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Abstract

Let D be a bounded domain iR¢ with smooth boundary D. We give a probabilistic representation formula for the non-
negative solution of the mixed Dirichlet non-linear Neumann boundary value problem (DNP)

Au=0 inD,
u=gq on Fyp,
8,,u+2u2=0 onFy,

where(Fy, F») is a non-trivial partition ofd D, ¢ is a non-negative, bounded and continuous function definefbpanda,
denotes the outward normal derivative on the bounda®.of

To solve the DNP, we consider a catalytic super-Brownian motion with underlying motion a Brownian motion reflected
on dD, killed when it reacheg>» and catalysed by the sét, i.e. the branching rate is given by the local time of the paths
on F1. Then we prove that the log-Laplace transformpahtegrated with respect to the exit measure of the catalytic process
on F», is a non-negative weak solution of the DNP.

In a second part we show that we still have a probabilistic representation formula if the Dirichlet condifiprisareplaced
by a Neumann condition.
0 2005 Elsevier SAS. All rights reserved.

Résumé

Soit D un domaine borné d&“ de frontiére d D, réguliére. Nous présentons une formule de représentation probabiliste des
solutions positives du probleme non linéaire mixte Dirichlet-Neumann (DNP)
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Au=0 inD,
Uu=q on Fyp,
8,,u+2u2:O onFy,

ol (Fy, F») est une partition non triviale d&D, ¢ une fonction positive bornée et continue définie Bpyret oud, désigne la
dérivée normale extérieur saD.

Pour résoudre DNP, nous considérons un superprocessus avec catalysesue processus sous-jacent est le mouvement
brownien dansD, réfléchi surd D, et tué quand il atteinf». Le mécanisme de branchement est donné par le temps local du
mouvement brownien suf;. Nous montrons que la transformée de log-Laplace de la fongtiotégrée contre la mesure de
sortie du superprocessus du, est une solution de DNP en un sens faible.

Dans une deuxiéme partie, nous donnons également une formule de représentation quand la condition de Dirichlet est rem-
placée par une condition de Neumann.

0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Super-Brownian motions are measure valued stochastic processes. Since the works of Dynkin, Kuznetsov and
Le Gall (see for example the monograph [8], and the references therein), the log-Laplace transform of the super-
Brownian motion appears to be a powerful tool to study the non-linear RDE «? in a domainD. In particular,
using a probabilistic representation formula, it is possible to describe all the non-negative solutions of this non
linear PDE.

Super-Brownian motion represents a cloud of infinitesimal particles which evolve according to independent
Brownian motions and are subject to a critical branching mechanism. Roughly speaking the spatial motion appears
in the PDE through its infinitesimal generator, which in our case is the Laplaaiaithe branching mechanism is
responsible for the non-linear ter? in our case. Since the early nineties, models appeared where the branching
occurs only in a subset of the space called the catalytic set. Such models are called catalytic super-Brownian motion
(see for example the survey [10]). Outside the catalytic set, the catalytic super-Brownian motion has a density w.r.t.
the Lebesgue measure and this density solves the heat equation (with random boundary condition on the catalytic
set). In particular, the non-linear phenomenon is located on the catalytic set.

In March 1999, during the Seminar on Stochastic Processes in Toronto, Dynkin asked if one could use a cat-
alytic super-Brownian motion to give a probabilistic representation for solutions of the mixed Dirichlet non-linear
Neumann boundary value problem (DNP)

Au=0 inD,
u=g on Fa, (1)
u-+2u?=0 onFy,

whereD is a smooth domair(F1, F») is a non-trivial partition ob D, anda,, denotes the outward normal derivative
on the boundary ob. In this paper, we give such a representation formula. Instead of building the catalytic super-
Brownian motion as a limit of branching particle systems, we use the construction introduced in [13] based on
collision local time. From this construction, we derive a representation formula for non-negative solutions of (1)
with Dirichlet or Neumann condition of>.

Let us describe more precisely the content of the paper. We consider a reflected Brownian mbtjah 4a
(B;,t > 0). (This process can be used to give probabilistic representation formula of the heat equatiaritin
linear Neumann boundary conditions, see [16].) In Section 2, we recall some facts on excursion theory from [12],
introducing the family ofo -finite measure§sH*, x € F1) which describe the “law” of the excursion & in D
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started fromx € Fj. If L denotes the associated capacitary local tim&pfsee Section 2.1 for a precise definition),
we prove that. has a density, say, with respect to the local time d on F;.

In Section 3, we consider undBf, (X,,s > 0) a superprocess started at the initial measyneith quadratic
branching mechanism and underlying motion a prodess(&;, t > 0). The procesg$ is, up to a random time
change, the trace of; of B before it hitsF>. More precisely, let* = (I, > 0) be the local time orFy of B
before it hitsF», I+~ 1 its right-continuous inverse, and sgt= (l,*’_l, Bs-1). In particular,X, takes values in
M (R4 x Fp), the set of finite measures @& x F1. Then we consider tﬁe total occupation meadudr, dx) =
f0°° ds X, (dr, dx). From this, we introduce in Section 4.1 the random meastif&, on F» defined for any non-
negative functiorp on F» by

<ZDir’ (p> — // rdr,dx), p(x)H* [(p(erz)l{t2<oo}],

wheret; is the hitting time ofF» for the excursiore under H*. Intuitively, the measur&P" describes the death
positions of infinitesimal particles released from the catalyst at timandl position @ according to the random
measurep (x)I"(dr, dx), performing independent Brownian excursions outdig&illed when they first reacti,.

Let us assume the measure M (R4 x F) is of the formég ® 1, wheredg is the Dirac mass at 0 anda finite
measure onFy. Then the random measu#" corresponds to the so-called exit measureDobf the catalytic
superprocess with catalytic sEt, quadratic branching mechanism and initial meaguné the initial measure is

not supported by, then one has to make some slight modification to get the exit measure (see Definition 4.1).
Let IPSZX denote the law of the exit measuie?', whenn = §,, the Dirac mass at € D.

In Sections 4.2 and 4.3, we study the properties of the log-Laplace transforofithe measur&P'", defined
by
wx) =— IOgESZX [exp—(ZDir, )]

In particular, we prove thab is a solution of the DNP in a weak sense, see Definition 4.10 and Theorem 4.13.

In Section 5, using techniques developed in [2], we replace the Dirichlet conditidh by a Neumann con-
dition. In particular, we are able to give in Theorem 5.18 a similar representation formula for solutions to the
PDE

Au=0 in D,
opu —29 =0 onFy,
dau+2u?=0 onFi.

Those two representation formulas for Dirichlet or Neumann conditiofzocould be presented in an unified
way, but at a cost of more complex notations. Therefore, we choose to keep the notations as simple as possible, an
treat the two conditions in apparently different ways.

Eventually, we collect in the appendix some results on reflected Brownian motidn in

2. Notations

If E is a polish space, Ig8(E) denote its Boreb -field as well as the set of real measurable functions defined
onE. Let B (E) (resp.C(E)) be the subset dB(E) of non-negative (resp. continuous) functions. kax B(E)
bounded, we writd| ¢ || o= SUR.cf l@(x)|. Let M ¢(E) be the set of finite measures dh endowed with the
topology of weak convergence. Fore M ((E) and ¢ € B(E) bounded or non-negative, we write, ¢) for
[z v(dx) p(x). If Ais aBorel subset dk?, let A denote its closure.

Let D be a bounded domain, i.e. a connected open sub®,af > 2, with C3-boundaryd D. LetC? (D) (resp.

CP (D)) be the set of continuous functions defined@iresp.D) of classC”. Let (n,, x € 3D) be the outward unit
normal vector field and, f (x) := (V f, n,) denote the outward unit normal derivative &P at x of a function
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f € CX(D). Let F; and F» two relatively open subsets 6fD. We assume thal; and F> are non-empty, disjoint
and thatF; U F» = 9 D. We also assume that the relative boundarypfs equal to the relative boundary &,
and that it is either empty or@-manifold of codimension 2. We shall denote itd¥ . For example, the condition
d F = () can be achieved i is a region between two concentric sphere, wittbeing one sphere ang the other
one.

Let B = (B,,t > 0) be a reflecting Brownian motion iP, with normal reflection, started ate D underP,.
Let (F;,t > 0) be the filtration generated iy completed the usual way. See Section 6.1 in the appendix for some
properties ofB. We say a property holds a.s. if it hol@s-a.s. for allx € D. Forz > 0, let p;(x, y) denote the
transition density of3. There exists a unique continuous additive functiahal (¢;, r > 0) of B called the local
time ond D, such that for every € B, (R, x D) andx € D,

Ex[/dﬁsso(s, Bs):| =/ds /G(dy)w(s,y)ps(x,y), (2
0 0 oD

whereo is the surface measure @. In other wordsy is the Revuz-measure of the continuous additive func-
tional ¢. Denote by| - | the Euclidean norm iiR?, and forx € D, let d(x,dD) = inf{|x — y|: y € dD}. The
continuous additive functiondlcan be constructed explicitly as

n—oo gy,

t
1
¢ = lim —/ds La(B,,00)<en)s (3)
0

where the limit exists for alt > 0, P;-a.s., for some positive sequeneg, n > 1) decreasing to zero which does
not depend on € D (see Theorem 7.2 in [15]).

2.1. Local times orfy

A key-role is played by the exit systems, introduced by Maisonneuve in [12]. In particular, we shall need the
last exit decomposition aB out of F1.

