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Abstract

We give a necessary and sufficient condition for ergodicity with finite invariant occupation measure for branching diffu-
sions with immigration. We do not assume uniformly subcritial reproduction means. We discuss the structure of the invariant
occupation measure and of its density.
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Résumé

Nous considérons des diffusions avec branchement et immigrationRfanNous donnons une condition nécessaire et
suffisante pour que ce processus soit ergodique et sa mesure invariante d’occupation (mesure d'intensité) une mesure finie. Le
branchement n’est pas supposé strictement sous-critique. Nous étudions la structure de la mesure invariante d’occupation et (si
celle-ci existe) de sa densité de Lebesgue.

0 2005 Elsevier SAS. All rights reserved.

MSC:60J60; 60J80; 62M30

Keywords:Diffusing particles; Branching; Immigration; Spatial subcriticality; Invariant occupation measure; Invariant occupation density;
Resolvants; Stochastic flows

Y Work supported in parts by: Deutsche Forschungsgemeinschaft, Gehwéprogramm ’Interagierende stochastische Systeme von hoher
Komplexitat’ (SPP-1033), and European Community’s Human Potential Programme, under contract HPRN-CT-2000-00100 (DYNSTOCH).
* Corresponding author.

E-mail addresseshoepfner@mathematik.uni-mainz.de (R. Hopfner), locherbach@univ-paris12.fr (E. Locherbach).

0246-0203/$ — see front mattér 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.09.001



1026 R. Hopfner, E. Locherbach / Ann. |. H. Poincaré — PR 41 (2005) 1025-1047

0. Introduction

This note deals with ergodicity with finite invariant occupation measure in branching diffusions with immigra-
tion, and with the properties of a Lebesgue density — when it exists — for the invariant occupation measure.

We consider a particle process where finitely many particles livirRfimove independently of each other on
paths which are solutions to SDE’s

dEs =b(&) ds + o (&) dw; (1)

with m-dimensional Brownian motion®/, and undergo branching at random times according to a position-
dependent branching rat€-) and a position-dependent reproduction kgw(-))xen, (a parent particle in position
v e R? at timer > 0 will die in a small time intervalz, r + h] with probabilityx (v)h + o(h), h — 0, leaving with
probability px (v) k descendants af); in addition, there are immigration events occurring at constantratgere
one new particle is added to the pre-existing configuration in a position chosen according to a fixed probability
law 7.

This describes a strong Markov process (n;), of (ordered) finite particle configurations, called a branching
diffusion with immigration. Its configuration state spatés given by

o0

5= Jmd) 2)
[

=0

which consists of all (ordered) configurations= (x1, ..., x%), x' e R?, 1<i <1, 1> 1, with (RY)? = {4}, and
which is a Polish space. The length of a configuratiensS is denoted by(x). Sometimes we write a configuration
x € § as a point measure &' x(A) = Y'%) 5. (A) if [(x) > 1, andA(A) = 0.

As a special case of the construction in Locherbach [14], we construct the branching diffusion with immigration
as a cadlag process= (1;)og:<¢ With lifetime ¢ (due to possible explosion of the process) (cf. Dellacherie and
Meyer [3, X1V,23-24]), whose jumps correspond to either branching orimmigration events. Arranging the sequence
(T,)» of branching or immigration times in increasing order, with= 0 and7,, 1 ¢, the process is characterized
by the following assertions A+ A2:

(A1) In restriction to every random interv@l,, 7,+1[, n > 0: Writing / for the length of the configurationr,,
(n1,4s)s 1s the motion of independent particles according to (1), stopped at configuration dependent rate

I
a(xl,...,xl)=c+ZK(xi) ifx:(xl,...,xl) withl>1, a(A)=c
i=1

whereA denotes the void configuration. Thus
(i) in casenr, # A: with starting point(xl, I e nr,, thel-particle motion after time;,, evolves as
(€1, ..., &Y solution of

d&! =b(g) ds + o (EH AW, 1<i<I,

with independent Brownian motion&?, ..., W/, and conditionally on evolution of¢?, ..., &) the
probability to haveT}, 11 — 7, > v is exp{— [y ds (£}, ..., )}, 0 < v < o0;

(i) in casenr, = A: the trajectory(nr,+s)s is the constant functioa, up to timeT;,,1 — 7,, which is an
independent exponential time with parameter
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(A2) Atjump timesT,;1, n > O: the transition fromym1 to n7,., is governed by a transition probabilify(-, -)

on the configuration spac® (see (2) above): for = (x1, ..., x') with [ € Ny (this meanst = A if [ = 0),
K (x,-) is the law

! i .
K(x,)= Z k) (Z pk('xl)S(nl,i,k(X))) + < ”(dv)a(xl....,x’,v)

oaxX oxX
o e keNg ()Rd

wherelT; ; ; (x) is the configuration(x?, ..., x'~1 x™*1, . x! x', ..., x") obtained fromx = (x1,..., x})
’ —_—

k times
by death of the-th particle withk offspring at the death position.

In contrast to the construction in Lécherbach [14], we do not requitel offspring in the reproduction laws,
and we are not primarily interested in the construction aé canonical process on a canonical path space (where
jumps withk = 1 offspring may be unobservable, which is not convenient for purposes of statistical inference);
also we do not rearrange the particles at random at every jumgfiime

We wish to have simple conditions in termsif), o (), ¥ (-), (pr(-))x, = which imply the following properties
P14+ P2+ P3 of the process:

P1: No accumulation of jumps in finite time intervals, thus in particglar+oo a.s.
P2: Ergodicity, i.e. we wish the procegs= (1;);>0 to be recurrent in the sense of Harris, admittih@s recurrent
atom, and such that the invariant measuren S

R
m(F)ZEA</dS1F(775)>a FeB(S), 3)
0

is a finite measure. HerR :=inf{7,,: n > 1, ny, = A} is the time of first return to the void configuratiah
We do not normalize the total massmfto 1.
P3: Finite invariant occupation measure: associating the measure

R
ﬁm)=/}am»mA)=EA</mn¢A0, A € BRY), (4)
0

N

we wish to have

ﬁ@%:fmmmm<m

N

We callin the invariant occupation measure, or the intensityzpometimes also invariant measureRh

We shall give — under additional assumptions on the quantities determining the process (see Assumptions 1.1
and 1.3 below) — a simple necessary and sufficient condition for propertiesF24+ P3. Under this condition,
we shall derive simple closed form expressions for the measweR? and — under stronger conditions — for its
Lebesgue density (whenever this density exists).

