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Abstract

We consider financial markets with two kinds of small traders: regular traders who perceive the (continuous) as
processS through its natural filtration, and insiders who possess some information advantage which makes the filtrations
which they experience the evolution of the market richer. We discuss the link between (NFLVR), the semimartingale pro
S viewed from the agent’s perspective, and bounded expected utility. We show that whenever an agent’s expected utilit
S is a semimartingale with a Doob–Meyer decomposition featuring a martingale part and an information drift. The expec
ity gain of an insider with respect to a regular trader is calculated in a completely general setting. In particular, for the log
utility function, utility gain is a function of the relative information drift alone, regardless of whether the market admits arb
 2005 Elsevier SAS. All rights reserved.

Résumé

On considère un marché financier avec deux sortes de petits investisseurs : des investisseurs réguliers qui perço
lution du prix S dans sa filtration naturelle, et des agents initiés ayant des informations supplémentaires et qui ains
l’évolution du prix par une filtration plus riche. On discute le rapport entre (NFLVR), la propriété de semimartingale deS vue
dans la perspective de l’agent, et la bornitude de l’espérance de l’utilité. Si celle-ci est bornée,S est une semimartingale ave
une décomposition de Doob–Meyer comprenant une martingale et un drift d’information. On calcule l’utilité supplém
espérée pour l’agent initié sous des conditions générales. On montre, que si la fonction d’utilité est logarithmique
supplémentaire ne dépend que du drift d’information. C’est le cas même si le marché admet un arbitrage.
 2005 Elsevier SAS. All rights reserved.
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0. Introduction

Asymmetry of information on financial markets has been a subject of increasing interest in recent years.
mathematical models have been designed to deal with financial markets on which traders with different info
levels are active. See Wu [32] for an overview. The model to capture basic facts of insider’s action on marke
motivated this paper is very simple. Two kinds of traders are considered: regular agents who do not know a
than the natural evolution of the assets of the market, and insiders whose knowledge at any given tim
trading interval is larger than theσ -field generated by the asset price process up to that time. The insider m
example, possess some additional information on the price of an asset at maturity, or at some later time.
anticipate the time when an asset price reaches a favorable level, or be able to stop at the time at which s
level crossing of the price process occurs. Situations of this type have been modelled for example by K
Pikovsky [22], Amendinger [1], Amendinger, Becherer and Schweizer [2], Grorud, Pontier [16], and [3,19,1
In most of these papers, questions of utility gain of the insider relative to the regular trader were discu
turned out that for many types of additional information the expected increment of utility gained by the
may become infinite quite easily, and might provide opportunities for free lunch or even arbitrage in an
easy way. Baudoin [5,6] and Baudoin, Nguyen-Ngoc [7] develop a model in which additional information on
random variable unknown to the regular trader is only weakly available, i.e. in the form of some knowledg
law instead of the precise anticipation of its value. In this framework the insider’s utility is more likely to be
and can be computed for example by means of the fundamental results by Kramkov, Schachermayer [23]
the precise observation of some random element by the insider which is inaccessible to the natural trader
dynamically by some exterior independent noise to produce a weaker information advantage in the same s
keep the additional utility from getting out of control.

A natural mathematical toolbox to use in the context of the models described contains the techni
grossissement de filtrationsdeveloped in some deep work mostly by French authors [9,20,21,25,33–36,31].
just one of numerous examples in which the direct impact of Meyer’s Strasbourg school on contemporary fi
mathematics becomes evident. Another example is initiated in a recent paper by Biagini and Oksendal [8
paper a question is raised which appears to be of purely mathematical interest at first glance: knowing
expected utility of an insider is finite, what can be said about the regularity of the asset price process f
insider’s point of view? The authors show that given finite utility and the existence of an optimal investmen
egy for the insider, the asset price process must be a semimartingale in the insider’s enlarged filtration. T
they address one of the basic questions of the theory of grossissements de filtrations, and at the same ti
problem which goes to the heart of stochastic analysis: the relationship between semimartingales and the
tic integrator property. To describe the utility of the insider in his enlarged filtration, they use extended not
stochastic integrals investigated in anticipative stochastic calculus, such as Skorokhod’s integral (see Nua
and the forward Itô integral introduced by Russo and Vallois [29].

The deep and central theorem of Bichteler–Dellacherie–Mokobodski characterizes semimartingalesgood
stochastic integrators. A processS is a semimartingale if and only if the stochastic integrals of uniformly boun
simple processes, i.e. predictable step processes, with respect toS form a bounded set in the topological vec
space of random variables with the (L0-)topology of convergence in probability. This key theorem allows to d
with the problem posed by Biagini and Oksendal [8] from a different perspective. Suppose an agent inve
financial market with asset price processS and measures the utility of his final wealth through a utility functionU

which is unbounded. Then the hypothesis that the expected utilities the agent is able to attain be a bounded
of the simple investment strategies he is allowed to use due to his information horizon should be closely
to theL0-boundedness of the set of stochastic integrals of simple admissible strategies. Hence the theore
indicate a direct link between finite utility of agents on financial markets and the semimartingale property
asset price processes with respect to the evolution of their information. This basic observation is the start
for the analysis presented in this paper.
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A related link is exploited in the fundamental paper by Delbaen and Schachermayer [11]. It is shown th
asset price processS fulfills the (NFLVR) condition, i.e. allows no admissible simple strategies which lead
positive probability to a final gain with controllable risk, then the agent viewsS as a semimartingale. In additio
M being the martingale part ofS, its Doob–Meyer decomposition is given by the special formula

S = M + α · 〈M,M〉.
We start by proving that if an agent has bounded expected utility with respect to his information horizon,
cannot have (FLVR). This allows us to hook up to the result by Delbaen and Schachermayer, to show that
utility implies the semimartingale property ofS, and to investigate more thoroughly the relationship between
properties: (NFLVR), thesemimartingale propertyof S in the agent’s filtration, andbounded expected utility. The
drift densityα may be considered as a function of the agent’s information horizon, i.e. its filtration. Passin
one filtration to a bigger one while keeping utility finite will changeα to β, and we may well callβ − α the
correspondinginformation drift. We will keep an attentive eye on logarithmic utility. In this particular case
will show that a better informed agent’s additional utility is a function of the information drift alone, regardle
whether we face a complete or an incomplete market. This result is derived in an entirely abstract framew
do not have to specify the type of information advantage the insider possesses. Based on the fundamen
by Kramkov and Schachermayer [23], we will describe the additional expected utility of an insider in a co
market setting for all reasonable utility functions and express it as a function of relative information drifts.

Here is a brief outline of the paper. In Section 1, we shall investigate the relationship between (NFLV
semimartingale property, and finite utility. In Section 2 we restrict our attention to logarithmic utility. We cal
it in general incomplete market settings, and derive the expected utility increment of better informed age
function of the universal information drift of his filtration. In Section 3 we transfer these results to the set
more general utility functions in complete markets, and show that the logarithm gives essentially the only
measuring utility which allows portfolios that are optimal at any time in the trading interval.

0.1. Preliminaries and notation

Here we collect the most important definitions, notations and conventions needed throughout the pa
(Ω,F,P ) be a probability space andF = (Ft )0�t�T an arbitrary filtration satisfying the usual conditions, wh
T is the finite time horizon. Suppose thatS : [0, T ] × Ω → R is a stochastic process.S will take the role of the
asset price process on our financial market. The wealth of the agent on our market with information horizoF will
be determined in the subsequent section by simple investment strategies (integrands) of the following form

Definition 0.1.A simple integrand is a linear combination of processes of the formf 1]T1,T2] wheref is a bounded
andFT1-measurable random variable andT1 andT2 are stopping times with values in[0, T ] and with respect to
the filtrationF .

