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Abstract

The Brownian webcan be roughly described as a family of coalescing one-dimensional Brownian motions starting at all
times inR and at all points oR. The two-dimensionaPoisson treds a family of continuous time one-dimensional random
walks with uniform jumps in a bounded interval. The walks start at the space—time points of a homogeneous Poisson process
in RZ and are in fact constructed as a function of the point process. This tree was introduced by Ferrari, Landim and Thorisson.
By verifying criteria derived by Fontes, Isopi, Newman and Ravishankar, we show that, when properly rescaled, and under the
topology introduced by those authors, Poisson trees converge weakly to the Brownian web.
0 2005 Elsevier SAS. All rights reserved.

Résumé
La «toile brownienne » peut approximativement étre décrite comme une famille coalescente de mouvements browniens
unidimensionnels commencant, en tout temps de la droite réelle, a partir de tout point de la droite réelle. On montre qu’elle peut

étre approchée en un sens faible par une famille d’arbres poissonniens bidimensionnels.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction and results

Let S be a two-dimensional homogeneous Poisson process of paramétés a random subset @2, s € §
has coordinates, s».
Forx = (x1,x0) € R2, 1 > xp andr > 0, let M (x, , ) be the following rectangle

M(x,t,r):= {(x’l,xé): lx1 —x1] <1, x2< x5 < t}. 1.1

As t grows, the rectangle gets longer. The first timbat M (x, ¢, r) hits some (oanothef whenx € S) point of S
is calledr (x, S, r); this is defined by

t(x,S,r):= inf{t > x2. M(x,t,r)N (S \ {x}) * @}. (1.2)
The hitting point is the poink(x) € S defined by
a(x) = M(x,t(x,S, r),r)ﬁ(S\{x}), (1.3)

which consists of a unique point almost surelyx = somes € S, we say thatv(x) = «(s) is themotherof s and
thats is adaughterof «(s). Let «%(x) = x and iteratively, fom > 1, & (x) = a ("~ 1(x)). For the case of =
somes € S, o (x) = a" (s) is thenth grand mother of.

Now let G = (V, E) be the random directed graph with verticés= S and edges = {(s, a(s)): s € S}.
Ferrari, Landim and Thorisson [4] proved thatis a tree with a unique connected component and called it the
two-dimensionaPoisson treeThe drainage networks of Gangopadhyay, Roy and Sarkar [9] can be viewed as a
discrete space, long range version of the Poisson tree.

The Poisson tree induces sets of continuous paths. Fos angs, s2) € S, define the patik® in R? as the
linearly interpolated line composed by all edgés”1(s), «” (s)): n e N} of G. Let

X :={X*:seS), (1.4)

which we also call théoisson web
Clearly X depends on > 0 andr > O; if necessary we denote it B§/(x, 7). Taker = 1o = +/3/6,r =ro = /3,
and let

X1:= X (o, r0); Xs := {(6x1,8%x2) € R% (x1,x2) € X1}, 8 (0,1]. (1.5)

Namely, X is the diffusive rescaling oK.

Our main result is a proof thats converges in distribution to the Brownian web characterized in [7]. [7] in-
troduces a metric spacél, d) of continuous paths firstly, and then defines the Hausdorff metric sgacey)
of compact subsets @f1, d), whered;; andd are the corresponding metric functions. Denotefy the corre-
sponding Boreb -algebra generated ;. The Brownian web is characterized there &%{aF,)-valued random
variableWV (or its distributionuyy;) whose “finite-dimensional distributions” (in a sense made precise in [7]) are
coalescing one-dimensional Brownian motions

Theorem 1.1. The rescaled Poisson tre&g converge in distribution to the standard Brownian webSas 0.

Givento e R, > 0,a < b, and a(H, Fp)-valued random variabl€, letn, (to, t; a, b) be the{0, 1, 2, ..., co}-
valued random variable giving the numberdidtinct points inR x {zg + ¢} that are touched by paths In which
also touch some point ifu, b] x {to}. By the weak convergence criteria given in [7], for atly, F»)-valued
random variable$X,, }>° ; with noncrossing paths, to prove thg} converges to the standard Brownian web, one
may verify the following: For some countable denseBén R?,

(I1) There exis®; € X, such that for any deterministia, ..., v, € D, 6;*, ...,6," converge in distribution as
n — oo to coalescing Brownian motions (with unit diffusion constant) starting at. ., v,;;
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(B1) limsup,_, » SUR,.1)er2 Py, (0. 15 a,a + €) > 2) — 0 ase — 0+;
(B2) e tlimsup, . o, SUR, ;)cr2 Py, (f0. 1 a, a + €) > 3) — 0 ase — O+.

