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Abstract

Let D be a bounded domain inRd with smooth boundary∂D. We give a probabilistic representation formula for the n
negative solution of the mixed Dirichlet non-linear Neumann boundary value problem (DNP){

�u = 0 in D,

u = ϕ onF2,

∂nu + 2u2 = 0 onF1,

where(F1,F2) is a non-trivial partition of∂D, ϕ is a non-negative, bounded and continuous function defined onF2, and∂n

denotes the outward normal derivative on the boundary ofD.
To solve the DNP, we consider a catalytic super-Brownian motion with underlying motion a Brownian motion re

on ∂D, killed when it reachesF2 and catalysed by the setF1, i.e. the branching rate is given by the local time of the pa
on F1. Then we prove that the log-Laplace transform ofϕ integrated with respect to the exit measure of the catalytic pro
onF2, is a non-negative weak solution of the DNP.

In a second part we show that we still have a probabilistic representation formula if the Dirichlet condition onF2 is replaced
by a Neumann condition.
 2005 Elsevier SAS. All rights reserved.

Résumé

SoitD un domaine borné deRd de frontière,∂D, régulière. Nous présentons une formule de représentation probabilis
solutions positives du problème non linéaire mixte Dirichlet–Neumann (DNP)
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{
�u = 0 in D,

u = ϕ onF2,

∂nu + 2u2 = 0 onF1,

où (F1,F2) est une partition non triviale de∂D, ϕ une fonction positive bornée et continue définie surF2, et où∂n désigne la
dérivée normale extérieur sur∂D.

Pour résoudre DNP, nous considérons un superprocessus avec catalyse surF1, où le processus sous-jacent est le mouvem
brownien dansD, réfléchi sur∂D, et tué quand il atteintF2. Le mécanisme de branchement est donné par le temps loc
mouvement brownien surF1. Nous montrons que la transformée de log-Laplace de la fonctionϕ intégrée contre la mesure d
sortie du superprocessus surF2, est une solution de DNP en un sens faible.

Dans une deuxième partie, nous donnons également une formule de représentation quand la condition de Dirichle
placée par une condition de Neumann.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Super-Brownian motions are measure valued stochastic processes. Since the works of Dynkin, Kuzne
Le Gall (see for example the monograph [8], and the references therein), the log-Laplace transform of th
Brownian motion appears to be a powerful tool to study the non-linear PDE�u = u2 in a domainD. In particular,
using a probabilistic representation formula, it is possible to describe all the non-negative solutions of t
linear PDE.

Super-Brownian motion represents a cloud of infinitesimal particles which evolve according to indep
Brownian motions and are subject to a critical branching mechanism. Roughly speaking the spatial motion
in the PDE through its infinitesimal generator, which in our case is the Laplacian�u. The branching mechanism
responsible for the non-linear term,u2 in our case. Since the early nineties, models appeared where the bra
occurs only in a subset of the space called the catalytic set. Such models are called catalytic super-Brownia
(see for example the survey [10]). Outside the catalytic set, the catalytic super-Brownian motion has a dens
the Lebesgue measure and this density solves the heat equation (with random boundary condition on the
set). In particular, the non-linear phenomenon is located on the catalytic set.

In March 1999, during the Seminar on Stochastic Processes in Toronto, Dynkin asked if one could us
alytic super-Brownian motion to give a probabilistic representation for solutions of the mixed Dirichlet non
Neumann boundary value problem (DNP){

�u = 0 in D,
u = ϕ onF2,
∂nu + 2u2 = 0 onF1,

(1)

whereD is a smooth domain,(F1,F2) is a non-trivial partition of∂D, and∂n denotes the outward normal derivati
on the boundary ofD. In this paper, we give such a representation formula. Instead of building the catalytic
Brownian motion as a limit of branching particle systems, we use the construction introduced in [13] ba
collision local time. From this construction, we derive a representation formula for non-negative solutions
with Dirichlet or Neumann condition onF2.

Let us describe more precisely the content of the paper. We consider a reflected Brownian motion inD, B =
(Bt , t � 0). (This process can be used to give probabilistic representation formula of the heat equation inD with
linear Neumann boundary conditions, see [16].) In Section 2, we recall some facts on excursion theory fro
introducing the family ofσ -finite measures(Hx, x ∈ F ) which describe the “law” of the excursion ofB in D
1
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started fromx ∈ F1. If L denotes the associated capacitary local time onF1 (see Section 2.1 for a precise definitio
we prove thatL has a density, sayρ, with respect to the local time ofB onF1.

In Section 3, we consider underP
X
ν , (Xt , t � 0) a superprocess started at the initial measureν, with quadratic

branching mechanism and underlying motion a processξ = (ξt , t � 0). The processξ is, up to a random time
change, the trace onF1 of B before it hitsF2. More precisely, letl∗ = (l∗t , t � 0) be the local time onF1 of B

before it hitsF2, l∗,−1 its right-continuous inverse, and setξt = (l
∗,−1
t ,B

l
∗,−1
t

). In particular,Xt takes values in
Mf (R+ ×F1), the set of finite measures onR+ ×F1. Then we consider the total occupation measureΓ (dr,dx) =∫ ∞

0 ds Xs(dr,dx). From this, we introduce in Section 4.1 the random measure,ZDir , on F2 defined for any non
negative functionϕ onF2 by〈

ZDir, ϕ
〉 = ∫∫

Γ (dr,dx),ρ(x)Hx
[
ϕ(eτ2)1{τ2<∞}

]
,

whereτ2 is the hitting time ofF2 for the excursione underHx . Intuitively, the measureZDir describes the deat
positions of infinitesimal particles released from the catalyst at time dr and position dx according to the random
measureρ(x)Γ (dr,dx), performing independent Brownian excursions outsideF1 killed when they first reachF2.
Let us assume the measureν ∈Mf (R+ × F1) is of the formδ0 ⊗ η, whereδ0 is the Dirac mass at 0 andη a finite
measure onF1. Then the random measureZDir corresponds to the so-called exit measure of�D of the catalytic
superprocess with catalytic setF1, quadratic branching mechanism and initial measureη. If the initial measure is
not supported byF1, then one has to make some slight modification to get the exit measure (see Definitio
Let P

Z
δx

denote the law of the exit measure,ZDir , whenη = δx , the Dirac mass atx ∈ D.

In Sections 4.2 and 4.3, we study the properties of the log-Laplace transform,w, of the measureZDir , defined
by

w(x) = − logE
Z
δx

[
exp−〈

ZDir, ϕ
〉]
.

In particular, we prove thatw is a solution of the DNP in a weak sense, see Definition 4.10 and Theorem 4.1
In Section 5, using techniques developed in [2], we replace the Dirichlet condition onF2 by a Neumann con

dition. In particular, we are able to give in Theorem 5.18 a similar representation formula for solutions
PDE {

�u = 0 in D,
∂nu − 2ϕ = 0 onF2,
∂nu + 2u2 = 0 onF1.

Those two representation formulas for Dirichlet or Neumann condition onF2 could be presented in an unifie
way, but at a cost of more complex notations. Therefore, we choose to keep the notations as simple as pos
treat the two conditions in apparently different ways.

Eventually, we collect in the appendix some results on reflected Brownian motion inD.

2. Notations

If E is a polish space, letB(E) denote its Borelσ -field as well as the set of real measurable functions defi
on E. Let B+(E) (resp.C(E)) be the subset ofB(E) of non-negative (resp. continuous) functions. Forϕ ∈ B(E)

bounded, we write‖ϕ ‖∞= supx∈E |ϕ(x)|. Let Mf (E) be the set of finite measures onE, endowed with the
topology of weak convergence. Forν ∈ Mf (E) and ϕ ∈ B(E) bounded or non-negative, we write〈ν,ϕ〉 for∫
E

ν(dx)ϕ(x). If A is a Borel subset ofRd , let Ā denote its closure.
Let D be a bounded domain, i.e. a connected open subset ofR

d , d � 2, withC3-boundary∂D. LetCp(D) (resp.
Cp(�D)) be the set of continuous functions defined onD (resp.�D) of classCp . Let (nx, x ∈ ∂D) be the outward uni
normal vector field and∂ f (x) := 〈∇f,n 〉 denote the outward unit normal derivative on∂D at x of a function
n x
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f ∈ C1(�D). Let F1 andF2 two relatively open subsets of∂D. We assume thatF1 andF2 are non-empty, disjoin
and that�F1 ∪ �F2 = ∂D. We also assume that the relative boundary ofF1 is equal to the relative boundary ofF2,
and that it is either empty or aC2-manifold of codimension 2. We shall denote it by∂F . For example, the conditio
∂F = ∅ can be achieved ifD is a region between two concentric sphere, withF1 being one sphere andF2 the other
one.

Let B = (Bt , t � 0) be a reflecting Brownian motion inD, with normal reflection, started atx ∈ �D underPx .
Let (Ft , t � 0) be the filtration generated byB completed the usual way. See Section 6.1 in the appendix for s
properties ofB. We say a property holds a.s. if it holdsPx -a.s. for allx ∈ �D. For t > 0, let pt (x, y) denote the
transition density ofB. There exists a unique continuous additive functional� = (�t , t � 0) of B called the local
time on∂D, such that for everyϕ ∈ B+(R+ × �D) andx ∈ �D,

Ex

[ ∞∫
0

d�s ϕ(s,Bs)

]
=

∞∫
0

ds

∫
∂D

σ(dy)ϕ(s, y)ps(x, y), (2)

whereσ is the surface measure on∂D. In other words,σ is the Revuz-measure of the continuous additive fu
tional �. Denote by| · | the Euclidean norm inRd , and forx ∈ �D, let d(x, ∂D) = inf{|x − y|: y ∈ ∂D}. The
continuous additive functional� can be constructed explicitly as

�t = lim
n→∞

1

εn

t∫
0

ds 1{d(Bs,∂D)�εn}, (3)

where the limit exists for allt � 0, Px -a.s., for some positive sequence(εn, n � 1) decreasing to zero which doe
not depend onx ∈ �D (see Theorem 7.2 in [15]).

2.1. Local times onF1

A key-rôle is played by the exit systems, introduced by Maisonneuve in [12]. In particular, we shall ne
last exit decomposition ofB out ofF1.

For i = 1,2, let τi = inf{t > 0: Bt ∈ Fi} be the first hitting time ofFi , with the convention that inf∅ = +∞.
Notice the stopping timesτi are finite a.s. (see Lemma 6.3). LetF r

1 be the set of regular points ofF1, i.e. F r
1 :=

{x ∈ �D : Px(τ1 = 0) = 1}. Since∂D and∂F are smooth, we haveF r
1 = �F1. We set

M := {t > 0,Bt ∈ �F1}.
So, M is almost surely a closed subset of(0,∞). Furthermore the setM is optional and time homogeneou
Following [12], we set

R := inf{s > 0: s ∈ M},
Rt := inf{s > 0: s + t ∈ M},
G := {t > 0: Rt− = 0, Rt > 0}.

Notice thatR = τ1 a.s. The setG, is the set of left endpoints in(0,∞) of the intervals contiguous toM . NoticeG

is countable andG ⊂ M a.s. SinceF r
1 is regular for itself, we deduce thatG = {t ∈ G, PBt (R = 0) = 1}. Following

[12], there exists a continuous additive functionalL = (Lt , t � 0) of B, such that for allx ∈ �D,

Ex

[ ∞∫
e−t dLt

]
= Ex

[
e−τ1

]
.

0
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The Revuz measure,µ, of L is such that for any functionϕ ∈ B+(R+ × �D),

Ex

[ ∞∫
0

ϕ(s,Bs)dLs

]
=

∞∫
0

ds

∫
µ(dz)ps(x, z)ϕ(s, z).

Notice the measureµ is the 1-capacitary measure of the setF1. Hence, we call the additive functionalL the
“capacitary local time” onF1.

