-predictable processessuch thatf fOT y2d(M, M) < oco.
The filtrationH will be calledfinite utility filtration for S if « belongs toL%(PM).

Of course, a finite utility filtration for fixed' should just be a filtration for which the expected logarithmic utility
of an agent who makes his portfolio decisions depend on this information flow is finite. We shall see below in the
second subsection that this intuitive notion is consistent with the above definition.

Note that a finite utility filtration forS may not be a finite utility filtration for a different process. Nevertheless
we will often omit the process in the definition since we are always referring to afixed

Now let F be a finite utility filtration forS. Assume that a better informed agent’s filtration is givendoy
We shall see in the third subsection below that the logarithmic utility increment of this agent with respect to the
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non-informed one only depends on a quantity which we shallicidrmation drift according to the following
definition.

Definition 2.2. Let F be a finite utility filtration. Suppose thgt is a filtration such tha#; c G, for all r € [0, T']
andu is aG-predictable process satisfying

M—/u,d(M, M), is aG-local martingale
0

Theny is calledinformation drift(see [18]) ofG with respect toF.

To get a general description of this fundamental quantity, let us consider the situation in which both agents, the
uninformed and the insider, are acting on finite utility filtrations. SaAeand G be two finite utility filtrations
for S. We denote by

S=M+a-(M,M) ©)
the semimartingale decomposition with respecftand by
S=N+p-(N,N) (6)

the decomposition with respect Obviously,
(M,M)=(S,S)=(N,N)
and therefore Egs. (5) and (6) imply
M=N—(a—pB)-(M,M) as. (1)
If 7; c G; forallz >0, Eq. (7) can be interpreted as the semimartingale decompositidrvath respect ta7,
andu = a — B as the corresponding information drift.
Our main result will show that in this general setting the finite utility advantage of an insider compared to the
regular trader is given by
T

1
5Efu§d<M, M),
0

if u is the information drift obtained by passing frafto G.
To prove this formula, we shall proceed in three steps. The first one is of more auxiliary character.

2.1. Infinite utility and drift

We shall start by establishing a relationship between the intensity of the intrinsiexdrift/, M) of S and
the boundedness of expected utility. We shall prove that if this drift collects infinite ma€s Bhwith positive
probability, then expected logarithmic utility will be infinite. This will be helpful in the direct computation of
expected logarithmic utility in the following subsection. Due to close connections between (NFLVR) and finite
utility, explained in Section 1, our treatment will in some parts heavily rely on similar arguments in Delbaen and
Schachermayer [12].

In the following lemma a link between the infinite intrinsic drift and the existence of admissible strategies
inducing large wealths is established.

Lemma 2.3.Suppose°(f0T a?d(M, M) = c0) =n > 0. Then for alla, ¢ > 0 we can find az-admissible inte-
grand6 such thatP((6 - S)r >1) >n—&.
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Proof. The proof is essentially the same as the one of Lemma 3.8 in [12], and is therefore omitted.

As an immediate consequence of the preceding, infinite drift with positive probability entails that free lunches
are possible.

Corollary 2.4. If fOT a?d(M, M) = oo on a set with positive probability, thehisatisfiefFLVR).

For later use we are mainly interested in another consequence of the lemma. It says that infinite drift with
positive probability also implies that the expected utility becomes infinite.

Theorem 2.5.If U =log andfoT a?d(M, M) = oo on a set with positive probability, then for all> 0 andx > 0
we have

Ug(x) = o0.

Proof. By eventually reducing we may assume thatfa < x. By Lemma 2.3 there is am > 0 and a sequence
(0™, en Of a-admissible integrands satisfying

P(("-S)r >n) > a.

Since lim._, o log(x) = oo, we obtain
liminf EU (x + 0" - $)7) > liminflog(x + n)a + log(x — a)(1 — ) = o0,
n—o00 n—oo

which proves the theorem.oo

Remark. The theorem neither follows from the preceding corollary nor from the ‘Immediate Arbitrage Theorem’
of Delbaen and Schachermayer in [12]. This is because there are situations where (NA) is violaigdy bigt
finite for someu (see examples below).