Fori =1,2, lett; =inf{tr > 0: B, € F;} be the first hitting time off;, with the convention that iff = +oco0.
Notice the stopping times are finite a.s. (see Lemma 6.3). LEf be the set of regular points @f, i.e. F] :=
{x € D:Py(r1 =0) = 1}. Sinced D andd F are smooth, we havE] = F;. We set

M:={t>0,B; € Fi}.
So, M is almost surely a closed subset @ co). Furthermore the se¥ is optional and time homogeneous.
Following [12], we set

R :=inf{s > 0: s € M},

Ry :=inf{s >0: s +1 € M},

G:={t>0:R,_=0, R, >0}.
Notice thatR = t1 a.s. The seG, is the set of left endpoints ifD, co) of the intervals contiguous t& . Notice G

is countable and; C M a.s. Sincery is regular for itself, we deduce that= {r € G, P, (R = 0) = 1}. Following
[12], there exists a continuous additive functiofiak (L, ¢ > 0) of B, such that for alk € D,

e ¢]

Ex[/e_’ st] =E,[e ™].

0
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The Revuz measurg,, of L is such that for any functiop € B, (R4 x D),

e ¢]

E[ / go(s,BodLs} _ / ds / 1(d2) ps (x, )0 (5, 2).
0

0
Notice the measurg is the 1-capacitary measure of the $gt Hence, we call the additive functional the
“capacitary local time” onfi.

The capacitary local timé is called in [12] the local time oir;. However, the so called local time dn, Z%,
is defined by nﬂ% = 1p, (B,) d¢; (this correspond té D replaced byF; in (3)). In factL and¢! do not coincide in
general. However, in our setting, the next lemma implies thistabsolutely continuous with respectah Recall
thato, the Revuz measure éf is also the surface measure @b.

Lemma 2.1.There existp € B (R?), such that
p(dx) = p(x)1F (x)o (dx).

The proof of this lemma is postponed to Section 6.4 of the appendix.
In the particular case, wher® € R4, d > 2, is an open ball of radius, and F; = 3D, we deduce from

Proposition 1.9 in [14] that
7d/2,d=2
p(dy) = ma(d)’),

whereI" denotes the Gamma-function. Notice that the density efith respect tos depends on the curvature
of aD.

2.2. Exit formula out of; and applications

Let § be a cemetery point added®Y, letD = D(R,, R? U {§}) be the set of cadlag functions defined®n,
and let[8] be the constant function— &. Fors > 0, leti; : D — D be the family of translation operators defined
by,

ise)t)=e(t+s) for0O<r < Ry,
is(e)(t)=68 fort>R;.

Moreover, Iet(Q},t > 0) be the transition kernels of the reflected Brownian motion killed-prive recall the
exit formula (see Proposition 9.2 in [12]).

Theorem 2.2(Maisonneuve)There exists a family of universally measurabldinite measuresH~*, x € Fy), on
(D, B(D)), such that for any non-negative predictable procgss (Z,, s > 0), w.r.t. the filtration generated b,
and for any functionf € B4 (D), such thatf ([§]) = 0, we have the exit formula:

o0

E, [Z Zsfois(B)} =Ex[ / ZHP [ f] dLs}.

seG 0

Fori =1,2 ande € D, let 7; (e) be the first hitting time of;:
7i(e) = inf{s >0:e(s) € Fi}.

We use the convention that,., = § and we always writer; for 7;(e) as well ase; for e(s), when there
is no ambiguity. We now give particular applications, we shall use later.¢LetB, (R?). For § > 0, set
fe) =€ p(er) L{ry<00) ANAZ;(e) = €% 11,~ ). From Theorem 2.2, we have
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7
E, |:/ e gbs [e—0r2 (p(erz)l{‘[2<00} dL j| |:Z e 1{r2>x}f oy (B)i|
0

seG

- Ex [1{r2>11} e_erzgo(Brz)]v (4)

sincetz o iy + s =12 On {12 > s}. With 6 =0, we get, ag2 < 0o a.s.,

2
Ex |:/ HBS [‘P(erz)l{r2<oo}] de:| = Ex [1{12>r1}‘p(Br2)]- (5)
0

Let Z, = e~% and f be defined byf (e) = [5° dt; €% ¢(e;), with £ = £(e) given by (3) whereB is replaced
by e. We obtain

E, [ JE [ JEX w(ez)ﬂ —E| Ye® / dt; oy (B) & (zs(B)(r))}
0 0 seG
— s+Tt10i5(B)
=E, Z / de; e’ ¢(Bt)1F2(Bt):|
LseG S
= E, /dft e ¥ ‘P(Bt)ng(Bt)i|, (6)

where we used for the second equality thgt-d d¢; 15, (B;) for t ¢ M, andry =inf{s; s € G} a.s. for the third.
Using a monotone class argument, Theorem 2.2 implies that for all predictable proZesges, s > 0) and
for any functionf € 5, (R4 x D) such thatf (-, [6]) =0

Ex[zzsf(sa ) Ois(B)] ZEX[/ZSHBX[JC(S’ )] dLs:|~
0

seG

Setting Z; = 1{r,~5) and for fixeds > 0, f (s, e) = Lio</—s<r}¢ 0 ir—s(e), Whereg (e) := 1z, yo0j¢(e0), We
deduce that

1)
E |:/1{Y<I}H [1{t v<t2<+oo}(p(et S‘)] dLi| Ex[l{t1<t<t2}(p(Bt)]- (7)
0

3. Fi-catalytic super-Brownian motion

In this section we construct a catalytic super-Brownian motiah inith catalytic set; and underlying motion

a reflected Brownian motioR, killed when it first hitsF». Even if the construction of this catalytic superprocess is
not explicitly needed to solve the boundary value problem, it gives insights in the underlying ideas. Our construction

is motivated by the methods developed in [13].
Recall thatr, denotes the first hitting time afy by the reflected Brownian motioB. Consider the local time
£* = (£f,r > 0) on F1 of B killed on F>. It is defined by

dE;k == 1{1‘<‘E2} dEt



J.-F. Delmas, P. Vogt / Ann. |. H. Poincaré — PR 41 (2005) 817-849 823

Let ¢*~1 denote the right continuous inverse of the continuous additive functidnak.
Ef’_l = inf{s >0: £} > t},

with the convention that iff = +oc.
Let E = (R4 x F1) U {8}, wheres is a cemetery point. We define th&valued time-homogeneous Markov
process = (§,t > 0) by

g = { L Boer ™ if et < o0,
1) otherwise,

and denote bj?”fﬁ its law started af € E at timer > 0. We also write]lF”f2 for IPE/Q. Forve My(E) andr >0, let
IE”,”(U denote the law of the quadratic (non-catalytic) superpro&ess(X,, s’ 2}) with spatial motiorg, starting
atv attimer. We shall writeP) for P§ . Recall thatX is anM (E)-valued Markov process. Its total occupation
measurd”, defined undeP) , by

t,v?
o0
I (dr, dx) :=/ds’XS/(dr, dx),
t

plays the key-role in the construction of tig-catalytic super-Brownian motion.

Lemma 3.1.Let¢ € B, (E). The functiorv defined onE by
EX [exp—(I", $)] = exp—(v, v), ®)
is a non-negative solution of the integral equation

2 2
v(s,x)~|—IEx|:/d£r v2(r+s,Br)i| =Ex|:/d£,¢(r+s,Br)j|, (9)
0 0

wheres > 0andx € Fy. If ¢(-, x) = ¢(x) does not depend on time, we get thatfor 0, v(s, x) = v(x), wherev
is a non-negative solution of; of

2 2
v(x) +Ex|:/der ﬁz(Br)j| ZEx|:/d£r (/J;(Br):| (10)
0 0

Remark 3.2.1t is not clear if the integral equations (9) or (10) have a unique solution. From the previous lemma,
we can compute the first moment bf

17
EX[(I, ¢)] =/v(ds,dx)Ex|:/d6r¢(r+s,B,):|. (11)
0

Proof of Lemma 3.1. As a special case of the weighted occupation time formula (see e.g. [11], II. 3) we have
for all non-negative, bounded and measurable functipasid/~z on (R4 x Fp) U {8} andR, respectively, with
¢(8) = 0 and such that has compact support,

E, [exp—/ds’h(s’)(xs/,@} = exp—(v, v),
t
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wherev is the unique, non-negative solution of the integral equation 80 andx € E,

vt<£)+Ei{ / ds’ v2 (& }— 5[ / ds’h(s/)qb(sy)].
t

By substitution {* = s"), we have witht = (s, x) € E, and thereford*"1 =y, that

vy (s, x)—HEt . X)|:/d€*v[*(r B )i| t(s x)|:/d€*h(Z )o(r, B )i|

Using the time homogeneity gfand B, this last equation can be written as
o o0
v (s, x) + E, [/ ey vy, r +5, Br):| =E, [/ aey h(ey +0¢(r +s, Br):|~ (12)
0 0

Using the time homogeneity of the processwe also get that

]E,’fU |:exp—/ds’h(s’)(XS/,¢)} =EX |:exp—/ds’h(s’ +t)(XS/,¢):|,
t 0

In particular, the function” defined forr € [0, T'] by the equation,
T—t

EX [exp— / ds’(XS/,¢>} =exp—(v, v]),
0

is the only non-negative solution of (12), wiltir) = 1j0,71(¢). By monotone convergence, lettiffgtend to+oo,
we get thatv! increases point-wise to a functian independent of, defined by (8), and is a non-negative
solution of

v(s,x)+Ex|:/dE;‘ V2(r +s, B,)] =Ex|:/d£;"¢(r+s, B,):|.
0 0

Using the definition ot*, this last integral equation can be written as (9) where0 andx € F1. Hence, the lemma
holds for any bounded, non-negative functipgnBy monotone convergence it also holds for any B, (E). If
¢ (-, x) = ¢(x), we get from (12) that

v (s, x) +Ex[/d€f vfﬁ,(r +5, Br)} =Ex[/d€fh(€;‘ +t)¢3(Br)}. (13)
0

In particularv’®® defined byv*® (s, x) = v;(so + s, x) also solves (13). By uniqueness, we obtafi? = v, for
any so > 0. Hence, we have that the functiop(s, x) does not depend ofy i.e. v;(s, x) = ¥;(x) for anys > 0
Following the arguments after (12), we deduce thdefined by (8) does not depend on time and solves (10).