The capacitary local timeL is called in [12] the local time onF1. However, the so called local time onF1, �1
s ,

is defined by d�1
s = 1F1(Bs)d�s (this correspond to∂D replaced byF1 in (3)). In factL and�1 do not coincide in

general. However, in our setting, the next lemma implies thatL is absolutely continuous with respect to�1. Recall
thatσ , the Revuz measure of�, is also the surface measure on∂D.

Lemma 2.1.There existsρ ∈ B+(Rd), such that

µ(dx) = ρ(x)1F1(x)σ (dx).

The proof of this lemma is postponed to Section 6.4 of the appendix.
In the particular case, whereD ⊆ R

d , d � 2, is an open ball of radiusr , and F1 = ∂D, we deduce from
Proposition 1.9 in [14] that

µ(dy) = 2πd/2rd−2

�(d/2− 1)
σ (dy),

where� denotes the Gamma-function. Notice that the density ofµ with respect toσ depends on the curvatu
of ∂D.

2.2. Exit formula out ofF1 and applications

Let δ be a cemetery point added toR
d , let D = D(R+,R

d ∪ {δ}) be the set of càdlàg functions defined onR+,
and let[δ] be the constant functiont �→ δ. For s > 0, let is :D → D be the family of translation operators defin
by,

is(e)(t) = e(t + s) for 0� t < Rs,

is(e)(t) = δ for t � Rs.

Moreover, let(Q1
t , t � 0) be the transition kernels of the reflected Brownian motion killed onF1. We recall the

exit formula (see Proposition 9.2 in [12]).

Theorem 2.2(Maisonneuve). There exists a family of universally measurableσ -finite measures(Hx, x ∈ F1), on
(D,B(D)), such that for any non-negative predictable processZ = (Zs, s � 0), w.r.t. the filtration generated byB,
and for any functionf ∈ B+(D), such thatf ([δ]) = 0, we have the exit formula:

Ex

[∑
s∈G

Zsf ◦ is(B)

]
= Ex

[ ∞∫
0

ZsH
Bs [f ]dLs

]
.

For i = 1,2 ande ∈ D, let τi(e) be the first hitting time ofFi :

τi(e) = inf
{
s > 0: e(s) ∈ Fi

}
.

We use the convention thate+∞ = δ and we always writeτi for τi(e) as well ases for e(s), when there
is no ambiguity. We now give particular applications, we shall use later. Letϕ ∈ B+(Rd). For θ � 0, set
f (e) = e−θτ2 ϕ(e )1 andZ (e) = e−θs 1 . From Theorem 2.2, we have
τ2 {τ2<∞} s {τ2>s}
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Ex

[ τ2∫
0

e−θs HBs
[
e−θτ2 ϕ(eτ2)1{τ2<∞}

]
dLs

]
= Ex

[∑
s∈G

e−θs 1{τ2>s}f ◦ is(B)

]
= Ex

[
1{τ2>τ1} e−θτ2 ϕ(Bτ2)

]
, (4)

sinceτ2 ◦ is + s = τ2 on {τ2 > s}. With θ = 0, we get, asτ2 < ∞ a.s.,

Ex

[ τ2∫
0

HBs
[
ϕ(eτ2)1{τ2<∞}

]
dLs

]
= Ex

[
1{τ2>τ1}ϕ(Bτ2)

]
. (5)

Let Zs = e−θs andf be defined byf (e) = ∫ ∞
0 d�t e−θt ϕ(et ), with � = �(e) given by (3) whereB is replaced

by e. We obtain

Ex

[ ∞∫
0

dLs e−θs HBs

[ ∞∫
0

d�t e−θt ϕ(et )

]]
= Ex

[∑
s∈G

e−θs

Rs∫
0

d�t ◦ is(B) e−θt ϕ
(
is(B)(t)

)]

= Ex

[∑
s∈G

s+τ1◦is (B)∫
s

d�t e−θt ϕ(Bt )1F2(Bt )

]

= Ex

[ ∞∫
τ1

d�t e−θt ϕ(Bt )1F2(Bt )

]
, (6)

where we used for the second equality that d�t = d�t1F2(Bt ) for t /∈ M , andτ1 = inf{s; s ∈ G} a.s. for the third.
Using a monotone class argument, Theorem 2.2 implies that for all predictable processesZ = (Zs, s � 0) and

for any functionf ∈ B+(R+ × D) such thatf (·, [δ]) = 0,

Ex

[∑
s∈G

Zsf (s, ·) ◦ is(B)

]
= Ex

[ ∞∫
0

ZsH
Bs

[
f (s, ·)]dLs

]
.

SettingZs = 1{τ2>s} and for fixedt > 0, f (s, e) = 1{0<t−s<τ2}φ ◦ it−s(e), whereφ(e) := 1{τ2<+∞}ϕ(e0), we
deduce that

Ex

[ τ2∫
0

1{s<t}HBs
[
1{t−s<τ2<+∞}ϕ(et−s)

]
dLs

]
= Ex

[
1{τ1<t<τ2}ϕ(Bt )

]
. (7)

3. F1-catalytic super-Brownian motion

In this section we construct a catalytic super-Brownian motion inD with catalytic setF1 and underlying motion
a reflected Brownian motionB, killed when it first hitsF2. Even if the construction of this catalytic superproces
not explicitly needed to solve the boundary value problem, it gives insights in the underlying ideas. Our cons
is motivated by the methods developed in [13].

Recall thatτ2 denotes the first hitting time ofF2 by the reflected Brownian motionB. Consider the local time
�∗ = (�∗

t , t � 0) onF1 of B killed onF2. It is defined by

d�∗ = 1 d� .
t {t<τ2} t
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Let �∗,−1 denote the right continuous inverse of the continuous additive functional�∗, i.e.

�
∗,−1
t := inf

{
s � 0: �∗

s > t
}
,

with the convention that inf∅ = +∞.
Let E = (R+ × F1) ∪ {δ}, whereδ is a cemetery point. We define theE-valued time-homogeneous Marko

processξ = (ξt , t � 0) by

ξt :=
{

(�
∗,−1
t ,B ◦ �

∗,−1
t ) if �

∗,−1
t < ∞,

δ otherwise,

and denote byPξ

t,x̂
its law started at̂x ∈ E at timet � 0. We also writePξ

x̂
for P

ξ

0,x̂
. Forν ∈ Mf (E) andt � 0, let

P
X
t,ν denote the law of the quadratic (non-catalytic) superprocessX = (Xs′ , s′ � t) with spatial motionξ , starting

at ν at timet . We shall writeP
X
ν for P

X
0,ν . Recall thatX is anMf (E)-valued Markov process. Its total occupati

measureΓ , defined underPX
t,ν , by

Γ (dr,dx) :=
∞∫
t

ds′ Xs′(dr,dx),

plays the key-rôle in the construction of theF1-catalytic super-Brownian motion.

Lemma 3.1.Letφ ∈ B+(E). The functionv defined onE by

E
X
ν

[
exp−〈Γ,φ〉] = exp−〈ν, v〉, (8)

is a non-negative solution of the integral equation

v(s, x) + Ex

[ τ2∫
0

d�r v2(r + s,Br)

]
= Ex

[ τ2∫
0

d�r φ(r + s,Br)

]
, (9)

wheres � 0 andx ∈ F1. If φ(·, x) = φ̃(x) does not depend on time, we get that fors � 0, v(s, x) = ṽ(x), whereṽ

is a non-negative solution onF1 of

ṽ(x) + Ex

[ τ2∫
0

d�r ṽ2(Br)

]
= Ex

[ τ2∫
0

d�r φ̃(Br)

]
. (10)

Remark 3.2. It is not clear if the integral equations (9) or (10) have a unique solution. From the previous le
we can compute the first moment ofΓ :

E
X
ν

[〈Γ,φ〉] =
∫

ν(ds,dx)Ex

[ τ2∫
0

d�r φ(r + s,Br)

]
. (11)

Proof of Lemma 3.1. As a special case of the weighted occupation time formula (see e.g. [11], II. 3) we
for all non-negative, bounded and measurable functionsφ andh on (R+ × F1) ∪ {δ} andR+ respectively, with
φ(δ) = 0 and such thath has compact support,

E
X
t,ν

[
exp−

∞∫
ds′ h(s′)〈Xs′ , φ〉

]
= exp−〈ν, vt 〉,
t
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wherev is the unique, non-negative solution of the integral equation fort � 0 andx̂ ∈ E,

vt (x̂) + E
ξ

t,x̂

[ ∞∫
t

ds′ v2
s′(ξs′)

]
= E

ξ

t,x̂

[ ∞∫
t

ds′ h(s′)φ(ξs′)

]
.

By substitution (�∗
r = s′), we have withx̂ = (s, x) ∈ E, and therefore�∗,−1

t = s, that

vt (s, x) + E
ξ

t,(s,x)

[ ∞∫
s

d�∗
r v2

�∗
r
(r,Br)

]
= E

ξ

t,(s,x)

[ ∞∫
s

d�∗
r h(�∗

r )φ(r,Br)

]
.

Using the time homogeneity ofξ andB, this last equation can be written as

vt (s, x) + Ex

[ ∞∫
0

d�∗
r v2

l∗r +t (r + s,Br)

]
= Ex

[ ∞∫
0

d�∗
r h(�∗

r + t)φ(r + s,Br)

]
. (12)

Using the time homogeneity of the processX, we also get that

E
X
t,ν

[
exp−

∞∫
t

ds′ h(s′)〈Xs′ , φ〉
]

= E
X
ν

[
exp−

∞∫
0

ds′ h(s′ + t)〈Xs′ , φ〉
]
.

In particular, the functionvT defined fort ∈ [0, T ] by the equation,

E
X
ν

[
exp−

T −t∫
0

ds′〈Xs′, φ〉
]

= exp−〈
ν, vT

t

〉
,

is the only non-negative solution of (12), withh(t) = 1[0,T ](t). By monotone convergence, lettingT tend to+∞,
we get thatvT

t increases point-wise to a functionv, independent oft , defined by (8), andv is a non-negative
solution of

v(s, x) + Ex

[ ∞∫
0

d�∗
r v2(r + s,Br)

]
= Ex

[ ∞∫
0

d�∗
r φ(r + s,Br)

]
.

Using the definition of�∗, this last integral equation can be written as (9) wheres � 0 andx ∈ F1. Hence, the lemma
holds for any bounded, non-negative functionφ. By monotone convergence it also holds for anyφ ∈ B+(E). If
φ(·, x) = φ̃(x), we get from (12) that

vt (s, x) + Ex

[ ∞∫
0

d�∗
r v2

�∗
r +t (r + s,Br)

]
= Ex

[ ∞∫
0

d�∗
r h(�∗

r + t)φ̃(Br)

]
. (13)

In particularv(s0)
t defined byv(s0)

t (s, x) = vt (s0 + s, x) also solves (13). By uniqueness, we obtainv
(s0)
t = vt for

any s0 � 0. Hence, we have that the functionvt (s, x) does not depend ons, i.e. vt (s, x) = ṽt (x) for any s � 0.
Following the arguments after (12), we deduce thatv defined by (8) does not depend on time and solves (10).�

Let η ∈Mf (�D) be a finite measure on�D. Defineνη ∈ Mf (R+ × F1) to be the hitting distribution ofR+ × F1
by (t,Bt ), starting fromδ0 ⊗ η and killed onR+ × F2: more preciselyνη is such that for anyψ ∈ B+(R+ × �D),
we have

〈νη,ψ〉 =
∫

η(dx)Ex

[
1{τ <τ }ψ(τ1,Bτ )

]
. (14)
1 2 1
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Recall the definition of the densityρ from Lemma 2.1. We define, underP
X
νη

, the Mf (�D)-valued process
Z = (Zt : t � 0) by Z0 := η and fort > 0,

〈Zt ,ϕ〉 = 〈η,Qtϕ〉 +
∫∫

Γ (dr,dx)1{r<t}ρ(x)Hx
[
1{t−r<τ2<∞}ϕ(et−r )

]
, (15)

whereϕ ∈ B+(�D) andQt denotes the semi group of the Brownian motionB killed when it first hits∂D, i.e.

