Available online at www.sciencedirect.com

SGIENCE@DIHEGT’

ELSEVIER Ann. 1. H. Poincaré — PR 41 (2005) 859-870

ANNALES
DE L'INSTITUT
HENRI
POINCARE

PROBABILITES
ET STATISTIQUES

www.elsevier.com/locate/anihpb

Forward estimation for ergodic time series

Gusztav Morvat, Benjamin Weis8*

@ Research Group for Informatics and Electronics of the Hungarian Academy of Sciences, 1521 Goldmann Gyorgy tér 3, Budapest, Hungary
b Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received 29 August 2003; accepted 15 June 2004

Available online 5 February 2005

Abstract

The forward estimation problem for stationary and ergodic time s¢kig° , taking values from a finite alphabat is to
estimate the probability that,,,; = x based on the observationg, 0 < i < n without prior knowledge of the distribution
of the proces$X, }. We present a simple procedugg which is evaluated on the data segmeéXip, ..., X,;) and for which,
error(n) = |gn (x) — P(X,4+1 =x|Xo, ..., X»)| — 0 almost surely for a subclass of all stationary and ergodic time series, while
for the full class the Cesaro average of the error tends to zero almost surely and moreover, the error tends to zero in probability.
0 2004 Elsevier SAS. All rights reserved.

Résumé

Le probleme de I'estimation future d’une série temporelle ergodique et statiofigif& ,, prenant ses valeurs dans un
alphabet fini', est d’estimer la probabilité que, 1 = x, connaissant leX; pour 0< i < n mais sans connaissance préalable
de la distribution du processiX;}. Nous présentons un procédé simple évalué sur les donné€xy, ..., X,), pour lequel
erreucn) = |gn (x) — P(X, 41 = x|Xo, ..., X»)| — O presque slrement pour une sous-classe de toutes les séries temporelles
ergodiques et stationnaires, tandis que pour la classe entiére la moyenne de Cesaro de I'erreur tend vers zéro presque sireme
De plus, I'erreur tend vers zéro en probabilité.
0 2004 Elsevier SAS. All rights reserved.

MSC:62G05; 60G25; 60G10

Keywords:Nonparametric estimation; Stationary processes

* Corresponding author.
E-mail addresseamorvai@szit.bome.hu (G. Morvai), weiss@math.huji.ac.il (B. Weiss).

0246-0203/$ — see front mattér 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.07.002



860 G. Morvai, B. Weiss / Ann. |. H. Poincaré — PR 41 (2005) 859-870

1. Introduction

T. Cover [6] posed two fundamental problems concerning estimation for stationary and ergodic binary time
series{X,};2_ .. (Note that a stationary time serigx,};° ; can be extended to be a two sided stationary time

series{X,}52 _...) Cover’s first problem was on backward estimation.
Problem 1.1s there an estimation schenfgfor the valueP (X1 =1|X_,, ..., Xo) such thatf,, depends solely on
the observed data segmént_,,, ..., Xo) and

im |fu(X_n, ..., X0) — P(X1=1|X_,,..., X0)| =0
n—oo
almost surely for all stationary and ergodic binary time sefleg®>° _ _?

This problem was solved by Ornstein [20] by constructing such a scheme. (See also Bailey [5].) Ornstein’s
scheme is not a simple one and the proof of consistency is rather sophisticated. For an even more general case
a much simpler scheme and proof of consistency were provided by Morvai, Yakowitz and Gydrfi [19]. (See also
Algoet [1] and Weiss [24].) Note that none of these schemes are reasonable from the data consumption point of
view.

Cover’s second problem was on forward estimation.

Problem 2.1s there an estimation schenfg for the valueP (X,,+1 = 1| Xy, ..., X,) such thatf, depends solely
on the data segme(Xpy, ..., X,) and

lim | f,(Xo, ..., Xn) — P(Xp31=1Xo, ..., X,)| =0
n—oo
almost surely for all stationary and ergodic binary time seflgg>> 7

This problem was answered by Bailey [5] in a negative way, that is, he showed that there is no such scheme.
(Also see Ryabko [22], Gyorfi, Morvai and Yakowitz [11] and Weiss [24].) Bailey used the technique of cutting
and stacking developed by Ornstein [21] and Shields [23]. Ryabko’s construction was based on a function of an
infinite state Markov-chain.