Letn € M (D) be a finite measure ob. Definev, € M (R4 x F1) to be the hitting distribution oR . x F1
by (¢, B,), starting fromdg ® n and killed onR. x F»: more precisely, is such that for any € By (R4 x D),
we have

(v, ¥r) = / n(dx) E, [1{1:1<r2}w(771s Brl)]~ (14)
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Recall the definition of the density from Lemma 2.1. We define, und@ﬁ;, the Mf(ﬁ)-valued process
Z=(Z;: t >20) by Zg:=n and fort > 0,

(Ze,0) =(n, Q1) + // I'(dr, dx) 1{r<t},0(x)Hx [l{tfr<r2<oo}§0(et7r)]» (15)

whereg € B, (D) and Q, denotes the semi group of the Brownian mot®ikilled when it first hitsa D, i.e.
0rp(x) = Ex[9(B) Lji<ryncz)]-

We write IP’,’Z the law of Z started at;. Let us give an intuitive interpretation of the measure valued progess
defined by (15). The measu# describes a cloud of infinitesimal particles at tim& he first summand in (15)
corresponds to those particles which have not reached the cafalyattimer and which are distributed according
to the starting measure at time 0. The second summand corresponds to the particles which have reached the
catalyst before time and perform a branching process. Particles are then released from the catalyst at time d
and location d according to the random measyséx) " (dr, dx), and then they perform excursions outside the
catalyst. As all these excursions are independent, a law of large numbers effect lets us only observe an average ove
all excursions.

Let C :=sup, .5 E,[£:,] < oo (see Lemma 6.3). The following proposition characterizes the finite dimensional
marginals of the process in terms of their Laplace transform.

Proposition 3.3.Let0 < 1 < --- <1, andgy, .. ., ¢, elements 0B, (D), such that we havaC Yoiilgille <1
Then,

EZ [exp— Z(Z,,., tm)} =exp—(n, w(0,)),

i=1

where(w(s, x), s >0, x € D) is the unique non-negative solution of

12 n
w(s, x) + E, |:/ dgr wZ(r +s, Br):| = Z 1{s<ti}Ex [1{ti —s<r2}§0i(Bti —s)]- (16)
0 i=1

Remark 3.4.From this proposition, it is easy to check thats a time-homogeneous Markov process. However,
notice that the process is not adapted to the filtration generated by the superprocess

Proof of Proposition 3.3. Using¢ (s, x) := Y 7_1 Lis<;}p (X)) H* [ L, —s<ry<o0} ¢i (€1,—5)], We have

EZ {exp— >z, w} = exp— (Z(n, Q1,@i) + (v, w>>, (17)

i=1 i=1
where, thanks to Lemma 3.0 (s, x), s > 0, x € F1) is a non-negative solution of

2 2
w(s,x)+]Ex[/d£, ﬁz(r+s,Br):| =Ex|:/d£r¢>(r+s,Br):|. (18)
0 0

By Lemma 2.1, we have a.s. for all 0,
dL; = p(B:)1r (B:) de;. (19)

Using the definition ofp and the exit-formula (7) we obtain
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2 2 n
Ex|:/d£r o +s, Br)j| ZEX|:/d£r Z1{r+s<ti}p(Br)HBr[1{tisr<rz<oo}(pi(et1sr)]j|
0 0

i=1

7 "
Ex |:/ dr, Z 1{r+s<t,-}HBr [1{ti —s—r<tp<00}Pi (et,-—s—r)]:|

n

= 1{s<t,~}Ex [1{r1<ti—s<rg}¢i(Bti—s)]~ (20)
i=1

We define fors >0, x € D,

n
w(s,x) = Z 1{s<t,-} Qt,- —s@i (x) + E, [1{rl<rz}w(s + 71, B‘L’]_)]~
i=1
Using the strong Markov property df at timerq, (18) and (20), one check that satisfies (16). Notice, that by
construction, we have

n n

(n.w©,9)=> "(n. Quei) + / 0(ex) B[ Lry <rp) (11, Bry) | = Y (0. Qupi) + (vy. ).

i=1 i=1

Thanks to (17), this implies the first equality of the lemma. To prove the uniqueness,dadw, be non-negative

solutions of Eq. (16). Then botty; andw, are bounded by "7_; |l¢;[lc. We have,

_ o -

wi(s, x) —wa(s, x) = —E, /d@, (w%(s +r B) — w%(s +r, B,)) .
Lo d

Hence, we can deduce

- T2 00
lw — walloe < SUP By /dzr|w%(s+r,Br)—w§<s+r,Br>| <2C ) llgilloo lwi — walloo-
xeD,s>0 Lo _ i=1

As 2C Y 2, lleilleo < 1, we get thaivs = wp and (16) has a unique non-negative solutiom

4. Dirichlet condition on F»
4.1. The exit measurgP"

In this section, we define a measu®" on F» and characterize it in terms of its Laplace functionals. According
to Section 3, the measu#®P" can be seen as the exit-measure of Fhecatalytic super-Brownian motion ofp.
Intuitively, ZP'" describes the spatial distribution of the generic particles Bf-aatalytic super-Brownian motion
in D “frozen” when they first hitFy.

Let us keep the same notation as in Section 3. In particulan, &_QMf(E), the measuré’ is the total occupa-
tion measure of the (non-catalytic) superprocEsstarting atXq = v, (see (14) for the definition af,).

Definition 4.1. We define the random measw&" on F» by: for all ¢ € B, (F>),

(20" o) = (. 0%()) + / / I (dr, do) () HY [p(exy) Liey ooy
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with 01(p)(r, x) = E, [¢(Br,)ir,<p3]- We call the measur&P" the exit measure of thé-catalytic super-
Brownian motion onF,, and write}P’g for its law.

Remark 4.2.To check thazP" is finite, we compute its first moment. Thanks to (11),

EZ[(2°". )] = (n. Q') + EY [ || rado oo [w(eQ)l{Qm}]}

7
= (7), Q1(¢)) + / v,,(ds, do) E, |: / de, p(Br)HBr [(p(etz)l{f2<oo}]j|
0
7
= (77, Ql(w)) + / n(dx)E, |:1{r1<r2}EBTl |:/ dL, HE [(ﬂ(erz)l{r2<oo}]j|j|
0

©
_ / n(@OEx [0(Bey) Liry<ry ] + / n(dx)IEx[ / dL, B% [<p<ef2>1{,2<oo}]}
0

:/n(dx)Ex[ﬁo(Brz)l{rggrl}]+-/77(dx) Ex[1{11<rz}(p(Brz)]

= / n(de)Ey [(0(312)],

where we used Lemma 2.1 (or (19)) and the definition,0{14), for the third equality, the strong Markov property
for B for the fourth and (5) for the fifth.

Recall the definition of the consta@t= sup, .5 Ex[{-,] < oo.
Lemma 4.3.For any¢ € B, (F2),
EZ[exp—(Z°", ¢)] = exp—(n, w),

where(w(x), x € D) is a hon-negative solution of the integral equation@rmgiven by
2
w(x) + E, |:/ de, wz(Br)i| =E, [¢(Brz)]- (21)
0

If we additionally assume th&C||¢|« < 1, then the non-negative solutianis also unique.

Proof. Using¢(x,r) := p(x) H*[¢(es,)], We can compute

EX [exp—(Z°", o)) = EX [exp—((n. 0 () + (I", $))] = exp—((n, 0 (@)) + (vy, v)),

where, thanks to the second part of Lemma 3.1, the funatima non-negative solution of; of the integral
equation,

2 2 72
v(x) + Ey |: f de, UZ(Br):| =E, |: [ de, P(Br)HB’ [‘p(erz)l{rz<00}]:| =E, |: / dL, HY [‘p(erz)l{rz<oo}]:|

0 0 0
=E, [1{r1<r2}(p(Br2)]a (22)
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where we used (19) for the second equality and (5) for the last equality. We define br,
w(x) := 01(¢) () + Ex [L{zy<ryv(Bry)].

Notice that(n, w) = (1, 01(¢)) + (vy, v). In particular, we have
EZ[exp—(ZP", ¢)] = exp—(n. w).

Using the strong Markov property & and (22), we get thab is a hon-negative solution of (21). The proof of
uniqueness is similar to the one for Proposition 3.8

4.2. Properties of the dual function

Fix ¢ € B, (F>) continuous (and of course bounded). kebe the non-negative function defined brby
w(x) := — logE{ [exp—(Z°", ¢)], (23)

wheres, is the Dirac mass at. Notice thatw is bounded, as (21) impligsw ||« < [l¢]loo- In this section, we
establish some properties of the functionWe use techniques similar to those developed in [1].