The collection of simple integrands will be denoted byS and the stochastic integral process of simple or m
general predictable integrands with respect to a cadlag processX by θ · X. We now recall some terminolog
introduced in [11]. Ifa is a positive real number, then a strategyθ is calleda-admissible, if for all t ∈ [0, T ] we
have(θ · S)t � −a almost surely. It will be calledadmissibleif it is a-admissible for somea � 0. We put

Ks = {
(θ · S)T | θ ∈ S admissible

}
and writeCs for the set of functions dominated by elements ofKs , i.e.Cs = Ks −L0+. Now letC = Cs ∩L∞. The
processS is said to satisfy theno free lunch with vanishing risk(NFLVR) property for simple integrands, if

�C ∩ L∞ = {0},
+
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where�C denotes the closure ofC in L∞. If the intersection contains more than the trivial random variable 0
shall say thatS satisfies (FLVR) for simple integrands. For the general (NFLVR) condition we refer toK defined
asKs just with generalF -predictableθ with well defined stochastic integral.

If not stated otherwise in the sequel, we mean by autility functiona functionU :R → [−∞,∞) which is strictly
concave and strictly increasing on dom(U) = {y: U(y) > −∞}. We will interpret the integralEU(x + (θ · S)T )

as the expected utility from terminal wealth of a trader possessing an initial wealthx and choosing his investmen
following the strategyθ . Note that the integral might not exist. For ease of notation, we use the conventionEU(x +
(θ · S)T ) = −∞, if both the positive and the negative parts ofU(x + (θ · S)T ) have infinite expectations.

1. Finite utility and semimartingales

The analysis of this paper is strongly motivated by [8]. With the aim of calculating the expected utility incr
of a better informed agent on a financial market, one of the main topics of [8] consists in showing that boun
of (logarithmic) utility implies the semimartingale property of the price processS viewed from the perspectiv
of the better informed agent. His additional information is mirrored by his filtrationG, the natural evolution o
informationF with respect to whichS is adapted, initially enlarged by some extra random element. To reac
goal, the authors argue as in other papers (see for example Leon et al. [24]) via anticipative calculus em
in Malliavin’s calculus in anextrinsicapproach. They view the better informed agent’s world from the na
evolution of information perspective as anticipative, therefore work with an extended version of Itô’s calculus
needs conversion formulas between Itô’s and Skorokhod’s integrals given by Malliavin trace terms by m
which the additional expected utility of better informed agents is ultimately computed. The authors conse
are forced to restrict their studies to particular stochastic bases such as Wiener spaces, and in additio
unnecessary assumptions concerning regularity in terms of the stochastic calculus of variations.

In contrast to this approach, we propose to look at the problem from anintrinsic point of view. For any agent
fixing the filtration describing his particular view of information flow, irrespective of other agents’ filtrations
propose to compute the maximal expected utility for rather general utility functions with respect to the
basis, employing the powerful tools of general semimartingale theory already exploited in several deep p
Delbaen and Schachermayer. Of course, thereby the semimartingale property ofS in the general agent’s filtratio
has to play a decisive role. It is tackled by a key observation made in Delbaen and Schachermayer [11] est
a link between the (NFLVR) condition and the semimartingale property of an asset price process on a fi
market. So, to find a natural answer to the problem discussed in [8] in a general and natural framework,
to complete the study of the relationships between (NFLVR) and the semimartingale property by linking
these properties to a third one: finiteness of expected maximal utility. This is the task of the present se
fact, the main work load needed thereby is already taken by [11], and we may consider the modest contrib
our paper in finding the shortcut on the route of arguments used in [8] and other papers through (NFLVR
after doing this, in Sections 2 and 3 we propose to compare the obtained optimal expected utilities starting
logarithmic one, and work out the increment of the better informed agent in terms of a universal quantity wh
may callinformation drift.

Throughout this section, we letS have cadlag paths and be adapted toF . Following our intention to conside
the optimal utility increment of a better informed agent from an intrinsic point of view, we interpretF to be any
agent’s information horizon. Only later we shall distinguish different filtrations. For the moment we do no
any more assumptions. Only in the end of the Subsection 1.1 we shall sometimes assume local boundednS.

1.1. Finite utility via simple strategies

In this subsection we explore the relationship between finiteness of utility and the semimartingale pro
the price dynamics allowing only finite combinations of buy-and-hold strategies, i.e. strategies taken fromS.
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The following is a useful reformulation of the (FLVR) property.

Lemma 1.1.S satisfies the(FLVR) property for simple integrands(see Definition0.1) if and only if there is a
sequence(θn)n�0 of admissible simple integrands such that the following two conditions are satisfied

(i) fn = (θn · S)T , n ∈ N, converges a.s. to a nonnegative functionf satisfyingP(f > 0) > 0 and
(ii) ‖f −

n ‖∞ → 0.

Proof. This follows from Proposition 3.6 in [11]. Although the statement there is shown for general integran
result pertains if only simple strategies are considered.�

The following proposition provides the link between the boundedness of the agent’s utility for simple str
and the (NFLVR) condition.

Proposition 1.2. Let U :R → [−∞,∞) be a utility function with limx→∞ U(x) = ∞. Then for all x >

sup{y ∈ R: U(y) = −∞} (recall sup∅ = −∞) the following implication holds.

If sup
S�θ admissible

E
[
U(x + (θ · S)T )

]
< ∞, then(NFLVR) for simple integrands.

Proof. Let x > sup{y ∈ R: U(y) = −∞}. Then there is aδ > 0 for whichx − δ > sup{y ∈ R: U(y) = −∞}. We
putD = U(x − δ) ∧ 0> −∞.

Suppose that the (NFLVR) property for simple integrands is violated. By the preceding lemma we can
sequence(θn)n∈N of admissible simple integrands such that the final payoffsfn = (θn · S)T ,n ∈ N, satisfy

(i) fn = (θn · S)T → f a.s., wheref is nonnegative withP(f > 0) > 0 and
(ii) ‖f −

n ‖∞ → 0.

For n ∈ N we setεn = ‖f −
n ‖∞. For all but finitely manyn ∈ N we haveεn < δ. To simplify notation we assum

that this holds for alln ∈ N. We now define new simple integrands

πn = δ

εn

θn

for all n ∈ N. It is clear that all the integrals(πn · S)T exceed the bound−δ. Furthermore the random variabl
U(x + (πn · S)T ) are bounded from below by the constantD. More formally,

U
(
x + (πn · S)T

) = U

(
x + δ

εn

(θn · S)T

)
� U

(
x + δ

εn

(−εn)

)
= U(x − δ) = D > −∞.

Sincefn converges to the nontrivial nonnegative functionf , one can find an integern0 and real numbersα, c > 0
such that

P
(
(θn · S)T > b

)
> c

for all n � n0. Recalling thatD � 0, this is seen to imply

lim inf
n→∞ E

[
U

(
x + (πn · S)T

)] = lim inf
n→∞ E

[
U

(
x + δ

εn

(θn · S)T

)]
� lim inf

n→∞ E

[
D1{(θn·S)T �b} + U

(
x + δ

εn

b

)
1{(θn·S)T >b}

]
� lim inf

[
D(1− c) + U

(
x + δ

b

)
c

]
= ∞.
n→∞ εn
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sup
S�θ admissible

E
[
U

(
x + (θ · S)T

)] = ∞.

This proves the proposition.�
Remark. Proposition 1.2 holds in particular for all increasing functionsU with limx→∞ U(x) = ∞.

Combining Proposition 1.2 with the results of the fundamental paper by Delbaen and Schachermayer [1
obtain the intuitively plausible relationship between boundedness of the expected utility and the semima
property for the continuous asset price process with respect to the agent’s filtration. Note that this already
the natural generalization of the answer to the first main question in [8].

Corollary 1.3. Let S be locally bounded,U : R → [−∞,∞) a utility function with limx→∞ U(x) = ∞ and
x > sup{y ∈ R: U(y) = −∞}. If supS�θ adm. E[U(x + (θ · S)T )] < ∞, thenS is a semimartingale with respe
to F .