In the context of statistical inference, where an ergodic branching diffusion with immigration is observed over
a long time interval, with drift, branching rates etc. either depending on an unknown parameter, or belonging to
certain function classes, we need to be able
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(i) to check properties P+ P2+ P3 for the model in question, and
(ii) to know invariant occupation measures and densities explicitly.

Among conditions needed for local asymptotic normality (LAN) in branching diffusion with immigration, see Le
Cam and Yang [13] or Ibragimov and Has'minskii [8] for a general statistical background, the essential condition
is integrability of certain information functionals with respect to the invariant measure, see Locherbach [15]. In
nonparametric problems where e.g. the branching rate is considered as an unknown function to be estimated e.c
by kernel estimates, nonparametric rates of convergence depend on smoothness classes for the invariant occupati
density, similar to the classical iid density estimation problem, see Hopfner, Hoffmann and Locherbach [6].

In dimensiond = 1, local time and Tanaka’s formula can be used to get an invariant occupation density, but
this requires moment conditions with respect to the invariant occupation measure. There is ho analogue to this
approach in higher dimensions. In arbitrary dimension 1, once the invariant occupation measure is identified
as a certain resolvant related to the one-particle motion, results from Malliavin calculus can be used to obtain
C*°-smoothness of the invariant occupation density, see Cattiaux [2]. This approach needs strong conditions (drift
and diffusion coefficient of (1) ar€;°, and the mass reduction rate(d$” and bounded away from 0). It can be
extended to particle processes with interaction, see Lcherbach [16]. However, conditiongXjf tygerestrictive
and sometimes undesirable; already the simplest models — e.g., constant mass reduction rate and particles movir
on Ornstein—Uhlenbeck paths — are ruled out.

The aim of this note is to give a self-contained investigation of ergodicity of branching diffusions with immigra-
tion, and of invariant occupation measure and density, in an arbitrary dime#siohunder minimal conditions
(Theorems 1.6 and 1.7, Theorem 3.5 and Lemma 3.6); the result Gffdeonditions appears in Theorem 3.9.

The results are stated in Sections 1 and 3, the proofs are collected in Sections 2 and 4.

1. Ergodicity with finite invariant occupation measure

We specify the assumptions which we impose on the quantities determining the pKgegssWrite
Cé‘b)(RP,RQ) for the space of*-functionsR? — R? for which all partial derivatives of orders, 1.,k are
boundedC’g then denotes the subspace of bounded functio:ﬁ%}lm andCy is Cg; subscriptc denotes compact
support.

All proofs for the results stated in Section 1 will be given in Section 2.

1.1. Assumptions.

(a) Drift and diffusion coefficient of the diffusiof in (1): we assume thadt:R¢ — R¢ ando :RY — R4*™ are
globally Lipschitz continuous, and write:= oo '.

(b) Branching ratex € C,(R¢, R) is strictly positive, and
oo
/dsx(és) =00 a.s.
0

for every choice of a starting pointe R? for the diffusion (1).
(c) Reproduction laws: wittM*(Ng) denoting the space of all probability measuresNprand p = (pi(-))x, the
mappingp : R — MY(Np) is continuous with

oo
peCh®LR). p():=) kpe(v), veR:
k=0
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1.2. Remarks.Note that we do not assume that the functiap) is [0, 1)-valued.

The mass reduction (or augmentation) fatél — p)](-) is by 1.1 a bounded function d&’. Note also that we
did not make any assumption on the immigration law: wittt(R?) the space of all probability measures&fy,
we allow for anyr € M1(R?).

We may haveb = 0 oro = 0 on certain subsets &.

1.3. Assumption(‘Spatial subcriticality). Write T for the killing time of a particle travelling on the path &f
under position-dependent killing at rat¢) (T is a.s. finite by 1.1(b)). We assume that in the class of all kernels
H(-,-) on(R?, B(R%)), there is a finite kernel solving

T

H(v, f)=E, (/ f(&)ds + p(¢7) H (ET, f)>, feC®RIRY), veR?, (5)

0

In our note, ‘kernel’ is understood as in Revuz [17, Definition 1.1.1] except that we alwaysHhaved)
[0, 00] for all v e R?, A € B(RY). A finite kernel hasH (v, RY) < 00, v € RY.

1.4. Lemma.Write for shorty := [« (1 — p)] which is inC, (R4, R).

(a) Under1.1, they-resolvent kernel of the diffusian
o0
YR(v, f):=E, (/ dr £ (&) e o d‘W@s>>, feC@®,RY), veR?
0

is the(uniqug minimal solution t(5).
(b) Under1.1, Assumptiori.3 (spatial subcriticality is equivalent to the following conditig):

o0
Eu(fdt e—fédsﬂfﬂ) <o forallveR?, (6)
0

1.5. Remarks.

(&) We shall see in 2.1 and 2.2 below that Assumption 1.3 is indeed a proper ‘spatial’ analogue of the classical
subcriticality of continuous-time branching processes without immigration.
(b) In view of 1.4(b), an obvious sufficient condition for spatial subcriticality 1.3 is

Uienﬂgd[/c(l - p)]@) > 0. (7)

(c) From (6) we see that 1.3 is not satisfied ind p are spatially constant, and> 1: in this case, the minimal
solution of (5) is the trivial onéd (v, A) = +oc.

1.6. Theorem.Assume..1and1.3.

(a) For immigration lawsr € MY (R9) satisfying
7" R is a finite measure oR’ (8)

the branching diffusion with immigratiom has the propertieP1+ P2+ P3
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(b) Under(8), the invariant intensity measure of (4) is given by
m(A)=Cn”R(A), AeB[RY (9)

with constaniC defined ag E A (R), cf. (3).
(c) The branching diffusion with immigratiophas the propertie®1+ P2+ P3for arbitrary choice of an immi-
gration lawz € M1(R?) if and only if the total mass of the resolvant

9]

v —> yR(U,]Rd) = Ev</d[ e_f(;ds)’(éx))
0

(cf. (6)) is a bounded function oR.

1.7. Theorem.Assumel.1and 1.3 and leto () be bounded oiR?. Consider an immigration law such that(8)
holds. Then the invariant occupation measiarés such that

Af € LY(m) forall f eC?:=C2([R?,R),
andm is a solution to

mAf —yf)==Cr(f), feC} (10)
whereA is the Markov generator of the diffusignof (1).

We mention some examples illustrating that the invariant occupation measure in Theorem 1.6, even under the
strong ergodicity condition in 1.6(c), will be in general quite far from the usual picture of ‘nice’ invariant laws (e.g.
invariant distributions of one-dimensional ergodic diffusions). The problem of a density for the invariant occupation
measure will be considered further in Section 3.