Lemma 4.4.Letx € D, andT be a finiteF;-stopping time. Then, we have

Ex[w(BrzAT)] —w(x)= Ex|: / dzswz(Bs)]-

0

Proof. Applying the strong Markov property at timte A T and the regularity of points ifiz, the integral equation
for w yields

2 — ToNT - - T2
IEX[ / dESwZ(BS)]=Ex / de; w?(By) | + E, f dzst(Bs)}
0 -0 = AT
— ToAT - - 2
=E, /dﬁswz(BS) +E, EszA,[/dzswz(Bs)ﬂ

L _

— ToAT -

=E / des wz(Bs) +E, [EBrzAT [‘P(Brz)] - w(Brz/\T)]

- 0 =

— ToAT -

=L, / de wz(Bs) +Ex[(p(Brz)] —E, [w(BrzAT)]~
L o _

On the other hand, the integral equationdioalso gives,

17
]Ex |:'/ dﬁs wz(Bs):| zEx [(p(B'L’z)] - U)(.X),
0

which completes the proof of the lemman

Using Lemma 4.4, we can easily show that the functiois harmonic inD.
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Lemma 4.5.The functiorw is in C2(D) and solvesAu = 0in D.

Proof. Let x € D. As D is open, we may find an open ball arounddenoted byO, such thatO, c D. Let
T :=inf{r > 0: B, € 90,} be the first hitting time of the bounda§yQ,., of O,. AsT < 11 A 12 @.S., Lemma 4.4
gives thatw(x) = E,[w(Br)]. Hencew is harmonic inD and therefore belongs &#(D). O

For A, B C R’ letd(A, B) :=inf{la — b|: a € A, b € B} denote the Euclidean distance between the gets
andB.

Lemma 4.6.The functiorw is continuous orD.

Remark 4.7.In particular, the proces&®" = (MP", ¢ > 0) defined by

INT2

M[Dir = w(BtArz) —w(Bp) — / des wz(BS)

is a continuousF;-martingale.

Proof of Lemma 4.6. As we already know thab is continuous inD, it remains to deal witl D.
First caselety € F». Asw is bounded, say by, we have

2
Ex|:/d£5w2(33):| < MZEX[ZTZ]’
0

which converges to 0 as— y by Lemma 6.3. A% is continuous, we have by Lemma 6.5,
lim E.[¢(B:,)] = e ().
x—y

Hence by (21w is continuous ap.
Second caseety € Fi1. As F; is relatively open there exists an open byl aroundy such that/(0y, F2) > 0.
By Lemma 4.4 applied to the deterministic tirfie=¢ > 0, we have for alk € O, N D,

TNt

w(x)=E, [w(Brz)l{rzgt}] +E, [w(Bt)l{t2>t}] —E, |: / dé; wz(Bs):|
0
TNt
=E, [w(Brz)l{rzgt}] +E, [w(Bt)] - Ex[w(Bt)l{rzgt}] —Ey |: / de wz(Bs):|-
0

Now, for a fixeds > 0, the functionx — p,(x, y) is continuous inc and uniformly bounded fop € D. Thus the
functionx — E,[w(B;)] is continuous. All other expressions in the right-hand side of the last equation converge
to zero, uniformly inx € Oy N D, ast | 0 using Lemma 6.8 and (43), with= 1, for the last term. This implies
thatw is continuous ay. O

4.3. Non-negative solutions of the Neumann problem

We say a functionw € C2(D) N C1(D) which satisfies
Au=0 inD,
u=q on Fo, (24)
duu+2u?=0 onFy,
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is astrong solutiorof the mixed Dirichlet non-linear Neumann boundary value problem (DNP).

Remark 4.8.Notice there exists at most one non-negative strong solution of the DNP (24). Indeed, assume that
andv are non-negative strong solutions, and define u — v. ThenAh =0 in D andh = 0 on F». Moreover, we
have

2(v — u)h = d,h (25)
on F1. We obtain by Green’s first identity,
0= / dx h(x) Ah(x) = / o (dy) h(y)d.h(y) — / dx |Vh(x)|2.
D aD D
Therefore, using = 0 on F», the definition ofs and (25), we get
—Z/G(dy)h(y)z(u(y) +v(y)) =/dx|Vh(x)|2 = 0.
Fr D

As u andv are both non-negative, the integrand on the left-hand side is non-negative. Henbealmost every-
where onF; and by continuity: = 0 on Fy and thus ord D. As & is harmonic inD, we geth = 0. Therefore there
exists at most one non-negative strong solution of the DNP (24).

Notice Lemmas 4.5 and 4.6 imply the functiandefined by (23) belongs 162(D) N C(D) and thatAw = 0
in D. Moreover, (21) impliesv = ¢ on F».

Corollary 4.9. If the functionw defined by23)belongs taZ*(D), thenw is the unique non-negative strong solution
of the DNP(24).

Proof. Tha_nks to the previous remark, we only have to checkihatC1(D) implies Onw + 2w?=0onFy.
Letx € D andT a boundedF;-stopping time such that < = a.s. Asw € C2(D) N C1(D), Lemma 6.1 implies
that the proces® = (¥;, ¢t > 0) defined by

t t
1 1
Y == w(B;) — w(Bg) — > / ds Aw(By) + > / de, 0, w(By)
0 0
is anF;-martingale. Hence, sincdw = 0 on D andE,[Y;] = E,[Yo] = 0, we have

T
Ex[w(BT)] —wx) + %Ex |:f de anw(Bs):| =0.
0

Hence, we deduce from Lemma 4.4 that

T
E, [/dﬁs (%anw(Bs) + wZ(Bs)>:| =0. (26)
0

Letx € F1 and suppose thal,w(x) + 2w?(x) > 0. Define theF;-stopping time
T:=infl{t > 0: B, € F1 andd,w(B,) +2w?(B)) <O} Ap A L.

SinceB is continuous anav € C1(D), we get thatl’ > 0, P,-a.s. SinceP, (¢, > 0, for allt > 0) = 1 (see Theo-
rem 7.2 in [16]), we deduce th&, ({7 > 0) = 1 and thus we havEx[foT de, (%anw(B,) + w?(B,))] > 0. This
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contradicts (26). We get a similar contradiction if we assame(x) + 2w?(x) < 0. Therefore, for any € Fy, we
haved,w(x) + 2w?(x) =0. O

Hence the functiomw, defined in (23), is a good candidate to solve (24). In general, it is not cleab&longs
to C1(D). However, we shall see thatis always a non-negative solution of (24) in a weak sense.
Let us define a set of test functions by

S1:={¢ € C3(D)NCY(D); A¢ is bounded inD, 3,4 =0o0nFy, ¢ =0onF,).
Recally € B, (F») is assumed to be a continuous function.

Definition 4.10. A bounded function: € B, (D) is called a weak solution of the mixed Dirichlet non-linear Neu-
mann boundary value problem given by (24) i€ C(D) and for every test function € S1,

/dxu(X) Ag(x) =/U(dy) P (Ve(y) +2/G(dy)¢(y)u2(y)- (27)
D

F F1

Remark 4.11. Notice that it follows directly by Greens second identity, that any strong solution is also a weak
solution of the DNP (24). This indeed motivates Definition 4.10.

Proposition 4.12.A non-negative function € C(D) such thatu = ¢ on F>, is a weak solution of the DNg4), if
the proces = (M,, r > 0) defined o0, +00) by

INAT2

My = u(Bypey) — u(Bo) — / de, u2(B,)

is a continuousF;-martingale.

Proof. Assume that: € C(D) is non-negative an®/ = (M;,+ > 0), as defined in the statement of the proposition,
is a continuousF;-martingale. We have,

INT2
]EX[M(BI/\‘L'z)_u(-x)] :Ex|: / der Mz(Br):|
0

Rewriting this equation, we obtain

IAT2

E, [“(Bt) - “(x)] = IEx|: f de, uz(Br):| - ]Ex[l{t2<t}(”(Br2) - ”(Bt))]~
0
Multiplying with ¢ € S1 and integrating oveD vyields,

/dx ¢ (), [u(B) — u(x)]
D

INT2

=/dX¢(X)]Ex[ / dﬂruz(Br)} _/dx¢(x)]Ex[l{r2<t}(u(Bt2)_M(Bt))]« (28)
D 0 D
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Thanks to the symmetry of the reflecting Brownian motion, we can rewrite the left-hand side:

/ dr (0 E, [u(B,) — u(x)] = f dr u(0)E:[$(B) — $ ()],
D D

By Lemma 6.1, the proceds= (Y;, ¢ > 0) defined by
t t
1 1
Y: :=¢(By) — ¢(Bo) — E/ds A¢p(Bs) + E/dﬁsf’ncb(Bs)
0 0

is a continuousF;-martingale. Hence, asOE, [Yo] = E,[Y;], we have

1 t 1 - I
E[¢(B) —p(x0)] = EEX /ds Ap(By) | — EJEX /dﬁs 0@ (Bs) |-
0 -0

Therefore, we can rewrite (28) to

t — I
%/dxu(x)Ex|:/ds A¢(BS):| — %/dxu(x)ﬂix fd@s 0% (By)
D 0 D -0

tAT2

1 1
=2 / dx¢>(x>Ex[ / dzruZ(Bn}—z; / e (OB [Lieycr) (4 (Bey) — u(By))].
D 0 D

where we also divided by> 0. By Lemma 6.6, 6.7, 6.9 and 6.10, and letting0, we see that

/dx u(x)Ag(x) — / o (dy)u(y)on¢(y) = Zf o (dy)p ()u?(y).
D aD F1
Asu =¢ on Fy, 3,¢ = 0 on Fy, we get that: is a weak solution of the DNP given by (24)0

We are now ready to state the main result of this section.
Theorem 4.13.The functiorw given by(23)is a non-negative weak solution of the D).
Proof. That follows directly from Remark 4.7 and Proposition 4.123

Remark 4.14.Notice that Proposition 4.12 implies that any weak solution of the DNP (24) satisfies (21). Thanks
to Lemma 4.3, (21) has at most one solutiowp ifs small enough. We deduce thatgfis small enough (that is
2C|l¢lleo < 1, with the notations of Lemma 4.3), is the only non-negative weak solution of the DNP (24).