To prove the main result, we show in Section 2 that the Poisson Wglssitisfy the three hypotheses above.

The verification of {, on Subsection 2.1, relies on a comparison with independent paths and on the almost sure
coalescence of the Poisson web paths with each other. See Lemma 2.3.

In Subsection 2.2, an FKG inequality enjoyed by the distribution of a single Poisson web path (Lemma 2.6)
and the @Qr~1/2) decay of the coalescence time of two such paths (Lemma 2.7), combined;wtieltl both
B1 and B.. The argument is similar in spirit to the one for establishing weak convergence of coalescing random
walks to the Brownian web in [7]. The details are nonetheless substantially different, more involved here, due to
the dependence between the paths of the Poisson tree before coalescence. See the remark at the end of the pap
See also [3] for more details.

Working out a second example of a process in the basin of attraction of the Brownian web (the first example
is ordinary one-dimensional coalescing random walks) that is natural on one side, and that requires substantial
technical attention on another side, is the primary point of this paper. Its main result may have an applied interest,
e.g. in the context of drainage networks. The convergence results here may lead to rigorous/alternative verification
of some of the scaling theory for those networks. See [13]. Ordinary one-dimensional coalescing random walks
starting from all space—time points have also been proposed as model of a drainage network [14], so the latter
remark applies to them as well. Another application would be in obtaining aging results from the scaling limit
results for systems that could be modeled by Poisson webs, like drainage networks. For the relation between aging
and scaling limits, see e.qg. [7,5,6,8], and references therein.

2. Proofs

Coalescing random walks.Let S be the Poisson process with parameter 0, fix somer > 0. For anyx =
(x1,x2) € R?, let t"(x) = [a" (x)]2, n > 0, be the second coordinate@f(x) and considef£*(r): ¢ > x»} as the
continuous time Markov process defined by

£%(t) = [a"(x)],, the first coordinate of" (x); ¢ € [r"(x), 7" (x)), n=>0. (2.1)
We remark that for any fixe@i'}” |, with x’ = (xi,x}) e R? fori =1,...,m, ((EX (1) t > xb),i=1,...,m}
defines a finite system of coalescing random walks starting at the space—timexpointsx”.

For x = (x1, x2) € R?, letxs = (8 1x1, 8 2x2), & € (0, 1]. For the single random walk starting.at= (x1, x2),
£%(.), defined in the last paragraph, the diffusive rescaling is

EX (1) :== 88" (87 %), fort>xp; §€(0,1]. (2.2)

Since the characterizing theorem and the weak convergence criteria given in [7] apply to continuous paths only,
we need to replace the original processes by their linearly interpolated versions:

8§72 — " (x5)
L (xs) — T (x5)

B =6 (") + (6 (" o) - £ (") | 2:3)
for 1 > xz such that =2 e [t"(x5), " (x5)), n > 0; 8 € (0, 1], x € R?. Denote byé; the corresponding continu-
ous path inR? and note thag; is justX* in (1.4) withs € S. Itis straightforward to see thgf < X, the Poisson
web defined by (1.5), if and only is € S.

Let

ifx(gES,

-y (2.4)
s = _ 2 . .
55(5[0!(%)]1,8 ()2 gtherwise.
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In this way, for allx € R? and$ € (0, 1], 05 € Xs. Note that the paths defined by (2.3) and (2.4) depend on the
choice ofA > 0 andr > 0. In case of necessity, we denote thengbyi, r) ando; (1, r).
The following is an application of the classical Donsker’s theorem [2] to our case.

Lemma2.1. If A =xo=+/3/6,r =rg =3, thenég‘ converges in distribution as— 0to B¥, the Brownian path
with unit diffusion coefficient starting from space—time paigt (x1, x2) € R2.

Foranyxl,...,x" e R, m €N, regard(ég‘l, B and @', ..., 6") as random variables in the product
metric space 1™, d*"), whered*" is a metric on/T™ such that the topology generated by it coincides with the
corresponding product topology. Here we choose and define

*m 1 m 1 m\] _ [}
A [ 0 N (Y )]—lg}&gnd(é .0, (2.5)

forall (¢1,...,&™),(¢L,...,¢™) e T™, whered was defined in [7]. The next result follows immediately from the
definition.