Qtϕ(x) = Ex

[
ϕ(Bt )1{t<τ1∧τ2}

]
.

We write P
Z
η the law ofZ started atη. Let us give an intuitive interpretation of the measure valued proceZ

defined by (15). The measureZt describes a cloud of infinitesimal particles at timet . The first summand in (15
corresponds to those particles which have not reached the catalyst,F1, at timet and which are distributed accordin
to the starting measureη at time 0. The second summand corresponds to the particles which have reach
catalyst before timet and perform a branching process. Particles are then released from the catalyst atr
and location dx according to the random measureρ(x)Γ (dr,dx), and then they perform excursions outside
catalyst. As all these excursions are independent, a law of large numbers effect lets us only observe an ave
all excursions.

Let C := supx∈�D Ex[�τ2] < ∞ (see Lemma 6.3). The following proposition characterizes the finite dimens
marginals of the processZ in terms of their Laplace transform.

Proposition 3.3.Let0< t1 � · · · � tn andϕ1, . . . , ϕn elements ofB+(�D), such that we have2C
∑n

i=1 ‖ϕi‖∞ < 1.
Then,

E
Z
η

[
exp−

n∑
i=1

〈Zti , ϕi〉
]

= exp−〈
η,w(0, ·)〉,

where(w(s, x), s � 0, x ∈ �D) is the unique non-negative solution of

w(s, x) + Ex

[ τ2∫
0

d�r w2(r + s,Br)

]
=

n∑
i=1

1{s<ti }Ex

[
1{ti−s<τ2}ϕi(Bti−s)

]
. (16)

Remark 3.4.From this proposition, it is easy to check thatZ is a time-homogeneous Markov process. Howe
notice that the processZ is not adapted to the filtration generated by the superprocessX.

Proof of Proposition 3.3. Usingφ(s, x) := ∑n
i=1 1{s<ti }ρ(x)Hx[1{ti−s<τ2<∞}ϕi(eti−s)], we have

E
Z
η

[
exp−

n∑
i=1

〈Zti , ϕi〉
]

= exp−
(

n∑
i=1

〈η,Qti ϕi〉 + 〈νη, w̃〉
)

, (17)

where, thanks to Lemma 3.1,(w̃(s, x), s � 0, x ∈ F1) is a non-negative solution of

w̃(s, x) + Ex

[ τ2∫
0

d�r w̃2(r + s,Br)

]
= Ex

[ τ2∫
0

d�r φ(r + s,Br)

]
. (18)

By Lemma 2.1, we have a.s. for allt � 0,

dLt = ρ(Bt )1F1(Bt )d�t . (19)

Using the definition ofφ and the exit-formula (7) we obtain



826 J.-F. Delmas, P. Vogt / Ann. I. H. Poincaré – PR 41 (2005) 817–849

y

ing

n

-

Ex

[ τ2∫
0

d�r φ(r + s,Br)

]
= Ex

[ τ2∫
0

d�r

n∑
i=1

1{r+s<ti}ρ(Br)H
Br

[
1{ti−s−r<τ2<∞}ϕi(eti−s−r )

]]

= Ex

[ τ2∫
0

dLr

n∑
i=1

1{r+s<ti}HBr
[
1{ti−s−r<τ2<∞}ϕi(eti−s−r )

]]

=
n∑

i=1

1{s<ti }Ex

[
1{τ1<ti−s<τ2}ϕi(Bti−s)

]
. (20)

We define fors � 0, x ∈ �D,

w(s, x) :=
n∑

i=1

1{s<ti }Qti−sϕi(x) + Ex

[
1{τ1<τ2}w̃(s + τ1,Bτ1)

]
.

Using the strong Markov property ofB at timeτ1, (18) and (20), one check thatw satisfies (16). Notice, that b
construction, we have〈

η,w(0, ·)〉 = n∑
i=1

〈η,Qti ϕi〉 +
∫

η(dx)Ex

[
1{τ1<τ2}w̃(τ1,Bτ1)

] =
n∑

i=1

〈η,Qti ϕi〉 + 〈νη, w̃〉.

Thanks to (17), this implies the first equality of the lemma. To prove the uniqueness, letw1 andw2 be non-negative
solutions of Eq. (16). Then both,w1 andw2 are bounded by

∑n
i=1 ‖ϕi‖∞. We have,

w1(s, x) − w2(s, x) = −Ex

[ τ2∫
0

d�r

(
w2

1(s + r,Br) − w2
2(s + r,Br)

)]
.

Hence, we can deduce

‖w1 − w2‖∞ � sup
x∈�D,s�0

Ex

[ τ2∫
0

d�r

∣∣w2
1(s + r,Br) − w2

2(s + r,Br)
∣∣] � 2C

∞∑
i=1

‖ϕi‖∞ ‖w1 − w2‖∞.

As 2C
∑∞

i=1 ‖ϕi‖∞ < 1, we get thatw1 = w2 and (16) has a unique non-negative solution.�

4. Dirichlet condition on F2

4.1. The exit measureZDir

In this section, we define a measureZDir on �F2 and characterize it in terms of its Laplace functionals. Accord
to Section 3, the measureZDir can be seen as the exit-measure of theF1-catalytic super-Brownian motion onF2.
Intuitively, ZDir describes the spatial distribution of the generic particles of aF1-catalytic super-Brownian motio
in D “frozen” when they first hitF2.

Let us keep the same notation as in Section 3. In particular, forη ∈Mf (�D), the measureΓ is the total occupa
tion measure of the (non-catalytic) superprocessX starting atX0 = νη (see (14) for the definition ofνη).

Definition 4.1.We define the random measureZDir on �F2 by: for all ϕ ∈ B+(�F2),〈
ZDir, ϕ

〉 = 〈
η,Q1(ϕ)

〉 + ∫∫
Γ (dr,dx)ρ(x)Hx

[
ϕ(eτ )1{τ <∞}

]
,
2 2
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rty
with Q1(ϕ)(r, x) = Ex[ϕ(Bτ2)1{τ2�τ1}]. We call the measureZDir the exit measure of theF1-catalytic super-
Brownian motion onF2, and writeP

Z
η for its law.

Remark 4.2.To check thatZDir is finite, we compute its first moment. Thanks to (11),

E
Z
η

[〈
ZDir, ϕ

〉] = 〈
η,Q1(ϕ)

〉 + E
X
νη

[∫∫
Γ (dr,dx)ρ(x)Hx

[
ϕ(eτ2)1{τ2<∞}

]]

= 〈
η,Q1(ϕ)

〉 + ∫
νη(ds,dx)Ex

[ τ2∫
0

d�r ρ(Br)H
Br

[
ϕ(eτ2)1{τ2<∞}

]]

= 〈
η,Q1(ϕ)

〉 + ∫
η(dx)Ex

[
1{τ1<τ2}EBτ1

[ τ2∫
0

dLr HBr
[
ϕ(eτ2)1{τ2<∞}

]]]

=
∫

η(dx)Ex

[
ϕ(Bτ2)1{τ2�τ1}

] +
∫

η(dx)Ex

[ τ2∫
0

dLr HBr
[
ϕ(eτ2)1{τ2<∞}

]]

=
∫

η(dx)Ex

[
ϕ(Bτ2)1{τ2�τ1}

] +
∫

η(dx)Ex

[
1{τ1<τ2}ϕ(Bτ2)

]
=

∫
η(dx)Ex

[
ϕ(Bτ2)

]
,

where we used Lemma 2.1 (or (19)) and the definition ofνη, (14), for the third equality, the strong Markov prope
for B for the fourth and (5) for the fifth.

Recall the definition of the constantC = supx∈�D Ex[�τ2] < ∞.

Lemma 4.3.For anyϕ ∈ B+(�F2),

E
Z
η

[
exp−〈

ZDir, ϕ
〉] = exp−〈η,w〉,

where(w(x), x ∈ �D) is a non-negative solution of the integral equation on�D given by

w(x) + Ex

[ τ2∫
0

d�r w2(Br)

]
= Ex

[
ϕ(Bτ2)

]
. (21)

If we additionally assume that2C‖ϕ‖∞ < 1, then the non-negative solutionw is also unique.

Proof. Usingφ(x, r) := ρ(x)Hx[ϕ(eτ2)], we can compute

E
Z
η

[
exp−〈

ZDir, ϕ
〉] = E

X
νη

[
exp−(〈

η,Q1(ϕ)
〉 + 〈Γ,φ〉)] = exp−(〈

η,Q1(ϕ)
〉 + 〈νη, v〉),

where, thanks to the second part of Lemma 3.1, the functionv is a non-negative solution onF1 of the integral
equation,

v(x) + Ex

[ τ2∫
0

d�r v2(Br)

]
= Ex

[ τ2∫
0

d�r ρ(Br)H
Br

[
ϕ(eτ2)1{τ2<∞}

]] = Ex

[ τ2∫
0

dLr HBr
[
ϕ(eτ2)1{τ2<∞}

]]

= E
[
1 ϕ(B )

]
, (22)
x {τ1<τ2} τ2
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of
where we used (19) for the second equality and (5) for the last equality. We define forx ∈ �D,

w(x) := Q1(ϕ)(x) + Ex

[
1{τ1<τ2}v(Bτ1)

]
.

Notice that〈η,w〉 = 〈η,Q1(ϕ)〉 + 〈νη, v〉. In particular, we have

E
Z
η

[
exp−〈

ZDir, ϕ
〉] = exp−〈η,w〉.

Using the strong Markov property ofB and (22), we get thatw is a non-negative solution of (21). The proof
uniqueness is similar to the one for Proposition 3.3.�
4.2. Properties of the dual functionw

Fix ϕ ∈ B+(�F2) continuous (and of course bounded). Letw be the non-negative function defined on�D by

w(x) := − logE
Z
δx

[
exp−〈

ZDir, ϕ
〉]
, (23)

whereδx is the Dirac mass atx. Notice thatw is bounded, as (21) implies‖w‖∞ � ‖ϕ‖∞. In this section, we
establish some properties of the functionw. We use techniques similar to those developed in [1].

Lemma 4.4.Letx ∈ �D, andT be a finiteFt -stopping time. Then, we have

Ex

[
w(Bτ2∧T )

] − w(x) = Ex

[ τ2∧T∫
0

d�sw
2(Bs)

]
.

Proof. Applying the strong Markov property at timeτ2 ∧T and the regularity of points inF2, the integral equation
for w yields

Ex

[ τ2∫
0

d�s w2(Bs)

]
= Ex

[ τ2∧T∫
0

d�s w2(Bs)

]
+ Ex

[ τ2∫
τ2∧T

d�s w2(Bs)

]

= Ex

[ τ2∧T∫
0

d�s w2(Bs)

]
+ Ex

[
EBτ2∧T

[ τ2∫
0

d�s w2(Bs)

]]

= Ex

[ τ2∧T∫
0

d�s w2(Bs)

]
+ Ex

[
EBτ2∧T

[
ϕ(Bτ2)

] − w(Bτ2∧T )
]

= Ex

[ τ2∧T∫
0

d�s w2(Bs)

]
+ Ex

[
ϕ(Bτ2)

] − Ex

[
w(Bτ2∧T )

]
.

On the other hand, the integral equation forw also gives,

Ex

[ τ2∫
0

d�s w2(Bs)

]
= Ex

[
ϕ(Bτ2)

] − w(x),

which completes the proof of the lemma.�
Using Lemma 4.4, we can easily show that the functionw is harmonic inD.
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Lemma 4.5.The functionw is in C2(D) and solves�u = 0 in D.

Proof. Let x ∈ D. As D is open, we may find an open ball aroundx denoted byOx such that�Ox ⊂ D. Let
T := inf{t > 0: Bt ∈ ∂Ox} be the first hitting time of the boundary,∂Ox , of Ox . As T < τ1 ∧ τ2 a.s., Lemma 4.4
gives thatw(x) = Ex[w(BT )]. Hence,w is harmonic inD and therefore belongs toC2(D). �

For A,B ⊆ R
d let d(A,B) := inf{|a − b|: a ∈ A,b ∈ B} denote the Euclidean distance between the seA

andB.