Morvai [16] addressed a modified version of Problem 2. There one is not required to predict for all time instances
rather he may refuse to predict for certain values .dflowever, he is expected to predict infinitely often. Morvai
[16] proposed a sequence of stopping timgsind he managed to estimate the conditional probat#ity,,+1 =
1/Xo, ..., X3,) in the pointwise sense, that is, for his estimator along the proposed stopping time sequence, the
error tends to zero asincreases, almost surely. Another estimator was proposed for this modified Problem 2 by
Morvai and Weiss [17] for which thg,, grow more slowly, but the consistency only holds for a certain subclass of
all stationary binary time series.

In this paper we consider the original Problem 2 but we shall impose an additional restriction on the possible
time series. The conditional probability (X, =1]..., X_1, Xo) is said to be continuous if a version of it is
continuous with respect to metrEj’io 2L x_; — y_i|, wherex_;, y_; € {0, 1}.

Problem 3.1s there an estimation schenfg for the valueP (X,,+1 = 1|Xo, ..., X,) such thatf, depends solely
on the data segme(Xpy, ..., X,) and

lim | fu(Xo,.... Xn) — P(Xp41=1Xo, ..., X,)| =0
n—>oo

almost surely for all stationary and ergodic binary time sefigglo® _  with continuous conditional probability
P(X1=1]...,X_1,X0)?
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We will answer this question in the affirmative. This class includeg-atiep Markov chains. It is not known if
the schemes proposed by Bailey [5], Ornstein [20], Morvai, Yakowitz and Gyorfi [19] solve Problem 3 or not.

Problem 4.1s there an estimation schenfg for the valueP (X,+1 = 1| Xo, ..., X,;) such thatf,, depends solely
on the data segme(Xy, ..., X,) and

-1
.15
lim =37 fi(Xo..... X)) — P(Xix1=1IXo..... X;))| =0
n—-oon [:0

almost surely for all stationary and ergodic binary time seflgg>° _ . ?

Bailey [5] (cf. Algoet [2] also) showed that any scheme that solves Problem 1 can be easily modified to solve
Problem 4 (indeed, just exchange the data seg#ent, ..., Xo) for (Xo, ..., X,), but apparently not all solutions
of Problem 4 arise in this fashion. For further reading cf. Algoet [1,3], Morvai, Yakowitz and Gydrfi [19], Gyorfi
et al. [8], Gyorfi, Lugosi and Morvai [10], Gyorfi and Lugosi [9] and Weiss [24].

Problem 5.1s there an estimation schenfg for the valueP (X,,+1 = 1| Xy, ..., X,) such thatf, depends solely
on the data segmenky, ..., X,,) and for arbitrary > 0,

lim P(|f,(Xo, ..., Xn) — P(Xp41=1Xo,...,X,)| >€)=0
n—oo

for all stationary and ergodic binary time series,}>° _ ?

By stationarity, for any scheme that solves Problem 1, the shifted version of it solves Problem 5. (Just replace
the data segmen¥ _,,, ..., Xo) by (Xo, ..., X,).)

There are existing schemes that solve Problem 4 (e.g. Bailey [5], Ornstein [20], and even for a more general case
Morvai, Yakowitz and Gyorfi [19], Algoet [1], Gyorfi and Lugosi [9]) and there are schemes that solve Problem 5
(e.g. Bailey [5], Ornstein [20] and for even more general case Morvai, Yakowitz and Gyorfi [19], Algoet [1],
Morvai, Yakowitz and Algoet [18]). In this paper we propose a reasonable, very simple algorithrsimiblainously
solves Problem 3, 4 and 5. Note that the schemes given by Bailey [5], Ornstein [20], Morvai, Yakowitz and Gyorfi
[19], Algoet [1] and Weiss [24] are not reasonable at all, they consume data extremely rapidly, cf. Morvai [15] and
it is not known if their schemes solve Problem 3 or not.