Lemma2.2.
P {d ™ [E .. &, 0F,....08")] =€) >0, ass—0 (2.6)
foralle >0, >0,r>0,andx?, ..., x" € R2 m € N, whereP, is the probability distribution of, the Poisson

process with parametek.
2.1. Convergence in finite-dimensional cases: verification of condition |

Let D be a countable dense set of point&ify to verify condition , by Lemma 2.2, we only need to prove the
following.

Y —ym
LemmaZ2.3. (say e Eg' ) converges in distribution as— 0 to coalescing Brownian motiorf&ith unit diffusion
constan} starting aty?, ..., y" (e D).

For the finite system of coalescing random walks defined in the last subsection, Ferrari, Landim and Thorisson
[4] proved that, for any, y € R?, the random walkg* (r) and£”(r), t > x2 v y» will meet and then coalesce
almost surely. This also follows from Lemma 2.7 below. The following is a corollary of this result.

Lemma2.4. Foranyi > 0,r > 0, Py {sups,, & () —& (1)| > o} — 0,asc — oo forall x, y € RZ with xz = y».

Now, for anym distinct pointsyl,..., y" € D ands$ € (0, 1]. Let éayl, el égm be them rescaled continuous
random paths defined in (2.3) from the same Poisson processiwitho = +/3/6 andr = rg = +/3. Having

- '1 =y . . . . . . . .
(& ,...,& ) asarandom element i, we want to define a functiogi; from it to /7. This is our main idea
-1 —ym .
for the verification of condition;l: we define what we calls-coalescence” of the random pamlé e, gg in
-1 —ym
such a way that, in the systef@(g-‘(gV s ssy ), before any-coalescence, the paths involved are independent.

1 m
We definefs by renewing the whole system step by step as follows. Consider...,&; ), the rescaled finite
system of coalescing random walks starting at the space—time pdints, y™. Let ys.0 = min(y%, ..., yy), and
we assume that > 0 is close enough to 0, so that, in particular, the following stopping times we need are well
defined.
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For (ssyl, o gaym), ast (> ys.0) grows, letys , 1< k <m — 1, be the time when thkth §-coalescence occurs.
We say as-coalescence occurs at timg if 7o is the time when two particles get within a distance smaller than
24/35. Once as-coalescence occurs, we renew the system by coalescing the two particles tddfedheand
then wait for the nexé-coalescence.

Denote the linearly interpolated versions of the resulting object after renewind times by ;s (éayl, s éaym)
and, with that, finish the definition of the functigfy. Clearly, fors € (0, 1] small enough, we have

—00 <Ys.0<Vs 1< <VYsm—1<O0 (2.7)
and the functionf; is well defined almost surely.
Now, suppose thafayi has the same distribution d%/i, 1<i <m, and, as a random element @™,
(§8y1,...,§5ym) has independent components. It is easy to see that the funfiti@also well defined for the
random pathséayl, ....&"). LetCcs c ™ be such that

P{E ... 8" eC) =1 2.8)

and, onCs, fs is well defined.
For anyyl,...,y" € D, let Byl, ..., B"" be m independent Brownian paths starting at space—time points

y1 ...,y respectively. As Arratia did in [1], we constructa §8¢", ..., B>} of m one-dimensional coalescing
Brownian motions starting at?, ..., y™ by defining an almost surely continuous functigrirom 7" to 1™ as

follows. The first Brownian path of the se&", is B”" itself. Once we havéB”", ..., B}, we defineB*" to be
equal toB”" till that path first hits any oB>", ..., B¥" ", sayB’; thence on it coincides witB? . This procedure is
a.s. well defined, and the system resulting after 1 steps is the so-called one-dimensional coalescing Brownian

m

motions starting at space—time points ..., y”, which we denote b)f(Byl, ..., BY"), as a function of then
independent Brownian motiortsyl, U 2

Lemma2.5. Let (ég"l, s éaym) be them rescaled continuous random paths define¢Pii3) from the same Poisson
process withh = 1o = +/3/6 andr = ro = /3, and(ég’l, e Saym) have independent components égildhave the
same distribution ag”’ for all 1<i <m. Then,

(a) fg(égl, ...,&") has the same distribution eys(égl, LLEY

(b) f,;(égyl, o E(Sym) converges in distribution t¢' (B, ..., B") ass — 0;

(c) foranye > 0, ]P’{d*m[f(;(ég’l, s 55”"”7), (ég’l, e §5ym)] >¢€} — 0, ass — 0. 4*" was defined irf2.5).