Proof. By Proposition 1.2, the processS satisfies the (NFLVR) property for simple integrands. Theorem 7.
Delbaen and Schachermayer [11] states that in this caseS is already a semimartingale. Note that Delbaen
Schachermayer [11] use a slightly different definition of simple integrands than stated in Definition 0.1
allow for unbounded processes. But one can show that (NFLVR) for bounded simple integrands is equiv
(NFLVR) for all (possibly unbounded) simple processes.�
Remark. We can sharpen the result of the preceding corollary. In fact, we can show that boundedness of e
utility over all simple strategies uniformly bounded by some constant is sufficient for the semimartingale p
of S to hold. For the statement and proof of this property we refer to the thesis by Ankirchner [4], and a forthc
paper.

1.2. Simple versus general strategies

In the preceding subsection we have seen that if the expected utility maximized over the set of simple s
is finite, the price processS is a semimartingale. As a consequence,S is a stochastic integrator, and its stochas
integral is defined not only for simple integrands, but for a much wider class ofF -predictable strategies. A na
ural question arising in this context is the following: can a trader increase his optimal utility by using g
S-integrable strategies? While this may be the case for discontinuousS, as is shown by an example at the end
this subsection, its main result will prove that for continuous asset price processesS the answer is no.

The utility functionsU :R → [−∞,∞) considered in this section have to fulfill the following further requi
ments. We suppose thatU is strictly increasing, strictly concave and continuously differentiable on dom(U) =
{y: U(y) > −∞}. Furthermore we assume that theInada conditionsare satisfied, i.e.

U ′(∞) = lim
x→∞U ′(x) = 0 (1)

and

U ′(c) = lim
x↓c

U ′(x) = −∞, (2)

wherec = inf{y: U(y) > −∞} ∈ [−∞,∞).
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We remark at this point that all results of this section could equally well be stated for infinite time horizo
homogeneity reasons (some results we refer to in a later section are formulated for finiteT ) we refrain from doing
so.

Throughout this section we suppose thatS is an F -semimartingale and we denote byA the set of all
F -predictable processesθ which are integrable with respect toS in the sense of Protter (see Section 2, Ch
ter IV in [27]). As in the previous subsection we use for allθ ∈ A the conventionE[U(x + (θ · S)T )] = −∞, if
both the negative and the positive parts are not integrable.

We next define two quantities to be compared to the maximal expected utility taken over simple strateg
an initial wealthx > sup{y: U(y) = −∞}. Let

ua(x) = sup
A�θ a-adm.

E
[
U

(
x + (θ · S)T

)]
,

and

u(x) = sup
A�θ adm.

E
[
U

(
x + (θ · S)T

)]
.

Before stating the main result of this subsection, some preliminary steps are in order. The following a
results deal with some aspects ofa-admissible strategies.

Lemma 1.4.LetS be a continuous semimartingale satisfying(NFLVR). If θ is a-admissible then almost surely

(θ · S)T > −a �⇒ (θ · S)t > −a for all 0� t � T .

Proof. Let A = {there exists at ∈ [0, T ] for which (θ ·S)t = −a}. A is measurable due to continuity ofS. We have
to show thatA ∩ {(θ · S)T > −a} has probability 0. Define the entrance timeT ′ = inf{t > 0: (θ · S)t = −a} ∧ T .
Observe that the strategyπ = 1A1]T ′,T ]θ satisfies

(i) (π · S)T = 1A[(θ · S)T − (θ · S)T ′ ] � −a + a = 0,
(ii) P((π · S)T > 0) = P(T ′ < T, (θ · S)T > −a) = P(A ∩ {(θ · S)T > −a}).

If P(A ∩ {(θ · S)T > −a}) > 0, then (i) and (ii) would qualifyπ as an arbitrage opportunity. But this violat
(NFLVR). �

In a similar way we obtain

Proposition 1.5.LetS be a continuous semimartingale satisfying(NFLVR). If (θ · S)T � −a a.s., then the proces
θ is a-admissible.

Proof. For everyε > 0 define a stopping time by

Tε = inf
{
t > 0: (θ · S)t = −a − ε

} ∧ T .

Supposeθ is not a-admissible. Then for someε > 0 we must haveP(Tε < T ) > 0. The strategyπ = 1]Tε,T ]θ
satisfies

(π · S)T = 1{Tε<T }
[
(θ · S)T − (θ · S)Tε

]
� 0,

P
(
(π · S)T > 0

) = P(Tε < T ) > 0.

Henceπ is an arbitrage opportunity. But this is a contradiction to (NFLVR).�
In the following proposition we approximate admissible general strategies by simple ones.
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Proposition 1.6.Let S be a continuous semimartingale satisfying(NFLVR). For everya-admissible integrandθ
there is a sequence ofa-admissible simple processes(θn)n�0 for which

(θn · S)T −→ (θ · S)T a.s.

Proof. Let (πn)n∈N be an arbitrary sequence of simple integrands such that a.s. the trajectories ofπn · S converge
uniformly to those ofθ · S. Forn ∈ N, we put

Tn = inf
{
t > 0: (πn · S)t � −a

} ∧ T .

We first show thatTn converges toT a.s. on the set{(θ · S)T > −a}.
According to Lemma 1.4 almost allω ∈ {(θ · S)T > −a} satisfy:

(θ · S)t > −a for all 0� t � T .

Sinceθ · S is continuous, for almost allω ∈ {(θ · S)T > −a} there exists aδ = δ(ω) > 0 such that

(θ · S)t (ω) > −a + δ.

Since(πn · S) converges uniformly to(θ · S), we find for almost everyω ∈ {(θ · S)T > −a} somen0 such that

(πn · S)t > −a for all 0� t � T andn � n0.

It follows thatTn → T a.s. on the set{(θ · S)T > −a}.
Furthermore, the simple processesθn = 1[0,Tn]πn,n ∈ N, are obviouslya-admissible and satisfy∣∣(θn · S)T − (θ · S)T

∣∣ = ∣∣(θn · S)T − (θ · S)T
∣∣1{Tn<T, (θ ·S)T >−a} + ∣∣(θn · S)T − (θ · S)T

∣∣1{Tn=T }
�

∣∣(θn · S)T − (θ · S)T
∣∣1{Tn<T, (θ ·S)T >−a} + ∣∣(πn · S)T − (θ · S)T

∣∣.
The first summand converges to 0 a.s., becauseTn converges toT on the set{(θ · S)T > −a}. Since the secon
summand also converges to 0, we obtain that(θn · S)T converges to(θ · S)T a.s. �

The preceding proposition now allows to prove the result we aim at if for a fixeda we concentrate ona-
admissible strategies.

Proposition 1.7.LetS be a continuous semimartingale satisfying(NFLVR). If a > 0 is such thatU(x − a) > −∞,
then

ua(x) = sup
S�θ a-adm.

E
[
U(x + (θ · S)T )

]
.

Proof. We have to prove that the right-hand side is not smaller than the left-hand side. Let thereforeθ be ana-
admissible integrand. Proposition 1.6 states that we can find a sequence ofa-admissible simple processes(θn)n∈N

such that(θn · S)T → (θ · S)T a.s. Since the random variablesU(θn · S)T ,n ∈ N, are bounded from below b
U(x − a) > −∞, we conclude by using Fatou’s Lemma and the fact thatU is continuous on{y: U(y) > −∞}:

E
[
U

(
x + (θ · S)T

)] = E
[

lim
n→∞U

(
x + (θn · S)T

)]
� lim inf

n→∞ E
[
U

(
x + (θn · S)T

)]
� sup

S�θ ′a-adm.

E
[
U

(
x + (θ ′ · S)T

)] = ua(x). �
Remark. The proposition remains valid ifua(x) = ∞.

We are now ready to state and prove the main result of this section.
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Theorem 1.8.LetS be a continuous semimartingale satisfying(NFLVR). If x > sup{y: U(y) = −∞}, then

u(x) = sup
S�θ adm.

E
[
U

(
x + (θ · S)T

)]
. (3)

In particular, the maximal expected utilityu(x) is infinite if and only ifsupθ�S adm. E[U(x + (θ · S)T )] = ∞.

Proof. The proof will be executed in several steps. The utility functions admitted by the hypotheses above
subdivided into several classes. This leads to distinguishing the following cases.