2. Preliminaries and main results

Let {X,}> be a stationary time series taking values from a finite alph&b¢Note that all stationary time

n=—oo

series{X,}>°, can be thought to be a two sided time series, thathig};,>_,.) For notational convenience, let
X! =Xm,..., X,), wherem < n. Note that ifm > n thenX’, is the empty string.

Letg: X — (—o0, 00) be arbitrary.

Our goal is to estimate the conditional expectatiog (X,41)| X) from samplesxy.

For k > 1 define the stopping time#‘(n) which indicate where the-block X, _, ., occurs previously in the
time serie§ X,,}. Formally we selré‘ (n)=0and fori > 1 let

)y =min{tr > ) X2 =X, ) (1)
Let K, > 1 andJ, > 1 be sequences of nondecreasing positive integers tendirgwbich will be fixed later.
Definek, as the largest ¥ k < K, such that there are at leakt occurrences of the block” in the data

n—k+1
segmentXg, that is,

kn=max{l<k <K, 5 (n)<n—k+1] 2)
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if there is suchk and 0 otherwise.
Definei, as the number of occurrences of the bIde}gKnH in the data segmerX, that is,

o =max{1< ji T <n—ky + 1} )

if k, > 0 and zero otherwise. Observe thatjf> 0 thena, > J,,.
Our estimate, for E(g(X,41)|Xp) is defined ago = 0 and forn > 1,

A
l n
8n = W Zg(X”—TiK" m)+1) 4)
=1

if x, > 0 and zero otherwise.
Let X*~ be the set of all one-sided sequences, that is,

X = {(...,x_l,xo): x;eXforall —oo<i <0}.
Define the functiorG : X*~ — (—o0, 00) as
G(x%) = E(g(XDIX% =x°).

Note that as a conditional expectation this is only defined almost surely. Eggv)it= 1(,—;, for a fixedz € X
thenG(y°,,) = P(X1=2|X% =y ).
Define a distance oA*~ as

o
d*(xgoo, ygoo) = Z 2_1_11{)64#)'4}'
i=0

Definition. The conditional expectatioG(X?oo) is said to be continuous if a version of it is continuous on the
set X*~ with respect to metriel*(-, -). Since this space is compact, in fact, continuity is equivalent to uniform
continuity.

The processes with continuous conditional expectation are essentially the Random Markov Processes of Ka-
likow [12], or the continuous g-measures studied by Mike Keane [13].

Theorem. Let {X,} be a stationary and ergodic time series taking values from a finite alphdbgssumeX,, =
max(1, [0.110g y,n]) and J, = max(1, n%57). Then

(A) if the conditional expectatioG(Xo_oo) is continuous with respect to metu€ (-, -) then
lim |g, — E(g(X,+1)|X5)| =0 almost surely,
n—o0
(B) without any continuity assumption,

n—1

.1 ;
lim - Z;|gi — E(g(Xi4+1)|Xh)| =0 almost surely,
=

(C) without any continuity assumption, for arbitraey> 0,

lim_P(|g, = E(g(Xa11)IX5)| > €) =0,

Remarks.Note that these results are valid without the ergodic assumption. One may use the ergodic decomposition
throughout the proofs, cf. Gray [7], p. 268.
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We note that from the proof of Ryabko [22] and Gyorfi, Morvai and Yakowitz [11] it is clear that the continuity
condition in the first part of the theorem cannot be relaxed. Even for the class of all stationary and ergodic binary
time-series with merely almost surely continuous conditional probabHit}; = 1/..., X_1, Xo) one cannot
solve Problem 2 in the Introduction. (An almost surely continuous conditional probability is such that as a function
restricted to a sef with full measure, it is continuous af.)

We do not know if the shifted version of our proposed schegmsolves Problem 1 or not. (That is, in the case
wheng, is evaluated oniX_,, ..., Xo) rather than oriXo, ..., X;).)