2.2. Logarithmic utility of an agent

Our second step consists in computing explicitly the expected logarithmic utility of an agent acting on the
basis of some filtratio, with respect to whicts possesses a Doob—Meyer decomposition (4). We shall prove
implicitly that it only depends on the drift density, and is given by a formula which in case there is a martingale
measure folS is provided by the general analysis of Kramkov and Schachermayer [23]. We shall give a derivation
of the formula which is valid irrespective of whether (NFLVR) holds, provided only that (4) is guaranteed. For
example, ifF is the Wiener filtration initially enlarged by the maximum of the Wiener proceg9,dh], (NFLVR)
is violated, whereas$ is a semimartingale satisfying (4) with a well knowr(see [19]). The method we employ
consists in using the linear stochastic equation link allowing to describe the optimal poftfd®a function of
the drift process in a general framework. In Subsubsection 2.2.1, we shall consider the case of positive wealth,
while in Subsubsection 2.2.2 we extend the results to the case in which wealth may become negative.

2.2.1. Maximal utility if wealth stays positive
If wealth always stays positive, we may consider the following class of admissible strategies.

Definition 2.6. Leta > 0 be given. AnS-integrable and predictable procésis calleda-superadmissiblé almost
surely(6 - S); > —a forall t € [0, T].
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Our goal is to find

ut(x) = sup Elog(x 4+ (0 - 7).

A>6 x-superadm

It will be helpful to express the right-hand side in terms of the so-calfgimal portfoliq i.e. the procesg* € A

which satisfies:™ (x) = Elog(x + (8* - S)7). Before we can show that the optimal portfolio exists and may be
expressed as a function @f we have to prove some auxiliary results which will ultimately turn out to present the
optimal portfolio as the unique solution of a linear stochastic equation. Recall that we do not assume (NFLVR)
here. We start by proving

Proposition 2.7. Supposef0 2d M, M); < oo a.s. If is a predictable and-integrable process, then the prod-
uctE(r - E(—a-M)isa Iocal martingale.
Proof. We use Yor's addition formula
EXEX)=E(X+Y +(X,T)),
for two continuous semimartingales (see e.g. [15], p. 374). It implies
E@-HE(—a-M)=E((r —a) - M),

hence, the result. O

Remark. Proposition 2.7 states th&t(—«a - M) is a strict martingale density fof(w - §) in the sense of
Schweizer [30].

Lemma 2.8.Suppose that > 0and E fOT asz d(M, M); < oo. The procesg* = xa&(a - S) is x-superadmissible,
belongs ta4 and solves the integral equation

t

9{*=a,(x+/0:d5,>, 0<r<T. (8)

0

Proof. We observe that the proce®s= xa(« - S) is predictable and satisfies for al€ [0, T']
t t
x+ @8, =x —i—x/otré'(a - 5),dS, =x(1+/otr€(a - S), dSr> =xE(a-S); >0.
0 0

This yields that* is x-superadmissible. At the same time, multiplying both extreme terms Ishows that*
solves(8).
The expression

1
Elog(x+(9*~S)T) =logx + E(ax-S)r — EE/aszd(M, M)
0

makes sense due to the integrability condltE)m'O 2d M, M) < oco. Hence9* belongs tad. O

We now state the main result of this subsubsection. It generalizes Theorem 3.5 of [3], where it was proved in
the special case of a semimartingale given by an SDE.
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Theorem 2.9.For anyx > 0 the following equation holds
1 T
u+(x):|0gx+§E/a§d(M, M. 9)
0

If E[OT aszd(M, M) < 00, then the procesg* = xa&(« - ) is the unique optimal portfolio.

Proof. We first assume that [OT a?d(M, M), < oco.
Let 6 € A be x-superadmissible. Then+ (6 - S), > 0 a.s. for allz € [0, T] and hence we can define a new
process by

O

m=———>  0<t<T.
x+(0-8)
Sincer is predictable, the integrad - S is defined.
The SDE
Yo=x,

le == ﬂtY[ dSt == Yl d(7T . S)[

is uniquely solved by the proce¥s= x&(x - S). On the other hand the process- (6 - S); is also easily seen to
be a solution. By uniqueness this implies

x+(0-8)=xE(-S). (10)
In the next step we will show that the expected logarithmic utilitef (6 - S)7 is not exceeded by log+