1.8. Examples.Take constant mass reduction raté) = y > 0 onR¢. By 1.6(c), we have P4 P2+ P3 for
arbitrary choice of an immigration law. Consider the invariant occupation measture- Cz” R, and write\ for
the Lebesgue measure BA.

Under the conditions which we have made up to now,

(a) m cannot be expected to Beabsolutely continuous: 1.1 and 1.3 allow for non-empty intefibrof
{veR?: b(v) =0,0(v) =0}; with choicer :=§, for somea € U, we obtaint?R = %8,4.

(b) If a density dz/d\ exists, it cannot be expected to be continuoudRén Take ¢ in (1) asd-dimensional
standard Brownian motion, take> 3. Then”R (v, du) has Lebesgue density

o0
u— /dt e_7’(2nt)_% e_%(”_”)T%(”_”) (11)
0

which is smooth orR? \ {v}, and has a singularity at= v (this is the prototype example for general diffusions
with a(-) = (oo T)(-) nondegenerate, see Cattiaux [2, Proposition (1.37)]).

(i) The function in (11) is — up to the constafit— the density g /d\ in caser :=§,, v € RY.

(i) Defining = as image of the one-dimensional standard normal A, 1) under the mappin® > y —
(y,...,y) =:v e R¢ (hence the immigration measureon (R¢, B(R?)) is concentrated on the diagonalR{),
one has from (11) an explicit expression for the Lebesgue density Bf It is easy to see that this density takes
the value+oo at every poini belonging to the diagonal iR¢, and is smooth outside the diagonal.
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2. Proofs for Section 1
We start with the proof of Lemma 1.4.

2.1. Proof of Lemma 1.4. Assume 1.1, writ€" := Cxc(RY, R™), andy := [« (1 — p)]. We have to prove that the
y-resolvent kernel for the diffusiof of (1)

o0
YR(v, f):= Ev(/drf(g,)eféd”@»v>>, feCt ver?
0
on (R4, B(R%)) (in general not -finite, under 1.1 alone) always solves the problem (5)

T
H(, )= E(f f&)ds + p(Er)H (¢, f>>, fecCt ver?,
0

and is in fact the minimal solution of (5).
Thus we prove assertion (a) of Lemma 1.4; (b) is an immediate consequence.
1. The total expected occupation time of the diffusfostarting atv and killed at ratec(-) is

“U(v, A) == E, </ dr 1a(5) e o d”@s)) <oo, AeBRY. (12)
0

Note that by Assumption 1.1(b), for all choices of a starting poiatR?, the diffusions killed at ratex (-) has a.s.

a strictly positive and finite lifetime (which obviously does not imply that the expectation in (12) is finite). Multi-
plying both sides of (12) witk (-) as a density for the second argument, we wfitéc](v, dv’) :=*U (v, dv')x (v');
then[*Uk](-, -) is the transition probability

[(Uxl(v, A) = E( / dr 14 (&K (&) € o d”@”)
0

on (R?, B(R%)) which selects the killing position of the particle to be killed at ra¢e on the path of. Write T
for this killing time. Then forf, g € C;¢

T
1
Ev<[—f](€T)) ="U(v,f)=Ev</dt f(Sz))
K
0

so the problem (5) takes the form

H®, f)="U(v, f) + /[KUK](U, dvYp(WHW, f), fe C,‘g, veR? (13)
R4
or multiplied with« (-) as density relative to the second argument
[Hk](v, ) = [KUK](v,f)+/[KUK](v,dv/)p(v/)[HK](v/, f). feCt veR (14)
R4

2. We discuss the class of all solutigi$x] to (14). Iterating (14), we get for every fixed

N
[Hi] = < Z([KUK],O)n> U] + ((Ux1p) ¥ T Hiel. (15)

n=0
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Note that the second term on the r.h.s of (15) is necessarily decreasin@he first term of the r.h.s. is increasing
in N and the I.h.s. does not depend @, for arguments € R?, f ¢ C,Jg, so all solutions to (14) are of the form

[HK]:(Z([KUK],O)”)[KUK]+J, J:= lim (Uk1p) 1 Hi) (16)
n=0 e

whereJ (-, -) by (14) is a solution to
J,f)=0, J, f)=Ey(pGEr)JEr, ), veR!, feCft. 17)

Note thatf Hx](v, f) = oo is always a solution to (14), so we may hal, f) = cc.
We shall prove in step 3 below that

(Z([KUK]/J)"> U] (18)

n=0

equals (without conditions other that 1.1) the resolvent keéfRél, -) multiplied with « as a density for the second
argument. Hence (18) is always a kernel. Since the kernel (18) solves (14), it is by (@B)the minimal solution
of (14).

Hence’R(, -) is the (unique) minimal solution to (13), i.e. to (5).

3. We calculate the kernel in (18). First, we exprggsc](-, -) in terms of the law of some diffusiahobserved
after an independent exponential time. Wrtdor the strictly increasing additive functiona} := fé k(&) ds of &,
andr for its inverse:

. =inf{t: A, >r}, T(dr) = @ )dr
Kk (&,

By 1.1(b), this is a.s. a time chang®@, co) <> [0, o), for every choice of the starting point Then the time
changed diffusion

gr = E'L'rv r>09

satisfies the equation

dér :];(ér)dr +&(§r)der 52 (19)

7U:

xS

o
Vi
and we have forf € Cx

o]

FUk1(v, f) = Ey ( / dt £ (&K (&) e o d‘”@”) =E, ( / T(dr) f (&7, )k (6r,) e—’>
0

0
= Ev(/drerf(sgr)) = ﬁ(v’ 8]
0

whereR = [;° dre~* P, is the resolvent kernel for the diffusidn Since[*Ux| = R, Eq. (14) takes the form

[Hil(v, ) = Eo(fEsy) + pEs)HKEsy, 1))

wheres; is an exponentially distributed time with parameter 1, independent of the diffésireparing indepen-
dent exponential waiting times

S1,82—81,...,8, —S,—1, ...
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independent of, the kernel (18) is (witrl—[?:1 defined as 1)

(v, f) — &(Z(mésl) : -~p(§s“))f<§sn>). (20)

n=1

Sincep () :R? — [0, 0o) is bounded oR? by 1.1, the r.h.s of (20) can be transformed exactly as in Hopfner and
Lécherbach [5, proof of (5.29), p. 59] into

E( / dr fE)e fo (1”)(5”). (21)
0

Changing time back according to step 3, this is equal to

E, ( / dr k(&) f (&) e Jod Wlpﬂ@ﬁ) =["Rx](v, f). (22)
0

By (18)+ (20)+ (22), we have proved the assertions at the end of step 2.
This concludes the proof of Lemma 1.30

We will use the notatiow to denote subprocesses of the full procgsalled ‘subfamilies’: with a particle living
at a certain time these subprocesses contain the full direct descendance of this particle, and there is no immigration.
By the independence assumptions characterizing branching diffusions, the subfamilies are again strongly Markov,
and are branching diffusions without immigration.

