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Abstract

The forward estimation problem for stationary and ergodic time series{Xn}∞
n=0 taking values from a finite alphabetX is to

estimate the probability thatXn+1 = x based on the observationsXi , 0 � i � n without prior knowledge of the distributio
of the process{Xn}. We present a simple proceduregn which is evaluated on the data segment(X0, . . . ,Xn) and for which,
error(n) = |gn(x)−P(Xn+1 = x|X0, . . . ,Xn)| → 0 almost surely for a subclass of all stationary and ergodic time series,
for the full class the Cesaro average of the error tends to zero almost surely and moreover, the error tends to zero in p
 2004 Elsevier SAS. All rights reserved.

Résumé

Le problème de l’estimation future d’une série temporelle ergodique et stationnaire{Xn}∞
n=0, prenant ses valeurs dans

alphabet finiX , est d’estimer la probabilité queXn+1 = x, connaissant lesXi pour 0� i � n mais sans connaissance préala
de la distribution du processus{Xi}. Nous présentons un procédé simplegn, évalué sur les données(X0, . . . ,Xn), pour lequel
erreur(n) = |gn(x) − P(Xn+1 = x|X0, . . . ,Xn)| → 0 presque sûrement pour une sous-classe de toutes les séries temp
ergodiques et stationnaires, tandis que pour la classe entière la moyenne de Cesaro de l’erreur tend vers zéro presqu
De plus, l’erreur tend vers zéro en probabilité.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

T. Cover [6] posed two fundamental problems concerning estimation for stationary and ergodic bina
series{Xn}∞n=−∞. (Note that a stationary time series{Xn}∞n=0 can be extended to be a two sided stationary t
series{Xn}∞n=−∞.) Cover’s first problem was on backward estimation.

Problem 1. Is there an estimation schemefn for the valueP(X1 = 1|X−n, . . . ,X0) such thatfn depends solely on
the observed data segment(X−n, . . . ,X0) and

lim
n→∞

∣∣fn(X−n, . . . ,X0) − P(X1 = 1|X−n, . . . ,X0)
∣∣ = 0

almost surely for all stationary and ergodic binary time series{Xn}∞n=−∞?

This problem was solved by Ornstein [20] by constructing such a scheme. (See also Bailey [5].) Or
scheme is not a simple one and the proof of consistency is rather sophisticated. For an even more gen
a much simpler scheme and proof of consistency were provided by Morvai, Yakowitz and Györfi [19]. (S
Algoet [1] and Weiss [24].) Note that none of these schemes are reasonable from the data consumption
view.

Cover’s second problem was on forward estimation.

Problem 2. Is there an estimation schemefn for the valueP(Xn+1 = 1|X0, . . . ,Xn) such thatfn depends solely
on the data segment(X0, . . . ,Xn) and

lim
n→∞

∣∣fn(X0, . . . ,Xn) − P(Xn+1 = 1|X0, . . . ,Xn)
∣∣ = 0

almost surely for all stationary and ergodic binary time series{Xn}∞n=−∞?

This problem was answered by Bailey [5] in a negative way, that is, he showed that there is no such
(Also see Ryabko [22], Györfi, Morvai and Yakowitz [11] and Weiss [24].) Bailey used the technique of c
and stacking developed by Ornstein [21] and Shields [23]. Ryabko’s construction was based on a functi
infinite state Markov-chain.

Morvai [16] addressed a modified version of Problem 2. There one is not required to predict for all time in
rather he may refuse to predict for certain values ofn. However, he is expected to predict infinitely often. Mor
[16] proposed a sequence of stopping timesλn and he managed to estimate the conditional probabilityP(Xλn+1 =
1|X0, . . . ,Xλn) in the pointwise sense, that is, for his estimator along the proposed stopping time seque
error tends to zero asn increases, almost surely. Another estimator was proposed for this modified Problem
Morvai and Weiss [17] for which theλn grow more slowly, but the consistency only holds for a certain subcla
all stationary binary time series.

In this paper we consider the original Problem 2 but we shall impose an additional restriction on the p
time series. The conditional probabilityP(X1 = 1| . . . ,X−1,X0) is said to be continuous if a version of it
continuous with respect to metric

∑∞
i=0 2−i−1|x−i − y−i |, wherex−i , y−i ∈ {0,1}.