5. Neumann condition onF»

In this section, we give a probabilistic representation formula for the boundary value problem (1), where the
Dirichlet condition onF3 is replaced by a Neumann condition. We first consider the approximating problem
Au=20u in D,
opu —29 =0 onFy,
o +2u2=0 onFy
for 6 > 0, and then we led tend to zero. Similar techniques to those we use can already be found in [2].
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5.1. The measurg)® and its dual

We use the same notation as in the last sectionsi Edt, 2, let¢’ denote the local time a8 on Fj, i.e.
d¢l =15 (B,)de,.

Let N be a Poisson measure Bn x R, with intensity d d¢, independent of the reflecting Brownian motiBn
Denote by(x;, t;) the atoms of this measure and set, Rare [0, +00] given,

R, :=Ro A inf{xi: t; <t}

with the convention inff = +o00. The Markov proces® = (R;,t > 0) is a cadlag decreasirig, U {oo} valued
process. Moreover, for every> 0,6 > 0, we have

P(R; > 0|Ro) = L{ro=0)P(N([0, 61 x [0, 1]) = 0) = L{gp=0y € 7" . (29)

Let E' :=R, x Fy x [0, 0o]. In the spirit of Section 3, we define ti#-valued time-homogeneous Markov process
(&t = 0) by

Gi=("" L Bot L Rol

and denote bin;C its law started at € E’ at timer > 0.

Forv e My(E’) andr > 0, let IP’,XU denote the law of the quadratic (non-catalytic) superproc€ss-
(X;,s" > t) with spatial motion¢, starting atv at time . We shall WriteIP’i" for IP’(’{'U. The total occupation
measure"NeY of the superproces¥’ is defined undePff; by

oo
rNeYdr, dx, dk) := / ds’ X/, (dr, dx, dk).
t

Lemma 5.1.Letd > 0 and ¢ € B, (E') be of the formp(r, x, k) = Li~ey6 (x), Whereg € B, (Fy) is bounded.
Then the functiow defined onE’ by

EY [exp—(INeY, ¢)] = exp—(v, B),

is of the formu(r, x, k) = 1=eyv(x), Wherev € B(F1) is a non-negative solution of the integral equation/n

o0 o
v(x) + E[ / de, e v2<Br)1F1(Br>} = E[ / de, e ¢<Br>1Fl<Br>}. (30)
0 0
Remark 5.2. By (42), and asp is bounded, the quantiti,[/,° d¢, €% ¢ (B,)1,(B,)] is uniformly bounded
on F1. Thereforep is bounded. Of course, this argument failsdox 0.

Proof. Let¢ € B, (E’) be bounded, such thai(r, x, k) = Lik~0y¢ (x). We proceed as in the proof of Lemma 3.1.
As a special case of the weighted occupation time formula (see e.g. [11, I1.3]) we have for all fuhctithgR )
with compact support,

EY, [—/ds’h(s’)(XQ,&)} = exp—(v, i), (31)
t
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whered € B (R4 x E’) is the unique non-negative solution of the integral equation,

B (%) + Ef{ / ds’ ﬁé(cso} =E!, { / ds’h(s’w?(cs/)}.
t t

Using the definition of and the substitutiofi’ = s’ we obtain with = (s, x, k) € E’, and thereforéll’_1 =y,

B: (s, x, k)—i—Et () [/ delv Zl(r By, R, )] t(Axk)[/dﬁ}h(ﬂ})l{Rr>9}¢(Br)}. (32)

Using time homogeneity far and B, independence betweéhand R, and (29), we have

o0 o
Ez{,(s,x,k)[/derlh(ﬁbl{R»eW(Br)} = 1{k>9}Ex[/d€}h(€}+t)e9’¢(B,)}.
s 0

In particular, this quantity vanishes fér< 6. Sincev, is non-negative, we deduce from (32) tht, x, k) = 0 if

k < 6. Also notice, that folk > 6, the left-hand side of (32) does not dependkorn particular,{)fO defined by
f)f"(s, x,k) =0(s, x, k A ko) also solves (32) for anip > 6. By uniqueness, we get thatdoes not depend on
on {k > 0}. Hence, we deduce thaf(r, x, k) = k-0, v; (r, x), whereu, is the unique non-negative solution &k

of the integral equation,

Ui (s, x) + By [/del —or §1+ (r+s,B )] x|:/d£}h(63+t)e9r¢(Br):|.
0

We complete the proof using similar arguments as those following Eq. (13) in the proof of Lemma=®.1.

Remark 5.3.1t is not clear if (30) has a unigue solution. Howevet| if || » is small enough (depending én> 0),
then arguing as in the end of the proof of Proposition 3.3, one can show that (30) has a unique solution. Moreover,
Lemma 5.1 allows us to compute the first moment'd®Y: for all ¢ € B (F1),

EX [(rNey )] = / v(ds, dx, dk) Lj=0)Ex [ f de, e‘9’¢(B,)1F1(Br):|, (33)

E' 0
whereg(r, x, k) = g0 (x).

Letn e Mf(ﬁ) and definev, ¢ to be the law of(r1, By,), killed at an independent exponential time of réate
with Bg distributed according tg:

{(vn.o. ¥) =/n(dX)Ex[879”1/f(Tl»Brl)]- (34)

Moreover, we writev, = v, o.

We writev > v’ for v, v' e M (E) if (v, g) > (v', g) foranyg € B, (E). Notice that(v, ¢, 6 > 0) is a decreas-
ing sequence of measures.
Remark 5.4.Let us write ;N® for the random measurgNeY defined undeﬁ]’fng@s Thanks to the Poissonian
representation of superprocesses, due to the branching property (see e.g. Theorem 4.2.1 [7]), one can construct a
the family(FeNe“, 6 > 0) on the same probability space in such a way, that this family is a decreasing sequence of
measures. We shall use this remark later.
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Definition 5.5. Let 6 > 0. We define the random measuf® on F by: for all ¢ € B (F2),

o
(ZD®Y, ) = (n, Qo) +fF9Ne“(dsdxdk) 1{k>e}p(x)Hx[/d€r e“)’<p(er)},
E' 0
where

51
é@ﬁl)(x) =E, |:/d€r eer(/)(Br):|~
0

We call Z}'®¥ the Neumann boundary measure and denoﬂéi;’ogyits law.
From now on, we assume that- 0.

Remark 5.6.To see that the random meas#g®! is finite for > 0, we can perform a first moment calculation.
Using (33), (34), Lemma 2.1, the exit formula (6), the strong Markov propery ahd the definition oDy, we
get

EZ[(26", ¢)] = (n. Qo) + / vn,e(ds,dx)Ex[/ de, eerp(Br)1F1<Br>HBf[/ de, e%(emﬂ
0 0

Ry xFy

=, §9<p>+[n(dx)Ex e’ Ep, [f dL, e HB’[/der/ e_er/(p(e,/):|:|:|
0

0

= (n. Oog) + / n(dv) E, | e "1 Ep, [ / de, e”’w(Br)le(Br)H

L 1

={n, §9¢> + / U(dx) Ex /dzr e79r (p(Br)le(Br):|
L

=/77(dX)Ex|:/d€r e_grw(Br)le(Br)j|7
0

which is finite, thanks to (42). This argument fail®i& O, as the first moment is infinite ysz o(dy)e(y) > 0.
Recall the notation of the constaritg, 6 > 0) from (42).
Lemma 5.7.Letd > 0. We have for allp € B4 (F»),

Eie [eXp_<Zgleua )] = exp—(n, wy),

where(wg (x), x € D) is a non-negative solution of the integral equationon
oo o0
we (x) + Ey [ / de, e " w5(3r>1F1(Br)} =E, [ / de, e @(Br)le(B»} : (35)
0 0

If additionally we assume that is bounded WitHZc§||<p||oo < 1, then the integral equatio(35) has a unique
solution.
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Remark 5.8. If ¢ is bounded, (35) implies thaty is bounded by |l¢|l~. In general, ford = 0, i.e. without
killing, the right-hand side of the integral equation (35) is infinite. See also Proposition 5.16.

Proof. Let¢ € B, (E’) defined byp(s, x, k) = Lix-g,¢ (x), where

¢ (x) :p(x)Hx[/dﬂr e ‘p(er):|~
0

We have
EZ o [exp—(Z)'®, )] =EY  [exp—((n, Qo) + (I, ¢))] = exp—((n, Qo) + (vy.0, ),

where thanks to Lemma 5 (s, x) = vg(x) is a non-negative solution af, of

o0 - o0 00
U@(x)+IEx|: / de, e o ug(B,)lFl(B,)] =E, f de, e_er,o(B,)lpl(B,)HB’|: / de, e—er/(p(e,,)ﬂ
0 -0 0
- OO o0
=E, dL, e/ HBr |:/dﬁr/ ef(-)r’ gD(er/):|:|
-0 0
— 00
=Ex / de, e‘g’w(Br)lpz(Br)}, (36)
LY

where we used Lemma 2.1 for the second equality and the exit-formula (6) for the last. Define for
wp (x) = Qpp(x) + Ec[€7™ vy(By))].
and notice thatvg = vy on F1. Moreover, we have by construction that

(n, we) = (1, Op@) + (Vy.0, Tg)-

Using the strong Markov property @8 and (36) one checks thaty solves (35). If ?_*§||<p||OO < 1, we get the
unigueness as in the end of the proof of Proposition 3(3.

The following lemma play the same réle in this section as Lemma 4.4 in Section 4.2 and can be proved using
the same techniques.