We start with
Case1: {y: U(y) > −∞} = R.

Observe that the exponential utility functionU(x) = −e−αx, x ∈ R, with α > 0, is covered by case 1.
If the domain ofU is R, any admissible strategy leads to a utility bounded from below. This is the main o

vation needed to prove the assertion in this case. Letζ be any admissible integrand. According to Proposition
the expected utilityEU(x + (ζ · S)T ) is not greater than supS�θ adm. E[U(x + (θ · S)T )]. Hence we have

u(x) � sup
S�θ adm.

E
[
U

(
x + (θ · S)T

)]
.

Since the left-hand side is obviously not smaller than the right-hand side, equality holds.
Case2: c = sup{y: U(y) = −∞} ∈ R andU(c) > −∞.

Think of the power utility functionU(x) = xα/α,x � 0, extended to be−∞ for x < 0, whereα ∈ (0,1), as
a typical example. Ifζ is (x − c)-admissible, then by Proposition 1.7 the expected utilityEU(x + (ζ · S)T ) is
dominated by supS�θ adm. E[U(x + (θ · S)T )]. Suppose now thatζ is not (x − c)-admissible. By Proposition 1.
we have(θ · S)T < −x + c on a set of positive probability. SinceU(z) = −∞ for all z < c, the expected utility
EU(x + (ζ · S)T ) must equal−∞. This provides the asserted equation in this case.

Case3: c = sup{y: U(y) = −∞} ∈ R andU(c) = −∞.

For example the logarithmic utility function is covered by this case.
To simplify notation we assume thatc = 0. We make use of Theorem 2.1 in [23], according to which

following statement holds true. Ifu(x0) < ∞ for somex0 > 0, thenu(x) < ∞ for all x > 0 and the functionu is
continuously differentiable on(0,∞). With the help of this result we are able to prove the assertion in the g
case.

Let x > 0. Assume first thatu(x) < ∞. Due to the quoted resultu is continuous on(0,∞). Hence for anyε > 0
there exists a 0< y < x such thatu(x) − u(y) < ε

2. Let ζ be an admissible strategy satisfying

u(y) − EU
(
y + (ζ · S)T

)
� ε

2
.

Proposition 1.5 guarantees thatζ is y-admissible. Starting with the initial wealthx, the utility processU(x +
(ζ · S)t ) will be bounded from below by the constantD = U(x − y) > −∞. Again with Proposition 1.7 we obtai

u(x) − sup
S�θ adm.

E
[
U

(
x + (θ · S)T

)]
� u(x) − EU

(
x + (ζ · S)T

)
= [

u(x) − u(y)
] + [

u(y) − EU
(
x + (ζ · S)T

)]
�

[
u(x) − u(y)

] + [
u(y) − EU

(
y + (ζ · S)T

)]
� ε

2
+ ε

2
= ε.

Sinceε was arbitrary, the assertion follows.
Next suppose thatu(x) = ∞. Then by the quoted Theorem 2.1 in [23] for 0< y < x the maximal utilityu(y) is

also infinite. Choosey-admissible integrandsθn, n ∈ N, such that

EU
(
y + (θn · S)

)
� n for n ∈ N.
T
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Given the initial wealthx we have

U
(
x + (θn · S)t

)
� U(x − y) > −∞

for all t � 0, n ∈ N. Hence we can apply Proposition 1.7 to obtain forn ∈ N

sup
S�θ adm.

E
[
U

(
x + (θ · S)T

)]
� EU

(
x + (θn · S)T

)
� EU

(
y + (θn · S)T

)
� n.

This shows that supS�θ adm. E[U(x + (θ · S)T )] = ∞.
This completes the proof in the final case.�
Combining Theorem 1.8 with the results of Subsection 1.1 we obtain a simple proof of the following ge

ization of one of the structure results forS derived in the framework of Wiener space with tools of anticipa
calculus in [8] that was alluded to in the introductory remarks.

Corollary 1.9. Let S be an arbitrary adapted continuous process indexed by[0, T ], U a utility function with
limx→∞ U(x) = ∞ and x > sup{y: U(y) = −∞}. If supS�θ adm. E[U(x + (θ · S)T )] < ∞, thenS is a semi-
martingale and the expected utility maximized over general admissible integrands is either infinite or g
supS�θ adm. E[U(x + (θ · S)T )].

Proof. SupposeS is a semimartingale. By applying similar arguments one can show that the conclusi
Lemma 1.1 and Proposition 1.2 hold for the set of general strategies, too. Hence, ifu(x) is finite, thenS satis-
fies (NFLVR) for general integrands. The result now follows by combining Corollary 1.3 and Theorem 1.8.�

In Example 2.11 we shall exhibit a continuous price processS for which u(x) = ∞, but supS�θ adm. E[U(x +
(θ · S)T )] is finite. We close this section with an example inspired by Example 7.5 in [11] and showing t
Theorem 1.8 the requirement thatS is continuous cannot be dropped.

Example 1.10.Let (Xn)n∈N be a sequence of Gaussian unit variables and(φn)n∈N a sequence of random variabl
satisfyingP(φn = 1) = 2−n andP(φn = 0) = 1 − 2−n. Furthermore suppose thatZ is a random variable with
distributionP(Z = a) = P(Z = b) = 1

2, where 0< a < 1 andb > 1. We assume that all these random variab
are independent. Choose an enumeration(qn)n∈N of the rationals in[0,1[. The process defined by

S = 1[0,1[(t) + Z 1{1}(t) +
∑

{n: qn�t}
φnXn, 0� t � 1,

is cadlag. We start by showing thatS is a semimartingale satisfying the (NFLVR) property. For this purpose de
by P̃ the restriction ofP to σ(Z). It is obvious, that there is a probability measureQ̃ ∼ P̃ on σ(Z) such that the

expectation ofZ with respect toQ̃ is equal to 1. Note that the extension dQ = dQ̃

dP̃
dP is a probability measur

such that

(i) Q = Q̃ onσ(Z),
(ii) Q = P onσ(φnXn,n ∈ N) and

(iii) Q ∼ P .

Hence the processS is aQ-martingale with respect to its natural filtration. By the fundamental theorem of
pricing (see Corollary 1.2 in [12]) this implies thatS is a semimartingale satisfying the (NFLVR) property.

As in example 7.5 in [11] one can show thatθ = 0 is the only simple integrand which is admissible forS. Hence
we have

sup E
[
U

(
x + (θ · S)1

)] = U(x).

S�θ adm.
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However, the non-simple strategyθ = 1{1} has as final payoff

x + (θ · S)1 = x + (S1 − S1−) = x + (Z − 1) a.s.

If lim x→∞ U(x) = ∞, choosex, a andb such that

EU
(
x + (θ · S)1

) = 1

2
U(x + a − 1) + 1

2
U(x + b − 1) > U(x).

For example ifU = log, x = 1, a andb are such thatab = e2, then

EU
(
x + (θ · S)1

) = 1

2
log(a) + 1

2
log(b) = 1

2
log(ab) = 1> 0= U(x).

Thus we have

u(x) �= sup
S�θ adm.

E
[
U

(
x + (θ · S)1

)]
.

2. The expected logarithmic utility increment of an insider

In this section we uniquely consider the case of logarithmic utility. So let

U(x) =
{

logx if x > 0,

−∞ if x � 0

throughout the section. According to the previous section bounded utilityu(x) < ∞ for an agent with an informa
tion horizonF implies (NFLVR). Under this condition, Delbaen and Schachermayer [12] show that for conti
semimartingalesS the bounded variation part in the Doob–Meyer decomposition must be controlled by the
tingale (uncertainty) partM of S, i.e. there is anF -predictable processα such that

S = M + α · 〈M,M〉. (4)

Equipped with this knowledge we now return to the setting of a financial market with small agents, i.e. age
able to influence the price dynamics, possessing asymmetric information, to perform the second part of
of calculating the expected utility increment of a better informed agent in a fairly general setting using ba
natural tools, in particular generalizing Theorem 3.7 of [8]. So we assume that each of the agents (reg
better informed trader) takes his portfolio decisions on the basis of his individual information horizon, giv
different filtrationsF andG. We just suppose that the insider’s filtration is bigger, but do not specify at all wha
sources for the additional information inG are. The asset price processS will be assumed to be continuous. T
starting point of our analysis according to the previous section have to be the agents who possess finite ut
investing intoS on the basis of their knowledge, which is therefore described by the following type of filtrati

Definition 2.1. Let H be a filtration satisfying the usual conditions,S a H-semimartingale with decompositio
S = M + α · 〈M,M〉, andL2

H(PM) the space of allH-predictable processesγ such thatE
∫ T

0 γ 2 d〈M,M〉 < ∞.
The filtrationH will be calledfinite utility filtration for S if α belongs toL2

H(PM).