Problem 3. Is there an estimation schemefn for the valueP(Xn+1 = 1|X0, . . . ,Xn) such thatfn depends solely
on the data segment(X0, . . . ,Xn) and

lim
n→∞

∣∣fn(X0, . . . ,Xn) − P(Xn+1 = 1|X0, . . . ,Xn)
∣∣ = 0

almost surely for all stationary and ergodic binary time series{Xn}∞n=−∞ with continuous conditional probabilit
P(X = 1| . . . ,X ,X )?
1 −1 0
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We will answer this question in the affirmative. This class includes allk-step Markov chains. It is not known
the schemes proposed by Bailey [5], Ornstein [20], Morvai, Yakowitz and Györfi [19] solve Problem 3 or no

Problem 4. Is there an estimation schemefn for the valueP(Xn+1 = 1|X0, . . . ,Xn) such thatfn depends solely
on the data segment(X0, . . . ,Xn) and

lim
n→∞

1

n

n−1∑
i=0

∣∣fi(X0, . . . ,Xi) − P(Xi+1 = 1|X0, . . . ,Xi)
∣∣ = 0

almost surely for all stationary and ergodic binary time series{Xn}∞n=−∞?

Bailey [5] (cf. Algoet [2] also) showed that any scheme that solves Problem 1 can be easily modified t
Problem 4 (indeed, just exchange the data segment(X−n, . . . ,X0) for (X0, . . . ,Xn), but apparently not all solution
of Problem 4 arise in this fashion. For further reading cf. Algoet [1,3], Morvai, Yakowitz and Györfi [19], G
et al. [8], Györfi, Lugosi and Morvai [10], Györfi and Lugosi [9] and Weiss [24].

Problem 5. Is there an estimation schemefn for the valueP(Xn+1 = 1|X0, . . . ,Xn) such thatfn depends solely
on the data segment(X0, . . . ,Xn) and for arbitraryε > 0,

lim
n→∞P

(∣∣fn(X0, . . . ,Xn) − P(Xn+1 = 1|X0, . . . ,Xn)
∣∣ > ε

) = 0

for all stationary and ergodic binary time series{Xn}∞n=−∞?

By stationarity, for any scheme that solves Problem 1, the shifted version of it solves Problem 5. (Just
the data segment(X−n, . . . ,X0) by (X0, . . . ,Xn).)

There are existing schemes that solve Problem 4 (e.g. Bailey [5], Ornstein [20], and even for a more gen
Morvai, Yakowitz and Györfi [19], Algoet [1], Györfi and Lugosi [9]) and there are schemes that solve Prob
(e.g. Bailey [5], Ornstein [20] and for even more general case Morvai, Yakowitz and Györfi [19], Algoe
Morvai, Yakowitz and Algoet [18]). In this paper we propose a reasonable, very simple algorithm thatsimultanously
solves Problem 3, 4 and 5. Note that the schemes given by Bailey [5], Ornstein [20], Morvai, Yakowitz and
[19], Algoet [1] and Weiss [24] are not reasonable at all, they consume data extremely rapidly, cf. Morvai [1
it is not known if their schemes solve Problem 3 or not.

2. Preliminaries and main results

Let {Xn}∞n=−∞ be a stationary time series taking values from a finite alphabetX . (Note that all stationary time
series{Xn}∞n=0 can be thought to be a two sided time series, that is,{Xn}∞n=−∞.) For notational convenience, l
Xn

m = (Xm, . . . ,Xn), wherem � n. Note that ifm > n thenXn
m is the empty string.

Let g :X → (−∞,∞) be arbitrary.
Our goal is to estimate the conditional expectationE(g(Xn+1)|Xn

0) from samplesXn
0.