Lemma5.9.Letd > 0 andg bounded. Lef" be a finiteF;-stopping time, then

T T
we (x) +Ex[ / de, e wg(B»lFl(B,)} =E.[e7 wy(Br)] +E{ / de, e go(B»le(Br)].
0 0

5.2. Weak solution of the&-approximation

Fix a continuous non-negative functigne C(F>). And define a functiony on D by
wy (x) = — IOQIESZX,@ [exp—(Zgleu )]
We assume throughout this section that 0. By Remark 5.8, we have that is bounded.
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Proposition 5.10.Let# > 0. The functiorwy belongs ta’2(D) and solvesAwg = 20 wy.

Proof. This can be proved from Lemma 5.9, using standard results on killed Brownian motion, in the same way
as Lemma 4.5 is deduced from Lemma 4.4

Lemma 5.11.The functiorwy is continuous orD.

Proof. Lemma 5.9 applied to the deterministic tiffie=r > 0, yields
13
we (x) =B [e7" wy(B)] +Ex [ f de, & [¢(B)1r,(B,) — wé(Br)lFl(Bn]].
0

As ¢ andwy are bounded, we have thanks to (43), that the last term of this equality decreases jo@uasformly
in x. As the second term is continuousirthe proof is complete. O

Remark 5.12.In particular, the procesNe! = (MNeY, ¢ > 0) defined by
t

MNU— 69wy (B,) — wy(Bo) + / dt, & [p(B)Lry(B,) — wl(Bo) e (B)].
0

is a continuousZ;-martingale. Thus the proceggNeV = (NNeU ¢ > 0) defined by N)'®¥ = 0 and dv]Ne! =
&' dMNeY, that is

t t
NNeU = wy (By) — w (Bo) — 0 / dr we(B,) + / de, [¢(B)1r,(B,) — w3(B,)Lr (By)],
0 0

is also a continuou$;-martingale.

Let us define a space of test functiafisby
S2:={¢ € C3(D)NCY(D); A¢ boundedp,¢ =0o0naD}.

Definition 5.13.Let# > 0. A functionu € B, (D) is said to be a weak solution of the boundary value problem

Au=20u inD,
{ ou—20p=0 onky, (37)
u—+2u?=0 onkFy,

if u e C(D) and for allp € S,
/dxu(X)Atﬁ(X) = 29/dxu(X)¢(X) - Zfd(dy)fﬁ(y)(p(y) +2f0(dy)uz(y)¢(y)-
D D

F F1
Notice any non-negative strong solution of (37) is a weak solution.

Proposition 5.14.A non-negative function € C(D) is a weak solution of the boundary value problési) if and
only if the procesV = (Ny, t > 0) defined by

t t
N; =u(Bt)—M(Bo)—H/dru(Br)+/d5r [@(B)1r,(By) — u®(Br)1Fy(By)],
0 0

is a continuousF;-martingale.
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Proof. First assume that € C(D) is a weak solution of (37) and lete D. Thanks to the Markov property df,
we have for O< s < ¢,

Ex[Ntu:s] = Ns +EBx [Ntfs]~

Thus, to prove the proce®é is a F;-martingale, it is enough to check tHat[N,] =0 for allr > 0. Lets > 0. As
ps(x, ) € Sz (see appendix, Section 6.1), we compute, using the integral equatiorafate (v) = ps(x, y),

d 1
aEx[u(Bx)] =/dyu(y)8sps(x,y)=/dyu(y)§Ayps(x,y)
D D

—Gfdyu(y)ps(x,y) —/O(dy) ps(x,y)w(y)+/o(dy)ps(x,y)u2(y)-

D F F1
Fore > 0, integrating frone to ¢ gives,

t t

t
Ex[u(B))] — E[u(By)] :9/drEx[u(B,)] —E{[deﬁ@,)] +Ex|:/dglu2(3,):|.

Hence, by continuity ofi, we see thalt,[N;] =0 ase | 0.
Letu € C(D) and assume now that for arye D, the process is a continuousF;-martingale. A<E,[N;] =0,
we have

Ex[u(B)] —u(x) = /drIEI u(B,)] - |:/d€2<p(B )] +E, [/del 2(B, )}

Let ¢ € So. Multiplying the last equation by and integrating oveD yields

/dxu(x)E [¢(B) —p(x)] = /dx¢(x)fdrE u(B)]

- / dxqb(x)Ex[ / d¢, [@(B,) 1k, (By) —uz(Br)lFl(B»]], (38)
D 0

where we used for the first term the symmetry of the reflecting Brownian motion. &iacg, by Lemma 6.1 the
process = (Y;,t > 0) defined by

t

1
Y; =¢(Bz)—¢(Bo)—§de A¢(By)
0

is also anF;-martingale. Hence, we hawg[¢ (B,) — ¢ (x)] = SE.[ /5 ds A¢(B,)]. Thus, dividing (38) by > 0,
gives

t
%/dxu(x)Ex[[ds A¢(BA9):|
D 0
1 t
=%9/dx¢(x)JEx|:/dru(Br):| — %/dxqb(x)Ex|:/d£rcp(Br)1F2(B,):|
D 0 D 0
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t
+ % / dxqs(x)Ex[ / de, uZ(Br)1F1<Br>].
D 0

Hence, we complete the proof applying Lemmas 6.6 and 6.7.

Proposition 5.15.The functionwy is a non-negative weak solution of the boundary value prolf&m If addi-
tionally 2c0 lelleo < 1, then the solutionwy is also unique.

Proof. It follows immediately from Remark 5.12 and Proposition 5.14 thats a weak solution of (37). To prove
unigueness, lai € B, (D) be a weak solution of (37) and assum§|{2p||OO < 1. Thanks to Proposition 5.14 and
Remark 5.12, the procedg = (M,, t > 0) defined by

M, =€ %" u(B,) — u(Bo) + / dt, €% o(B)1r,(By) — / de, €% u?(B,)1r (B,),

is a continuousF;-martingale, as well asM; = e~ dN,. As u andg are bounded and thanks to (42), we have
that M is a uniformly integrable martingale. Henc#,, r > 0) converges almost surely and it to a limit, say
Moo, With E, [M] = E,[Mp] = 0. Thereforeu is a non-negative solution of the integral equation,

u(x) +E, [ [ e u2<Br)1F1<Br>} - E[ [ e w(B»le(Br)].
0 0

As 2c(§||<p||oo < 1, by Lemma 5.7y is the only non-negative solution of the last displayed equation. Hence, we
haveu = wy. O

5.3. Thecasé | 0

Let ¢ € B4 (F2) be bounded.

Observe that thanks to Remark 5.4, one can assumel't‘g)’l\ﬁ’tJ 6 > 0) is an increasing sequence of measures
as6 | 0. Notice also thathgp, 6 > 0) is also an increasing sequence of functiong 4. From the definition of
z}¥e4, we deduce that the sequen@)®", 6 > 0) is also an increasing sequence of measurés|a8. Let ZNe! be
its limit as6 | 0. (One could check thaZN®! has the same law &) By dominated convergence, we get that
(wg, @ > 0) increases to a limit, say, as6 | 0, defined onD by

w(x) = —logEf [exp—(ZNeY, ¢)]. (39)

From now on, we assume thaf = ¢, that isFy N F» = .

Proposition 5.16.The functionw is bounded orD. More precisely, there exists a finite constarindependent
of ¢, such that for any € D,

wx) <c(l@lloo +vl@lloc )-

Proof. Fore >0, we setF] = {x € D:d(x, F1) < &}, thee-neighborhood of"; in D. Sinced F = @, there exists
e > 0, such thatFy N F> = . Let 77 the first exit time ofF7

71 (e) =inf{s > 0: e(s) ¢ F{ },
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for e € D (recall notations from Section 2.2). In particular, using the strong Markov property of the exit measure
H* with respect to(Q},t > 0), the transition kernel of the reflected Brownian motion killed Bn(see [12],
Theorem 5.1), we have that for amye F,

00 -
H* |:/ d£r1| = H* |:1{Tf<00} / dﬁrj| =H* |:1{Tf<°°}Ee(Tf)[Efl]j| < CHX[Tf < OO],
0 ot

where we used Lemma 6.3 for the last inequality. Arguing as in the proof of Lemma 8.3 of [6], we have that

sup H*[t] < 0] < oo0.
xeFy

This implies thatH*[ [;° d¢, ] is bounded orFy say byCo.
Since, thanks to Corollary 6.14,is bounded by a constant, sy, we get from Definition 5.5, that fap > 0,

0<(Z)®, ¢) <ll¢llso [ / () Ey[€r, ]+ CoCa(I, 1>}.

From Remark 5.4, and Lemma 6.3, we get there exists a finite corstsunth that

0<(ZN o) <cll@lloo [(n. 1) + (15", 1)].
It is well known that the total mass of the superproc‘éSs(FoNe“, 1), started av,, is distributed according the law
of a stable subordinator of indexa at time(v,,, 1). (The solution of the integral equation (32), with=0, ¢ = 11
andh(r) = 1j0,71(¢) is given by

5 5 Sinh( —1)/4V1)

cosh(T — 1) /4V/1)

for t € [0, T]. Then, lettingT — oo, we deduce from (31) that the log-Laplace transformuqﬁ"e“, 1) is exactly
\/X(v,], 1).) In particular, we deduce that

EZ[e (2" 0)] < @ el DIl t V)
n b

for a finite constant independent of andr. Since this holds for any finite measuyethis implies the proposi-
tion. O

Lemma 5.17.The functionw is continuous orD.