They take the valuet once the last member of the subfamily has died; we wkite(which may take the
value+o0) for the extinction time (that is, the first return 1) of the subprocess.

Subprocesseg might have an accumulation of jumps in finite time, and thus finite lifetithgin the sense of
explosion time): we defing := A on[¢?, oof.

With these conventions, far> 0 andv € RY, ¢ &) = (¢,(S’”))f>s is the subfamily of descendants of a particle
which was inv at times. If (Tj’, g“j’)j denotes the point process of immigration times/positions in the branch-
ing diffusion with immigration(n;)og:<¢, With immigration times arranged in increasing order, the descendance

. o . . (Theh
stemming from thei-th immigrant is¢*/ **/”.

2.2. Proposition.Under 1.1, total expected occupation times for subprocegsgs)
o
Vv, A) = E</ dr ¢,(°*”)(A)>, AeBRY), veR?
0

(all integrals under the expectation sign are well defined sifiee A on [¢?, oo, and take values ifi0, oo]) are
given by the minimal solution 1®) as specified in Lemmh4

o
V(v,A)="R(v,A) = Ev(/ dr 14 (5) e Jod Wlmmﬂ).
0

Proof. Write ¢©:V for the subprocess a5®¥ from which all particles belonging to generations later than
N are removed. Here a particle is said to be of generafidiit was generated by branching of a particle of
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generationj — 1. By the strong Markov property applied times (i.e. conditioning successively with respect to
the first branching event), we have

o0 N-1
E( / dt¢§°’”);N<A)> = (Z([“Uup)")“wv, A)
0 n=0

with all notations as in 2.1, and monotone convergendg as oo, along with the proof of Lemma 1.4, concludes
the proof. O

2.3. Proposition.Under1.1and 1.3, subprocesses := ¢%*), with v € R arbitrary, have

(@) a.s. only finitely many jumps in finite time intervals, thus in particgtae= +oo a.s;
(b) finite expected first return time to: E(R?) < oo.

Proof. By 2.2 together with Assumption 1.3 and Lemma 1.4, we have fet ¢ ()
RO AC?

E(R¢/\;¢’)<E< / ds¢s(Rd))=VR(v,Rd)<oo.
0

In particular, trajectories of the process

t ROACO AL
A? = f ds ¢, (RY) = / ds g, (RY), 130,
0 0

are continuous oif0, oo, strictly increasing before tim&? A ¢?, and have(Ad’)RM;d) < oo a.s. By 1.1 the
branching rate (-) is continuous and bounded &¢{. Hence all trajectories of

I INSIN:

t
BY ::/dsqbs(lc): / ds s (k), t>0, (23)
0 0

are continuous ofi0, oo[, strictly increasing before tim&? A ¢%, and have(B?) gs ;s < o0 a.s. ButB? is the
compensator of the proces&’ = (N,qb), counting jump events i up to timer. So the path properties @?
imply that a.s.N¢ can have at most finitely many jumps over finite time intervals. So there is no accumulation of
jumpsing, i.e.¢? = oo a.s.

Thus we have proved th#t(R?) < oo, whereR? is the first passage ta which occurs after at most finitely
many jumps in the trajectory @f. O

2.4. Proposition.Assumel.1and 1.3. For immigration lawsr € MY (R?) satisfying(8), the branching diffusion
with immigrationn has the property?l

Proof. Decompose the procegsnto subprocesse;s(o*"i), 1<i <I,wherex = (x1,..., x}) is the initial config-
uration, and;s(le';il) stemming from the-th immigration,;j > 1.

Proposition 2.3 applied to evewovxi) shows that the descendance of the initial configuratien(x?, ..., x%)
will be extinct in finite time a.s., without accumulation of jumps in finite time intervals.
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Proposition 2.3 plus condition (8)

o [ o0 L
7VR(A) = E;-[(/dt 1A(Et)e_f° ds [K(l—P)](&)) — E</dt ¢1(Tj ’fj)(A)>’ Ac B(Rd),
0 0

shows that the same assertion holds for every subpr@ﬁé;séf).

The point proces$Tj’, {}),-21 is a Poisson point process with intensitys 7 (dv) on (0, c0) x R?. Hence
for immigration lawsr satisfying (8), the branching diffusion has a.s. no accumulation of jumps in finite time
intervals. O

2.5. Proposition.Assumel.1and 1.3. For immigration lawsr € M1(R?) satisfying(8), the branching diffusion
with immigrationn has the property2

Proof. (1) We know from Proposition 2.3 that under 1.1 and 1.3 the descendance of particles belonging to an
arbitrary initial configurationx € S will be extinct a.s. in finite time.

We shall prove thatE 4 (R") < oo, where R" = R is the time of first return of a branching diffusion with
immigrationn starting fromng = A, the void configuration, ta\.

Once this is proved, the measutalefined onS by (3) is necessarily a finite measure$rand subsets € 5(S)
with m(F) > 0 will be visited infinitely often by the process under arbitrary choice of a starting configuration
x € S. Hencey is recurrent in the sense of Harris; in view of the ratio limit theorenis the invariant measure of
unigue up to constant multiples, andks recurrent positive. So property P2 will be a consequendggRR”) < oo.

In fact, it is sufficient to prove

E.(R") < 00 (24)

sinceL(nr,|no = A) is the immigration lawr viewed as a law o1, and sinceE 4 (T1) = %

Our proof of (24) is similar to an argument given by Zubkov [19, Proof of Theorem 1] for classical branching
processes with immigration. In the proof of (24), we assume throughouy tbtatts at time = 0 from the initial
law 7.