For k � 1 define the stopping timesτ k
i (n) which indicate where thek-block Xn

n−k+1 occurs previously in the
time series{Xn}. Formally we setτ k

0 (n) = 0 and fori � 1 let

τ k
i (n) = min

{
t > τk

i−1(n): Xn−t
n−k+1−t = Xn

n−k+1

}
. (1)

Let Kn � 1 andJn � 1 be sequences of nondecreasing positive integers tending to∞ which will be fixed later.
Defineκn as the largest 1� k � Kn such that there are at leastJn occurrences of the blockXn

n−k+1 in the data
segmentXn

0, that is,

κ = max
{
1� k � K : τ k (n) � n − k + 1

}
(2)
n n Jn
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Defineλn as the number of occurrences of the blockXn

n−κn+1 in the data segmentXn
0, that is,

λn = max
{
1� j : τ

κn

j � n − κn + 1
}

(3)

if κn > 0 and zero otherwise. Observe that ifκn > 0 thenλn � Jn.
Our estimategn for E(g(Xn+1)|Xn

0) is defined asg0 = 0 and forn � 1,

gn = 1

λn

λn∑
i=1

g(Xn−τ
κn
i (n)+1) (4)

if κn > 0 and zero otherwise.
Let X ∗− be the set of all one-sided sequences, that is,

X ∗− = {
(. . . , x−1, x0): xi ∈ X for all − ∞ < i � 0

}
.

Define the functionG :X ∗− → (−∞,∞) as

G(x0−∞) = E
(
g(X1)|X0−∞ = x0−∞

)
.

Note that as a conditional expectation this is only defined almost surely. E.g. ifg(x) = 1{x=z} for a fixedz ∈ X
thenG(y0−∞) = P(X1 = z|X0−∞ = y0−∞).

Define a distance onX ∗− as

d∗(x0−∞, y0−∞) =
∞∑
i=0

2−i−11{x−i �=y−i }.

Definition. The conditional expectationG(X0−∞) is said to be continuous if a version of it is continuous on
setX ∗− with respect to metricd∗(·, ·). Since this space is compact, in fact, continuity is equivalent to unif
continuity.

The processes with continuous conditional expectation are essentially the Random Markov Processe
likow [12], or the continuous g-measures studied by Mike Keane [13].

Theorem.Let {Xn} be a stationary and ergodic time series taking values from a finite alphabetX . AssumeKn =
max(1, �0.1 log|X | n�) andJn = max(1, �n0.5	). Then

(A) if the conditional expectationG(X0−∞) is continuous with respect to metricd∗(·, ·) then

lim
n→∞

∣∣gn − E
(
g(Xn+1)|Xn

0

)∣∣ = 0 almost surely,

(B) without any continuity assumption,

lim
n→∞

1

n

n−1∑
i=0

∣∣gi − E
(
g(Xi+1)|Xi

0

)∣∣ = 0 almost surely,

(C) without any continuity assumption, for arbitraryε > 0,

lim
n→∞P

(∣∣gn − E
(
g(Xn+1)|Xn

0

)∣∣ > ε
) = 0.

Remarks.Note that these results are valid without the ergodic assumption. One may use the ergodic decom
throughout the proofs, cf. Gray [7], p. 268.
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We note that from the proof of Ryabko [22] and Györfi, Morvai and Yakowitz [11] it is clear that the conti
condition in the first part of the theorem cannot be relaxed. Even for the class of all stationary and ergodi
time-series with merely almost surely continuous conditional probabilityP(X1 = 1| . . . ,X−1,X0) one cannot
solve Problem 2 in the Introduction. (An almost surely continuous conditional probability is such that as a fu
restricted to a setC with full measure, it is continuous onC.)

We do not know if the shifted version of our proposed schemegn solves Problem 1 or not. (That is, in the ca
whengn is evaluated on(X−n, . . . ,X0) rather than on(X0, . . . ,Xn).)

If X is a countably infinite alphabet then there is no scheme that could achieve similar result to part (A
theorem for all boundedg(·), even if you assume that the resultingG(·) is continuous, and the time series is in fa
a first order Markov chain. Indeed, whenever a new state appears which has not occurred before, you are
predict, cf. Györfi, Morvai and Yakowitz [11].

3. Auxiliary results

For k � 1, n � 0 andj � 0 it will be useful to define auxiliary processes{X̃(k,n,j)
i }∞i=−∞ as follows. Let

X̃
(k,n,j)
i = Xn−τk

j (n)+i for − ∞ < i < ∞. (5)

For an arbitrary stationary time series{Yn} for k � 1 let τ̃ k
0 (Y∞−∞) = 0 and fori � 1 define

τ̃ k
i (Y∞−∞) = min

{
t > τ̃ k

i−1(Y
∞−∞): Y t

−k+1+t = Y 0
−k+1

}
. (6)

If it is obvious on which time series̃τ k
i (Y∞−∞) is evaluated, we will writẽτ k

i . Let T denote the left shift, that is
(T x∞−∞)i = xi+1.