1EfT 2d M, M);. Applying the inequality log < z — 1, valid for positivez, to the product of two positive
numberSa b we get the inequality

loga < ab —logb — 1.
If we takea = x&(rr - §) andb = 1£(—a - M) we obtain

1
logxE(r - 8) <E( - S)E(—a - M) —log =E(—a - M) —
X
By Proposition 2.7 the produé(z - S)E(—«a - M) is a local martingale. Since it is nonnegative, it is also a super-
martingale and therefore by (10)
1
E[log(x + (0 - $)7)] = E[logxE(m - $)7] < E[E(n 8)rE(—a - M)y —log=E(—a - M) — 1}
X

T

T
—E[Iog%g(—a : M)Ti| =logx — E|:—/oa, dM, — %fazd(M, M):|
0

0
1 T
=logx + EE/oﬂd(M, M).
0

This implies
T
u"(x) <logx + %E/azd(M, M).
0
Before we prove that in fact equality holds, we note
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T
Elog(x&(a - S)r) =logx + %E/txzd(M, M).
0

Therefore it is enough to show that there is a prodessch thatt log(x + (0 - S)7) = Elog(xE(x - S)7).
According to Lemma 2.8 the proce#s= xa&(« - S) belongs taA, is x-superadmissible and satisfies

9*
0=—-,
x+(6*-85)

from which we deduce

x+ @8, =xE@-S);.
This proves the theorem in the case WhErfOT (xszd(M, M) < oo.

We now claim that Eq. (9) is still true i [, a2d(M, M), = co. Suppose firsfy «2d(M, M), = co on a set

with positive probability. Then Theorem 2.5 yield$ (x) = co.

On the other hand, i OT aszd(M, M), < oo almost surely, we can find an increasing sequence of stopping times
(T,)nen such that?,, — T and

T
E/afd(M, M), < 00.
0
With the first part of the proof we deduce
T
ut(x) >logx + %E/aszd(M, M),
0

for all n € N. By Beppo-Levi the right-hand side goes to infinityias> co. Henceu™ (x) = oo, which completes
the proof. O

2.2.2. Maximal utility if wealth may become negative
Here we allow the wealth process to take negative values and again deduce the desired formguja for
LetS =M +a- (M, M) be a continuous semimartingale satisfying (NFLVR). A is notx-superadmissible,
then by Lemma 1.4

©@-S)r<—x

on a set of positive probability. But this impligslog(x + (9 - S)r) = —oc and thereforer(x) = u™* (x). Hence we
have shown

Theorem 2.10.Let § be a continuous semimartingale satisfyiigFLVR). The maximal expected logarithmic
utility is given by

T
1 2
u(x) = logx + EE/aS d(M, M),.
0

Remark. Kramkov and Schachermayer [23] show that under the assumption of (NFLVR) a more general result
can be obtained. They give explicit formulas for the maximal expected utility not only for the logarithm but for a
large class of utility functions. We mention tthfoT a?d(M, M); < oo does not imply the (NFLVR) property.

In the following examples the integral of the drift is finite, but arbitrage is possible and hénrés infinite (see
Proposition 1.2). Hence the assumption of (NFLVR) in Theorem 2.10 cannot be dropped.



S. Ankirchner, P. Imkeller / Ann. I. H. Poincaré — PR 41 (2005) 479-503 495

Example 2.11.Let S be aBES process starting in > 0. It is known thatS solves the equation
1
S; =x+B,+/Su_1du, 0«1,
0
where(B;) is a Brownian motion (see Proposition 3.3, Chapter VI in [28]). It is straightforward to show that
T
E / SM_2 du < o0,
0

and hence, by Theorem 28" (x) is finite, too. On the other hand Delbaen and Schachermayer prove in [13] that
S allows arbitrage.

Moreover, this example shows that the assumption (NFLVR) cannot be dropped in Theorem 1.8: It is known that
there are no simple arbitrage strategies (see [13]). Hence every simple straatigfyingU (x + (0 - S)7) > 0,
a.s., must be-superadmissible (else one can construct a simple arbitrage strategy). Consequently

sup E[U(x+(©-S)r)] <ut(x) <oo.
S>60adm

SincesS allows arbitrage for general integrands, we haye) = co. Thus Theorem 1.8 does not hold without the
assumption (NFLVR).