Of course, a finite utility filtration for fixedS should just be a filtration for which the expected logarithmic uti
of an agent who makes his portfolio decisions depend on this information flow is finite. We shall see below
second subsection that this intuitive notion is consistent with the above definition.

Note that a finite utility filtration forS may not be a finite utility filtration for a different process. Neverthel
we will often omit the process in the definition since we are always referring to a fixedS.

Now let F be a finite utility filtration forS. Assume that a better informed agent’s filtration is given byG.
We shall see in the third subsection below that the logarithmic utility increment of this agent with respec
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non-informed one only depends on a quantity which we shall callinformation drift according to the following
definition.

Definition 2.2. Let F be a finite utility filtration. Suppose thatG is a filtration such thatFt ⊂ Gt for all t ∈ [0, T ]
andµ is aG-predictable process satisfying

M −
·∫

0

µt d〈M,M〉t is aG-local martingale.

Thenµ is calledinformation drift(see [18]) ofG with respect toF .

To get a general description of this fundamental quantity, let us consider the situation in which both age
uninformed and the insider, are acting on finite utility filtrations. So letF andG be two finite utility filtrations
for S. We denote by

S = M + α · 〈M,M〉 (5)

the semimartingale decomposition with respect toF and by

S = N + β · 〈N,N〉 (6)

the decomposition with respect toG. Obviously,

〈M,M〉 = 〈S,S〉 = 〈N,N〉
and therefore Eqs. (5) and (6) imply

M = N − (α − β) · 〈M,M〉 a.s. (7)

If Ft ⊂ Gt for all t � 0, Eq. (7) can be interpreted as the semimartingale decomposition ofM with respect toG,
andµ = α − β as the corresponding information drift.

Our main result will show that in this general setting the finite utility advantage of an insider compared
regular trader is given by

1

2
E

T∫
0

µ2
s d〈M,M〉s ,

if µ is the information drift obtained by passing fromF to G.
To prove this formula, we shall proceed in three steps. The first one is of more auxiliary character.

2.1. Infinite utility and drift

We shall start by establishing a relationship between the intensity of the intrinsic driftα · 〈M,M〉 of S and
the boundedness of expected utility. We shall prove that if this drift collects infinite mass on[0, T ] with positive
probability, then expected logarithmic utility will be infinite. This will be helpful in the direct computatio
expected logarithmic utility in the following subsection. Due to close connections between (NFLVR) and
utility, explained in Section 1, our treatment will in some parts heavily rely on similar arguments in Delbae
Schachermayer [12].

In the following lemma a link between the infinite intrinsic drift and the existence of admissible stra
inducing large wealths is established.

Lemma 2.3.SupposeP(
∫ T

0 α2 d〈M,M〉 = ∞) = η > 0. Then for alla, ξ > 0 we can find ana-admissible inte-
grandθ such thatP((θ · S) � 1) � η − ξ .
T
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Proof. The proof is essentially the same as the one of Lemma 3.8 in [12], and is therefore omitted.�
As an immediate consequence of the preceding, infinite drift with positive probability entails that free lu

are possible.

Corollary 2.4. If
∫ T

0 α2 d〈M,M〉 = ∞ on a set with positive probability, thenS satisfies(FLVR).

For later use we are mainly interested in another consequence of the lemma. It says that infinite d
positive probability also implies that the expected utility becomes infinite.

Theorem 2.5.If U = log and
∫ T

0 α2 d〈M,M〉 = ∞ on a set with positive probability, then for alla > 0 andx > 0
we have

ua(x) = ∞.

Proof. By eventually reducinga we may assume that 0< a < x. By Lemma 2.3 there is anα > 0 and a sequenc
(θn)n∈N of a-admissible integrands satisfying

P
(
(θn · S)T � n

)
> α.

Since limx→∞ log(x) = ∞, we obtain

lim inf
n→∞ EU

(
x + (θn · S)T

)
� lim inf

n→∞ log(x + n)α + log(x − a)(1− α) = ∞,

which proves the theorem.�
Remark. The theorem neither follows from the preceding corollary nor from the ‘Immediate Arbitrage The
of Delbaen and Schachermayer in [12]. This is because there are situations where (NA) is violated, butua(x) is
finite for somea (see examples below).

2.2. Logarithmic utility of an agent

Our second step consists in computing explicitly the expected logarithmic utility of an agent acting
basis of some filtrationF , with respect to whichS possesses a Doob–Meyer decomposition (4). We shall p
implicitly that it only depends on the drift densityα, and is given by a formula which in case there is a marting
measure forS is provided by the general analysis of Kramkov and Schachermayer [23]. We shall give a der
of the formula which is valid irrespective of whether (NFLVR) holds, provided only that (4) is guarantee
example, ifF is the Wiener filtration initially enlarged by the maximum of the Wiener process on[0, T ], (NFLVR)
is violated, whereasS is a semimartingale satisfying (4) with a well knownα (see [19]). The method we emplo
consists in using the linear stochastic equation link allowing to describe the optimal portfolioθ∗ as a function of
the drift processα in a general framework. In Subsubsection 2.2.1, we shall consider the case of positive
while in Subsubsection 2.2.2 we extend the results to the case in which wealth may become negative.

2.2.1. Maximal utility if wealth stays positive
If wealth always stays positive, we may consider the following class of admissible strategies.

Definition 2.6.Let a > 0 be given. AnS-integrable and predictable processθ is calleda-superadmissibleif almost
surely(θ · S) > −a for all t ∈ [0, T ].
t
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Our goal is to find

u+(x) = sup
A�θ x-superadm.

E log
(
x + (θ · S)T

)
.

It will be helpful to express the right-hand side in terms of the so-calledoptimal portfolio, i.e. the processθ∗ ∈ A
which satisfiesu+(x) = E log(x + (θ∗ · S)T ). Before we can show that the optimal portfolio exists and may
expressed as a function ofα, we have to prove some auxiliary results which will ultimately turn out to presen
optimal portfolio as the unique solution of a linear stochastic equation. Recall that we do not assume (N
here. We start by proving

Proposition 2.7.Suppose
∫ T

0 α2
s d〈M,M〉s < ∞ a.s. Ifπ is a predictable andS-integrable process, then the pro

uctE(π · S)E(−α · M) is a local martingale.

Proof. We use Yor’s addition formula

E(X)E(Y ) = E
(
X + Y + 〈X,Y 〉),

for two continuous semimartingales (see e.g. [15], p. 374). It implies

E(π · S)E
(−α · M) = E

(
(π − α) · M)

,

hence, the result. �
Remark. Proposition 2.7 states thatE(−α · M) is a strict martingale density forE(π · S) in the sense o
Schweizer [30].

Lemma 2.8.Suppose thatx > 0 andE
∫ T

0 α2
s d〈M,M〉s < ∞. The processθ∗ = xαE(α · S) is x-superadmissible

belongs toA and solves the integral equation

θ∗
t = αt

(
x +

t∫
0

θ∗
r dSr

)
, 0� t � T . (8)

Proof. We observe that the processθ∗ = xαE(α · S) is predictable and satisfies for allt ∈ [0, T ]

x + (θ∗ · S)t = x + x

t∫
0

αrE(α · S)r dSr = x

(
1+

t∫
0

αrE(α · S)r dSr

)
= xE(α · S)t > 0.