Proof. (a), (c) Immediate from the definition ¢f; and Lemma 2.4. For (b), it is straightforward to check that, for
anyc=(cl,...,c" eC,cs =(cy,...,cl") € Cs,d*™(cs, c) — 0 impliesd*" (fs(cs), f(c)) — 0 ass — 0. Thus,

an extended continuous mapping theorem of Mann and Wald [11], Prohorov [12] (see also Theorem 3.27 of [10])
gives (b). O

Lemma 2.3 is an immediate consequence of Lemma 2.5. Thus, condifionthe Poisson welXs, § € (0, 1]
follows from Lemma 2.2.

2.2. Verification of conditions Band B

Consider the Poisson proce$svith parametei > 0 and the corresponding Poisson téée= X (1, r) defined
in (1.4) with respect to some fixed> 0. Givenfg € R, r > 0, a,b € R with a < b, let n, (to, t; a, b) be the
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{0,1,2,...,00}-valued random variable defined right after the statement of Theorem 1.4, It t; a, b) be
another0, 1, 2, ..., oo}-valued random variable defined as the number of distinct peigt$y1, y2) € R x {tg+1¢}

such that there existse S with so < 19, £ (t0) € [a, b] and &5 (g + t) = £°(y2) = y1, whereé&® is the Markov
process defined in (2.1). It is straightforward to see that, for any fixed¥,

nx(to, t;a,b) >2n=nx(to,t;a —2r,b+2r) >n=nx(to, t;a —4r,b +4r) > n. (2.9)

This implies that, to verify conditions B B for the Poisson treeX’s, we only need to verify the following B
and B,.

(BY) limsup,_,  P(75,(0,1;0,€) > 2) — 0 ase — 0+,
(BY) e Llim Sup,_, o P(ijs, (0, £; 0, €) > 3) — 0 ase — 0+

for any sequence of positive numbésgs) such that lim_, » 8, = 0, whereis = i7x;, and we have used the space
homogeneity of the Poisson point process to eliminate thg, §y@z2 and puta =70 = 0.

Here, we firstly introduce an FKG inequality for probability measures on the path space, which will play an
important role in our proofs. Let = £ (%9 be the random path starting at the origin defined in (2.1); denof@ by
the space of paths whefetakes value. We define a partial order™on IT as follows. Givenry, m; € 11,

w1 <mp ifandonlyif mi(t) —mi(s) <m2(t) —ma(s) forallz>s>0. (2.10)

Define increasing events il as usual. Denote by; the distribution of on I7.

Lemma 2.6 (FKG Inequality) u: satisfies the FKG inequality, namely, for any increasing event8 C IT,
1 (AB) > e (A)pue (B).

Proof. Follows by discretizings as a discrete time random walk, and then using FKG for its i.i.d. increments.
Details can be found in [3]. O

Let £00, £:0 » > 1 be two of the random walks defined in (2.1). Denoteyy the difference between
them. ThenA,, is a (space inhomogeneous) jump proces®jmo) with absorbing state 0: Im € [r, 00), it has
rates(2r + x A (2r))A and jump laws
_2r—x A (2r) 2(x A (2r))
T 2r+x A(2r) T A 2r)
wheres;_,, is the usual Dirac measure atidr — x, r] is the uniform distribution ofrr —x, r]. Let7 =inf{z > 0:
Ay (1) =00 () — @0 1) =0}

U[r—x/\(Zr),r], (2.11)

Vy

Lemma 2.7. There exists a constant> 0 such thatP(7 > ¢) < ¢/+/t for anyt > 0, wherec depends om and
only.

Proof. Follows by a coupling ofA»,. and a space homogeneous process which has the same transition distribution
as A, outside a neighborhood of the origin. Inside that neighborhood they are not too different, so that the result
for Ay, follows from that the analogous one for the homogeneous process, which is a random walk, and for which
that result follows from standard arguments. Details can be found in [3].