Situations where the trader has finite utility (x), but (NFLVR) is not satisfied, can easily arise on markets with
insiders. An insider acts using information from an enlarged filtration. As in the following example, this produces
sources for possible arbitrage which, in contrast to the previous example, are very explicit.

Example 2.12.Let W be a Brownian motion on some probability spaee, F, P). We denote by(F;),>o the
completed filtration generated Y. We will study the price process
S =EW), t=0,

notunder(F;); >0 but with respect to a larger filtration. Choose for exaniple 1, leta, b € R such thaz < b,
let G = 1j,,51(W1), and take the right continuous and completed versiah e F; v o (G), t € [0, 1]. It has been
shown in [3] that an agent in this filtration possesses finite logarithmic utility, if wealth has to be pasitixg.is

given by the entropy of;, or, alternatively, by%E fol oef ds with the corresponding information dridt
We will see now that there are arbitrage strategies. Define a stopping time by

T=inft>0. W, <a—-1 AL

The strategy = Liw,efq,o11 17,17 IS admissible, because
©-8);>-e"1 0<r<lL

Furthermore) satisfies

(i) 091 ="2Lwefap(S1— Sr) > 0and
(i) P(6-S)1>0)=P(T <1, Wiela,b])>0,

which shows tha# is an arbitrage strategy. In particulsudoes not have the (NFLVR) property.

Remark. Assume that an agent with information horizérpossesses bounded logarithmic utility, iéx) < co.
According to Section 1 we therefore know thaenjoys the (NFLVR) property, and thus it is a semimartingale
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with Doob—Meyer decomposition of the form (4) due to [12]. Now suppose that the maximal expected logarithmic
utility is bounded only if the wealth of the agent has to stay positive. In this case the (NFLVR) condition does not
necessarily hold. However, as will be shown in Ankirchner [4], a decomposition (4) still exists.

2.3. Computation of the utility increment

Now we return to the situation in which two agents take action with respect to two finite utility filtraficard
g for S. Recall the Doob—Meyer decompositions

S=M+a-(M,My=N+p-(M, M)
with an F-martingaleM, and aG-martingaleN, so that the information drift when passing frafto G is given
by

uw=o—p.

AssumeH is a given filtration. Given an initial wealth > 0, we denote byt (H, x) the corresponding maximal
expected utility if wealth has always to be positive. Note that iis a finite utility filtration, ™ (H, x) is finite for
all x > 0 (see Theorem 2.9).

A bigger filtration must clearly lead to a bigger maximal utility. The following main theorem will quantify this
increase and describe the utility increment precisely as a function of the information dfifi with respect taF.

Theorem 2.13.Let F and G be finite utility filtrations forS, with 7, c G, for all # € [0, T']. Let u denote the
information drift ofG with respect taF. Then for any > 0

T
ut (G, x)—ut(F,x) = %E/uzd(M, M). (11)
0

Proof. Sincea andg are inL2(Py), we can write

T T T
%E/(,B—a)zd(M, M):%E/(,Bz—az)d(M, M)—i—E/(cxz—a,B)d(M, M).
0 0 0

Sinceq is F-, henceG-adapted, it follows from (7)

T T T
E/(az—aﬂ)d<M,M):E/adN—E/adM:O.
0 0 0
Hence
T T
%E/(,B—a)zd(M, M) = %E/(,Bz—az)d(M, M)=u"(G,x)—ut(F,x). O
0 0

Relative information drifts are additive with respect to successive refinements of filtrations. Indegd; lehd
'H be three finite utility filtrations such th&; c G, c H, for aﬁz € [0, T]. Suppose that is the information drift
of G with respect taF. Then by the definition we know thatf = M — - (M, M) is aG-local martingale. Ifx
is the information drift ofH with respect tog, thenM — A - (M, M) is aH-local martingale. As a consequence
k = u + A is the information drift ofH with respect taF. We obtain
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Proposition 2.14.The information drift of{ w.r.t. F is the sum of the information drift @ w.r.t. 7 and the
information drift of H w.r.t. G.

In the same situation, we will now show that the information driftfofvith respect taF can be expressed as
the predictable projection of the information drift &f with respect taF onto the spacéé(PM). To this end, we
need the following useful property.

Lemma 2.15.Lety € L3,(Py) and let”y denote the projection af onto Lé(PM). Then

o0

E|:/de(M’M)s gt:|=E|:/std(MaM>s gt:|

t t

forall > 0.