Lemma 4.6.The functionw is continuous on�D.

Remark 4.7.In particular, the processMDir = (MDir
t , t � 0) defined by

MDir
t := w(Bt∧τ2) − w(B0) −

t∧τ2∫
0

d�s w2(Bs)

is a continuousFt -martingale.

Proof of Lemma 4.6. As we already know thatw is continuous inD, it remains to deal with∂D.
First case.Let y ∈ �F2. As w is bounded, say byM , we have

Ex

[ τ2∫
0

d�sw
2(Bs)

]
� M2

Ex[�τ2],

which converges to 0 asx → y by Lemma 6.3. Asϕ is continuous, we have by Lemma 6.5,

lim
x→y

Ex

[
ϕ(Bτ2)

] = ϕ(y).

Hence by (21)w is continuous aty.
Second case.Let y ∈ F1. AsF1 is relatively open there exists an open ballOy aroundy such thatd(Oy,F2) > 0.

By Lemma 4.4 applied to the deterministic timeT = t > 0, we have for allx ∈ Oy ∩ �D,

w(x) = Ex

[
w(Bτ2)1{τ2�t}

] + Ex

[
w(Bt)1{τ2>t}

] − Ex

[ τ2∧t∫
0

d�sw
2(Bs)

]

= Ex

[
w(Bτ2)1{τ2�t}

] + Ex

[
w(Bt)

] − Ex

[
w(Bt )1{τ2�t}

] − Ex

[ τ2∧t∫
0

d�sw
2(Bs)

]
.

Now, for a fixedt > 0, the functionx �→ pt(x, y) is continuous inx and uniformly bounded fory ∈ �D. Thus the
functionx �→ Ex[w(Bt )] is continuous. All other expressions in the right-hand side of the last equation con
to zero, uniformly inx ∈ Oy ∩ �D, ast ↓ 0 using Lemma 6.8 and (43), withn = 1, for the last term. This implie
thatw is continuous aty. �
4.3. Non-negative solutions of the Neumann problem

We say a functionw ∈ C2(D) ∩ C1(�D) which satisfies{
�u = 0 in D,
u = ϕ onF2, (24)

∂nu + 2u2 = 0 onF1,
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e that

on
is astrong solutionof the mixed Dirichlet non-linear Neumann boundary value problem (DNP).

Remark 4.8.Notice there exists at most one non-negative strong solution of the DNP (24). Indeed, assumu
andv are non-negative strong solutions, and defineh := u − v. Then�h = 0 in D andh = 0 onF2. Moreover, we
have

2(v − u)h = ∂nh (25)

onF1. We obtain by Green’s first identity,

0=
∫
D

dx h(x)�h(x) =
∫

∂D

σ(dy)h(y)∂nh(y) −
∫
D

dx
∣∣∇h(x)

∣∣2.
Therefore, usingh = 0 onF2, the definition ofh and (25), we get

−2
∫
F1

σ(dy)h(y)2(u(y) + v(y)
) =

∫
D

dx
∣∣∇h(x)

∣∣2 � 0.

As u andv are both non-negative, the integrand on the left-hand side is non-negative. Hence,h = 0 almost every-
where onF1 and by continuityh = 0 on �F1 and thus on∂D. As h is harmonic inD, we geth = 0. Therefore there
exists at most one non-negative strong solution of the DNP (24).

Notice Lemmas 4.5 and 4.6 imply the functionw defined by (23) belongs toC2(D) ∩ C(�D) and that�w = 0
in D. Moreover, (21) impliesw = ϕ onF2.

Corollary 4.9. If the functionw defined by(23)belongs toC1(�D), thenw is the unique non-negative strong soluti
of the DNP(24).

Proof. Thanks to the previous remark, we only have to check thatw ∈ C1(�D) implies∂nw + 2w2 = 0 onF1.
Let x ∈ �D andT a boundedFt -stopping time such thatT � τ2 a.s. Asw ∈ C2(D) ∩ C1(�D), Lemma 6.1 implies

that the processY = (Yt , t � 0) defined by

Yt := w(Bt) − w(B0) − 1

2

t∫
0

ds �w(Bs) + 1

2

t∫
0

d�s∂nw(Bs)

is anFt -martingale. Hence, since�w = 0 onD andEx[Yt ] = Ex[Y0] = 0, we have

Ex

[
w(BT )

] − w(x) + 1

2
Ex

[ T∫
0

d�s ∂nw(Bs)

]
= 0.

Hence, we deduce from Lemma 4.4 that

Ex

[ T∫
0

d�s

(
1

2
∂nw(Bs) + w2(Bs)

)]
= 0. (26)

Let x ∈ F1 and suppose that∂nw(x) + 2w2(x) > 0. Define theFt -stopping time

T := inf
{
t > 0: Bt ∈ F1 and∂nw(Bt ) + 2w2(Bt ) � 0

} ∧ τ2 ∧ 1.

SinceB is continuous andw ∈ C1(�D), we get thatT > 0, Px -a.s. SincePx(�t > 0, for all t > 0) = 1 (see Theo-
rem 7.2 in [16]), we deduce thatP (� > 0) = 1 and thus we haveE [∫ T d� (1∂ w(B ) + w2(B ))] > 0. This
x T x 0 r 2 n r r
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contradicts (26). We get a similar contradiction if we assume∂nw(x) + 2w2(x) < 0. Therefore, for anyx ∈ F1, we
have∂nw(x) + 2w2(x) = 0. �

Hence the functionw, defined in (23), is a good candidate to solve (24). In general, it is not clear ifw belongs
to C1(�D). However, we shall see thatw is always a non-negative solution of (24) in a weak sense.

Let us define a set of test functions by

S1 := {
φ ∈ C2(D) ∩ C1(�D);�φ is bounded inD, ∂nφ = 0 onF1, φ = 0 onF2

}
.

Recallϕ ∈ B+(�F2) is assumed to be a continuous function.

Definition 4.10.A bounded functionu ∈ B+(�D) is called a weak solution of the mixed Dirichlet non-linear Ne
mann boundary value problem given by (24) ifu ∈ C(�D) and for every test functionφ ∈ S1,∫

D

dx u(x)�φ(x) =
∫
F2

σ(dy) ∂nφ(y)ϕ(y) + 2
∫
F1

σ(dy)φ(y)u2(y). (27)

Remark 4.11.Notice that it follows directly by Greens second identity, that any strong solution is also a
solution of the DNP (24). This indeed motivates Definition 4.10.

Proposition 4.12.A non-negative functionu ∈ C(�D) such thatu = ϕ onF2, is a weak solution of the DNP(24), if
the processM = (Mt , t � 0) defined on[0,+∞) by

Mt := u(Bt∧τ2) − u(B0) −
t∧τ2∫
0

d�r u2(Br)

is a continuousFt -martingale.

Proof. Assume thatu ∈ C(�D) is non-negative andM = (Mt , t � 0), as defined in the statement of the propositi
is a continuousFt -martingale. We have,

Ex

[
u(Bt∧τ2) − u(x)

] = Ex

[ t∧τ2∫
0

d�r u2(Br)

]
.

Rewriting this equation, we obtain

Ex

[
u(Bt ) − u(x)

] = Ex

[ t∧τ2∫
0

d�r u2(Br)

]
− Ex

[
1{τ2<t}

(
u(Bτ2) − u(Bt )

)]
.

Multiplying with φ ∈ S1 and integrating overD yields,∫
D

dx φ(x)Ex

[
u(Bt ) − u(x)

]

=
∫

dx φ(x)Ex

[ t∧τ2∫
d�ru

2(Br)

]
−

∫
dx φ(x)Ex

[
1{τ2<t}

(
u(Bτ2) − u(Bt )

)]
. (28)
D 0 D
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Thanks to the symmetry of the reflecting Brownian motion, we can rewrite the left-hand side:∫
D

dx φ(x)Ex

[
u(Bt ) − u(x)

] =
∫
D

dx u(x)Ex

[
φ(Bt ) − φ(x)

]
.

By Lemma 6.1, the processY = (Yt , t � 0) defined by

Yt := φ(Bt ) − φ(B0) − 1

2

t∫
0

ds �φ(Bs) + 1

2

t∫
0

d�s∂nφ(Bs)

is a continuousFt -martingale. Hence, as 0= Ex[Y0] = Ex[Yt ], we have

Ex

[
φ(Bt ) − φ(x)

] = 1

2
Ex

[ t∫
0

ds �φ(Bs)

]
− 1

2
Ex

[ t∫
0

d�s ∂nφ(Bs)

]
.

Therefore, we can rewrite (28) to

1

t

∫
D

dx u(x)Ex

[ t∫
0

ds �φ(Bs)

]
− 1

t

∫
D

dx u(x)Ex

[ t∫
0

d�s ∂nφ(Bs)

]

= 2
1

t

∫
D

dx φ(x)Ex

[ t∧τ2∫
0

d�r u2(Br)

]
− 2

1

t

∫
D

dx φ(x)Ex

[
1{τ2<t}

(
u(Bτ2) − u(Bt )

)]
,

where we also divided byt > 0. By Lemma 6.6, 6.7, 6.9 and 6.10, and lettingt ↓ 0, we see that∫
D

dx u(x)�φ(x) −
∫

∂D

σ(dy)u(y)∂nφ(y) = 2
∫
F1

σ(dy)φ(y)u2(y).

As u = ϕ onF2, ∂nφ = 0 onF1, we get thatu is a weak solution of the DNP given by (24).�
We are now ready to state the main result of this section.

Theorem 4.13.The functionw given by(23) is a non-negative weak solution of the DNP(24).

Proof. That follows directly from Remark 4.7 and Proposition 4.12.�
Remark 4.14.Notice that Proposition 4.12 implies that any weak solution of the DNP (24) satisfies (21). T
to Lemma 4.3, (21) has at most one solution ifϕ is small enough. We deduce that ifϕ is small enough (that i
2C‖ϕ‖∞ < 1, with the notations of Lemma 4.3),w is the only non-negative weak solution of the DNP (24).

5. Neumann condition onF2

In this section, we give a probabilistic representation formula for the boundary value problem (1), wh
Dirichlet condition onF2 is replaced by a Neumann condition. We first consider the approximating problem{

�u = 2θu in D,
∂nu − 2ϕ = 0 onF2,
∂nu + 2u2 = 0 onF1

for θ > 0, and then we letθ tend to zero. Similar techniques to those we use can already be found in [2].
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ss

.1.
5.1. The measureZNeu
θ and its dual

We use the same notation as in the last sections. Fori = 1,2, let�i denote the local time ofB onFi , i.e.

d�i
r = 1Fi

(Br)d�r .

LetN be a Poisson measure onR+ ×R+ with intensity dx dt , independent of the reflecting Brownian motionB.
Denote by(xi, ti) the atoms of this measure and set, forR0 ∈ [0,+∞] given,

Rt := R0 ∧ inf{xi : ti � t},
with the convention inf∅ = +∞. The Markov processR = (Rt , t � 0) is a càdlàg decreasingR+ ∪ {∞} valued
process. Moreover, for everyt � 0, θ � 0, we have

P(Rt > θ |R0) = 1{R0>θ}P
(
N

([0, θ ] × [0, t]) = 0
) = 1{R0>θ} e−θt . (29)

Let E′ := R+ ×F1×[0,∞]. In the spirit of Section 3, we define theE′-valued time-homogeneous Markov proce
(ζt , t � 0) by

ζt := (
�

1,−1
t ,B ◦ �

1,−1
t ,R ◦ �

1,−1
t

)
and denote byPζ

t,x̂
its law started at̂x ∈ E′ at timet � 0.

For ν ∈ Mf (E′) and t � 0, let P
X′
t,ν denote the law of the quadratic (non-catalytic) superprocessX′ =

(X′
s′ , s′ � t) with spatial motionζ , starting atν at time t . We shall writeP

X′
ν for P

X′
0,ν . The total occupation

measureΓ Neu of the superprocessX′ is defined underPX′
t,ν by

Γ Neu(dr,dx,dk) :=
∞∫
t

ds′ X′
s′(dr,dx,dk).