If X is a countably infinite alphabet then there is no scheme that could achieve similar result to part (A) in the
theorem for all bounded(-), even if you assume that the resultiGg-) is continuous, and the time series is in fact
a first order Markov chain. Indeed, whenever a new state appears which has not occurred before, you are unable tc
predict, cf. Gyorfi, Morvai and Yakowitz [11].

3. Auxiliary results

Fork > 1,n > 0and; > 0 it will be useful to define auxiliary process{aﬁ;l.(k’”’j)};’i_oo as follows. Let

v (k.n,j) :
X; n.J :Xn—rj’.‘(n)+i for —oo <i < o0. (%)

For an arbitrary stationary time serig,} for k > 1 let f(’)‘(YEOOO) =0 and fori > 1 define
(Y2 =minfr > 7 (Y23): Y0y, = Y04} 6)

If it is obvious on which time serieg! (Y>%) is evaluated, we will writeX. Let T denote the left shift, that is,
(Tx2%)i = Xit1.
We will need the next lemmas for later use.

Lemma 1.Let{X,} be a stationary time series taking values from a finite alphabefor k > 1,n > 0andj >0,
the time serie$Xl.(k’"”)}l?‘i_oo has the same distribution 4&;}°

i=—o00"

Proof. Note that by (1), and (6),

n—r}‘(n)—t—m
n—r}‘ (n)+l1

T"5(X =xlm,rjl~‘(n)=s}={Xf’=xlm,r~ =5}

J

wherefj’.‘ is evaluated on time seri¢X;}° . Now by (5) and stationarity,
n—r}‘(n)—t—m

00
n—tk(n)+ = xlm’ rf(n) =s)= Z P(le = xlm’ 3 5)
J

o0
Sk,n,j Sk,n,j
PEM) =, XN =x) =Y P(X i =
s=0 s=0

=PX]"=x")

and the proof of Lemma 1 is completen

Lemma 2. Let {X,} be a stationary and ergodic time series taking values from a finite alph&bgkssume
K, — 00, J, — oo andlim,_, - (J,/n) =0. Then

lim x, =oco0 almost surely.
n—>oo
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Proof. We argue by contradiction. Suppose, that= K, XZILK = x?K for a subsequence;. Then a simple
frequency count (in the data segmeﬁ}' there are less than,, occurrences of bIock?K) yields that
J;
0 0 ; n
= < Ilm — =
P(X~g x_K)\nll " 0.

The set of sequences that contain a block with zero probability has zero probability and thus Lemma 2 is
proved. O

4. Pointwise consistency
Proof of Theorem (A). By Lemma 2, for largex,

|60 (¥) — E(g(Xns0)1X5)| = Zg(xn o 1) — E(8(Xa11) 1 X()

J
1 n—t; (n)
< max rpaxkn;jZ_l[g@n;ynHl) G(X_ >]’
1 n—r}("(n) n
=Y G(X_o )= E(e(Xat1)IXg)|.
n .
Concerning the first term, by (1), (6) and (5),
1 n—t; ) 1 =
5 o) i o) (k )
728X i) — G D] =5 ) [sX RN AP )] @
j=1 j=0
wherer is evaluated orﬁX(k Py . Since by Lemma 1
(kn.J) g k.nJ) (k.n,J) (k.n.J) 5 (k.n,J)
G XD X = (gL XA XED),

~k

the pair(I'; = g(X(f; ”lj)) Ge(.. XE'Z ”1”, X(k nd)y Fj= a(X_Oo)) forms a martingale difference sequence

(E(I'j1Fj)) =0 andF is measurable W|th respectqu) for which Azuma'’s exponential bound (cf. Azuma [4])
yields

J-1
1 2
Sk,n,J) (knJ) J/B
P(JEO[ (XIH) G(.. , )]>e><2e
J_

for any B such that max x |g(x)| < B. Now by (7)

n—r]l.{(n)
Z g(Xn—rjI.‘(n)+1) - G(X—OO )]

P( max max
j=

J=Jy,...nk=1,...,

2
> e) <nkK,2e € //B

and by assumptionk,2 e ¢ 2In/B sums up and the Borel-Cantelli Lemma yields almost sure convergence to zero.
Concerning the second term,

}")l

1 n— rK”
=360 ")~ (G0 1X5)]

n /—l

— 0 almost surely
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— Kn
n—t; (n)

sincex;, tends to infinity by Lemma 2X = X" for 0 < j < Ay, and the conditional expectation

n—r}(’l(n)—/(,,—i-l_ n—ip+1
G () isin fact uniformly continuous o/~ with respect taZ*(-, -). The proof of Theorem (A) is complete.