Proof. Lett > 0 andA € G;. Note that the process 1y, is G-predictable. Sincg€y — 7y) is orthogonal to
Lé(PM), we have

0= E/]-Al]t,oo[(s)()/s - st)d<Mv M), = E|:1A /(Vs - pys)d<M» M)si|,
0 t

and thus the result. O

Equipped with these prerequisites we can state our theorem about the orthogonal projection property of infor-
mation drifts. Recall tha#t c G C ‘H are finite ultility filtrations andS = M + « - (M, M) is the decomposition
w.r.t. F.

Theorem 2.16.Letk € L%(PM) be the information drift of{ with respect taF. Then the orthogonal projection
of k onto Lé(PM) is the information drift oG with respect taF.

Proof. We may assume, by localizing the processes with some stopping time, tha/battt« - (M, M) are
bounded. Let« denote the orthogonal projection;obntoLé(PM). We have to show tha¥l — P« - (M, M) is a
G-martingale. Choosed s < ¢t and a sefd € G;. Sinceg is a sub-filtration ofH we obtain, using Lemma 2.15,

1 1

E(1a(M; — My)) = E(lA/Krd<M, M),) = E(lA/pKrd(M, M),).

s N

This proves the claim. O
In particular we have
Corollary 2.17. If 8 is the information drift of some finite utility filtratiok with respect taF, theng is orthogonal
to L2-(Py).
3. Additional utility of an insider on a complete market

The main aim of this section is to describe the additional utility of an insider with respect to a regular trader
for fairly arbitrary utility functions. Besides, we shall briefly disc@®ays optimal strategies.e. strategies that
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optimize expected utility from terminal wealth if any timen the trading interval may be chosen as terminal.
Again, the setting is very general: we specify the information advantage between the insider with fifration

and the regular trader with filtratio& just by the relative information drift. As opposed to the previous section,

we however assume the market to be complete here, so that we may invoke the general results by Kramkov and
Schachermayer [23] about maximal utility. As usual, we assume the asset price fracgsged by[0, 7] to be
continuous. Completeness entails that there is a unique equivalent local martingale measure, which we will denote
by Q. By the fundamental theorem of asset pricing the NFLVR property holds and hence we may decSmpose
into

S:M—'—C{'(M,M),

whereM is a P-local martingale and an F-predictable process. The Radon—-Nikodym density of the martingale
measure giverP is known to be described by the exponentiaofiM :

do

ar - =&(—a-M),, tel0,T] (12)
(see [14)).
In the following we shall abbreviate
Z=E(—a - M).

Let us next describe the class of utility functions for which the maximal expected utility can be explicitly cal-
culated by means af. Let U be strictly increasing, strictly concave and continuously differentiabléOono).
Furthermore we assume thétsatisfies

lim U'(x)=c0 and IlimU'(x)=0 (13)
x—0t X—>00
and that
u(xg) <oo forsomexg > 0. (14)

On (0, co) the derivative ofU has an inverse function, which we will denote byObserve thaf is a function
with domain(0, co) and with rangg0, oo). The following formula for the maximal expected utility is obtained by
Kramkov, Schachermayer [23].

Theorem 3.1(Theorem 2.0 in [23])Assume that the conditioi$3) and (14) are satisfied. For alk > 0 we have
u(x)=EU(I(yZr)),

wherey is the real number satisfying[Zr1(yZr)] = x. Furthermore the processy Z;) is a uniformly integrable

martingale underQ, hencex = I (y), and consequently does not depend on the time horizbn

3.1. Always optimal strategies

The maximal expected utility (x) depends of course on the time interval in which the traders are allowed to
act. We will denote by, (x) the maximal expected utility of a trader of initial wealttwho is not allowed to hold
any shares of the stock after time T, i.e.

u;(x) = SUPEU (x + (61107 - S)7) = SUPEU (x + (6 - S)1).
fe A pe A

Definition 3.2. A strategyd™* € A is calledalways optimalif for all 7 € [0, T] andx > 0
EU(x+ (0% 8);) = us (x).
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We will now analyze to which extent always optimal strategies exist.