We will need the next lemmas for later use.

Lemma 1.Let {Xn} be a stationary time series taking values from a finite alphabetX . For k � 1, n � 0 andj � 0,
the time series{X̃(k,n,j)

i }∞i=−∞ has the same distribution as{Xi}∞i=−∞.

Proof. Note that by (1), and (6),

T n−s{Xn−τk
j (n)+m

n−τk
j (n)+l

= xm
l , τ k

j (n) = s} = {Xm
l = xm

l , τ̃ k
j = s}

whereτ̃ k
j is evaluated on time series{Xi}∞i=−∞. Now by (5) and stationarity,

P(X̃
(k,n,j)
l = xl, . . . , X̃

(k,n,j)
m = xm) =

∞∑
s=0

P(X
n−τk

j (n)+m

n−τk
j (n)+l

= xm
l , τ k

j (n) = s) =
∞∑

s=0

P(Xm
l = xm

l , τ̃ k
j = s)

= P(Xm
l = xm

l )

and the proof of Lemma 1 is complete.�
Lemma 2. Let {Xn} be a stationary and ergodic time series taking values from a finite alphabetX . Assume
Kn → ∞, Jn → ∞ and limn→∞(Jn/n) = 0. Then

lim
n→∞κn = ∞ almost surely.
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Proof. We argue by contradiction. Suppose, thatκni
= K , X

ni

ni−K = x0
−K for a subsequenceni . Then a simple

frequency count (in the data segmentX
ni

0 there are less thanJni
occurrences of blockx0

−K ) yields that

P(X0−K = x0−K) � lim
n→∞

Jn

n
= 0.

The set of sequences that contain a block with zero probability has zero probability and thus Lemm
proved. �

4. Pointwise consistency

Proof of Theorem (A). By Lemma 2, for largen,

∣∣gn(x) − E
(
g(Xn+1)|Xn

0

)∣∣ =
∣∣∣∣∣ 1

λn

λn∑
j=1

g(Xn−τ
κn
j (n)+1) − E

(
g(Xn+1)|Xn

0

)∣∣∣∣∣
� max

J=Jn,...,n
max

k=1,...,Kn

∣∣∣∣∣ 1

J

J∑
j=1

[
g(Xn−τk

j (n)+1) − G(X
n−τk

j (n)

−∞ )
]∣∣∣∣∣

+
∣∣∣∣∣ 1

λn

λn∑
j=1

G(X
n−τ

κn
j (n)

−∞ ) − E
(
g(Xn+1)|Xn

0

)∣∣∣∣∣.
Concerning the first term, by (1), (6) and (5),

1

J

J∑
j=1

[
g(Xn−τk

j (n)+1) − G(X
n−τk

j (n)

−∞ )
] = 1

J

J−1∑
j=0

[
g(X̃

(k,n,J )

τ̃ k
j +1

) − G(. . . , X̃
(k,n,J )

τ̃ k
j −1

, X̃
(k,n,J )

τ̃ k
j

)
]

(7)

whereτ̃ k
j is evaluated on{X̃(k,n,J )

i }∞i=−∞. Since by Lemma 1

G(. . . , X̃
(k,n,J )

τ̃ k
j −1

, X̃
(k,n,J )

τ̃ k
j

) = E
(
g(X̃

(k,n,J )

τ̃ k
j +1

)| . . . , X̃(k,n,J )

τ̃ k
j −1

, X̃
(k,n,J )

τ̃ k
j

)
,

the pair(Γj = g(X̃
(k,n,J )

τ̃ k
j +1

) − G(. . . , X̃
(k,n,J )

τ̃ k
j −1

, X̃
(k,n,J )

τ̃ k
j

),Fj = σ(X
τ̃k
j

−∞)) forms a martingale difference sequen

(E(Γj |Fj ) = 0 andΓj is measurable with respect toFj+1) for which Azuma’s exponential bound (cf. Azuma [4
yields

P

(∣∣∣∣∣ 1

J

J−1∑
j=0

[
g(X̃

(k,n,J )

τ̃ k
j +1

) − G(. . . , X̃
(k,n,J )