Lemma 5.1.Let θ > 0 and φ̃ ∈ B+(E′) be of the formφ̃(r, x, k) = 1{k>θ}φ(x), whereφ ∈ B+(F1) is bounded.
Then the functioñv defined onE′ by

E
X′
ν

[
exp−〈

Γ Neu, φ̃
〉] = exp−〈ν, ṽ〉,

is of the formṽ(r, x, k) = 1{k>θ}v(x), wherev ∈ B(F1) is a non-negative solution of the integral equation onF1,

v(x) + Ex

[ ∞∫
0

d�r e−θr v2(Br)1F1(Br)

]
= Ex

[ ∞∫
0

d�r e−θr φ(Br)1F1(Br)

]
. (30)

Remark 5.2. By (42), and asφ is bounded, the quantityEx[
∫ ∞

0 d�r e−θr φ(Br)1F1(Br)] is uniformly bounded
onF1. Therefore,v is bounded. Of course, this argument fails forθ = 0.

Proof. Let φ̃ ∈ B+(E′) be bounded, such thatφ̃(r, x, k) = 1{k>θ}φ(x). We proceed as in the proof of Lemma 3
As a special case of the weighted occupation time formula (see e.g. [11, II.3]) we have for all functionsh ∈ B+(R+)

with compact support,

E
X′
t,ν

[
−

∞∫
ds′ h(s′)〈X′

s′ , φ̃〉
]

= exp−〈ν, ṽt 〉, (31)
t
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oreover,

-

n
nstruct all
nce of
whereṽ ∈ B+(R+ × E′) is the unique non-negative solution of the integral equation,

ṽt (x̂) + E
ζ

t,x̂

[ ∞∫
t

ds′ ṽ2
s′(ζs′)

]
= E

ζ

t,x̂

[ ∞∫
t

ds′ h(s′)φ̃(ζs′)

]
.

Using the definition ofζ and the substitution�1
r = s′ we obtain withx̂ = (s, x, k) ∈ E′, and therefore�1,−1

t = s,

ṽt (s, x, k) + E
ζ

t,(s,x,k)

[ ∞∫
s

d�1
r ṽ2

�1
r
(r,Br ,Rr)

]
= E

ζ

t,(s,x,k)

[ ∞∫
s

d�1
r h(�1

r )1{Rr>θ}φ(Br)

]
. (32)

Using time homogeneity forζ andB, independence betweenB andR, and (29), we have

E
ζ

t,(s,x,k)

[ ∞∫
s

d�1
r h(�1

r )1{Rr>θ}φ(Br)

]
= 1{k>θ}Ex

[ ∞∫
0

d�1
r h(�1

r + t)e−θr φ(Br)

]
.

In particular, this quantity vanishes fork � θ . Sinceṽt is non-negative, we deduce from (32) thatṽ(r, x, k) = 0 if
k � θ . Also notice, that fork > θ , the left-hand side of (32) does not depend onk. In particular,ṽk0

t defined by
ṽ

k0
t (s, x, k) = ṽt (s, x, k ∧ k0) also solves (32) for anyk0 > θ . By uniqueness, we get thatṽ does not depend onk

on {k > θ}. Hence, we deduce thatṽt (r, x, k) = 1{k>θ}v̄t (r, x), wherev̄t is the unique non-negative solution onF1
of the integral equation,

v̄t (s, x) + Ex

[ ∞∫
0

d�1
r e−θr v̄2

�1
r +t

(r + s,Br)

]
= Ex

[ ∞∫
0

d�1
r h(�1

r + t)e−θr φ(Br)

]
.

We complete the proof using similar arguments as those following Eq. (13) in the proof of Lemma 3.1.�
Remark 5.3.It is not clear if (30) has a unique solution. However, if‖φ‖∞ is small enough (depending onθ > 0),
then arguing as in the end of the proof of Proposition 3.3, one can show that (30) has a unique solution. M
Lemma 5.1 allows us to compute the first moment ofΓ Neu: for all φ ∈ B+(F1),

E
X′
ν

[〈
Γ Neu, φ̃

〉] =
∫
E′

ν(ds,dx,dk)1{k>θ}Ex

[ ∞∫
0

d�r e−θr φ(Br)1F1(Br)

]
, (33)

whereφ̃(r, x, k) = 1{k>θ}φ(x).

Let η ∈ Mf (�D) and defineνη,θ to be the law of(τ1,Bτ1), killed at an independent exponential time of rateθ ,
with B0 distributed according toη:

〈νη,θ ,ψ〉 =
∫

η(dx)Ex

[
e−θτ1 ψ(τ1,Bτ1)

]
. (34)

Moreover, we writeνη = νη,0.
We writeν � ν′ for ν, ν′ ∈Mf (E) if 〈ν, g〉 � 〈ν′, g〉 for anyg ∈ B+(E). Notice that(νη,θ , θ � 0) is a decreas

ing sequence of measures.

Remark 5.4.Let us writeΓ Neu
θ for the random measureΓ Neu defined underPX′

νη,θ⊗δ∞ . Thanks to the Poissonia
representation of superprocesses, due to the branching property (see e.g. Theorem 4.2.1 [7]), one can co
the family(Γ Neu

θ , θ � 0) on the same probability space in such a way, that this family is a decreasing seque
measures. We shall use this remark later.
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Definition 5.5.Let θ � 0. We define the random measureZNeu
θ on �F2 by: for all ϕ ∈ B+(�F2),

〈
ZNeu

θ , ϕ
〉 = 〈η, Q̃θϕ〉 +

∫
E′

Γ Neu
θ (ds dx dk)1{k>θ}ρ(x)Hx

[ ∞∫
0

d�r e−θr ϕ(er)

]
,

where

Q̃θϕ(x) := Ex

[ τ1∫
0

d�r e−θr ϕ(Br)

]
.

We callZNeu
θ the Neumann boundary measure and denote byP

Z
η,θ its law.

From now on, we assume thatθ > 0.

Remark 5.6.To see that the random measureZNeu
θ is finite for θ > 0, we can perform a first moment calculatio

Using (33), (34), Lemma 2.1, the exit formula (6), the strong Markov property ofB and the definition of̃Qθ , we
get

E
Z
η,θ

[〈
ZNeu

θ , ϕ
〉] = 〈η, Q̃θϕ〉 +

∫
R+×F1

νη,θ (ds,dx)Ex

[ ∞∫
0

d�r e−θr ρ(Br)1F1(Br)H
Br

[ ∞∫
0

d�r ′ e−θr ′
ϕ(er ′)

]]

= 〈η, Q̃θϕ〉 +
∫

η(dx)Ex

[
e−θτ1 EBτ1

[ ∞∫
0

dLr e−θr HBr

[ ∞∫
0

d�r ′ e−θr ′
ϕ(er ′)

]]]

= 〈η, Q̃θϕ〉 +
∫

η(dx)Ex

[
e−θτ1 EBτ1

[ ∞∫
τ1

d�r e−θr ϕ(Br)1F2(Br)

]]

= 〈η, Q̃θϕ〉 +
∫

η(dx)Ex

[ ∞∫
τ1

d�r e−θr ϕ(Br)1F2(Br)

]

=
∫

η(dx)Ex

[ ∞∫
0

d�r e−θr ϕ(Br)1F2(Br)

]
,

which is finite, thanks to (42). This argument fails ifθ = 0, as the first moment is infinite if
∫
F2

σ(dy)ϕ(y) > 0.

Recall the notation of the constants(cθ , θ > 0) from (42).

Lemma 5.7.Let θ > 0. We have for allϕ ∈ B+(�F2),

E
Z
η,θ

[
exp−〈

ZNeu
θ , ϕ

〉] = exp−〈η,wθ 〉,
where(wθ (x), x ∈ �D) is a non-negative solution of the integral equation on�D,

wθ(x) + Ex

[ ∞∫
0

d�r e−θr w2
θ (Br)1F1(Br)

]
= Ex

[ ∞∫
0

d�r e−θr ϕ(Br)1F2(Br)

]
. (35)

If additionally we assume thatϕ is bounded with2c2
θ‖ϕ‖∞ < 1, then the integral equation(35) has a unique

solution.
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d using
Remark 5.8. If ϕ is bounded, (35) implies thatwθ is bounded bycθ‖ϕ‖∞. In general, forθ = 0, i.e. without
killing, the right-hand side of the integral equation (35) is infinite. See also Proposition 5.16.

Proof. Let φ̃ ∈ B+(E′) defined byφ̃(s, x, k) = 1{k>θ}φ(x), where

φ(x) = ρ(x)Hx

[ ∞∫
0

d�r e−θr ϕ(er )

]
.

We have

E
Z
η,θ

[
exp−〈

ZNeu
θ , ϕ

〉] = E
X′
νη,θ

[
exp−(〈η, Q̃θϕ〉 + 〈

Γ Neu
θ , φ

〉)] = exp−(〈η, Q̃θϕ〉 + 〈νη,θ , ṽθ 〉
)
,

where thanks to Lemma 5.1̃vθ (s, x) = vθ (x) is a non-negative solution onF1 of

vθ (x) + Ex

[ ∞∫
0

d�r e−θr v2
θ (Br)1F1(Br)

]
= Ex

[ ∞∫
0

d�r e−θr ρ(Br)1F1(Br)H
Br

[ ∞∫
0

d�r ′ e−θr ′
ϕ(er ′)

]]

= Ex

[ ∞∫
0

dLr e−θr HBr

[ ∞∫
0

d�r ′ e−θr ′
ϕ(er ′)

]]

= Ex

[ ∞∫
τ1

d�r e−θr ϕ(Br)1F2(Br)

]
, (36)

where we used Lemma 2.1 for the second equality and the exit-formula (6) for the last. Define forx ∈ �D,

wθ(x) := Q̃θϕ(x) + Ex

[
e−θτ1 vθ (Bτ1)

]
,

and notice thatwθ = vθ onF1. Moreover, we have by construction that

〈η,wθ 〉 = 〈η, Q̃θϕ〉 + 〈νη,θ , ṽθ 〉.
Using the strong Markov property ofB and (36) one checks thatwθ solves (35). If 2c2

θ‖ϕ‖∞ < 1, we get the
uniqueness as in the end of the proof of Proposition 3.3.�

The following lemma play the same rôle in this section as Lemma 4.4 in Section 4.2 and can be prove
the same techniques.

Lemma 5.9.Let θ > 0 andϕ bounded. LetT be a finiteFt -stopping time, then

wθ(x) + Ex

[ T∫
0

d�r e−θr w2
θ (Br)1F1(Br)

]
= Ex

[
e−θT wθ (BT )

] + Ex

[ T∫
0

d�r e−θr ϕ(Br)1F2(Br)

]
.

5.2. Weak solution of theθ -approximation

Fix a continuous non-negative functionϕ ∈ C(�F2). And define a functionwθ on �D by

wθ(x) := − logE
Z
δx,θ

[
exp−〈

ZNeu
θ , ϕ

〉]
.

We assume throughout this section thatθ > 0. By Remark 5.8, we have thatw is bounded.
θ
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e way
Proposition 5.10.Let θ > 0. The functionwθ belongs toC2(D) and solves�wθ = 2θwθ .

Proof. This can be proved from Lemma 5.9, using standard results on killed Brownian motion, in the sam
as Lemma 4.5 is deduced from Lemma 4.4.�
Lemma 5.11.The functionwθ is continuous on�D.

Proof. Lemma 5.9 applied to the deterministic timeT = t > 0, yields

wθ(x) = Ex

[
e−θt wθ (Bt )

] + Ex

[ t∫
0

d�r e−θr
[
ϕ(Br)1F2(Br) − w2

θ (Br)1F1(Br)
]]

.