Consider at first the case where the ddifis equal to 0. In this case the price procéds a P-local martingale
and intuitively one would expect that a risk averse trader will not trade at all. Theorem 3.1 confirms that the
maximal expected utility is the utility of the initial capitadl(x). Hence in this case the trivial strategy= 0 is
always optimal, whatever the utility functidii looks like.

If the drift « is not trivial, however, the situation is different. It turns out that in general always optimal strategies
exist only for logarithmic utility functions. Before proving this we define

Zr = sup Z
0<t<T
and
ZT = Iﬂf Zt-
0<I<T

We will only consider the case where
essinfZ; =0 and esssudr = oc. (15)
Theorem 3.3.Assume that = (U’)~1 is twice continuously differentiable g0, co) and that the conditiongl3),

(14) and (15) are satisfied. Then an always optimal strategy exists if and orilyig the logarithm up to affine
transformations, i.e.

U(x)=alog(x)+b

for some constants > 0 andb € R.

Proof. Suppose at first thdf (x) = log(x). By Theorem 3.1 we have for amye [0, T']

=FEU(I(yZ;))=EU 1
ur(x) = ( (6} t))— (E)

=Elog(xZ; ) +c=Elog[xE(a - );] + c = Elog[x + (& - ) - S),] +c.

This shows that* = a€(« - S) is always optimal.
We now prove the converse statement. £ebe an always optimal strategy. By Theorem 3.1 the process

x+©O"-S)=1u2)
is a Q-martingale. Hence
ZI(yZ)

is a P-martingale. Since the functiah: (0, 00) — R, ¢ (x) = xI (yx) is twice continuously differentiable, we may
apply 1t6’s formula and obtain fare [0, T']

t t
1
Zd(yZ) =¢(Z) =¢1) +/¢/(Zs)dzs + §/¢”(Zs)d<2, Z)s.
0 0
From this equation we can deduce that the continuous process of bounded variation

/ 9" (Z)NZ, Z)s = / ¢"(Z)a?Z2d(M, M),
0 0



500 S. Ankirchner, P. Imkeller / Ann. I. H. Poincaré — PR 41 (2005) 479-503

is a localP-martingale and hence vanishes. We will now show #fat) = 0 for all z > 0. Suppose that this is not
true. Then there exist@ p < g such thapy” does not vanish on the intervgl, ¢). Eq. (15) implies that on the set

A={(t,0): Zi(®) € (p,q)}
we have
a=0 Py-a.s.

This means that the proceﬁ;oz2 d(M, M) is constant omA. Hence also the processfg‘fa dM andZ =&(a - M)
are constant ort (see [28]), i.e.

14(¢t, w)Z;(w) is constant a.s.

In other words, the trajectories— Z;(w) are a.s. constant aip, q).

Suppose first thay < 1 or p > 1. SinceZy = 1, it follows that the entire trajectories &f are abovey or
below p, respectively. This contradicts (15).

Suppose next that < 1 < ¢. Since Z is constant on(p, ¢), we must haveZ = 1, which also contradicts
property (15).

Thus we have showg” = 0.

On the other hand we know that

¢'(x) =I(yx) + yxI'(yx)
and
¢"(x) =2y1'(yx) +xy°1" (yx).
Hencel’ solves the differential equation
2I'(z)=—z1"(z), z>0.
By assumption (13) the functioH : (0, oo) — (—o00, 0) satisfies

lim I'(z) = —oo.
z—0t

Hence
I'z)=—2
)=——
Z2
and
a
=24
Z

for some constants > 0 andc € R. It follows

a

U'x)=
X —c1

and
Ux)=alog(x —c1) +c2

for somec; € R. Note thatc; = 0, because ligL, g+ U (x) = —oo. This completes the proof.O
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3.2. The additional expected utility of an insider

Let 7 andg be filtrations such thaf is complete with respect to both filtrations. We write
S=M+ao-(M,M)
for the semimartingale decomposition with respecttand
S=N+pB-(N,N)

for the decomposition with respectf Furthermore we denote by the ELMM with respect toF and byQ’ the
ELMM with respect tog. Notice that

do

d_P . —5(—0[ M)T
and

do’

ar g, =E&(-B-N)r-.

Consider now the case whefeis contained irg, i.e. 7, C G, for all 0 <t < T. The following lemma observes
that the two ELMMs agree on the smaller world.