Proof. As w is bounded, we obtain from Lemma 5.9 applied to the deterministic Timer > 0 and dominated
convergence,

t t
w(x) =E[w(B)] +Ex [/ défw(B,):| —Ex[/dz} wZ(Br)}.
0 0

Then, we can deduce the continuitywof following the proof of Lemma 5.11. O
The following proposition is now obvious from Proposition 5.15 and dominated convergence:

Theorem 5.18.AssumeF; N F> = §. The non-negative functiom, defined by(39), on D, is a weak solution of
the nonlinear Neumann boundary value problé3i) with 6 = 0. Furthermore, there exists a finite constant
independent ap, such that

lwlloo< c(l@lloo +v/ 1@ lloc)-
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6. Appendix
6.1. Reflecting Brownian motion i

The reflecting Brownian motio® = (B;,t > 0) is a strong Markov process oh, with transition density
p:(x, y) defined on(0, co) x D x D. The density has the following properties (see [9] or [16]):

(i) p:(x,y) is continuously differentiable im > 0 for fixed (x,y) € D x D, and fore > 0, its derivative is
uniformly bounded for > ¢, (x, y) € D x D. As a function ofx, p;(x, y) belongs toC1(D) N C?(D) for
fixedr e Ry, y e D.

(i) p:(x,y) solves the heat equation inside

3 pe(x,y) = %Axp,(x, y) for(t,x,y)€eRy x D x D,
with the boundary condition
O, pr(x,y)=0 for(s,x,y) e Ry x 3D x D.
(iii) Foranyx e D and f € B(D), bounded and continuous atwe have

|im/dy FOpi(x,y) = f(x).
tw_
D

The functionp; (x, y) is symmetric inx and y, positive and satisfieg,, dy p;(x, y) = 1. Moreover, for any

boundedf € B(D), ¢ > 0, the functiont > [ dy p;(x, y) f(y) isinC(D).
We denote byP, the law of B starting inBo = x € D. Let (F;, t > 0) be the filtration generated by completed
the usual way. We have the following martingale problem characterization of the reflecting Brownian motion:

Lemma 6.1[5]. For everyg € C2(D) N CL(D), with A¢ bounded oD,
t t
1 1
88— 050~ 5 [ a5 208+ 5 [ de g0,
0 0

is a continuousF;-martingale.
6.2. Estimates for reflecting Brownian motion

Following [9], we have the following estimates: there exists a constanth that for alk € D and allz € (0, 1],

/G(dy)pt(x, y) <c/Vi, (40)

aD
whereo is the surface measure @D. Moreover, there exist two positive constaatsand 8 such that for all
x,y€ D, t>1,we have

|pi(x,y) —ap| < e, (41)
Wherea[)1 := [}, dy is thed-dimensional Lebesgue measure/afWe deduce from those inequalities that for any
6 > 0, there is a constam > 0 such that, for alk € D

e ¢]

/dr/O(dy) e pr(x,y) <co. (42)

0 aD



842 J.-F. Delmas, P. Vogt / Ann. |. H. Poincaré — PR 41 (2005) 817-849

From (2), (40) and (41) we get there exists a conskasuch that for alk > 0, we have

SUPE,[¢,] < K (V1 +1).
xeD

By induction, we deduce that fare N, there existX, > 0 such that for alt > 0,

SUPE[(6)"] < Ku ("2 +1). (43)

xeD

Thanks to [9, Theorem 2.5], the reflecting Brownian motionlirhas the same modulus of continuity as a
standard Brownian motion iR?. In particular, forT > 0, there exists a constaft, such that for alk € [0, T'],
xeD,a>0,

Po( sup 1B —x>a) < Po( sup W, —x|>a/K), (44)
0<s<t 0<s<t

whereW = (W,,t > 0) is underP, a standard Brownian motion iR¢ started ai.
Fori =1,2,letr; :=inf{t > 0: B, € F;} be the first hitting time of;, with the convention that irf = +occ.
Lemma 6.2.For anyr > 0, the functionx > P, (t; > 1) is upper semi continuous iR. In particular, forall y € F;,

we have

lim Py(r; >1)=0.
x—y;xeD

Proof. Notice thatP, (z; > t) is the non-increasing limit as| 0 of
EX[IPBS(‘L',' >1— 8)],

which are continuous functions efe D. Thus the function — Py (z; > t) is upper semi continuous for> 0. To
conclude, notice that, singgD andd F are smooth, any point af; is regular forF;, and thusPy(z; > 1) = 0 for
all yeF. O
Lemma 6.3.The functions — E,[7;] andx — E,[£, ] are bounded orD. Moreover, we have for alf € F;,
lim E;[r;]=0 and lim _E,[¢;]1=0.

x—>y;xeD x—>y;xeD
Proof. SinceP,(t; > 1) < 1 for all x € D, we deduce from Lemma 6.2, that= sup,.5Px(ri > 1) < 1. By the
strong Markov property of the reflecting Brownian motion, we have forraayN*,

Py (ti > n) =E, [1{t,'>n—1}IPB,,,1(Ti > 1)] <Py (zi >n—1),

and hence, by induction syps P, (r; > n) < §". Therefore,

0 o0

1

Ex[ri]zfdtpx(fi>t)§2gﬂ”x(‘ti >n)<m<oo. (45)
0 n=

Hence,x — E,[r;] is bounded onD. Moreover, fory € F;, the estimate in (45) allows us to use dominated
convergence in

x—>y;xeD x%y;xeﬁ x—y;xeD

o0 o
lim E;[t]= lim /dtIP’x(ri >t)=/dt lim Py(r >1),
0 0
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and the last expression is equal to zero by Lemma 6.2.
Let us now treat the function— E,[£,]. It follows from the Cauchy-Schwarz inequality and (43), that

o) o)
Ex[gr,-] = ZEX [1{n<r1<n+l}gr,-] < Z]EX [1{r,->n}gn+l]
n=0 n=0

o0 o
< Pe(@ > mY2E (6?2 <0 Y 820 + 1),
n=0 n=0

wherec is a finite constant independent.o& D. Hence, the function — E, [£] is bounded orD.

The same arguments as in the previous part of the proof, show that the funeﬁdﬁx[(ﬁri)z] is bounded. Let
¢ € (0, 1]. Using the Cauchy—Schwarz inequality for the third line and (43), with2, for the fourth, we obtain
forallx € D,

Ex [gri] = Ex[l{r,->e}£r,~] + Ex [1{ri<£}gr,-] < Ex[l{r,->a}gr,-] + Ex[l{rigs}zs]
1/2 1/2
<P > ©)Y2E, [(6)2] 72 + P (1 < V2B, [(0)7] V2 < c(Br (5 > )2 + VE),

where the constantis independent af. We conclude using Lemma 6.20

Lemma 6.4.For all > 0 and all y € F> we have

lim 7]P’x(|B,2 —x| > n) =0.

x—>y; xeD
Proof. First notice, that by Markov’s inequality,
Py (1Br, — x| = n) <0~ ?Ey[|Br, — x[7].

Applying Lemma 6.1 to the functiop(z) := |z — x|? yields that
t
M; .= |B; _x|2 —drt +/d£r Oy (Br),
0

is a F;-martingale undeP,. Notice that|d, y | is bounded from above by a constant independent éfence, the
optional stopping theorem applied to the stopping timer, and the martingale convergence theorem imply that

E.[IBr, — xI%] < C(Ex[12] + Ei[€5,]).

Hence, the assertion follows by Lemma 6.3.

Lemma 6.5.Lety € F> andg € C(F»), then
lim _Ex [(p(Brz)] =¢(y).

x—>y;xeD

Proof. Lete >0 andy € F». As ¢ is continuous onF», there existss > 0 such thafg(y) — ¢(z)| < ¢ for all
z € Os(y) N F2, whereOs(y) is the ball of radiug centered ay. Hence, we have for all € Os/2(y) N D

Ex[|¢(Br,) —9()|] =Ex[|e(Br,) — (p(Y)|1{\B,2—y\<8}] +Ex[|(Br,) — §0(y)|1{|3127y|>5}]
<e+20@lloo Px(1Br — y1 = 8) <&+ 2@ lloo Pu (1B, — x| = 8/2).

We conclude using Lemma 6.40
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6.3. Convergence lemmas
In this section we give a series of technical lemmas on convergence.

Lemma 6.6.For every bounded functiop € 5(D) and every bounded functiah € C(D),

t
Liﬁfdxqﬁ(x)&[/dsﬂ&)} =/dx¢>(x>w<x>.
D 0 D

Proof. Sincey is continuous and bounded, we have that i p:(x, y)¥ (y)dy = ¥ (x) for all x € D. This
implies,

t

1
lim — / ds / ps(x, MY () dy = ¢ (x).
t}0 t
0
As ¢ andy are bounded, we can use dominated convergence to complete the proof.

Lemma 6.7.For everyg € C(D) and every boundedt € B(dD),

t
1
im / dxqs(x)E{ / dwws)} _ / o (dy) 6 )V ().
D 0

aD

Proof. From (2), and the symmetry of the density kerpeilve have

t t
1 1
;/dxmx)ﬂix[/dwwy)} _ ;/dxas(x)/ds /o(dymy)ps(x,y)
D 0 D 0 oD

t

1

= [o@wm & [dowp o,
aD 0 D

Then, we get the result using arguments similar to the proof of Lemma &16.

Denote byd(x) := d(x, F>) the distance betweenand F».

