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Abstract

LetLBa
be the last exit time from the ballBa = {|x| < a} for a nondegenerate transientα-semistable process{Xt } onR

d . The
problem to determine the setT defined byT = {0} ∪ {η > 0: E[LBa

η] < ∞} is studied. The process{Xt } is called first-class o
second-class according as it is strictlyα-semistable or not. A unique location parameterτ ∈ R

d is introduced in connection t
the space–time relation of{Xt }; τ = 0 if and only if {Xt } is first-class;τ is the drift if 0< α < 1 and the center if 1< α � 2.

The setT is determined in the cased = 1 and in the following cases withd � 2: (i) 0 < α < 1; (ii) 1 � α � 2 andτ = 0;
(iii) 1 � α < 2, τ �= 0, andσ({−τ/|τ |}) > 0; (iv) 1� α < 2, τ �= 0, and−τ/|τ | /∈ Cσ . Hereσ is the spherical component of th
Lévy measure, andCσ is a set defined by the support ofσ .

Weak transience and strong transience correspond to 1/∈ T and 1∈ T, respectively, and they are completely classified
terms ofd, α, τ , and another parameterβ.

Applications to the Spitzer type limit theorems involving capacity are given.
 2005 Elsevier SAS. All rights reserved.

Résumé

SoitLBa
le dernier temps de passage dans la bouleBa = {|x| < a} pour un processusα-semi-stable transitoire non-dégéné

{Xt } à valeur dansRd . On étudie le problème de déterminer l’ensembleT = {0} ∪ {η > 0: E[LBa
η] < ∞}. Le processus{Xt }

est appelé de la première classe (resp. de la seconde classe), s’il est strictementα-semi-stable (resp. s’il n’est pas stricteme
α-semi-stable). Un paramètre unique de positionτ ∈ R

d est introduit par rapport à la relation de temps-espace du proc
{Xt }. On montre queτ = 0 si et seulement si{Xt } est de la première classe, queτ est la dérive quand 0< α < 1 et queτ est le
centre quand 1< α � 2.

L’ensembleT est déterminé dans le cas oùd = 1. Quant au cas oùd � 2, il est déterminé dans les cas suivants : (i) 0< α < 1 ;
(ii) 1 � α � 2 et τ = 0 ; (iii) 1 � α < 2, τ �= 0 etσ({−τ/|τ |}) > 0 ; (iv) 1 � α < 2, τ �= 0 et−τ/|τ | /∈ Cσ , où σ est la partie
sphérique de la mesure de Lévy etCσ est un ensemble défini par le support deσ .

La propriété faiblement transitoire du processus et celle fortement transitoire correspondent respectivement au ca/∈ T

et où 1∈ T. Elles sont classées complètement en termes des paramètresd, α, τ avec un autre paramètreβ.

* Corresponding author.
E-mail addresses:ken-iti.sato@nifty.ne.jp (K. Sato), t-watanb@u-aizu.ac.jp (T. Watanabe).
0246-0203/$ – see front matter 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.09.003
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Des applications aux théorèmes limite de type Spitzer mettant en jeu la capacité sont données.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

After the paper [20] we have been working on classification of transient stable processes onR
d by the properties

of the last exit timeLBr from the ballBr = {|x| < r}, and its extension to transient semistable processes. Ac
plishment of this objective is still far from us, but here we present in this paper some progress in our kno
This classification aims to express a degree of transience of those processes. It originated from the unde
of the difference between weak and strong transience in limit theorems for hitting times of the Spitzer type
ing capacity by Spitzer [26], Getoor [4], Port [10–12], Port and Stone [16] in 1960s; the study was contin
Port [13,14] for stable processes around 1990. Le Gall [8] made a refinement of the limit theorem in the
Brownian motion. Jain and Pruitt [7] also met weak and strong transience in limit theorems of the ranges of
walks and there are many subsequent works. Earlier Takeuchi [27] took up the problem of the last exit t
rotation-invariant stable processes.

In [24] we gave some results on the moments of the last exit timeLBr for a general transient Lévy proce
{Xt } on R

d ; among others, an analytic criterion for finiteness ofE(LBr
η) for a givenη > 0 was given in terms

of the functionψ(z), the distinguished logarithm of the characteristic function of the distribution ofX1. This
was an extension to a general case of Hawkes’s criterion [5] in the symmetric case. However, it turned
this analytic criterion was often difficult to apply to concrete nonsymmetric Lévy processes. Weak transie
strong transience are respectively equivalent to infiniteness and finiteness ofE(LBr ), but it is very hard to classify
by the analytic criterion weak and strong transience of one-dimensional stable processes. Here in this pap
a basis of our study on reduction of the problem to estimation of the density functionp(t, x) of the distribution of
Xt . It is known thatE(L