τ̃ k
j

)
]∣∣∣∣∣ > ε

)
� 2 e−ε2J/B

for anyB such that maxx∈X |g(x)| < B. Now by (7)

P

(
max

J=Jn,...,n
max

k=1,...,Kn

∣∣∣∣∣ 1

J

J∑
j=1

[
g(Xn−τk

j (n)+1) − G(X
n−τk

j (n)

−∞ )
]∣∣∣∣∣ > ε

)
� nKn2 e−ε2Jn/B

and by assumptionnKn2 e−ε2Jn/B sums up and the Borel–Cantelli Lemma yields almost sure convergence to
Concerning the second term,∣∣∣∣∣ 1

λn

λn∑[
G(X

n−τ
κn
j (n)

−∞ ) − E
(
G(Xn−∞)|Xn

0

)]∣∣∣∣∣ → 0 almost surely

j=1
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sinceκn tends to infinity by Lemma 2,X
n−τ

κn
j (n)

n−τ
κn
j (n)−κn+1

= Xn
n−κn+1 for 0� j � λn, and the conditional expectatio

G(·) is in fact uniformly continuous onX ∗− with respect tod∗(·, ·). The proof of Theorem (A) is complete.�

5. Time average performance

If the process does not have continuous conditional expectations then the last step in the proof of Theore
not valid. It can be carried out for most time instancesn by using the typical behaviour of almost every realizat
x∞−∞. More specifically, for everyδ > 0, the probability of the set of thosex0−∞ for which∣∣E(

g(X1)|X0
−k+1 = x0

−k+1

) − G(x0−∞)
∣∣ < δ for all k � K

tends to one asK tends to infinity. The typical behaviour we are after is the statement that most of the
t = n − τ

κn

j (n) the sequenceT txt−∞ belongs to the above mentioned set. While this need not be the case fon,
it is true for mostn’s and the next lemma makes this precise. For the analysis we will fix a value ofκn at k.

Define the set of good indexesMn(δ,K) ⊆ {K − 1, . . . , n − 1} as

Mn(δ,K) = {
K − 1� i � n − 1:

∣∣E(
g(Xi+1)|Xi

i−k+1

) − G(Xi−∞)
∣∣ < δ for all k � K

}
.

We will analyze the behaviour of our algorithm forκn = k for each i � n by first dividing up the indices
{1,2, . . . , n} according to the value ofXi

i−k+1 = y0
−k+1, and considering what happens for each of these.

Let y0
−k+1 ∈ X k . Define the set of indexesI k

n (y0
−k+1) ⊆ {k − 1, . . . , n − 1}, where you can find the patter

y0
−k+1, that is,

I k
n (y0

−k+1) = {
k − 1� i � n − 1: Xi

i−k+1 = y0
−k+1

}
.

DefineDk(i) as

Dk(i) =
{ {τ k

j (i): τ k
j (i) � i − k + 1 and 1� j � i + 1} if τ k

Ji
(i) � i − k + 1,

∅ otherwise.

Let Ek
n(δ,K) be defined as

Ek
n(δ,K) = {

0� i � n − 1:
∣∣Dk(i) ∩ Mn(δ,K)

∣∣ > (1− δ0.5)|Dk(i)|
}
.

If the number of occurrences ofy0
−k+1 prior to i was not enough for our algorithm thenDk(i) will be empty. This

is rare, and can be expressed as follows: Let

Fk
n = {

0� i � n − 1: Dk(i) = ∅}
.

It is immediate that

|Fk
n | � |X |kJn. (8)

Lemma 3.Assume|Mn(δ,K)| � (1− δ)n. Then∣∣{0� l � n − 1: l /∈ Ek
n(δ,K) andl /∈ Fk

n

}∣∣ � δ0.5n.