5. Time average performance

If the process does not have continuous conditional expectations then the last step in the proof of Theorem (A) is
not valid. It can be carried out for most time instangdsy using the typical behaviour of almost every realization
x%,. More specifically, for everg > 0, the probability of the set of thos€ , for which

|E(g(XDI1X% 1 =x%,1) — G2 )| <8 forallk >k

tends to one a¥x tends to infinity. The typical behaviour we are after is the statement that most of the times
t =n — 13" (n) the sequenc&’x’ __ belongs to the above mentioned set. While this need not be the caserfor all
itis true f/or most:’s and the next lemma makes this precise. For the analysis we will fix a vakjeadk.

Define the set of good indexé$,, (5, K) C{K —1,...,n — 1} as

M8, K)={K —1<i<n—1: |E(g(Xi+DIX!_1;1) —G(X_ )| <8 forallk>K}.

We will analyze the behaviour of our algorithm fey, = k for eachi < n by first dividing up the indices
{1,2,...,n} according to the value of;_, ., = y9k+1, and considering what happens for each of these.

Let y0, ., € XX, Define the set of indexes (y%, ;) € {k — 1,...,n — 1}, where you can find the pattern
¥ 41, thatis,

If(y9k+1) = {k —l<isn-L le:—k+1 = y9k+1}~
Define Dy (i) as

ke ks . . . e ko .
Dk(l.):{({;j(z). ) <i—k+land1<j<i+1) if () <i—k+1,

otherwise.
Let EX (8, K) be defined as

EXGS, K)={0<i <n—1: |De(i) N My(8, K)| > (1—8%%)| Dy (i)}

If the number of occurrences @Ek+1 prior toi was not enough for our algorithm thén. (i) will be empty. This
is rare, and can be expressed as follows: Let

Fy={0<i<n—1: Di(i) =0}
It is immediate that

|FX| <X, (®)
Lemma 3.AssuméM,, (8, K)| > (1 — 8)n. Then

[{0<i<n—1:1¢EN@S, K)andl ¢ Ff}| <8%n.

Proof. Fix 8, K, k andx € X. Temporarily fix a|5q19k+1 e Xk Letz = |I,’f(y9k+l)| and letk <ip <iz<---<i;
denote the elements &f (y%, ;). Leti; (2, ;) be the largest element of I (y, . ;) such thatDy (i) # ¥ and

{o<I<n—1:1eDiy)andl ¢ M,(8, K)}| > 8%°| Delij).
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Define S to be the set of these indexes)éﬂsﬂl varies over all element. Itis clear that ifi, j € S, i # j then
Dy (i) N Di(j) = ¥ since different blocksgk+l are involved. It follows from the construction thi@; (i)};es is a
disjoint cover off0 <1 <n—1:1 ¢ EX(8, K) andl ¢ F¥}. It follows that

ns > [{0<i<n—1:1¢ M8, K)}| 2> [{0<I<n—1:1eD(i)andl ¢ M,(5, K)}|

ieS
>8%%3 | De(i)| = 6%°| L De ().
ieS ieS
Now
{o<i<n—1:1¢ENG. K)andl ¢ Fy}| < || Di()| <8%°n
ieS
and the proof of Lemma 3 is completex
Proof of Theorem (B). Consider
= Z|g, () — E(g(Xi+)|XD)]
10— EGXDIXol = - 1 )
n Z {ki<K;} + - Z ..... 7 Z ’(i)+1) G(X 00 )]
=1 j=1
131 & i :
+ 2 o 2 G ) — E(e X)X 1) | L=k
i=11"" j=
n—1