(2) Distinguishing whether or not descendants of the initial populajgcare still alive at time, we write

i
Pr(R">1)=Pr(R® > 1)+ Pz (R® <t,R" > 1) = Pr(R® > 1) + P (T <R? <t,R" ') >1)

because of
o0
(ri.ch (ri.¢h)
nl:¢l+zj-l[[r/1,ooﬂ(t)¢t T =4 Y
j:

Conditioning with respect toFT11 we get

t
P.(R">1)=P;(R® > 1)+ / dsce P, (s < R® <t)Py(R" > t—s)
0

t
< P;(R®>1)+ / dsce P, (R® > s) Py (R" > t—s).
0
Write H (ds) for the finite measure o0, co)

H(ds) :=dsce P, (R? > s)
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with total massH ((0, o)) < 1 (compare with the exponential law with parametgrand finite first moment
f0°° s H(ds) < oo. Then the desired recursion is

t
Pr(R" > 1) < Pr(R® > 1) + / H(ds) Pz (R" > t—s). (25)
0

If ¢ tends tooco in (25), we get with dominated convergence and 2.3(b)
Py (R" = +00) < H((0, 00)) Pr (R" = +00)

and thus
R" <00 Pp-a.s. (26)
(3) Now we can prove thakt, (R") is indeed finite. By Proposition 2.3(b) and (26),
H
u:=Lr(R"), v:i=L,(R), hi=———
KD (KD H((0, 00))

are probability distributions ofD, co) with Laplace transformg,,, v,,, ¥, such that ag | 0

1- 1pv()\) —

o0
- /dt e MP(R? > 1)1 Ex(R?) < o0,
0

% T/sh(ds) < 00
0

whereas
Y.(A) 11 asxlO.
The inequality (25) now gives

1- I//u ()\) 1- 1,va ()\) 1- WM*h ()‘)
[ < I (0.00) Pt

wherey, (A) = Yu (WY (1) = Y (W) (1 — (L= ¥ (1)), and thus

|im<(1— H((O, oo)))%) < E(R?) —I—sz(ds) < 0.
0

210

Thus we have shown that
. 1- ‘ﬁu ()\)
ny —
E;(R") = !x"f?) . <00
which is (24), and the proof of Proposition 2.5 is completel

2.6. Proposition.Assumel.1and 1.3. For immigration lawsr € M1(R?) satisfying(8), the branching diffusion
with immigrationn has the property?3 and

o]

m(A) = Cn”R(A) = CE, ( f dr 14(5) e o Wl—ﬂﬂ@s))
0
with C = cEA(R).
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Proof. Under 1.1 and 1.3, fix € M1(R?) such that (8) holds. By Proposition 2.5, the procgss ergodic with
invariant measure: given by (3), with total masa (S) = E4(R). Let R = R, R2, .. .. denote successive passage
times ofn to A. Let 5 start fromng = A and consider the increasing process

t
A, ::/dsns(Rd), t>0.
0

By ergodicity, the ratio limit theorem for the additive functiorabives
A Jgm(dx)l(x)

t Jgm(dr)1 @7)
a.s. ag — oco. CompareA to the process (which is not an additive functionahpf

D]

o

aleh / (¢<Tj’,c}))
B, .:Zl{T/Q}/dsqﬁs U ®Y, Di=R

j=1 o

J

. . I eI . DI (T!,ch . . .
whereDJ’. is the death time odS(Tf ). The vanable#T/ ds ¢, ’ g are i.i.d. and independent of the point process

J
of immigration times. This point process of immigration times is Poisson with intens#ty 2.2 and (8) together
with a classical law of large numbers gives

% — c[r"RIR?) < 00 (28)

a.s. ag — oo. SinceAy; = By; for all j where the sequend®’ is increasing tao, comparison of (27) and (28)
shows
mRY) = /m(dx)l(x) =cEA(R)[7 "RI(R?Y) < 00
S

which is the property P3. Now repeating the same argument with & sé8(R?) instead ofA = R? identifies the
measuren asCrz?’R. O

2.7. Proposition.Under 1.1, assume that the branching diffusignhas propertiesP1+ P2+ P3 for arbitrary
choice of an immigration law € ML (R?).
Thenv — YR(v, RY) is a bounded function.

Proof. (1) Repeating the argument in the proof of 2.6, we see that underf2+ P3, the invariant occupation

measuren is necessarily of fornCz ¥R if 7 is the immigration law.
(2) Assuming only 1.1, consider the function

o0
v— V() :="R(v,R%) = EU</dt e‘fi?dm(l—%’)]@ﬁ) € [0, oo].
0

If m(R?Y) = Cx(V) is finite for arbitraryr € M1(R?), thenV (-) is necessarily finite-valued (consider.= §,,
v e RY). Also V(-) is necessarily bounded: if not, we could select a sequence of peintsin R¢ such that
n < V(v,) <n+1, and could consider a law of typecst)_, n—125u,, to obtain a contradiction. O

2.8. Proof of Theorem 1.6.Theorem 1.6 is proved by Propositions 2.4—2.7 together.
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2.9. Proof of Theorem 1.7.We assume 1.1 and 1.3, tak¢-) bounded, and fix an immigration law such that

(8) holds. We shall show that the invariant occupation measureexplicitly known by Theorem 1.6 — satisfies
Af e LYm), m(Af —yf)=—Cn(f), forall feC?R? R)

whereA is the Markov generator of the diffusidn

2

d
92 f o
Fordu; (v) + ;:1 bi (U)—avi (v). (29)

1 d
Af)=3 ) ai @)
1

i,j=

1. For functionsf € Cp := Cp (R4, R) and forx € S write f(x) :=x(f), i.e.

!

f=>"fG" ifx=@! .. xHwithi>1 andf(a)=0.

i=1
Under our assumptions, the invariant occupation meagui® explicitly known by theorem 1.6 and is a finite
measure, so we have( f) =m(f) < oo forall f €Cp. }
2. Considerf e C2. The Ito (or Dynkin) formula for — obtained from Ito’s formula fo¢ £ (17,)), between succes-
sive jump times, and compensating the jumps —is
t
f) — fo) = / Lf(n)ds+ NS+ N, feC?, (30)
0
whereL is the infinitesimal generator of
- l(X) . . .
Lf(x)= Z(Af(X’) — (k@ =)&) f(xD)) +em(f)
i=1
=(Af —yHx)+cr(f),
whereN°¢ is a continuous locally square integrable local martingale with angle bracket
t
(N = / VTf-a-Vf)ds,
0

and whereV? is the purely discontinuous local martingale

o0 ! -
N =" Yz, <n(Form) — Fng) — (en(f)r + / [k(o — D f](ns) ds).

n=1 0

3. Consider the branching diffusionwith immigration lawz as a stationary process, i.e. takéjo) = #(R)m.

Consider functiongf e C2.

Since[k (1 — p)] ando are bounded and siné&(g) < oo for boundedg, the local martingaled’© and N¢ of
step 2 are now martingales.