Proof. Fix δ, K , k andx ∈ X . Temporarily fix alsoy0
−k+1 ∈X k . Let z = |I k

n (y0
−k+1)| and letk � i1 � i2 � · · · � iz

denote the elements ofI k
n (y0

−k+1). Let ij (y0
−k+1) be the largest elementij ′ of I k

n (y0
−k+1) such thatDk(ij ′) �= ∅ and∣∣{0� l � n − 1: l ∈ D (i ′) andl /∈ M (δ,K)

}∣∣ � δ0.5
∣∣D (i ′)

∣∣.
k j n k j
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DefineS to be the set of these indexes asy0
−k+1 varies over all elementX k . It is clear that ifi, j ∈ S, i �= j then

Dk(i) ∩ Dk(j) = ∅ since different blocksy0
−k+1 are involved. It follows from the construction that{Dk(i)}i∈S is a

disjoint cover of{0� l � n − 1: l /∈ Ek
n(δ,K) andl /∈ Fk

n }. It follows that

nδ �
∣∣{0� l � n − 1: l /∈ Mn(δ,K)

}∣∣ �
∑
i∈S

∣∣{0� l � n − 1: l ∈ Dk(i) andl /∈ Mn(δ,K)
}∣∣

� δ0.5
∑
i∈S

∣∣Dk(i)
∣∣ = δ0.5

∣∣∣∣⋃
i∈S

Dk(i)

∣∣∣∣.
Now ∣∣{0� l � n − 1: l /∈ Ek

n(δ,K) andl /∈ Fk
n

}∣∣ �
∣∣∣∣⋃
i∈S

Dk(i)

∣∣∣∣ � δ0.5n

and the proof of Lemma 3 is complete.�
Proof of Theorem (B). Consider

1

n

n−1∑
i=0

∣∣gi(x) − E
(
g(Xi+1)|Xi

0

)∣∣
� |0− E(g(X1)|X0)|

n
+ 1

n

n−1∑
i=1

1{κi<Ki } + 1

n

n−1∑
i=1

max
J=Ji ,...,i

∣∣∣∣∣ 1

J

J∑
j=1

[
g(X

i−τ
Ki
j (i)+1

) − G(X
i−τ

Ki
j (i)

−∞ )
]∣∣∣∣∣

+ 1

n

n−1∑
i=1

∣∣∣∣∣ 1

λi

λi∑
j=1

G(X
i−τ

Ki
j (i)

−∞ ) − E
(
g(Xi+1)|Xi

i−Ki+1

)∣∣∣∣∣1{κi=Ki }

+ 1

n

n−1∑
i=1

∣∣E(
g(Xi+1)|Xi

i−Ki+1

) − E
(
g(Xi+1)|Xi

0

)∣∣.
The first term tends to zero. The second term tends to zero since by (8)|FKn

n |/n � |X |KnJn/n → 0.
Concerning the third term, by (7) and by Azuma’s exponential bound (cf. Azuma [4])

i∑
J=Ji

P

(∣∣∣∣∣ 1

J

J∑
j=1

[
g(X̃

(Ki,i,J )

τ̃
Ki
j +1

) − G(. . . , X̃
(Ki,i,J )

τ̃
Ki
j −1

, X̃
(Ki,i,J )

τ̃
Ki
j

)
]∣∣∣∣∣ > ε

)
� 2ie−ε2Ji/B

(whereB is any real such that 2 maxx∈X |g(x)| < B) and the right-hand side is summable, hence the Borel–Ca
Lemma yields almost sure convergence to zero. By Toeplitz lemma the average also converges to zero.

Now we deal with the fourth term. Let 0< ε < 1 be arbitrary. Choose the integerd large enough such tha
|X |−10(d−1) < ε. Let δ = ε/d2. Let K andN0 be so large that|Mn(δ,K)|/n > (1− δ) for all n � N0. (There exist
suchK andN0 since by the ergodic theorem and the martingale convergence theorem limk→∞ limn→∞ |Mn(δ,k)|

n
=

1 almost surely.) Now letN1 � N0 be so large thatKn − d + 2 � K and |X |10(Kn−d+1) � N0 for all n � N1.
Assumen � N1. The sum

1

n

n−1∑
i=1

∣∣∣∣∣ 1

λi

λi∑
j=1

G(X
i−τ

Ki
j (i)

−∞ ) − E
(
g(Xi+1)|Xi

i−Ki+1

)∣∣∣∣∣1{κi=Ki }

that we are trying to estimate will be divided into blocks according to the value ofKi . In fact only val-
ues in the range[K − d + 2,K ] need be considered since the sum up to|X |10Kn−d+1 can be estimate
n n
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e

by |X |10(Kn−d+1)2 maxy∈X |g(y)| and so by our assumption ond , after dividing by n this will be at most
ε2 maxy∈X |g(y)|. For i in the range[|X |10(k−1), |X |10k) for Kn − δ + 2 � k � Kn, and κi = Ki , if i ∈
Ek−1

|X |10k (δ,K) then we get for more than(1− √
δ)|Dk(i)| terms an upper bound ofδ while for the rest we may us

2 maxy∈X |g(y)|. This gives an upper bound of

δ|Dk(i)| +
√

δ|Dk(i)|2 maxy∈X |g(y)|
|Dk(i)| .