As ϕ andwθ are bounded, we have thanks to (43), that the last term of this equality decreases to 0 ast ↓ 0 uniformly
in x. As the second term is continuous inx the proof is complete. �
Remark 5.12.In particular, the processMNeu= (MNeu

t , t � 0) defined by

MNeu
t := e−θt wθ (Bt ) − wθ(B0) +

t∫
0

d�r e−θr
[
ϕ(Br)1F2(Br) − w2

θ (Br)1F1(Br)
]
,

is a continuousFt -martingale. Thus the processNNeu = (NNeu
t , t � 0) defined byNNeu

0 = 0 and dNNeu
t =

eθt dMNeu
t , that is

NNeu
t = wθ(Bt ) − wθ(B0) − θ

t∫
0

dr wθ (Br) +
t∫

0

d�r

[
ϕ(Br)1F2(Br) − w2

θ (Br)1F1(Br)
]
,

is also a continuousFt -martingale.

Let us define a space of test functionsS2 by

S2 := {
φ ∈ C2(D) ∩ C1(�D); �φ bounded;∂nφ = 0 on∂D

}
.

Definition 5.13.Let θ � 0. A functionu ∈ B+(�D) is said to be a weak solution of the boundary value problem{
�u = 2θu in D ,
∂nu − 2ϕ = 0 onF2,
∂nu + 2u2 = 0 onF1 ,

(37)

if u ∈ C(�D) and for allφ ∈ S2,∫
D

dx u(x)�φ(x) = 2θ

∫
D

dx u(x)φ(x) − 2
∫
F2

σ(dy)φ(y)ϕ(y) + 2
∫
F1

σ(dy)u2(y)φ(y).

Notice any non-negative strong solution of (37) is a weak solution.

Proposition 5.14.A non-negative functionu ∈ C(�D) is a weak solution of the boundary value problem(37) if and
only if the processN = (Nt , t � 0) defined by

Nt = u(Bt ) − u(B0) − θ

t∫
0

dr u(Br) +
t∫

0

d�r

[
ϕ(Br)1F2(Br) − u2(Br)1F1(Br)

]
,

is a continuousF -martingale.
t
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Proof. First assume thatu ∈ C(�D) is a weak solution of (37) and letx ∈ �D. Thanks to the Markov property ofB,
we have for 0< s < t ,

Ex[Nt |Fs] = Ns + EBs [Nt−s].
Thus, to prove the processN is aFt -martingale, it is enough to check thatEx[Nt ] = 0 for all t > 0. Let s > 0. As
ps(x, ·) ∈ S2 (see appendix, Section 6.1), we compute, using the integral equation foru andφ(y) = ps(x, y),

d

ds
Ex

[
u(Bs)

] =
∫
D

dy u(y)∂sps(x, y) =
∫
D

dy u(y)
1

2
�yps(x, y)

= θ

∫
D

dy u(y)ps(x, y) −
∫
F2

σ(dy)ps(x, y)ϕ(y) +
∫
F1

σ(dy)ps(x, y)u2(y).

For ε > 0, integrating fromε to t gives,

Ex

[
u(Bt )

] − Ex

[
u(Bε)

] = θ

t∫
ε

dr Ex

[
u(Br)

] − Ex

[ t∫
ε

d�2
r ϕ(Br)

]
+ Ex

[ t∫
ε

d�1 u2(Br)

]
.

Hence, by continuity ofu, we see thatEx[Nt ] = 0 asε ↓ 0.
Let u ∈ C(�D) and assume now that for anyx ∈ �D, the processN is a continuousFt -martingale. AsEx[Nt ] = 0,

we have

Ex

[
u(Bt )

] − u(x) = θ

t∫
0

dr Ex

[
u(Br)

] − Ex

[ t∫
0

d�2
r ϕ(Br)

]
+ Ex

[ t∫
0

d�1 u2(Br)

]
.

Let φ ∈ S2. Multiplying the last equation byφ and integrating overD yields∫
D

dx u(x)Ex

[
φ(Bt ) − φ(x)

] = θ

∫
D

dx φ(x)

t∫
0

dr Ex

[
u(Br)

]

−
∫
D

dx φ(x)Ex

[ t∫
0

d�r

[
ϕ(Br)1F2(Br) − u2(Br)1F1(Br)

]]
, (38)

where we used for the first term the symmetry of the reflecting Brownian motion. Sinceφ ∈ S2, by Lemma 6.1 the
processY = (Yt , t � 0) defined by

Yt := φ(Bt ) − φ(B0) − 1

2

t∫
0

ds �φ(Bs)

is also anFt -martingale. Hence, we haveEx[φ(Bt ) − φ(x)] = 1
2Ex[

∫ t

0 ds �φ(Bs)]. Thus, dividing (38) byt > 0,
gives

1

2t

∫
D

dx u(x)Ex

[ t∫
0

ds �φ(Bs)

]

= 1

t
θ

∫
dx φ(x)Ex

[ t∫
dr u(Br)

]
− 1

t

∫
dx φ(x)Ex

[ t∫
d�r ϕ(Br)1F2(Br)

]

D 0 D 0
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ve

, we

res

at

t

+ 1

t

∫
D

dx φ(x)Ex

[ t∫
0

d�r u2(Br)1F1(Br)

]
.

Hence, we complete the proof applying Lemmas 6.6 and 6.7.�
Proposition 5.15.The functionwθ is a non-negative weak solution of the boundary value problem(37). If addi-
tionally 2c2

θ‖ϕ‖∞ < 1, then the solutionwθ is also unique.

Proof. It follows immediately from Remark 5.12 and Proposition 5.14 thatwθ is a weak solution of (37). To prov
uniqueness, letu ∈ B+(�D) be a weak solution of (37) and assume 2c2

θ‖ϕ‖∞ < 1. Thanks to Proposition 5.14 an
Remark 5.12, the processM = (Mt , t � 0) defined by

Mt := e−θt u(Bt ) − u(B0) +
t∫

0

d�r e−θr ϕ(Br)1F2(Br) −
t∫

0

d�r e−θr u2(Br)1F1(Br),

is a continuousFt -martingale, as well as dMt = e−θt dNt . As u andϕ are bounded and thanks to (42), we ha
thatM is a uniformly integrable martingale. Hence(Mt , t � 0) converges almost surely and inL1 to a limit, say
M∞, with Ex[M∞] = Ex[M0] = 0. Therefore,u is a non-negative solution of the integral equation,

u(x) + Ex

[ ∞∫
0

d�r e−θr u2(Br)1F1(Br)

]
= Ex

[ ∞∫
0

d�r e−θr ϕ(Br)1F2(Br)

]
.

As 2c2
θ‖ϕ‖∞ < 1, by Lemma 5.7wθ is the only non-negative solution of the last displayed equation. Hence

haveu = wθ . �
5.3. The caseθ ↓ 0

Let ϕ ∈ B+(F2) be bounded.
Observe that thanks to Remark 5.4, one can assume that(Γ Neu

θ , θ > 0) is an increasing sequence of measu
asθ ↓ 0. Notice also that(Q̃θϕ, θ > 0) is also an increasing sequence of functions asθ ↓ 0. From the definition of
ZNeu

θ , we deduce that the sequence(ZNeu
θ , θ > 0) is also an increasing sequence of measures asθ ↓ 0. LetZNeu be

its limit asθ ↓ 0. (One could check thatZNeu has the same law asZNeu
0 .) By dominated convergence, we get th

(wθ , θ > 0) increases to a limit, sayw, asθ ↓ 0, defined on�D by

w(x) = − logE
Z
δx

[
exp−〈

ZNeu, ϕ
〉]
. (39)

From now on, we assume that∂F = ∅, that is�F1 ∩ �F2 = ∅.

Proposition 5.16.The functionw is bounded on�D. More precisely, there exists a finite constantc independen
of ϕ, such that for anyx ∈ �D,

w(x) � c
(‖ϕ‖∞ +√‖ϕ‖∞

)
.

Proof. For ε > 0, we setFε
1 = {x ∈ �D :d(x,F1) � ε}, theε-neighborhood ofF1 in �D. Since∂F = ∅, there exists

ε > 0, such thatFε
1 ∩ F2 = ∅. Let τ ε

1 the first exit time ofFε
1 :

τ ε(e) = inf
{
s > 0: e(s) /∈ Fε

}
,
1 1
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t

-

f
t

for e ∈ D (recall notations from Section 2.2). In particular, using the strong Markov property of the exit me
Hx with respect to(Q1

t , t � 0), the transition kernel of the reflected Brownian motion killed onF1 (see [12],
Theorem 5.1), we have that for anyx ∈ F1,

Hx

[ ∞∫
0

d�r

]
= Hx

[
1{τ ε

1<∞}

τ1∫
τ ε
1

d�r

]
= Hx

[
1{τ ε

1<∞}Ee(τ ε
1 )[�τ1]

]
� cHx[τ ε

1 < ∞],

where we used Lemma 6.3 for the last inequality. Arguing as in the proof of Lemma 8.3 of [6], we have tha

sup
x∈F1

Hx[τ ε
1 < ∞] < ∞.

This implies thatHx[∫ ∞
0 d�r ] is bounded onF1 say byC0.

Since, thanks to Corollary 6.11,ρ is bounded by a constant, sayC1, we get from Definition 5.5, that forϕ � 0,

0�
〈
ZNeu

θ , ϕ
〉
�‖ϕ‖∞

[∫
η(dx)Ex[�τ1] + C0C1

〈
Γ Neu

θ ,1
〉]

.

From Remark 5.4, and Lemma 6.3, we get there exists a finite constantc, such that

0�
〈
ZNeu, ϕ

〉
� c ‖ϕ‖∞

[〈η,1〉 + 〈
Γ Neu

0 ,1
〉]
.

It is well known that the total mass of the superprocessX′, 〈Γ Neu
0 ,1〉, started atνη is distributed according the law

of a stable subordinator of index 1/2 at time〈νη,1〉. (The solution of the integral equation (32), withθ = 0,φ = λ1
andh(t) = 1[0,T ](t) is given by

ṽt = √
λ

sinh((T − t)/4
√

λ )

cosh((T − t)/4
√

λ)

for t ∈ [0, T ]. Then, lettingT → ∞, we deduce from (31) that the log-Laplace transform of〈Γ Neu
0 ,1〉 is exactly√

λ〈νη,1〉.) In particular, we deduce that

E
Z
η

[
e−〈ZNeu,ϕ〉] � e−c〈η,1〉(‖ϕ‖∞+√‖ϕ‖∞ ),

for a finite constantc independent ofϕ andη. Since this holds for any finite measureη, this implies the proposi
tion. �
Lemma 5.17.The functionw is continuous on�D.

Proof. As w is bounded, we obtain from Lemma 5.9 applied to the deterministic timeT = t > 0 and dominated
convergence,

w(x) = Ex

[
w(Bt )

] + Ex

[ t∫
0

d�2
r ϕ(Br)

]
− Ex

[ t∫
0

d�1
r w2(Br)

]
.

Then, we can deduce the continuity ofw, following the proof of Lemma 5.11. �
The following proposition is now obvious from Proposition 5.15 and dominated convergence:

Theorem 5.18.Assume�F1 ∩ �F2 = ∅. The non-negative functionw, defined by(39), on �D, is a weak solution o
the nonlinear Neumann boundary value problem(37) with θ = 0. Furthermore, there exists a finite constanc
independent ofϕ, such that

‖w‖∞� c
(‖ϕ‖∞ +√‖ϕ‖∞

)
.
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6. Appendix

6.1. Reflecting Brownian motion inD

The reflecting Brownian motionB = (Bt , t � 0) is a strong Markov process on�D, with transition density
pt (x, y) defined on(0,∞) × �D × �D. The density has the following properties (see [9] or [16]):

(i) pt(x, y) is continuously differentiable int > 0 for fixed (x, y) ∈ �D × �D, and for ε > 0, its derivative is
uniformly bounded fort � ε, (x, y) ∈ �D × �D. As a function ofx, pt(x, y) belongs toC1(�D) ∩ C2(D) for
fixed t ∈ R+, y ∈ �D.

(ii) pt(x, y) solves the heat equation insideD

∂tpt (x, y) = 1

2
�xpt (x, y) for (t, x, y) ∈ R+ × D × �D,

with the boundary condition

∂nx pt (x, y) = 0 for (t, x, y) ∈ R+ × ∂D × �D.