Then (30) forf e C2 shows

LfelL*m), O0=m(Lf), forall fecC?
which gives
Af e LYm), m(Af —yf)=—Cn(f), forall feC?
with C = cE A(R"). We have proved that the invariant occupation meaguselves (10). O
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3. Invariant occupation density

This section deals with existence and properties of a density for the invariant occupation measure of Section 1.
The results stated in Subsections 3.1 and 3.2 will be proved in Section 4.

3.1. Probabilistic approach

We will need resolvents for the diffusignof (1) and for an associated diffusigri™ introduced in (31) below —
in case where = oo | is spatially constant < is the process run backwards in time — with appropriate ‘killing
rates’. We will also need solutions of SDE’s (1) and (31) in form of a stochastic fla¥¢-afiffeomorphisms, see
Kunita [11, Corollary 4.6.5].

We have to strengthen the Assumptions 1.1 and 1.3 used in Section 1.

3.1. Assumption.We have 1.1 together with

o eCHRY,R™™), beCl R RY), yeCiR'R).

3.2. Assumption.The function in (6)
o
v— "R, RY) = Ev(/ dreJo d”’(‘fx)>
0

is bounded orR¥.

Hence by Theorem 1.6, the branching diffusion with immigratjdmas properties P+ P2+ P3 for arbitrary
choice of an immigration law € ML (R?).
Under 3.1, we introduce a diffusiggi™ associated to (1), with drifb< e C(3b):

8 .
Gk ), 1<i<d. (31)
AV

d
& =bE A +oE) AT b)) = b+ Y
k=1

We define a ‘killing rate’y < € C,f (this is abuse of languagge;~ may take negative values)

d d 2
ab; 1 9a;
y <T@ =y +) PO > av~alfk(v) (32)
i=1 ! k=1"""

K=

for € < in order to consider the resolvent R<: for f > 0 measurable ande R
o
YR — e~ oy ED
" RTfHw)y=Ey| [ dt f(§ e o s 7] €10, 00]. (33)
0
Note that’~ R< is the adjoint resolvent tR.
3.3. Remark.(a) Write& << for the diffusions run backwards in time: then™ < has driftb = with components

m d
00; |
< o . ) :
b (v) = —bl(v)+;k2_lak,z<v>—avk (), 1<i<d,
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see e.g. Kunita [11, pp. 131-135]. This is seen from the Stratonovich form of SDE (1) where the Stratonovich
integral is symmetric with respect to passage to the backwards diffusion, see lkeda and Watanabe [9, pp. 100-101]
In the special case of spatially constantb < andb < coincide.
(b) Under 3.1 and 3.2, the resolvent kernel (33) cannot yet be expected to be a finite kernel. As an example, let
in (1) be an ergodic Ornstein—Uhlenbeck process-d—9 &, dr + dW;, ¢ > 0, with spatially constant killing rate
y > 0. Then&é < in (31) is a transient Ornstein—Uhlenbeck process,jand= y — ¢ defined in (32) is negative
ford > y.

3.4. Assumption.The function

o
v—> y(_R(_(v,Rd)=Ev<fdte_ff§d”’<_(§5_))
0

is bounded oiR?.

3.5. Theorem.Assume.1, 3.2, 3.4and define

G:=|geCl geL’Mand” R ge LM} (34)
If the branching diffusion with immigration has immigration lawr € ML (R?) satisfying

m(dv) :=g(v)dv whereg belongs to clas§,

then the invariant occupation measume= Cz ¥R in 1.6is Lebesgue absolutely continuous. The density is
- &

which is bounded ofR?.
There are two simple conditions leading to continuous Lebesgue der@tﬂsﬂ%d:
3.6. Lemma.Assume3.1, 3.2, 3.4

(a) If 3.2is strengthened to
inf y(v) >0

veRd

then
¢ nonnegative and igZ N L(\) implies” R g € L1()).
(b) If 3.4is strengthened to

inf y~(v) >0
veRd

then
g eC2implies” R“geC).
The following example illustrates why in 3453.6 — under the conditions made so far — we obtain not more than

continuity for the invariant occupation dens%‘g. In a completely ‘smooth’ framework with stronger conditions,
better results (see Subsection 3.2) are available.
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3.7. Example.We continue the one-dimensional example of 3.3(b): Consider an Ornstein—Uhlenbeck process
&= (ét)t}O

ds[ == _ﬁét dt + dW[
with parameter € R, and fix some spatially constant killing rate> 0.

Thené& < of (31) is Ornstein—Uhlenbeck of parametef, which is as in 3.3(a) the diffusiof running back-
wards in time; the stochastic flow corresponding to is

t
1//‘_(t,v)=e§’v+eﬂ’/e‘“dﬁls, >0, veR,
0

Whereaa—vw‘—(t, v) =€’ is independent of, and%xp‘—(t, v) =0.
The resolvent defined in (32) (33) is

V*R“g(u):E(/dtg(w“(t,v))eV“’), y =y -0 (35)
0

All assumptions of 3.5+ 3.6 are satisfied provided > #; in this case, with choicg = ?Tji € C,f, we have from
3.5+ 3.6 a continuous invariant occupation den%given by (35) multiplied with the constant.
(i) Consider the case < 0 wheret < is recurrent (positive or null).

Sincey — (k + 1)¥ is strictly positive for allk € N, resolvents (35) with arbitrary € C;' belong toC}’; the
k-th derivatives are

o0
"R W) =E (/ dr g® (v (2, v)) ely(k“)l’lf), 1<k <m. (36)
0

(i) Consider the casé € (0, y) where& < is transient.
For givenk, y — (k + 1)¥ in (36) is positive only fory sufficiently small, so resolvents (35) with arbitrary
g € C; will in general only have the property

’”_R‘_g € Cl’,"“‘ on the interval} [L L) k € Ng.

k+2 k+1

In particular, for% <9 <y, this is continuity of “ R g as stated in 3.6(b).
(i) In case? > y, Assumption 3.4 is violated. O

3.2. Analytic approach

A smooth Lebesgue density can be obtained for the invariant occupation mgasufer” R in Theorem 1.6 if
we assume bounded smooth coefficients

o () €CP®RIRY™), b()eCP®RIRY, y()eCPRIR) (37)
together with uniform ellipticity
inf - inf BlawB>0 (a=oc0") (38)

veRd BeR4, |B|=1

for the one-particle motion (1) and the mass reductionyaftdote that the pair of conditions (34 (38) for& and
y implies the corresponding pair of conditions for the associatedandy < defined in (31) and (32), and vice
versa.
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For the diffusion¢ of (1), the uniform ellipticity condition (38) can be replaced by the uniform general H6r-
mander condition, introduced by Hérmander [7], see Williams [18], Kusuoka and Stroock [12] and Cattiaux [2]:
there is some&V such that

inf inf > BTV)*>0 (39)

d d _
veR! per?, |pl=1 o~

where the seVy (v) consists of9, V1, ..., V™ together with all Lie brackets of®, V1, ..., v up to orderN
where

v/ is the j-th columnino (v), 1< <m,

and wherev' ¥ is the drift atv of Eq. (1) rewritten in Stratonovich form:
1 m 4 80"[
0 i, .
v/ :bi(v)—EZZUjgz(v)a—vj(v), 1<i<d. (40)
1=1j=1