This yields thatθ∗ is x-superadmissible. At the same time, multiplying both extreme terms byαt shows thatθ∗
solves(8).

The expression

E log
(
x + (θ∗ · S)T

) = logx + E(α · S)T − 1

2
E

T∫
0

α2
s d〈M,M〉s

makes sense due to the integrability conditionE
∫ T

0 α2
s d〈M,M〉s < ∞. Henceθ∗ belongs toA. �

We now state the main result of this subsubsection. It generalizes Theorem 3.5 of [3], where it was pr
the special case of a semimartingale given by an SDE.
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Theorem 2.9.For anyx > 0 the following equation holds

u+(x) = logx + 1

2
E

T∫
0

α2
s d〈M,M〉s . (9)

If E
∫ T

0 α2
s d〈M,M〉s < ∞, then the processθ∗ = xαE(α · S) is the unique optimal portfolio.

Proof. We first assume thatE
∫ T

0 α2
s d〈M,M〉s < ∞.

Let θ ∈ A be x-superadmissible. Thenx + (θ · S)t > 0 a.s. for allt ∈ [0, T ] and hence we can define a ne
process by

πt = θt

x + (θ · S)t
, 0� t � T .

Sinceπ is predictable, the integralπ · S is defined.
The SDE

Y0 = x,

dYt = πtYt dSt = Yt d(π · S)t

is uniquely solved by the processY = xE(π · S). On the other hand the processx + (θ · S)t is also easily seen t
be a solution. By uniqueness this implies

x + (θ · S) = xE(π · S). (10)

In the next step we will show that the expected logarithmic utility ofx + (θ · S)T is not exceeded by logx +
1
2E

∫ T

0 α2
s d〈M,M〉s . Applying the inequality logz � z − 1, valid for positivez, to the product of two positive

numbersa, b we get the inequality

loga � ab − logb − 1.

If we takea = xE(π · S) andb = 1
x
E(−α · M) we obtain

logxE(π · S) � E(π · S)E(−α · M) − log
1

x
E(−α · M) − 1.

By Proposition 2.7 the productE(π · S)E(−α · M) is a local martingale. Since it is nonnegative, it is also a su
martingale and therefore by (10)

E
[
log

(
x + (θ · S)T

)] = E
[
logxE(π · S)T

]
� E

[
E(π · S)T E(−α · M)T − log

1

x
E(−α · M)T − 1

]

� −E

[
log

1

x
E(−α · M)T

]
= logx − E

[
−

T∫
0

αt dMt − 1

2

T∫
0

α2 d〈M,M〉
]

= logx + 1

2
E

T∫
0

α2 d〈M,M〉.

This implies

u+(x) � logx + 1

2
E

T∫
0

α2 d〈M,M〉.

Before we prove that in fact equality holds, we note



494 S. Ankirchner, P. Imkeller / Ann. I. H. Poincaré – PR 41 (2005) 479–503

times

,

ic

l result
t for a
.

E log
(
xE(α · S)T

) = logx + 1

2
E

T∫
0

α2 d〈M,M〉.

Therefore it is enough to show that there is a processθ such thatE log(x + (θ · S)T ) = E log(xE(α · S)T ).
According to Lemma 2.8 the processθ∗ = xαE(α · S) belongs toA, is x-superadmissible and satisfies

α = θ∗

x + (θ∗ · S)
,

from which we deduce

x + (θ∗ · S)t = xE(α · S)t .

This proves the theorem in the case whereE
∫ T

0 α2
s d〈M,M〉s < ∞.

We now claim that Eq. (9) is still true ifE
∫ T

0 α2
s d〈M,M〉s = ∞. Suppose first

∫ T

0 α2
s d〈M,M〉s = ∞ on a set

with positive probability. Then Theorem 2.5 yieldsu+(x) = ∞.
On the other hand, if

∫ T

0 α2
s d〈M,M〉s < ∞ almost surely, we can find an increasing sequence of stopping

(Tn)n∈N such thatTn → T and

E

Tn∫
0

α2
s d〈M,M〉s < ∞.

With the first part of the proof we deduce

u+(x) � logx + 1

2
E

Tn∫
0

α2
s d〈M,M〉s

for all n ∈ N. By Beppo–Levi the right-hand side goes to infinity asn → ∞. Henceu+(x) = ∞, which completes
the proof. �
2.2.2. Maximal utility if wealth may become negative

Here we allow the wealth process to take negative values and again deduce the desired formula foru(x).
Let S = M +α · 〈M,M〉 be a continuous semimartingale satisfying (NFLVR). Ifθ ∈ A is notx-superadmissible

then by Lemma 1.4

(θ · S)T � −x

on a set of positive probability. But this impliesE log(x + (θ · S)T ) = −∞ and thereforeu(x) = u+(x). Hence we
have shown

Theorem 2.10.Let S be a continuous semimartingale satisfying(NFLVR). The maximal expected logarithm
utility is given by

u(x) = logx + 1

2
E

T∫
0

α2
s d〈M,M〉s .

Remark. Kramkov and Schachermayer [23] show that under the assumption of (NFLVR) a more genera
can be obtained. They give explicit formulas for the maximal expected utility not only for the logarithm bu
large class of utility functions. We mention thatE

∫ T

0 α2
s d〈M,M〉s < ∞ does not imply the (NFLVR) property

In the following examples the integral of the drift is finite, but arbitrage is possible and henceu(x) is infinite (see
Proposition 1.2). Hence the assumption of (NFLVR) in Theorem 2.10 cannot be dropped.
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Example 2.11.Let S be aBES3 process starting inx > 0. It is known thatS solves the equation

St = x + Bt +
t∫

0

S−1
u du, 0� t,

where(Bt ) is a Brownian motion (see Proposition 3.3, Chapter VI in [28]). It is straightforward to show that

E

T∫
0

S−2
u du < ∞,

and hence, by Theorem 2.9,u+(x) is finite, too. On the other hand Delbaen and Schachermayer prove in [13
S allows arbitrage.

Moreover, this example shows that the assumption (NFLVR) cannot be dropped in Theorem 1.8: It is kno
there are no simple arbitrage strategies (see [13]). Hence every simple strategyθ satisfyingU(x + (θ · S)T ) > 0,
a.s., must bex-superadmissible (else one can construct a simple arbitrage strategy). Consequently

sup
S�θ adm.

E
[
U

(
x + (θ · S)T

)]
� u+(x) < ∞.

SinceS allows arbitrage for general integrands, we haveu(x) = ∞. Thus Theorem 1.8 does not hold without t
assumption (NFLVR).

Situations where the trader has finite utilityu+(x), but (NFLVR) is not satisfied, can easily arise on markets w
insiders. An insider acts using information from an enlarged filtration. As in the following example, this pro
sources for possible arbitrage which, in contrast to the previous example, are very explicit.

Example 2.12.Let W be a Brownian motion on some probability space(Ω,F,P ). We denote by(Ft )t�0 the
completed filtration generated byW . We will study the price process

St = E(W)t , t � 0,

not under(Ft )t�0 but with respect to a larger filtration. Choose for exampleT = 1, let a, b ∈ R such thata < b,
let G = 1[a,b](W1), and take the right continuous and completed version ofGt = Ft ∨ σ(G), t ∈ [0,1]. It has been
shown in [3] that an agent in this filtration possesses finite logarithmic utility, if wealth has to be positive.u+(x) is
given by the entropy ofG, or, alternatively, by1

2E
∫ 1

0 α2
s ds with the corresponding information driftα.

We will see now that there are arbitrage strategies. Define a stopping time by

T = inf{t � 0: Wt � a − 1} ∧ 1.

The strategyθ = 1{W1∈[a,b]}1]T ,1] is admissible, because

(θ · S)t � −ea−1, 0� t � 1.

Furthermoreθ satisfies

(i) (θ · S)1 = 1{W1∈[a,b]}(S1 − ST ) � 0 and
(ii) P((θ · S)1 > 0) = P(T < 1,W1 ∈ [a, b]) > 0,

which shows thatθ is an arbitrage strategy. In particularS does not have the (NFLVR) property.