(iii) For anyx ∈ �D andf ∈ B(�D), bounded and continuous atx, we have

lim
t↓0

∫
�D

dy f (y)pt (x, y) = f (x).

The functionpt (x, y) is symmetric inx andy, positive and satisfies
∫
D

dy pt (x, y) = 1. Moreover, for any
boundedf ∈ B(�D), t > 0, the functionx �→ ∫

dy pt (x, y)f (y) is in C(�D).
We denote byPx the law ofB starting inB0 = x ∈ �D. Let (Ft , t � 0) be the filtration generated byB completed

the usual way. We have the following martingale problem characterization of the reflecting Brownian motio

Lemma 6.1[5]. For everyφ ∈ C2(D) ∩ C1(�D), with �φ bounded onD,

φ(Bt ) − φ(B0) − 1

2

t∫
0

ds �φ(Bs) + 1

2

t∫
0

d�s ∂nφ(Bs),

is a continuousFt -martingale.

6.2. Estimates for reflecting Brownian motion

Following [9], we have the following estimates: there exists a constantc such that for allx ∈ �D and allt ∈ (0,1],∫
∂D

σ(dy)pt (x, y) � c/
√

t, (40)

whereσ is the surface measure on∂D. Moreover, there exist two positive constantsc′ andβ such that for all
x, y ∈ �D, t � 1, we have∣∣pt (x, y) − aD

∣∣ � c′ e−βt , (41)

wherea−1
D := ∫

D
dy is thed-dimensional Lebesgue measure ofD. We deduce from those inequalities that for a

θ > 0, there is a constantcθ > 0 such that, for allx ∈ �D
∞∫

dr

∫
σ(dy) e−θr pr(x, y) � cθ . (42)
0 ∂D
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a

ted
From (2), (40) and (41) we get there exists a constantK such that for allt � 0, we have

sup
x∈�D

Ex[�t ] � K (
√

t + t).

By induction, we deduce that forn ∈ N, there existsKn > 0 such that for allt � 0,

sup
x∈�D

Ex

[
(�t )

n
]
� Kn

(
tn/2 + tn

)
. (43)

Thanks to [9, Theorem 2.5], the reflecting Brownian motion inD has the same modulus of continuity as
standard Brownian motion inRd . In particular, forT > 0, there exists a constantK , such that for allt ∈ [0, T ],
x ∈ �D, a � 0,

Px

(
sup

0�s�t

|Bs − x| � a
)

� Px

(
sup

0�s�t

|Ws − x| � a/K
)
, (44)

whereW = (Wt , t � 0) is underPx a standard Brownian motion inRd started atx.
For i = 1,2, letτi := inf{t > 0: Bt ∈ Fi} be the first hitting time ofFi , with the convention that inf∅ = +∞.

Lemma 6.2.For anyt > 0, the functionx �→ Px(τi > t) is upper semi continuous in�D. In particular, for all y ∈ �Fi ,
we have

lim
x→y;x∈�D

Px(τi > t) = 0.

Proof. Notice thatPx(τi > t) is the non-increasing limit asε ↓ 0 of

Ex

[
PBε (τi > t − ε)

]
,

which are continuous functions ofx ∈ �D. Thus the functionx �→ Px(τi > t) is upper semi continuous fort > 0. To
conclude, notice that, since∂D and∂F are smooth, any point of�Fi is regular forFi , and thusPy(τi > t) = 0 for
all y ∈ �Fi . �
Lemma 6.3.The functionsx �→ Ex[τi] andx �→ Ex[�τi

] are bounded on�D. Moreover, we have for ally ∈ �Fi ,

lim
x→y;x∈�D

Ex[τi] = 0 and lim
x→y;x∈�D

Ex[�τi
] = 0.

Proof. SincePx(τi > 1) < 1 for all x ∈ �D, we deduce from Lemma 6.2, thatδ := supx∈�D Px(τi > 1) < 1. By the
strong Markov property of the reflecting Brownian motion, we have for anyn ∈ N

∗,

Px(τi > n) = Ex

[
1{τi>n−1}PBn−1(τi > 1)

]
� δPx(τi > n − 1),

and hence, by induction supx∈�D Px(τi > n) � δn. Therefore,

Ex[τi] =
∞∫

0

dt Px(τi > t) �
∞∑

n=0

Px(τi > n) � 1

1− δ
< ∞. (45)

Hence,x �→ Ex[τi] is bounded on�D. Moreover, fory ∈ �Fi , the estimate in (45) allows us to use domina
convergence in

lim
x→y;x∈�D

Ex[τi] = lim
x→y;x∈�D

∞∫
dt Px(τi > t) =

∞∫
dt lim

x→y;x∈�D
Px(τi > t),
0 0



J.-F. Delmas, P. Vogt / Ann. I. H. Poincaré – PR 41 (2005) 817–849 843

at
and the last expression is equal to zero by Lemma 6.2.
Let us now treat the functionx �→ Ex[�τi

]. It follows from the Cauchy-Schwarz inequality and (43), that

Ex[�τi
] =

∞∑
n=0

Ex

[
1{n<τi�n+1}�τi

]
�

∞∑
n=0

Ex[1{τi>n}�n+1]

�
∞∑

n=0

Px(τi > n)1/2
Ex

[
(�n+1)

2]1/2 � c

∞∑
n=0

δn/2(n + 1),

wherec is a finite constant independent ofx ∈ �D. Hence, the functionx �→ Ex[�τi
] is bounded on�D.

The same arguments as in the previous part of the proof, show that the functionx �→ Ex[(�τi
)2] is bounded. Let

ε ∈ (0,1]. Using the Cauchy–Schwarz inequality for the third line and (43), withn = 2, for the fourth, we obtain
for all x ∈ �D,

Ex[�τi
] = Ex[1{τi>ε}�τi

] + Ex[1{τi�ε}�τi
] � Ex[1{τi>ε}�τi

] + Ex[1{τi�ε}�ε]
� Px(τi > ε)1/2

Ex

[
(�τi

)2]1/2 + Px(τi � ε)1/2
Ex

[
(�ε)

2]1/2 � c
(
Px(τi > ε)1/2 + √

ε
)
,

where the constantc is independent ofx. We conclude using Lemma 6.2.�
Lemma 6.4.For all η > 0 and ally ∈ �F2 we have

lim
x→y; x∈�D

Px

(|Bτ2 − x| � η
) = 0.

Proof. First notice, that by Markov’s inequality,

Px

(|Bτ2 − x| � η
)
� η−2

Ex

[|Bτ2 − x|2].
Applying Lemma 6.1 to the functionγ (z) := |z − x|2 yields that

Mt := |Bt − x|2 − d t +
t∫

0

d�r ∂nγ (Br),

is aFt -martingale underPx . Notice that|∂nγ | is bounded from above by a constant independent ofx. Hence, the
optional stopping theorem applied to the stopping timet ∧ τ2 and the martingale convergence theorem imply th

Ex

[|Bτ2 − x|2] � C
(
Ex[τ2] + Ex[�τ2]

)
.

Hence, the assertion follows by Lemma 6.3.

Lemma 6.5.Lety ∈ �F2 andϕ ∈ C(�F2), then

lim
x→y;x∈�D

Ex

[
ϕ(Bτ2)

] = ϕ(y).

Proof. Let ε > 0 andy ∈ �F2. As ϕ is continuous on�F2, there existsδ > 0 such that|ϕ(y) − ϕ(z)| < ε for all
z ∈ Oδ(y) ∩ �F2, whereOδ(y) is the ball of radiusδ centered aty. Hence, we have for allx ∈ Oδ/2(y) ∩ �D

Ex

[∣∣ϕ(Bτ2) − ϕ(y)
∣∣] = Ex

[∣∣ϕ(Bτ2) − ϕ(y)
∣∣1{|Bτ2−y|<δ}

] + Ex

[∣∣ϕ(Bτ2) − ϕ(y)
∣∣1{|Bτ2−y|�δ}

]
� ε + 2 ‖ϕ‖∞ Px

(|Bτ2 − y| � δ
)
� ε + 2 ‖ϕ‖∞ Px

(|Bτ2 − x| � δ/2
)
.

We conclude using Lemma 6.4.�
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6.3. Convergence lemmas

In this section we give a series of technical lemmas on convergence.

Lemma 6.6.For every bounded functionφ ∈ B(D) and every bounded functionψ ∈ C(D),

lim
t↓0

1

t

∫
D

dx φ(x)Ex

[ t∫
0

ds ψ(Bs)

]
=

∫
D

dx φ(x)ψ(x).

Proof. Sinceψ is continuous and bounded, we have that limt↓0
∫

pt (x, y)ψ(y)dy = ψ(x) for all x ∈ D. This
implies,

lim
t↓0

1

t

t∫
0

ds

∫
ps(x, y)ψ(y)dy = ψ(x).

As φ andψ are bounded, we can use dominated convergence to complete the proof.�
Lemma 6.7.For everyφ ∈ C(�D) and every boundedψ ∈ B(∂D),

lim
t↓0

1

t

∫
D

dx φ(x)Ex

[ t∫
0

d�s ψ(Bs)

]
=

∫
∂D

σ(dy)φ(y)ψ(y).

Proof. From (2), and the symmetry of the density kernelp, we have

1

t

∫
D

dx φ(x)Ex

[ t∫
0

d�sψ(Bs)

]
= 1

t

∫
D

dx φ(x)

t∫
0

ds

∫
∂D

σ(dy)ψ(y)ps(x, y)

=
∫

∂D

σ(dy)ψ(y)
1

t

t∫
0

ds

∫
D

dx φ(x)ps(y, x).

Then, we get the result using arguments similar to the proof of Lemma 6.6.�
Denote byd(x) := d(x,F2) the distance betweenx andF2.

Lemma 6.8.For all T > 0, there exist constantsc > 0,K > 0 (depending onT ) such that for allt ∈ [0, T ], x ∈ �D
with d(x) > 0,

Px(τ2 � t) � c

√
t

d(x)
exp−

(
d(x)2

Kt

)
.

Proof. We havePx(τ2 � t) � Px(sup0�s�t |Bs − x| � d(x)). Then the lemma follows from (44) and standa
result on Brownian motion. �

Recall from Section 4 that

S1 = {
φ ∈ C2(D) ∩ C1(�D); �φ is bounded inD, ∂nφ = 0 onF1, φ = 0 onF2

}
.
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), for

(46)

ve
Lemma 6.9.For anyφ ∈ S1 and every boundedψ ∈ B(∂D),

lim
t↓0

1

t

∫
D

dx φ(x)Ex

[ τ2∧t∫
0

d�s ψ(Bs)

]
=

∫
F1

σ(dy)φ(y)ψ(y).

Proof. As φ ∈ S1, we have in particular thatφ ∈ C1(�D) andφ = 0 onF2. Hence, there is a constantK > 0 such
thatφ(x) � Kd(x). Let T > 0. We have fort ∈ [0, T ],∣∣∣∣∣1

t

∫
D

dx φ(x)Ex

[ t∫
0

d�sψ(Bs)

]
− 1

t

∫
D

dx φ(x)Ex

[ τ2∧t∫
0

d�sψ(Bs)

]∣∣∣∣∣
�

∫
D

dx
∣∣φ(x)

∣∣1

t
Ex

[
1{τ2�t}

t∫
t∧τ2

d�r ψ(Br)

]
� K ‖ψ ‖∞

∫
D

dx
d(x)

t
Ex

[
1{τ2�t}�t

]
� K ‖ψ ‖∞

∫
D

dx
d(x)

t
Px(τ2 � t)1/2

Ex

[
(�t )

2]1/2 � c

∫
D

dx
d(x)√

t
Px(τ2 � t)1/2, (46)

wherec is a constant independent oft ∈ (0, T ], and where we used the Cauchy–Schwarz inequality and (43
the third inequality and the fourth. By Lemma 6.8, we have for allx ∈ D,

lim
t↓0

1√
t
Px(τ2 � t)1/2 = 0 and

d(x)√
t

Px(τ2 � t)1/2 � c,

wherec is a constant independent oft ∈ (0, T ] andx ∈ D. Therefore we can apply dominated convergence in
to get the result. �
Lemma 6.10.For everyφ ∈ S1 and everyψ ∈ C(�D), we have

lim
t↓0

1

t

∫
D

dx
∣∣φ(x)

∣∣Ex

[∣∣ψ(Bτ2) − ψ(Bt )
∣∣1{τ2<t}

] = 0.