Here the Lie brackdtV, V] has components
d ( A

V.VIi=> (Vj—

- vy ) 1 < l < da
= 3Uj 31).,'
and the order of an iterated Lie bracket is the maximal degree of partial derivatives appearing in it.
We need conditions which are symmetricsiny and the associated™, y <. The uniform general Hormander
condition foré < is the condition (39) with drifb(-) in (40) replaced by < (-). So we strengthen Assumption 3.1:

3.8. Assumption.We have 1.1 together with the bounded smoothness condition (37), and the uniform general
Hoérmander condition holds for bothandé& <.

The following theorem is then a corollary to results given in Cattiaux [2, Proposition 2.19, Remarques 2.21]:

3.9. Theorem.Assume.8, 3.2, 3.4
Consider an immigration lawxr € M1(R9) with C,°-densityg = ‘é—’i. Theng belongs to clasg defined in(34),
and the Lebesgue densitymf= Cz ¥R in 3.5is smooth
dm

— =C’ R geC™.
= geC

If g = f’j—’i is in S, thenm has finite moments of arbitrary order.
Heres is the Schwartz space of all functionsfire C*° (R4, R) such that for arbitrary

h(v) < 00,

N
sup (1+Iv])
veR,(i1,...,ip)e{L,....d}P, p<N 9

vil e vip

see Edwards [4].

By Theorem 3.9, we have — under the strong set of Assumptions 3.8, in particular (37), on the diffusive motions
& and& <, and under weak assumptions on the branching mechanism, expressing only that ’killing rates’
y < have to satisfy 3.2 3.4 — very satisfactory information on the invariant occupation measure whenever the
immigration density is irC;°.

The result in the ‘smooth’ context here relies on a strong duality, see Theorem 4.5, (BB)) and Remark 4.7
below. For immigration densities in class this duality would have allowed to deduce the desired smooth density
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%—&7 = CV&R‘_‘C’,—Q for the invariant occupation measure directly from Theorem 1.6. This duality is not available in

the C?-context of Theorem 3.5 and Lemma 3.6.

We note that from a modelling point of view, or from the point of view of statistical inference, the strong
assumptions needed for Theorem 3.9 — like (37) contained in 3.8 — are problematic; they rule out some simple and
natural models like the Ornstein—~Uhlenbeck Example 3.7.

4. Proofs for Section 3

We start with a careful look at the class of solutions to Eq. (10) under the stronger conditions of Theorem 3.5.
We write for short’A for the mappingf — Af — y f in (10).

4.1. Proposition.Assume.1and 3.2 Then for arbitrary immigration lawr € M1(R?), the invariant occupation
measuren = CntVR is the unique solution to E§10)
mCAf)=-Cr(f), [eCE,

in the class of all finite measurés on R.

Proof. 1. Let(YP,);>o denote the semigroup corresponding tandy :

YP(v, )= E,(f&) e So%rE) 4R, £ nonnegative and measurable (41)

Sincey = [k (1 — p)] is bounded, everyP;(-,-) is a finite kernel on(R¢, B(R%)). The resolvent kernel for the
semigroup (41) appeared in Lemma 1.4.

2. 3.1 guarantees (a weaker variant of 3.1 would be enough here) that the diffusfi¢h) can be constructed
as a stochastic flow af?-diffeomorphisms, see Kunita [11, Theorem 4.6.5, and pp. 72—73, 79-80, 85]. Write
(W (1, v);>0,verd for this flow. As in Kunita [10, pp. 210-223], there ak&-bounds — uniformly irv € K, 0 <

t < T —for partial derivativesd%Ip(t, v) or ¥ (¢, v), for arbitraryp > 2, and these bounds are of exponential

32
Bv,-avj
type inT (see also Cattiaux [2, Théoréme (1.1)]). Using C,f by Assumption 3.1, and uniform integrability of
spatial derivatives in (41), we get

YP,feC? forall feC?andall 0<1 < 0.

(This argument cannot be extended to the resolV&), due to the exponential structure 1 of the bounds
mentioned above.)
3. Under 3.1, we consider test functiofiss Ci*. Then”Af € C,ZC, and from (41) and Ito formula

0
EVPtf(v) ="P(Af —yHw) ="PYAf(v). (42)
Hence” A is the infinitesimal generator of the semigroup (41), thus

}/PIVAfZVAVPtf’ feC]OCO’ (43)

and thus

T
Wﬁ@%f@=/wmwdw,f€%1 (44)
0
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For f € Ci¥, the functions’P, f and”AYP, f are inC2, by (43). Hence we have for a finite measifeatisfying
(10)

T
ﬁ(f)—n~1<VPTf):c7r</dﬂp,f>, fec.
0

The resolventR f = fé’o dt VP, f is a bounded function, by Assumption 3.2. Taking averaé%r dT...inthe
last equation, we deduce @5— oo

=Cn’R.

This proves Proposition 4.1.0
The key point for the results in Subsection 3.1 is the following lemma with formula (49) in its proof.

4.2. Lemma.Assumes.1, 3.2and 3.4 Then we have
(""RgYAf)=—(g. ). geCiNL*(N), feCZ (45)
with (-, -) denoting the scalar product iB2(\).

Proof. 1. Consider the semigroup associated to (8132)
PO, f) = Ev(f(éf_)e_féd“’&(éf_)), veR?, f>0measurable. (46)

In virtue of the strong Assumptions in 3.1, all assertions in steps 2, 3 of the proof of 4.1 concgjnghave
exact analogues in terms GTHP;—)I: we haveb< e Cfb), o€ C;,‘, and haves < in form of a stochastic flow of
C2-diffeomorphisms. We have ™ e C2, so (46) is a finite kernel farfixed, and we havé™ P~ f € C2 for f e C2.
As in the proof of 4.1, we see that the generator of the semigroup (46) is

2f of
S0+ wa)_(v) y @) f (). (47)

VTAT f(v) = Z ai j (V) 5

l j=1
2. Write A* for the adjoint of the Markov generatdr of £ in (29), see Williams [18] or Bass [1]:

Af()_zza(alkf) Z (bvf)(v), fECZ,UGRd. (48)

dv; 0V =

Then we can combine (3%) (32) + (48) to

A* f(v)—é Za,,w) f <v>+Zb*<v)—f<v)—(y — 1)) f(v)
i,j=1
which gives
VAT = f—yf), feC? (49)

3. For every pair of functiong € C2, h € CZ (thus we havéAh € C2.), we deduce from (49)
(TATE ) = (A h) — (v, h) = (&, Ah) — (&, yh) = (.7 Ah).