Lemma 3.4.0n Fr the measure®) and Q' are equal, i.eQ'|r, = Q}ﬁ. In particular we have
EP[E(=B-N)7|Fr]=E(—a- M)r.

Proof. On the one hand§ is a (Q’, G)-local martingale. Since on the other hasids adapted taF, it is also a
(Q’, F)-local martingale. Completeness of the market implies that the ELMIF @sunique. Henc&’ coincides
with QonFr. O

By applying Theorem 3.1 we obtain the following expression for the utility increment
do’ do
— =EU\(I —F I\y—
u(G,x) —u(F,x) U( (ydp>> U( <ydp>>

=EU(I(y&(=B-N)r)) — EU(I(yE(—a - M)71)).

Again we want to express the additional expected utility by means of the informatiop drift
Recall the representation

M:N—/(a —Bd(M, M) a.s.
0
with u =« — 8 as information drift. Note that fare [0, T']

t t
5(—,3.N),:exp{—/ﬁdN—%/ﬁzd(M,M)}
0 0

t t t t

=exp|:/udN—/adM—I—/a(ﬂ—a)d(M,M)—:—ZLfﬂzd(M,M)]

0 0 0 0
=&(—a- M) E(- Ny,
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which implies

do’
=— & -N)r.
dPlg, dP|g,
Conditioning onFy leads to
do’
=——| E|&u-N)r|Fr|
dP |z, dP|g [ | ]

and by Lemma 3.4 we get

dQ/
do |
We may summarize our fmdmgs on the expected additional utility in the following proposition.

E[E(w-N)r|Fr]= =1 (16)

Proposition 3.5.The additional expected utility of the insider is equal to
u(G,x) —u(F,x)= E[U(I(yé’(—ot -M)rE(—p - N)T)) — U(I(yé’(—oz . M)T))].

By definition, the insider’s expected utility must exceed the regular trader’s. Inl¢askis convex, which is
the case for the exponential, power, and logarithmic utility functions for example, but in general does not hold true,
the projection result of Lemma 3.4 gives us a direct argument to show this starting with the representation obtained
in the preceding proposition. Sinégo I is convex, Jensen’s inequality and equation (16) yield

o-wr=e(105))] e (105))

(VE[E(—a- M)7E(—p - N)7|Fr]))] — E[U(I(yE(—a - M)7))]
(vE(—a- M)TE[E(—p- N)7|Fr]))] — E[U(I(yE(—a - M)7))]
(yE€(=a- M)7))] = E[U(I(yE(=a - M)7))] =0.

WV

U
U

E[U(I
E[U(I
E[U(I

Remark. We conclude that in general, the utility increment depends — besides the information drift — on the initial
wealth and on the intrinsic dritt. This is not the case for logarithmic utility functions, where it only depends on
the information drift.

Acknowledgements

We thank an anonymous referee for a very careful and thorough reading of our manuscript and many constructive
and helpful remarks.

References

[1] J. Amendinger, Initial enlargement of filtrations and additional information in financial markets, Thesis, TU Berlin, 1999.

[2] 3. Amendinger, D. Becherer, M. Schweizer, A monetary value for initial information in portfolio optimization, Finance and Stochas-
tics 7 (1) (2003) 29-46.

[3] J. Amendinger, P. Imkeller, M. Schweizer, Additional logarithmic utility of an insider, Stochastic Process. Appl. 75 (1998) 263-286.

[4] S. Ankirchner, Information and semimartingales, PhD thesis, HU Berlin, 2005.

[5] F. Baudoin, Conditioned stochastic differential equations: theory, examples, and applications to finance, Stochastic Process. Appl. 100
(2002) 109-145.