Lemma 6.8.For all T > 0, there exist constanis> 0, K > 0 (depending off") such that for allr € [0, T'], x € D
with d(x) > 0,

NG d(x)?
Py(r2<1) <6‘M9Xp_( K1 )

Proof. We havePy (2 < 1) < Py (SURyg,«, |Bs — x| = d(x)). Then the lemma follows from (44) and standard
result on Brownian motion. O

Recall from Section 4 that

Si={pe C?(D)NCcY(D); A¢ is bounded inD, 3,¢ =00nFi, ¢ =0o0n Fo}.
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Lemma 6.9.For any¢ € S; and every bounded € B3(d D),

TNt

1
im f dx¢>(x>ﬂ*:x[ / desw(Bs)] _ / o (dy) $ )V ().
D 0

F

Proof. As ¢ € S1, we have in particular that € C1(D) and¢ = 0 on F». Hence, there is a constakit> 0 such
that¢ (x) < Kd(x). LetT > 0. We have for € [0, T'],

t ToAL
%/dx¢(x)Ex|:/desw(Bx):| _%/dx¢(x)]Ex|: / dzsl//(Bx):H
0

0

/ e [ (0)| T [1{12«} / de, (B, )} K1Vl / ar ", (11,6
INAT2
<Kl [ @ S0P <0 PR < [ P <02 (46)
D D
wherec is a constant independent o€ (0, T], and where we used the Cauchy—Schwarz inequality and (43), for
the third inequality and the fourth. By Lemma 6.8, we have foxal D,

1
lim —P,(r<)¥?=0 and QPx(r <nH?<e,

110 /1 NG

wherec is a constant independentog (0, 7] andx € D. Therefore we can apply dominated convergence in (46)
to get the result. O

Lemma 6.10.For everyg € S; and everyy € C(D), we have

1
Itl?g ;/dx |6 )| Ex[| ¥ (Bry) — ¥ (B)|Lirp<i)] =0.
D

Proof. Let T > 0. Letc denote a constant independent &f (0, T'], which may vary. From Lemma 6.8, we have
forallt € [0, T],

/dxd(x)sz(z2<t)<cfdxd(x)% ex —(

d(x)?
Kt

><cf/dre r /K’<ct
As ¢ € 81, there is a constarK’ > 0 such that¢ (x)| < K'd(x). Hence, we have for alle [0, T],

sup [v(By) — (5o |

0<s <t

f e (0 [Ex | (Bey) = ¥ (B0)|Lyrp )] < / v d (0 Lz | S

<c supEx[ sup [v(B,) — ¥ () |

xe€dD o<s <t

Lete > 0. Asy € C(D) and D is compacty is uniformly continuous orD and hence there exisés> 0, such
that,|v (y) — ¥ (x)| < ¢ for all x, y € D with |x — y| < §. Then, we have
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SUpE. | sup [y(B) — ()| | <e+ SUp B[ sup [¥(Bo) = ¥ ()| Lisupec, 18 —x1-51
x€dD 0<s<r x€dD 0<s <t

<e4+2¥ oo sup}P’x< sup |Bs—x|>8).
x€dD 0<s <t

And therefore it follows by (44), that

lim supEx[ sup |y (By) — lﬁ(x)|] =
1=>0xehD 0<s<t

This completes the proof.O
6.4. Proof of Lemma 2.1

In a first step, we give a representation formulaforor x € D, define the measure(x, dy) on Fy, for any
Borel subsetd ¢ R?, by

h(x, A) =E[e ™ 14(By)].

We setji(dy) = [}, dz i(z, dy), and we want to prove that = fi.
From potential theory (see [4], Proposition VI.1.15), it is enough to chgcl(tlllﬂtz G1ji almost everywhere
on D, where the functiorG1v is the 1-potential of the bounded measuren D, defined by

Glv(x) = / G(x,y)v(dy),

whereGl(x, y) = fooo e ! p;(x,y)dr. Let ¢ be a non-negative bounded measurable function definel.onve
have,

/Gh(x)n/r(x)dx /wx)dx/e drfdz/pt(x h(z, dy)

D
/W(X)dx/e dt/dz/pz(y x)h(z, dy)
=/dzEZ|:e 1EBI1[/e w(B,)dtﬂ /dzE {/e ’w(B[)dt]
D

0
00

=/dzEz[/e—Iw<B»dz} —/dzEz[/e wwt)dz],
D 0 D 0

where we used the symmetry pffor the second and the strong Markov property for the fourth equality. Using
again the symmetry gb for the first term of the last equation, we get

/dzEz[/e"w(Bt)dt} =/dZ/6" dt/dypz(z,y)wy):/dZ/E" dt/dypz(y,z)wy)
D 0 D 0 D D 0 D

=/dy Y(y).
D
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Let p,Fl be the density of the transition kernel Bfkilled on Fy. Fort > 0, the functionp,Fl(x, y) is sym-
metric (the proof of this fact is similar to the case whéeas a Brownian motion, see for example the proof of
Theorem 2.4.3 in [14]). For the second term, we have

1 o0 o
/dZEz[/etW(Bt)dl} =/dz/e*’ dt/dypfl(z,y)W(y)=/dz/e*’ dt/dypfl(y,z)w(y)
D 0 D 0 D D 0 D

71
Z/dyw(y)ﬂzy[/e—f dt:|.
D 0

Therefore, we have

71
f GL() Y (x) dr = / dyy(y) — / dy ww&[ / = dt]
D D

D 0
=/dy I/f(y)lEy[e_”]=/G1u(y)1/f(y) dy.
D D

And we getGly = Gji a.e. inD. Thus we have

u(dy):/dzh(z, dy). (47)
D

In a second step, we prove that for ang D, the measuré(z, dy) is absolutely continuous with respect to the
surface measure oy (recall thati(z, Fy) =0 for all z € D).
Let ¢ be a non-negative continuous function defined@n with closed support iF;. We have, forz € D,

h(z,¥) = Ez [e—fl w(Brl)] = Ez [e—fl 1)0(3‘51)1{t1<'[2}:| + Ez [e—fl W(le)l{rpzz}]- (48)
Let T = 11 A 12 be the first hitting time ob D. Sinceyr =0 on Fy,

E.[€ ™ ¢(Br) Lr1<rp) ] = E:[€77 ¥(Bo)].

From similar arguments to those used in the proof of Proposition 3.11 in [3], there is a (negative) canstant
(dependent only od), such that

ag(z,y)

[‘¢<B>—cd/w<y) )

o (dy), (49)

wheregl(x, y) = [5° e p?P(x, y)dt, and p?? is the density of the transition kernel of the Brownian motion
killed onaD.
From [12], there exists a continuous additive functionaBotuch that

Ex|:]oe_’ di,] =E.[e 7]

0

Let G be defined as in Section 2.1 but forF; replaced byF». Using Theorem 2.2, witlf; replaced byFs, we
get the existence of a family of universally measurabifnite measuresH*, x € F2), on(£2, F), such that for
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any non-negative predictable procé&s, s > 0) and for any non-negative functiofi e F,, such thatf(§) = 0,
we have

EZ[ZZSfoiS] =EZ[fZSﬁBS(f)dZS:|.
seG 0

From (4), with obvious changes, we deduce that

1
Ez [e—fl w(le)l{rpzz}] = Ez |:/ e’ ﬁBX [e_rl 1p(etl)]—{'{1<o<>}:| dzy:| .
0
Lete > 0 and consider the compact set
K ={xeD; d(x, F1) <e, dx, F) <d(x, F2)}, (50)

andtx =inf{r > 0, B, € K} the hitting time ofK . Forx € F», we have, using the strong Markov propertyiof
with respect tlez, the kernel of the reflected Brownian motion killed B (see [12], Theorem 5.1),

ﬁx [e_T1 I//(611)1{1'1«)0}] = ﬁx [e_rK Eer,( [e_rl 1ﬂ(Brl)]-{t1<r2}]:| = ﬁx [e_TK EeTK [e_T 1p(Br)]]
Y a 1 TK »
= i [e—’K cu [ win o) o(dy)}
A an(y)

1
=y / YA [efK %8 (o) ] o (dy),
g on(y)

where we used (49) for the second equality. From this last expression, (49) and (48), we deduce that there exists &
measurable non-negative functigndefined onD x Fj such that for; € D,

h(z, ) = / Fz, Yo dy).

F

From (47), we deduce that is absolutely continuous with respect 40and the density is given by(y) =
[p f(z, y)dz, thatis

1
_ 9g'(z. ) = oop [ o 98Mer, y)
,O(y)—CdZdZ |:T(y) +Ez|:!dLye H |:e T(y)} .

Corollary 6.11. If 3 F = @, then the functiom is bounded.

Proof. We keep the notations of this section. SiffgeN F» = @, we can choose > 0 small enough so that for any
(x,y) € F1 x F2, |x — y| > 3¢. In particulark defined by (50) is in fact equal fa € D; d(x, F1) < &}.

Let Pp be the Poisson kernel of the Brownian motionZin There exists a positive constatip, such that for
any(z,y)e D x D,

Pp(z,y) < Cpd(z,9D)lz — y| ™. (51)
As [, 0(dy) Pp(z, y)¥ (y) =E.[¢(B,)], for anyy € B, (dD), we deduce from (49) that
1
0<cs 2D < pyay. (52)

an(y)
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From this inequality and (51), we deduce easily taf,, dz %é)” is bounded from above by a finite constant,
say Co, independent of € Fy. Since by constructiotl (e, dD) > ¢ (on {tx < oo} underﬁx), we get that for
anyx € Fp, y € Fq,
- 9 1 , - 9 1 , / -
caH* [e—fK M} < Hy [tk < 0] sup L28E) i < oo,
In(y) (Gy):doD)ze yery)  In(Y)

for a finite constant independent ok € F> and y € F1, thanks to (52) and (51). Arguing as in the proof of
Lemma 8.3 of [6], we have that

sup H [tx < o] < oo.
xeFy

This implies thatcdﬁ"[e"K agl(erK, y)/on(y)] is bounded from above for € F», andy € Fy say byCi. In
particular we have

e8]

P(y)<C0+C1/dZEZ /eﬂ'dis ZC0+C1/dZEZ[67t2],
D 0 D

using the definition of. This last inequality implies that is bounded. O
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