Starting from a functiory € C2, we haveg :="" P g € C? and thus
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9y pe YAy pe YT p<go ¥
5 P ) =T AT P = (7 P, YAR)

hence forg € C2, h € CZ, and 0< T < oo
T
/ ds (" P g, AR = (" Py g h) — (g, h).
0

Now ¥ "R (-,R%) = [ dt ¥ P;(-,R?) is a bounded function by Assumption 3.4, afgh) and (-, YAh) are
finite (signed) measures, fare C,ZC. Taking average% fOT/ dT ... over the terms in the last equality, we get as
T — o0

(" "Rg,YAh)=—(g.h), geC? heCi (50)
5. Now consider in (50) functiong € Cg which in addition belong td.1(}). Then (50) can be extended from
functionsh € C2 to functionsh € C2. We have proved (45). O

From Lemma 4.2, we deduce Theorem 3.5 and Lemma 3.6.

4.3. Proof of Theorem 3.5.Under Assumptions 3.1, 3.2, 3.4, consider an immigration meashexing Lebesgue
densityg in classg. Define

m(dv):=C(" R g dv, g= a

Then the functiort ~ R g is nonnegative, and if.1(\) by definition of the clasg in (34). Hence is a finite
measure ofR?. Lemma 4.2 shows thai is a solution to Eq. (10):

MOAf)=CO R g.7Af) =—C(g. f)=—Crn(f), feCh

By Proposition 4.1, there is only one solution to (10) in the class of all finite measures. Frem Z.&he invariant
occupation measuig = Cr”R solves (10), henc& equalsn .
By Assumption 3.4, the Lebesgue densityif i is a bounded function oR¢. O

4.4, Proof of Lemma 3.6. Under Assumptions 3.1, 3.2, 3.4, we apply Lemma 4.2 mcg N L*(\) nonnegative,
and to the constant functiofi= 1: then(g, f) is nonnegative and finite, and
(g.1)=(" R<g,—"Al)=("R<g,y)> inf y() [ dv "R g(v).
velR
R4

If y(-) is bounded away from 0 dR“, assertion (a) of Lemma 3.6 follows.
If < (-) is bounded away from 0 dR¢, then we have dominated convergence in

00
v —> V“Reg () = E, </dtg(€_-t<~)efotds y“@s&)), g€ C}?,
0

(¢ < is a stochastic flow af2-diffeomorphisms), thu8~ R g is continuous: this is (b). O

Now all results in Subsection 3.1 are proved. We turn to the results of Subsection 3.2. In order to prove The-
orem 3.9, we quote an analytical result from Cattiaux [2] which — thanks to symmetry of our assumptions — we
apply to bothg, y andé <, y <.
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4.5. Theorem(Cattiaux [2, Proposition 2.19, Remarques 2.2A2§sume3.8, 3.2, 3.4

(@) Onehas’ R<geC®NS and’RgeC®NS forgeC>®nS'.

(b) For everyh e C* NS, thereis a unique’ € C* NS’ suchthath =7~ A< f.
(c) Foreveryh e C*®° NS, there is a uniguef € C*° NS’ such thath =7A f.

(d) Foreveryg e C*NS’,wehave’ A< (" R<g)=" R(" A g)=—g.
(e) Foreveryf eC® NS’ ,we haveAYRf)="R("Af)=—f.

Here S’ is the topological dual of the Schwartz spagén 3.9.

4.6. Proof of Theorem 3.9.Assume 3.8, 3.2, 3.4.

1. Applying 4.5(c) to the constant function= 1, there is a unique solutioff € C*° N S’ to the equation
YA f =1. By 4.5(e), this solution is the functiofi= —YR1 = —YR(-, R?) which (up to the sign) has been consid-
ered in Assumption 3.2 (and in Lemma 1.4). In virtue of this assumpjfida bounded and nonpositive.

2. _Cpnsider an immigration densigy— g—g in C;°. For the functionf considered in (1)--(g, f) is nonnegative
and finite. Applying 4.5(d), 4.5(a) and (49), we get

(& H=("AT(R g, f)=C R g7Af)=("R"g1).
This shows that thé>°-function V“R“g isin L1(V).

We have proved that every immigration density C;° belongs to clas§ considered in Theorem 3.5. Hence
by 3.5 combined with 4.5(a), the invariant occupation measis#eCr ¥ R is Lebesgue-absolutely continuous with
C*>-densityC? "R g. This is the first assertion of 3.9.

3. Assume that the immigration densjy= ‘é—@{ is in the Schwartz spacg. For everyh € C*° N S’, we have

YRheC® NS and” R g e(C®NS by 4.5(), andg,?Rh) is well defined and finite. Hence (49) combined
with 4.5(d) gives the duality

(g, "Rh)=—(""A“(""R"g),"Rh) = (" R"g,~YA(Rh)) = (" R g, h). (51)

In particular, polynomial& onR¢ of arbitrary degree are elements@f N S’, so (51) shows thaf,, 7 (dv)h(v)
is finite. This is the second assertion of Theorem 3.9.

4.7. Remark.(a) Assume 3.8, 3.2, 3.4, consider immigration densities in the Schwartz Space
By Theorem 1.6, the invariant occupation measure is given by

h— m(h)=Cr”Rh=C(g,”Rh), heC®NS.

Then (49) combined with Theorem 4.5 yield the strong duality appearing in (51)
("R)* = Y R

which identifies the Lebesgue densf§ as

dm v R
- &
Hence Theorem 4.5 and (49)(51) allow to pass directly from Theorem 1.6 to Theorem 3.8.

(b) This direct approach is not possible in tffesetting of Subsection 3.1:

in the C2 context of 3.5+ 3.6, or of 4.1-4.4Y " R g or YRh are in general not i¢2, and there is no analogue
of 4.5(b)—(e) forC2-functionsg, A.

(c) The strong assumptions needed for (a) — like (37) contained in 3.8 — are not always desirable from a modelling
point of view, or from the point of view of statistical inference: they exclude some simple and important models,
e.g. the Ornstein—Uhlenbeck Example 3.7.
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