+ = Y E((Xin) Xk, 41) — E(e(Xisn)I Xg)|-
i=1

The first term tends to zero. The second term tends to zero since W,,IfBD/n < XK g, /n — 0.
Concerning the third term, by (7) and by Azuma’s exponential bound (cf. Azuma [4])

I

J=J;

(K. J> S(Kiind) F(Kii.J)
Z xr i)y _ (""Xf.Kiil ’Xf{q' ]| >
j=1 i J J

25
6) < 2ig € Vi/B

(whereB is any real such that 2 maxy |g(x)| < B) and the right-hand side is summable, hence the Borel-Cantelli
Lemma yields almost sure convergence to zero. By Toeplitz lemma the average also converges to zero.

Now we deal with the fourth term. Let @ € < 1 be arbitrary. Choose the integédarge enough such that
|X|7106@=D ¢, Lets = ¢/d?. Let K andNg be so large thatM,, (8, K)|/n > (1 —8) for all n > No. (There exist
suchK andNy since by the ergodic theorem and the martingale convergence theorgmyitm,,_, o M =
1 almost surely.) Now letv; > Ng be so large thak, —d + 2 > K and |X|10K»—=4+D > Nq for all n > Nj.
Assumen > Ni. The sum

’ i ) ;
Z Z cx' — E(s(XisDIX{_g 1) | L=k}

that we are trylng to estimate will be divided into blocks according to the valu&;ofln fact only val-
ues in the rangdk, — d + 2, K, ] need be considered since the sum upa41%»—4+1 can be estimated
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by |X|1%K—~d+D2 max.x |g(y)| and so by our assumption ah after dividing byn this will be at most
e2max.cx |g(y)|. Fori in the range[|X'|**=D |x10) for K, — 8 + 2 < k < K, andx; = K;, if i €
E|k;v|110k (8, K) then we get for more thafl — +/8)| Dy (i)| terms an upper bound éfwhile for the rest we may use
2max.cx |g(y)]. This gives an upper bound of

8| Dy (i) + /8| D ()2 maxc x 18 ()
| Dy (i) '
Using Lemma 3 we can estimate the sum over allthe interval[| X' |1%=D | x|1%) py

n((S + /82 yrr;f;g#g(y) I) ++/6n2 ;negﬂg(y)k

Dividing by n, we have an upper bound:
8+ v52maxe(y)| +vs2maxg(y)|.
yeX yeX

The same argument yields the same upper bound farsfie the rangeg | X |1%%» | ).
Summing ovek in the rangd K, —d + 2, K,, + 1] yields an upper bound:

ds + dvs2maxg(y)| +dvs2maxg(y)|.
yeX yeX

Recall thaty/5d = /€ and this yields an upper bound:
€+ ve2maxg(y)| + ve2zmaxg(y)|.
yeX yeX

Sincee was arbitrary, the fourth term tends to zero.
Now we deal with the last term. Since by the martingale convergence thedr@nxlﬂxgi) — G(XQOO)
almost surely, thus

|Im |E( (X1)|X—K 1) — (g(X1)|XC—]i)| =0

and applylng Breiman’s generalized ergodic theorem, cf. Maker [14] (or Algoet [2]),
n—1

1 .
lim —Z|E 8(XirDIX|_g 1) — E(s(Xi+1)IXp)| =0

n—oon

i=0
almost surely and the proof of Theorem (B) is complete.