Remark. Assume that an agent with information horizonF possesses bounded logarithmic utility, i.e.u(x) < ∞.
According to Section 1 we therefore know thatS enjoys the (NFLVR) property, and thus it is a semimarting
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with Doob–Meyer decomposition of the form (4) due to [12]. Now suppose that the maximal expected loga
utility is bounded only if the wealth of the agent has to stay positive. In this case the (NFLVR) condition do
necessarily hold. However, as will be shown in Ankirchner [4], a decomposition (4) still exists.

2.3. Computation of the utility increment

Now we return to the situation in which two agents take action with respect to two finite utility filtrationsF and
G for S. Recall the Doob–Meyer decompositions

S = M + α · 〈M,M〉 = N + β · 〈M,M〉
with anF -martingaleM , and aG-martingaleN , so that the information drift when passing fromF to G is given
by

µ = α − β.

AssumeH is a given filtration. Given an initial wealthx > 0, we denote byu+(H, x) the corresponding maxima
expected utility if wealth has always to be positive. Note that ifH is a finite utility filtration,u+(H, x) is finite for
all x > 0 (see Theorem 2.9).

A bigger filtration must clearly lead to a bigger maximal utility. The following main theorem will quantify
increase and describe the utility increment precisely as a function of the information driftµ of G with respect toF .

Theorem 2.13.Let F and G be finite utility filtrations forS, with Ft ⊂ Gt for all t ∈ [0, T ]. Let µ denote the
information drift ofG with respect toF . Then for anyx > 0

u+(G, x) − u+(F , x) = 1

2
E

T∫
0

µ2 d〈M,M〉. (11)

Proof. Sinceα andβ are inL2(PM), we can write

1

2
E

T∫
0

(β − α)2 d〈M,M〉 = 1

2
E

T∫
0

(β2 − α2)d〈M,M〉 + E

T∫
0

(α2 − αβ)d〈M,M〉.

Sinceα is F -, henceG-adapted, it follows from (7)

E

T∫
0

(α2 − αβ)d〈M,M〉 = E

T∫
0

α dN − E

T∫
0

α dM = 0.

Hence

1

2
E

T∫
0

(β − α)2 d〈M,M〉 = 1

2
E

T∫
0

(β2 − α2)d〈M,M〉 = u+(G, x) − u+(F , x). �

Relative information drifts are additive with respect to successive refinements of filtrations. Indeed, letF , G and
H be three finite utility filtrations such thatFt ⊂ Gt ⊂ Ht for all t ∈ [0, T ]. Suppose thatµ is the information drift
of G with respect toF . Then by the definition we know that̃M = M − µ · 〈M,M〉 is aG-local martingale. Ifλ
is the information drift ofH with respect toG, thenM̃ − λ · 〈M,M〉 is aH-local martingale. As a consequen
κ = µ + λ is the information drift ofH with respect toF . We obtain
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Proposition 2.14.The information drift ofH w.r.t. F is the sum of the information drift ofG w.r.t. F and the
information drift ofH w.r.t. G.

In the same situation, we will now show that the information drift ofG with respect toF can be expressed a
the predictable projection of the information drift ofH with respect toF onto the spaceL2

G(PM). To this end, we
need the following useful property.

Lemma 2.15.Letγ ∈ L2
H(PM) and letpγ denote the projection ofγ ontoL2

G(PM). Then

E

[ ∞∫
t

γs d〈M,M〉s
∣∣∣ Gt

]
= E

[ ∞∫
t

pγs d〈M,M〉s
∣∣∣ Gt

]
for all t � 0.

Proof. Let t � 0 andA ∈ Gt . Note that the process 1A1]t,∞[ is G-predictable. Since(γ − pγ ) is orthogonal to
L2
G(PM), we have

0= E

∞∫
0

1A1]t,∞[(s)(γs − pγs)d〈M,M〉s = E

[
1A

∞∫
t

(γs − pγs)d〈M,M〉s
]
,

and thus the result.�
Equipped with these prerequisites we can state our theorem about the orthogonal projection property

mation drifts. Recall thatF ⊂ G ⊂ H are finite utility filtrations andS = M + α · 〈M,M〉 is the decomposition
w.r.t.F .

Theorem 2.16.Let κ ∈ L2
H(PM) be the information drift ofH with respect toF . Then the orthogonal projectio

of κ ontoL2
G(PM) is the information drift ofG with respect toF .

Proof. We may assume, by localizing the processes with some stopping time, that bothM andκ · 〈M,M〉 are
bounded. Letpκ denote the orthogonal projection ofκ ontoL2

G(PM). We have to show thatM − pκ · 〈M,M〉 is a
G-martingale. Choose 0� s < t and a setA ∈ Gs . SinceG is a sub-filtration ofH we obtain, using Lemma 2.15,

E
(
1A(Mt − Ms)

) = E

(
1A

t∫
s

κr d〈M,M〉r
)

= E

(
1A

t∫
s

pκr d〈M,M〉r
)

.

This proves the claim. �
In particular we have

Corollary 2.17. If β is the information drift of some finite utility filtrationK with respect toF , thenβ is orthogonal
to L2

F (PM).

3. Additional utility of an insider on a complete market

The main aim of this section is to describe the additional utility of an insider with respect to a regular
for fairly arbitrary utility functions. Besides, we shall briefly discussalways optimal strategies, i.e. strategies tha
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optimize expected utility from terminal wealth if any timet in the trading interval may be chosen as termin
Again, the setting is very general: we specify the information advantage between the insider with filtraG
and the regular trader with filtrationF just by the relative information drift. As opposed to the previous sec
we however assume the market to be complete here, so that we may invoke the general results by Kram
Schachermayer [23] about maximal utility. As usual, we assume the asset price processS indexed by[0, T ] to be
continuous. Completeness entails that there is a unique equivalent local martingale measure, which we w
by Q. By the fundamental theorem of asset pricing the NFLVR property holds and hence we may decomS

into

S = M + α · 〈M,M〉,
whereM is aP -local martingale andα anF -predictable process. The Radon–Nikodym density of the martin
measure givenP is known to be described by the exponential ofα · M :

dQ

dP

∣∣∣∣
Ft

= E(−α · M)t , t ∈ [0, T ] (12)

(see [14]).
In the following we shall abbreviate

Z = E(−α · M).

Let us next describe the class of utility functions for which the maximal expected utility can be explicitl
culated by means ofZ. Let U be strictly increasing, strictly concave and continuously differentiable on(0,∞).
Furthermore we assume thatU satisfies

lim
x→0+ U ′(x) = ∞ and lim

x→∞U ′(x) = 0 (13)

and that

u(x0) < ∞ for somex0 > 0. (14)

On (0,∞) the derivative ofU has an inverse function, which we will denote byI . Observe thatI is a function
with domain(0,∞) and with range(0,∞). The following formula for the maximal expected utility is obtained
Kramkov, Schachermayer [23].

Theorem 3.1(Theorem 2.0 in [23]). Assume that the conditions(13)and (14)are satisfied. For allx > 0 we have

u(x) = EU
(
I (yZT )

)
,

wherey is the real number satisfyingE[ZT I (yZT )] = x. Furthermore the processI (yZt ) is a uniformly integrable
martingale underQ, hencex = I (y), and consequentlyy does not depend on the time horizonT .

3.1. Always optimal strategies

The maximal expected utilityu(x) depends of course on the time interval in which the traders are allow
act. We will denote byut (x) the maximal expected utility of a trader of initial wealthx who is not allowed to hold
any shares of the stock after timet � T , i.e.

ut (x) = sup
θ∈A

EU
(
x + (θ1[0,t] · S)T

) = sup
θ∈A

EU
(
x + (θ · S)t

)
.