Proof. Let T > 0. Let c denote a constant independent oft ∈ (0, T ], which may vary. From Lemma 6.8, we ha
for all t ∈ [0, T ],∫

D

dx d(x)Px(τ2 < t) � c

∫
D

dx d(x)

√
t

d(x)
exp−

(
d(x)2

Kt

)
� c

√
t

∞∫
0

dr e−r2/Kt � ct.

As φ ∈ S1, there is a constantK ′ > 0 such that|φ(x)| � K ′d(x). Hence, we have for allt ∈ [0, T ],
1

t

∫
D

dx
∣∣φ(x)

∣∣Ex

[∣∣ψ(Bτ2) − ψ(Bt )
∣∣1{τ2<t}

]
� K ′

t

∫
D

dx d(x)Ex

[
1{τ2<t}EBτ2

[
sup

0�s�t

∣∣ψ(Bs) − ψ(B0)
∣∣]]

� c sup
x∈∂D

Ex

[
sup

0�s�t

∣∣ψ(Bs) − ψ(x)
∣∣].

Let ε > 0. As ψ ∈ C(�D) and �D is compact,ψ is uniformly continuous on�D and hence there existsδ > 0, such
that,|ψ(y) − ψ(x)| < ε for all x, y ∈ �D with |x − y| < δ. Then, we have
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sing
sup
x∈∂D

Ex

[
sup

0�s�t

∣∣ψ(Bs) − ψ(x)
∣∣] � ε + sup

x∈∂D

Ex

[
sup

0�s�t

∣∣ψ(Bs) − ψ(x)
∣∣1{sup0�s�t |Bs−x|>δ}

]
� ε + 2 ‖ψ ‖∞ sup

x∈∂D

Px

(
sup

0�s�t

|Bs − x| > δ
)
.

And therefore it follows by (44), that

lim
t→0

sup
x∈∂D

Ex

[
sup

0�s�t

∣∣ψ(Bs) − ψ(x)
∣∣] = 0.

This completes the proof.�
6.4. Proof of Lemma 2.1

In a first step, we give a representation formula forµ. For x ∈ D, define the measureh(x,dy) on F1, for any
Borel subsetA ⊂ R

d , by

h(x,A) = Ex

[
e−τ1 1A(Bτ1)

]
.

We setµ̃(dy) = ∫
D

dzh(z,dy), and we want to prove thatµ = µ̃.
From potential theory (see [4], Proposition VI.1.15), it is enough to check thatG1µ = G1µ̃ almost everywhere

on �D, where the functionG1ν is the 1-potential of the bounded measureν on �D, defined by

G1ν(x) =
∫

G1(x, y) ν(dy),

whereG1(x, y) = ∫ ∞
0 e−t pt (x, y)dt . Let ψ be a non-negative bounded measurable function defined on�D. We

have,∫
D

G1µ̃(x)ψ(x)dx =
∫
D

ψ(x)dx

∞∫
0

e−t dt

∫
D

dz

∫
pt(x, y)h(z,dy)

=
∫
D

ψ(x)dx

∞∫
0

e−t dt

∫
D

dz

∫
pt(y, x)h(z,dy)

=
∫
D

dzEz

[
e−τ1 EBτ1

[ ∞∫
0

e−t ψ(Bt )dt

]]
=

∫
D

dzEz

[ ∞∫
τ1

e−t ψ(Bt )dt

]

=
∫
D

dzEz

[ ∞∫
0

e−t ψ(Bt )dt

]
−

∫
D

dzEz

[ τ1∫
0

e−t ψ(Bt )dt

]
,

where we used the symmetry ofp for the second and the strong Markov property for the fourth equality. U
again the symmetry ofp for the first term of the last equation, we get∫

D

dzEz

[ ∞∫
0

e−t ψ(Bt )dt

]
=

∫
D

dz

∞∫
0

e−t dt

∫
D

dy pt (z, y)ψ(y) =
∫
D

dz

∞∫
0

e−t dt

∫
D

dy pt (y, z)ψ(y)

=
∫

dy ψ(y).
D
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of

he

tant

ion
Let p
F1
t be the density of the transition kernel ofB killed on F1. For t > 0, the functionp

F1
t (x, y) is sym-

metric (the proof of this fact is similar to the case whereB is a Brownian motion, see for example the proof
Theorem 2.4.3 in [14]). For the second term, we have

∫
D

dzEz

[ τ1∫
0

e−t ψ(Bt )dt

]
=

∫
D

dz

∞∫
0

e−t dt

∫
D

dy p
F1
t (z, y)ψ(y) =

∫
D

dz

∞∫
0

e−t dt

∫
D

dy p
F1
t (y, z)ψ(y)

=
∫
D

dy ψ(y)Ey

[ τ1∫
0

e−t dt

]
.

Therefore, we have

∫
D

G1µ̃(x)ψ(x)dx =
∫
D

dy ψ(y) −
∫
D

dy ψ(y)Ey

[ τ1∫
0

e−t dt

]

=
∫
D

dy ψ(y)Ey

[
e−τ1

] =
∫
D

G1µ(y)ψ(y)dy.

And we getG1µ = G1µ̃ a.e. inD. Thus we have

µ(dy) =
∫
D

dzh(z,dy). (47)

In a second step, we prove that for anyz ∈ D, the measureh(z,dy) is absolutely continuous with respect to t
surface measure onF1 (recall thath(z,F c

1 ) = 0 for all z ∈ D).
Let ψ be a non-negative continuous function defined on∂D, with closed support inF1. We have, forz ∈ D,

h(z,ψ) = Ez

[
e−τ1 ψ(Bτ1)

] = Ez

[
e−τ1 ψ(Bτ1)1{τ1<τ2}

] + Ez

[
e−τ1 ψ(Bτ1)1{τ1>τ2}

]
. (48)

Let τ = τ1 ∧ τ2 be the first hitting time of∂D. Sinceψ = 0 onF2,

Ez

[
e−τ1 ψ(Bτ1)1{τ1<τ2}

] = Ez

[
e−τ ψ(Bτ )

]
.

From similar arguments to those used in the proof of Proposition 3.11 in [3], there is a (negative) conscd

(dependent only ond), such that

Ez

[
e−τ ψ(Bτ )

] = cd

∫
∂D

ψ(y)
∂g1(z, y)

∂n(y)
σ (dy), (49)

whereg1(x, y) = ∫ ∞
0 e−t p∂D

t (x, y)dt , andp∂D
t is the density of the transition kernel of the Brownian mot

killed on ∂D.
From [12], there exists a continuous additive functional ofB, such that

Ex

[ ∞∫
0

e−t dL̃t

]
= Ex

[
e−τ2

]
.

Let G̃ be defined asG in Section 2.1 but forF1 replaced byF2. Using Theorem 2.2, withF1 replaced byF2, we
get the existence of a family of universally measurableσ -finite measures(H̃ x, x ∈ F ), on (Ω,F ), such that for
2 ∞
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y

any non-negative predictable process(Zs, s � 0) and for any non-negative functionf ∈ F∞, such thatf (δ) = 0,
we have

Ez

[∑
s∈G̃

Zsf ◦ is

]
= Ez

[ ∞∫
0

ZsH̃
Bs (f )dL̃s

]
.

From (4), with obvious changes, we deduce that

Ez

[
e−τ1 ψ(Bτ1)1{τ1>τ2}

] = Ez

[ τ1∫
0

e−s H̃ Bs
[
e−τ1 ψ(eτ1)1{τ1<∞}

]
dL̃s

]
.

Let ε > 0 and consider the compact set

K = {
x ∈ �D; d(x,F1) � ε, d(x,F1) � d(x,F2)

}
, (50)

andτK = inf{t > 0,Bt ∈ K} the hitting time ofK . Forx ∈ F2, we have, using the strong Markov property ofH̃ x

with respect toQ2
t , the kernel of the reflected Brownian motion killed onF2 (see [12], Theorem 5.1),

H̃ x
[
e−τ1 ψ(eτ1)1{τ1<∞}

] = H̃ x
[
e−τK EeτK

[
e−τ1 ψ(Bτ1)1{τ1<τ2}

]] = H̃ x
[
e−τK EeτK

[
e−τ ψ(Bτ )

]]
= H̃ x

[
e−τK cd

∫
∂D

ψ(y)
∂g1(eτK

, y)

∂n(y)
σ (dy)

]

= cd

∫
∂D

ψ(y)H̃ x

[
e−τK

∂g1(eτK
, y)

∂n(y)

]
σ(dy),

where we used (49) for the second equality. From this last expression, (49) and (48), we deduce that ther
measurable non-negative functioñf defined onD × F1 such that forz ∈ D,

h(z,ψ) =
∫
F1

f̃ (z, y)ψ(y)σ (dy).

From (47), we deduce thatµ is absolutely continuous with respect toσ and the density is given byρ(y) =∫
D

f̃ (z, y)dz, that is

ρ(y) = cd

∫
D

dz

[
∂g1(z, y)

∂n(y)
+ Ez

[ τ1∫
0

dL̃s e−s H̃ Bs

[
e−τK

∂g1(eτK
, y)

∂n(y)

]]]
.

Corollary 6.11. If ∂F = ∅, then the functionρ is bounded.

Proof. We keep the notations of this section. Since�F1 ∩ �F2 = ∅, we can chooseε > 0 small enough so that for an
(x, y) ∈ F1 × F2, |x − y| � 3ε. In particularK defined by (50) is in fact equal to{x ∈ �D; d(x,F1) � ε}.

Let PD be the Poisson kernel of the Brownian motion inD. There exists a positive constantCD , such that for
any(z, y) ∈ D × ∂D,

PD(z, y) � CDd(z, ∂D)|z − y|−d . (51)

As
∫
∂D

σ(dy)PD(z, y)ψ(y) = Ez[ψ(Bτ )], for anyψ ∈ B+(∂D), we deduce from (49) that

0� cd

∂g1(z, y) � PD(z, y). (52)

∂n(y)



J.-F. Delmas, P. Vogt / Ann. I. H. Poincaré – PR 41 (2005) 817–849 849

nt,

of

for this

lated

stochas-

matical

of Don

irkhäuser,

) (2005)

2.
05.
From this inequality and (51), we deduce easily thatcd

∫
D

dz
∂g1(z,y)
∂n(y)

is bounded from above by a finite consta

sayC0, independent ofy ∈ F1. Since by constructiond(eτK
, ∂D) > ε (on {τK < ∞} underH̃ x ), we get that for

anyx ∈ F2, y ∈ F1,

cdH̃ x

[
e−τK

∂g1(eτK
, y)

∂n(y)

]
� H̃x[τK < ∞] sup

{(z,y′);d(z,∂D)�ε ,y′∈F1}
cd

∂g1(z, y′)
∂n(y′)

= cH̃ x[τK < ∞],

for a finite constantc independent ofx ∈ F2 and y ∈ F1, thanks to (52) and (51). Arguing as in the proof
Lemma 8.3 of [6], we have that

sup
x∈F2

H̃ x[τK < ∞] < ∞.

This implies thatcdH̃ x[e−τK ∂g1(eτK
, y)/∂n(y)] is bounded from above forx ∈ F2 and y ∈ F1 say byC1. In

particular we have

ρ(y) � C0 + C1

∫
D

dzEz

[ ∞∫
0

e−s dL̃s

]
= C0 + C1

∫
D

dzEz

[
e−τ2

]
,

using the definition of̃L. This last inequality implies thatρ is bounded. �
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