6. Weak consistency

Proof of Theorem (C). In order to show that for all ergodic stationary processes our estiggatenverges in
probability we follow the steps in the proof of Theorem (A). The probability that

(|&n () — E(g(Xnr1)1X5)| > 3¢)
can be estimated as the sum of the probability of several sets,

1 n— rf(n)
P J:n}axnk—T 72 g(Xn T (n)+1) G(X_w )] Z€)
ZERTET =1,..., ]:1
Pk, < Kp),

P(|E(s(Xu+0IX5) — E(e(XarD)IX)_, 41)| > €)
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( > € K,,_Kn>

For the first, the argument given there suffices. Concerning the second, it tends to zero by Lemma 4 in the Appendix.
(Apply it with A = {X7 K,+1= =X, _ K,+1h D= Jn. Then sum over all possiblxgj_KnH to get that this second

probability in question is not greater tha#'|X» J, /n which tends to zero.) For the third, it is easy to see that it
tends to zero by stationarity and by the martingale convergence theorem which implies that

lim P(|E(s(X0IX2,) — E(¢(XDIX% 1) > €) =0.

and

1 n—7}" (n)
Y G ) = E(e(XurnI X, 1)
] =1

We concentrate on the last probability. Recall the notations from the proof of Theorem (B). The main thing is to
show that with probability at least2 ¢, for n sufficiently large, most of the elemerits 1K (XEK”H) are such
that7'x>_ does not belong to the set

My (e) = {x20: |E(e(XDIX% g =x% 1) — G(:2L)| > € for somek > K,,}

as neither doe&" x> itself. By the martingale convergence theorem, the probability of thélseét) tends to
zero as: tends to infinity. Let: be so large that this probability in question is less th3f2. Let

By={x> [{lerfro)_y x>, eT™ 'My(©)}| > €| 1K (xn_ x40}

The probability ofB,, will be evaluated using the ergodic theorem along the orbit of a typical pointxcli’gtbe

such a typical orbit anav be a very large number. F|)(°K 41, and note those elements Iﬁ" (y° K, +1) that
belong toB,. We will cover them with disjoint blocks of IengtKn, beginning on the right end/ — 1 in the
obvious way. These sets (subsetsl,’gp(y_K”H)) we callC, (y_K”H_) wherer =1,2,.... Formally, let--- <5 <

I1 denote the elements af;" (yBKnH). Let Co(yOK +l) @. Forr > 1 we defineC, (yOK L1) recursively. Let
I be the largest index such that n, I ¢ |, _, Cr ° K, +1) andx>®_ e T~"*'B,. If there is such then set

C, (yEKnH) ={l-n+K,-1<;<lIlfori=1,2,...}. LetR(yf,(ﬁl) be the largest for which C,(yfkﬁl) is
defined. Let

In(My(€) = {0<I <N —1: T'x> € My(e)}.
Then by the construction af, (y K, 1) foreach 1< r < R(y K, 1)
{1 €Cr 00,10 T'x € My()}| > €|Cr (%, 41)]-

Sincex® is typical, for largeN, |IN(M (€))] < €2N and

R(y?,ml) RO g 1)
Nz Y Yo el 0 TS e My} |2 Y D (AP
yEK’l+1€XK)z r=1 ygl(,ﬁ-leXK’L r=1

Let
INBy) ={n<I<N -1 T""x®_eB,).
But thosen <1 < N — 1, such tha’/~"x>_ € B, are covered by this union — thus

€|lIn(By)| < 2N
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and thus

| In (By)] <e
N

sincex>} was typical. The proof of the Theorem is completes

)= jim

Appendix A

Lemma 4. Let {X,} be stationary and ergodic. For an arbitrary s@t measurable with respect ®@(Xg), the
probability of the event

n—1
An,D)=1x% €A Y 14(T'x>% ) <D
i=0
is not greater thanD /n.

Proof. Fix a typical orbitx>. Let

In(A(n, D)) ={n <I<N -1 T'x>_ e A(n, D)}.

[e¢]

We make a disjoint cover. Let., > <[ denote the elemepts @f; (A(n, D)). SetE, =@ and forr =1,2, ...,
defineE, recursively. Let denote the largest element bf (A(n, D)) such that ¢ E, if there is such and
let

r'<r

E. ={l-n<l;<Il: fori=1,2,...}.

Now let R denote the largest for which E, has been defined. Since the cover is disjoit( + 1) < N. Then
clearly,

In(A(n, D)) __kD _ D
N SRn+1)  (m+1
and the left-hand side tends ®{A(n, D)). The proof of Lemma 4 is complete.0
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