Definition 3.2.A strategyθ∗ ∈ A is calledalways optimal, if for all t ∈ [0, T ] andx > 0

EU
(
x + (θ∗ · S)t

) = ut (x).
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We will now analyze to which extent always optimal strategies exist.
Consider at first the case where the driftα is equal to 0. In this case the price processS is aP -local martingale

and intuitively one would expect that a risk averse trader will not trade at all. Theorem 3.1 confirms th
maximal expected utility is the utility of the initial capitalU(x). Hence in this case the trivial strategyθ = 0 is
always optimal, whatever the utility functionU looks like.

If the drift α is not trivial, however, the situation is different. It turns out that in general always optimal stra
exist only for logarithmic utility functions. Before proving this we define

�ZT = sup
0�t�T

Zt

and

ZT = inf
0�t�T

Zt .

We will only consider the case where

ess infZT = 0 and ess sup�ZT = ∞. (15)

Theorem 3.3.Assume thatI = (U ′)−1 is twice continuously differentiable on(0,∞) and that the conditions(13),
(14) and (15) are satisfied. Then an always optimal strategy exists if and only ifU is the logarithm up to affine
transformations, i.e.

U(x) = a log(x) + b

for some constantsa > 0 andb ∈ R.

Proof. Suppose at first thatU(x) = log(x). By Theorem 3.1 we have for anyt ∈ [0, T ]

ut (x) = EU
(
I (yZt )

) = EU

(
1

yZt

)
= E log(xZ−1

t ) + c = E log
[
xE(α · S)t

] + c = E log
[
x + (

αE(α · S) · S)
t

] + c.

This shows thatθ∗ = αE(α · S) is always optimal.
We now prove the converse statement. Letθ∗ be an always optimal strategy. By Theorem 3.1 the process

x + (θ∗ · S) = I (yZ)

is aQ-martingale. Hence

ZI (yZ)

is aP -martingale. Since the functionφ : (0,∞) → R, φ(x) = xI (yx) is twice continuously differentiable, we ma
apply Itô’s formula and obtain fort ∈ [0, T ]

ZtI (yZt ) = φ(Zt ) = φ(1) +
t∫

0

φ′(Zs)dZs + 1

2

t∫
0

φ′′(Zs)d〈Z,Z〉s .

From this equation we can deduce that the continuous process of bounded variation

·∫
φ′′(Zs)d〈Z,Z〉s =

·∫
φ′′(Zs)α

2
s Z

2
s d〈M,M〉s
0 0
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is a localP -martingale and hence vanishes. We will now show thatφ′′(z) = 0 for all z > 0. Suppose that this is no
true. Then there exist 0< p < q such thatφ′′ does not vanish on the interval(p, q). Eq. (15) implies that on the se

A = {
(t,ω): Zt(ω) ∈ (p, q)

}
we have

α = 0 PM -a.s.

This means that the process
∫ ·

0 α2 d〈M,M〉 is constant onA. Hence also the processes
∫ ·

0 α dM andZ = E(α · M)

are constant onA (see [28]), i.e.

1A(t,ω)Zt (ω) is constant a.s.

In other words, the trajectoriest �→ Zt(w) are a.s. constant on(p, q).
Suppose first thatq < 1 or p > 1. SinceZ0 = 1, it follows that the entire trajectories ofZ are aboveq or

belowp, respectively. This contradicts (15).
Suppose next thatp < 1 < q. SinceZ is constant on(p, q), we must haveZ = 1, which also contradict

property (15).
Thus we have shownφ′′ = 0.
On the other hand we know that

φ′(x) = I (yx) + yxI ′(yx)

and

φ′′(x) = 2yI ′(yx) + xy2I ′′(yx).

HenceI ′ solves the differential equation

2I ′(z) = −zI ′′(z), z > 0.

By assumption (13) the functionI ′ : (0,∞) → (−∞,0) satisfies

lim
z→0+ I ′(z) = −∞.

Hence

I ′(z) = − a

z2

and

I (z) = a

z
+ c1

for some constantsa > 0 andc1 ∈ R. It follows

U ′(x) = a

x − c1

and

U(x) = a log(x − c1) + c2

for somec2 ∈ R. Note thatc1 = 0, because limx→0+ U(x) = −∞. This completes the proof.�
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3.2. The additional expected utility of an insider

Let F andG be filtrations such thatS is complete with respect to both filtrations. We write

S = M + α · 〈M,M〉
for the semimartingale decomposition with respect toF and

S = N + β · 〈N,N〉
for the decomposition with respect toG. Furthermore we denote byQ the ELMM with respect toF and byQ′ the
ELMM with respect toG. Notice that

dQ

dP

∣∣∣∣
FT

= E(−α · M)T

and

dQ′

dP

∣∣∣∣
GT

= E(−β · N)T .

Consider now the case whereF is contained inG, i.e.Ft ⊂ Gt for all 0 � t � T . The following lemma observe
that the two ELMMs agree on the smaller world.

Lemma 3.4.OnFT the measuresQ andQ′ are equal, i.e.Q′|FT
= Q

∣∣
FT

. In particular we have

EP
[
E(−β · N)T

∣∣FT

] = E(−α · M)T .

Proof. On the one hand,S is a (Q′,G)-local martingale. Since on the other handS is adapted toF , it is also a
(Q′,F)-local martingale. Completeness of the market implies that the ELMM onF is unique. HenceQ′ coincides
with Q onFT . �

By applying Theorem 3.1 we obtain the following expression for the utility increment

u(G, x) − u(F , x) = EU

(
I

(
y

dQ′

dP

))
− EU

(
I

(
y

dQ

dP

))
= EU

(
I
(
yE(−β · N)T

)) − EU
(
I
(
yE(−α · M)T

))
.

Again we want to express the additional expected utility by means of the information driftµ.
Recall the representation

M = N −
·∫

0

(α − β)d〈M,M〉 a.s.

with µ = α − β as information drift. Note that fort ∈ [0, T ]

E(−β · N)t = exp

[
−

t∫
0

β dN − 1

2

t∫
0

β2 d〈M,M〉
]

= exp

[ t∫
0

µ dN −
t∫

0

α dM +
t∫

0

α(β − α)d〈M,M〉 − 1

2

t∫
0

β2 d〈M,M〉
]

= E(−α · M) E(µ · N) ,
t t
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which implies

dQ′

dP

∣∣∣∣
GT

= dQ

dP

∣∣∣∣
FT

E(µ · N)T .

Conditioning onFT leads to

dQ′

dP

∣∣∣∣
FT

= dQ

dP

∣∣∣∣
FT

E
[
E(µ · N)T

∣∣FT

]
,

and by Lemma 3.4 we get

E
[
E(µ · N)T

∣∣FT

] = dQ′

dQ

∣∣∣∣
FT

= 1. (16)

We may summarize our findings on the expected additional utility in the following proposition.

Proposition 3.5.The additional expected utility of the insider is equal to

u(G, x) − u(F , x) = E
[
U

(
I
(
yE(−α · M)T E(−µ · N)T

)) − U
(
I
(
yE(−α · M)T

))]
.

By definition, the insider’s expected utility must exceed the regular trader’s. In caseU ◦ I is convex, which is
the case for the exponential, power, and logarithmic utility functions for example, but in general does not ho
the projection result of Lemma 3.4 gives us a direct argument to show this starting with the representation
in the preceding proposition. SinceU ◦ I is convex, Jensen’s inequality and equation (16) yield

u(G, x) − u(F , x) = E

[
U

(
I

(
y

dQ′

dP

))]
− E

[
U

(
I

(
y

dQ

dP

))]
� E

[
U

(
I
(
yE

[
E(−α · M)T E(−µ · N)T

∣∣FT

]))] − E
[
U

(
I
(
yE(−α · M)T

))]
= E

[
U

(
I
(
yE(−α · M)T E

[
E(−µ · N)T

∣∣FT

]))] − E
[
U

(
I
(
yE(−α · M)T

))]
= E

[
U

(
I
(
yE(−α · M)T

))] − E
[
U

(
I
(
yE(−α · M)T

))] = 0.

Remark. We conclude that in general, the utility increment depends – besides the information drift – on the
wealth and on the intrinsic driftα. This is not the case for logarithmic utility functions, where it only depend
the information drift.
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