Using Lemma 3 we can estimate the sum over alli in the interval[|X |10(k−1), |X |10k) by

n
(
δ + √

δ2 max
y∈X

∣∣g(y)
∣∣) + √

δn2 max
y∈X

∣∣g(y)
∣∣.

Dividing by n, we have an upper bound:

δ + √
δ2 max

y∈X
∣∣g(y)

∣∣ + √
δ2 max

y∈X
∣∣g(y)

∣∣.
The same argument yields the same upper bound for thei ’s in the range[|X |10Kn,n).

Summing overk in the range[Kn − d + 2,Kn + 1] yields an upper bound:

dδ + d
√

δ2 max
y∈X

∣∣g(y)
∣∣ + d

√
δ2 max

y∈X
∣∣g(y)

∣∣.
Recall that

√
δd = √

ε and this yields an upper bound:

ε + √
ε2 max

y∈X
∣∣g(y)

∣∣ + √
ε2 max

y∈X
∣∣g(y)

∣∣.
Sinceε was arbitrary, the fourth term tends to zero.

Now we deal with the last term. Since by the martingale convergence theorem,E(g(X1)|X0−i ) → G(X0−∞)

almost surely, thus

lim
i→∞

∣∣E(
g(X1)|X0

−Ki+1

) − E
(
g(X1)|X0

−i

)∣∣ = 0

and applying Breiman’s generalized ergodic theorem, cf. Maker [14] (or Algoet [2]),

lim
n→∞

1

n

n−1∑
i=0

∣∣E(
g(Xi+1)|Xi

i−Ki+1

) − E
(
g(Xi+1)|Xi

0

)∣∣ = 0

almost surely and the proof of Theorem (B) is complete.�

6. Weak consistency

Proof of Theorem (C). In order to show that for all ergodic stationary processes our estimategn converges in
probability we follow the steps in the proof of Theorem (A). The probability that(∣∣gn(x) − E

(
g(Xn+1)|Xn

0

)∣∣ > 3ε
)

can be estimated as the sum of the probability of several sets,

P

(
max

J=Jn,...,n
max

k=1,...,Kn

∣∣∣∣∣ 1

J

J∑
j=1

[
g(Xn−τk

j (n)+1) − G(X
n−τk

j (n)

−∞ )
]∣∣∣∣∣ > ε

)
,

P (κn < Kn),

P
(∣∣E(

g(X )|Xn
) − E

(
g(X )|Xn

)∣∣ > ε
)

n+1 0 n+1 n−Kn+1
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ppendix.
d

t it

g is to
and

P

(∣∣∣∣∣ 1

λn

λn∑
j=1

G(X
n−τ

κn
j (n)

−∞ ) − E
(
g(Xn+1)|Xn

n−κn+1

)∣∣∣∣∣ > ε,κn = Kn

)
.

For the first, the argument given there suffices. Concerning the second, it tends to zero by Lemma 4 in the A
(Apply it with A = {Xn

n−Kn+1 = xn
n−Kn+1}, D = Jn. Then sum over all possiblexn

n−Kn+1 to get that this secon

probability in question is not greater than|X |KnJn/n which tends to zero.) For the third, it is easy to see tha
tends to zero by stationarity and by the martingale convergence theorem which implies that

lim
n→∞P

(∣∣E(
g(X1)|X0−n

) − E
(
g(X1)|X0

−Kn+1

)∣∣ > ε
) = 0.

We concentrate on the last probability. Recall the notations from the proof of Theorem (B). The main thin
show that with probability at least 1− ε, for n sufficiently large, most of the elementsl ∈ I

Kn
n (X0

−Kn+1) are such

thatT lx∞−∞ does not belong to the set

M̃n(ε) = {
x∞−∞:

∣∣E(
g(X1)|X0

−k+1 = x0
−k+1

) − G(x0−∞)
∣∣ > ε for somek � Kn

}
as neither doesT nx∞−∞ itself. By the martingale convergence theorem, the probability of the setM̃n(ε) tends to
zero asn tends to infinity. Letn be so large that this probability in question is less thanε2/2. Let

Bn = {
x∞−∞:

∣∣{l ∈ IKn
n (xn

n−Kn+1): x∞−∞ ∈ T −lM̃n(ε)
}∣∣ > ε

∣∣IKn
n (xn

n−Kn+1)
∣∣}.