Now, we begin to verify conditions’Band B,. By Lemma 2.3, it is straightforward to get that,
lim supP(15,(0,1; 0, €) > 2) = 2¢(e/v/2) — 1, (2.12)
n— o0
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wheres$, is any sequence of positive numbers converging to @ as oo, ns = nx;, and¢(x) is the standard
normal distribution function. By (2.9), (2.12) witf, replacingny, also holds. This gives’B
Verifying B}, for the Poisson welX s is equivalent to checking that for amy- 0

e tlimsupP(ijx, (0,tN;0,e¥/N) >3) - 0 ase — 0+, (2.13)
N—o0

whereX is defined in (1.5).

For that, fix: > 0. On the Poisson fiel with parametei = 1g = +/3/6, choose" = ro = +/3, and then define
X1 as in (1.5). We first condition the probability in (2.13) on the set of points of intersection, in increasing order,
of the pathst®, s € S, with [0, e+/N 1, denoted K1, ..., K}, whereJ, K1, ..., K; are random variables, with
an integer which can equal 0 (in which case set of intersection points is empty by convention). We note that by
the definition of&*, s € S, no two distinctK;’s can be at distance smaller than For {x1, ..., x,} C [0, /N1,
let&; := 60 1< j<n, asin (2.1). Lety = n/(x1,...,xn) = I{£;(tN): 1< j < n}| (conventioned to be O if
{x1,...,x,} =0). Clearly, J, K1, ..., K; depend only on the points & below time 0. Thus, since’ depends
only on the points of above and at time O for alk1, ..., x,} C [0,e/N 1, givenJ =n, K1 =x1,..., Kj = xp,
the probability in (2.13) equalB(n’ > 3).

We derive next an upper bound for the latter probability which is independént af. ., x,, }. First, we enlarge,
if necessary, the sét, ..., x,} to make sure that; =0, x,, = e+/N, andrg < xj—xj_1 < 2rg. This also ensures
thatn < e+/N/ro+ 1, and the enlargement can only increase the probability to be estimatéd: &, then there
should be some & j <n —1suchthat;_1(tN) <&;(tN) <&,(tN). Hence,

n—1

P’ >3) < ) P(§-1(tN) <§;(tN) <£,(N))
=2
-1

~ \.
|

I
||M

/ (6/-1(tN) <&;(tN) <& (tN)|§; = ) pe; (dm)
ﬁ

Il
||M|

f (6/-1(tN) <& (tN)|E; = 7)P(§;(1N) < £a(1N)|§j = ) e, (), (2.14)

whereﬁj is the state space d@f;, and ., its distribution. In the latter equality, we used the independence of
£;_1(tN) <&;(tN) and&;(tN) < &,(tN) conditioned ort; = .

We claim now thatP(§;_1(tN) < £;(tN)|&; = m) decreases im andP(¢;(tN) < &,(tN)|§; = ) increases
in 7. (The reader should check it.) This and the FKG Inequality fgr (Lemma 2.6) imply that the right-hand
side of (2.14) is bounded above by

n—1 n—1
3 P(5j-1(N) < 5N B(E;(tN) < E:(tN)) < P(Eo(tN) <&, (1N)) Y P(§;-1(tN) < &;(1N))
j=2 j=2

sinceP(§;(tN) < &,(tN)) is clearly nonincreasing ifi. Now the probabilities inside the sum are all bounded
above byP(E©QO (1 N) < £200N)), and we get

PGy > 3) <nP(ECO(N) < £Z00(N))P(ECO(1N) < £€VN-O N
f

where7 is the time wherf(ov(’) and £@0.9 meet and coalesce, afd y is the analogue time fa§©? and
g(e«/ﬁ,O)_
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Now, let us consider the items at the right-hand side of the latter equation. By Lemma 2.3,
limsupP(Z¢, y > tN)=P(Zc.p > 1),

N—oo
whereZ;  is the time when two i.i.d. Brownian motions starting at the same time at distaapart meet and
coalesce. Thus the latter probability is ate®for everytr > 0 fixed. By Lemma 2.7P(7 > tN) < c¢/~/tN. These
estimates imply that

lim supP(7x, (0, N 0, Gx/ﬁ) >3) < IimsupﬂP(T >tN)P(T¢y > tN) = O(ez),

N—oo N—oco 10

and we get B for X;.

Remark. The argument for Bin [7] for establishing weak convergence of coalescing random walks to the Brown-
ian web also relies on an FKG property of the path distributions. But in that case, it is a stronger FKG property
than in the present case. It allows boundit@ > 3) above by{P(5 > 2)]2, and then the use ofBIn particular,

it is not necessary in that case to have an estimate of a microscopic quantitylike r N), on which we had to

rely in here.
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