S. Ankirchner, P. Imkeller / Ann. I. H. Poincaré — PR 41 (2005) 479-503 503

[6] F. Baudoin, Modeling Anticipations on Financial Markets, Paris—Princeton Lectures on Mathematical Finance 2002, Springer, Berlin,
2003.
[7] F. Baudoin, L. Nguyen-Ngoc, The financial value of a weak information on a financial market, Finance and Stochastics 8 (2004) 415-435.
[8] F. Biagini, B. Oksendal, A general stochastic calculus approach to insider trading, Preprint, Univ. of Oslo, 2003.
[9] M. Chaleyat-Maurel, T. Jeulin, Grossissement Gaussien de la filtration Brownienne, in: T. Jeulin, M. Yor (Eds.), Grossissements de
filtrations : exemples et applications, in : Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985.
[10] J.M. Corcuera, P. Imkeller, A. Kohatsu-Higa, D. Nualart, Ambehal utility of insiders with imperfect dynamical information, Finance and
Stochastics 8 (2004) 437-450.
[11] F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (1994) 463-520.
[12] F. Delbaen, W. Schachermayer, The existence of absolutely continuous local martingale measures, Ann. Appl. Probab. 5 (1995) 926-945.
[13] F. Delbaen, W. Schachermayer, Arbitrage possibilities in Bessel processes and their relation to local martingales, Probab. Theory Related
Fields 102 (1995) 357-366.
[14] F. Delbaen, W. Schachermayer, The variance-optimal martingale measure for continuous processes, Bernoulli 2 (1996) 81-105.
[15] C. Dellacherie, B. Maisonneuve, P.-A. Meyer, Probabilités et potentiel, Chap. XVII-XXIV, Hermann, Paris, 1992.
[16] A. Grorud, M. Pontier, Insider trading in a continuous time market model, Int. J. Theoret. Appl. Finance 1 (1998) 331-347.
[17] P. Imkeller, Random times at which insiders can have free lunches, Stochastics Stochastics Rep. 74 (2002) 465-487.
[18] P. Imkeller, Malliavin’s calculus in insider models: additional utility and free lunches, Math. Finance 13 (2003) 153-169.
[19] P. Imkeller, M. Pontier, F. Weisz, Free lunch and arbitrage possibilities in a financial market model with an insider, Stochastic Process.
Appl. 92 (2001) 103-130.
[20] J. Jacod, Grossissement initial, hypothéé) et théoréme de Girsanov, in: T. Jeulin, M. Yor (Eds.), Grossissements de filtrations :
exemples et applications, in: Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985.
[21] T. Jeulin, Semi-martingales et grossissement de filtration, Lecture Notes in Math., vol. 833, Springer, Berlin, 1980.
[22] 1. Karatzas, I. Pikovsky, Anticipative portfolio optimization, Adv. Appl. Probab. 28 (1996) 1095-1122.
[23] D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Ann. Appl.
Probab. 9 (1999) 904-950.
[24] J.A. Leon, R. Navarro, D. Nualart, An anticipative calculus approach to the utility maximization of an insider, Math. Finance 13 (2003).
[25] P.A. Meyer, Sur un théoréme de Jacod, Sém. de Probabilités XllI, Lecture Notes in Math., vol. 649, Springer, Berlin, 1978.
[26] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 1995.
[27] P. Protter, Stochastic Integration and Differential Equations, second ed., Springer, Berlin, 2004.
[28] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, third ed., Springer, Berlin, 1999.
[29] F. Russo, P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields 97 (1993) 403-421.
[30] M. Schweizer, On the minimal martingale measure and the Follmer-Schweizer decomposition, Stochastic Anal. Appl. 13 (1995) 573-599.
[31] S.-Q. Song, Grossissements de filtrations et problemes connexes, Thése de doctorat, Univ. Pierre et Marie Curie Paris 6, 1987.
[32] C.T. Wu, Construction of Brownian motions in enlarged filtrations and their role in mathematical models of insider trading, Dissertation,
HU Berlin, 1999.
[33] M. Yor, Grossissement de filtrations et absolue continuité de noyaux, in: T. Jeulin, M. Yor (Eds.), Grossissements de filtrations : exemples
et applications, in: Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985.
[34] M. Yor, Entropie d’'une partition, et grossissement initial d’une filtration, in: T. Jeulin, M. Yor (Eds.), Grossissements de filtrations :
exemples et applications, in: Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985.
[35] M. Yor, Inégalités de martingales continues arrétées a un temps quelconque, | : théorémes généraux, in: T. Jeulin, M. Yor (Eds.), Grossisse-
ments de filtrations : exemples et applications, in: Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985.
[36] M. Yor, Inégalités de martingales continues arrétées a un temps quelconqgue, Il : le réle de certains espaces BMO, in: T. Jeulin, M. Yor
(Eds.), Grossissements de filtrations : exemples et applications, in: Lecture Notes in Math., vol. 1118, Springer, Berlin, 1985.