The probability ofBn will be evaluated using the ergodic theorem along the orbit of a typical point. Letx∞−∞ be

such a typical orbit andN be a very large number. Fixy0
−Kn+1, and note those elements inIKn

N (y0
−Kn+1) that

belong toBn. We will cover them with disjoint blocks of lengthKn, beginning on the right endN − 1 in the
obvious way. These sets (subsets ofI k

N(y0
−Kn+1)) we callCr(y

0
−Kn+1) wherer = 1,2, . . .. Formally, let· · · < l2 <

l1 denote the elements ofIKn

N (y0
−Kn+1). Let C0(y

0
−Kn+1) = ∅. For r � 1 we defineCr(y

0
−Kn+1) recursively. Let

l be the largest index such thatl � n, l /∈ ⋃
r ′<r Cr ′(y0

−Kn+1) andx∞−∞ ∈ T −n+lBn. If there is suchl then set

Cr(y
0
−Kn+1) = {l − n + Kn − 1� li � l for i = 1,2, . . .}. Let R(y0

−Kn+1) be the largestr for whichCr(y
0
−Kn+1) is

defined. Let

IN

(
M̃n(ε)

) = {
0� l � N − 1: T lx∞−∞ ∈ M̃n(ε)

}
.

Then by the construction ofCr(y
0
−Kn+1), for each 1� r � R(y0

−Kn+1),∣∣{l ∈ Cr(y
0
−Kn+1): T lx∞−∞ ∈ M̃n(ε)

}∣∣ > ε
∣∣Cr(y

0
−Kn+1)

∣∣.
Sincex∞−∞ is typical, for largeN , |IN(M̃n(ε))| � ε2N and

ε2N �
∑

y0−Kn+1∈XKn

R(y0−Kn+1)∑
r=1

∣∣{l ∈ Cr(y
0
−Kn+1): T lx∞−∞ ∈ M̃n(ε)

}∣∣ � ε
∑

y0−Kn+1∈XKn

R(y0−Kn+1)∑
r=1

∣∣Cr(y
0
−Kn+1)

∣∣.
Let

IN(Bn) = {n � l � N − 1: T l−nx∞−∞ ∈ Bn}.
But thosen � l � N − 1, such thatT l−nx∞−∞ ∈ Bn are covered by this union – thus

ε
∣∣I (B )

∣∣ � ε2N
N n
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n: Ann.

9–634.
. Inform.

, 1975,

2002.
(Eds.),

Trans.

(1998)
and thus

P(Bn) = lim
N→∞

|IN(Bn)|
N

� ε

sincex∞−∞ was typical. The proof of the Theorem is complete.�

Appendix A

Lemma 4. Let {Xn} be stationary and ergodic. For an arbitrary setA measurable with respect toσ(Xn
0), the

probability of the event

Ã(n,D) =
{

x∞−∞ ∈ A:
n−1∑
i=0

1A(T ix∞−∞) < D

}
is not greater thanD/n.

Proof. Fix a typical orbitx∞−∞. Let

IN

(
Ã(n,D)

) = {
n � l � N − 1: T lx∞−∞ ∈ Ã(n,D)

}
.

We make a disjoint cover. Let. . . , l2 < l1 denote the elements ofIN(Ã(n,D)). SetEr = ∅ and forr = 1,2, . . . ,

defineEr recursively. Letl denote the largest element ofIN(Ã(n,D)) such thatl /∈ ⋃
r ′<r Er ′ if there is such and

let

Er = {l − n � li � l: for i = 1,2, . . .}.
Now let R denote the largestr for which Er has been defined. Since the cover is disjoint,R(n + 1) � N . Then
clearly,

IN(Ã(n,D))

N
� RD

R(n + 1)
� D

(n + 1)

and the left-hand side tends toP(Ã(n,D)). The proof of Lemma 4 is complete.�
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