η
Br

) < ∞ for all (equivalently for some)r if and only if
∫
|x|<r

dx
∫ ∞

0 tηp(t, x)dt < ∞ for
all (equivalently for some)r . In the case of stable or semistable processes, the problem is transformed to est
of p(1, x) when|x| is large or small, by a space–time relation. Thus our objective to determine whetherE(L

η
Br

) is
finite or not for a general nondegenerate transientα-semistable process for any givenη > 0 is completely achieve
in the case of one dimension (d = 1). In multi-dimensional case (d � 2), it is achieved except in the case whe
1� α < 2, τ �= 0, −τ/|τ | ∈ Cσ , andσ({−τ/|τ |}) = 0. Here the measureσ is the spherical component of the Lé
measure, the setCσ is the radial projection to the unit sphere of a cone-like set spanned by the support oσ in
some sense, and the vectorτ ∈ R

d is a location parameter, one of whose properties is thatτ = 0 if and only if the
process is strictly semistable. Our results will be summarized in Theorems A and B in Section 2. The diffic
our problem stems from the fact that we do not know in general asymptotic behaviors of the stable or se
densityp(1, x) as |x| is large. They delicately depend on the direction ofx in relation toτ and σ . However,
Theorems A and B are strong enough to give a complete classification of transient semistable processeR

d ,
d � 1, into weakly transient and strongly transient. This result is new even for stable processes ifd = 2,α = 1, and
not strictly stable.

In the case of stable processes, one can get better results on tail estimates ofp(1, x) for d � 2, based on the
explicit form of the radial component of the Lévy measure. These make it possible to determine the setT in various
situations in the remaining case. They will be given in another paper by one of the authors.

A nontrivial Lévy process{Xt } onR
d is calledα-semistable if, for somea > 0 with a �= 1 and for somec ∈ R

d ,
{X } and{a1/αX + tc} are identical in law. Here we necessarily have 0< α � 2. This is an extension ofα-stable
at t
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processes, which are deeply studied Lévy processes. By this extension the class is much enlarged and u
phenomena occur. For example, if{Xt } is a stable process onR, then the distribution ofXt is unimodal and, ast
increases, the movement of the modemt of Xt changes its direction at most once. But among semistable proc
{Xt } on R, there is a case where the distribution ofXt is not unimodal for anyt > 0; also there is a case whe
the distribution is unimodal for anyt > 0 but its modemt oscillates ast increases; also there is a case wh
the distribution is unimodal for somet and not unimodal for somet and unimodality and nonunimodality appe
alternately as time passes. See Choi [3], Sato [19,22], and Watanabe [30,31] for properties of semistable p
Historically, semistable distributions were introduced in probability theory by Lévy [9].

In the last section of the paper we discuss the implication of the finiteness ofE(L
η
Br

) in the Spitzer type limit
theorems.

2. Main results

We use the terminology in Sato’s book [23]. See also Bertoin [1] for general properties of Lévy process
{Xt : t � 0} be a Lévy process onRd , d � 1, with generating triplet(A, ν, γ ). HereA is the Gaussian covarianc
matrix,ν is the Lévy measure, andγ is the location parameter. That is,

E exp
(
i〈z,Xt 〉

) = exp
(
tψ(z)

)
, z ∈ R

d, (2.1)

with

ψ(z) =
∫
Rd

(
ei〈z,x〉 − 1− 1{|x|�1}(x)i〈z, x〉)ν(dx) + i〈γ, z〉 − 1

2
〈Az, z〉, (2.2)

whereν is a measure onRd satisfyingν({0}) = 0 and
∫

Rd (1 ∧ |x|2)ν(dx) < ∞, γ ∈ R
d , andA is a nonnegative

definite matrix. The process{Xt } is of type A if A = 0 andν(Rd) < ∞; of type B if A = 0, ν(Rd) = ∞, and∫
|x|�1 |x|ν(dx) < ∞; of type C otherwise. IfA = 0, {Xt } is said to be purely non-Gaussian. If

∫
|x|�1 |x|ν(dx) < ∞,

then

ψ(z) =
∫
Rd

(ei〈z,x〉 − 1)ν(dx) + i〈γ0, z〉 − 1

2
〈Az, z〉, (2.3)

whereγ0 is called the drift of{Xt }. If
∫
|x|>1 |x|ν(dx) < ∞ (equivalently, ifE|X1| < ∞), then

ψ(z) =
∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉)ν(dx) + i〈γ1, z〉 − 1

2
〈Az, z〉, (2.4)

whereγ1 is called the center of{Xt } andγ1 = EX1.
The supportSρ of a measureρ on R

d is the smallest closed set that carries the whole measure ofρ. The

distribution of anR
d -valued random variableX is denoted byL(X). We write {Xt } d= {Yt } for two stochastic

processes{Xt } and{Yt } if they have an identical system of finite-dimensional joint distributions. For a Lévy pro
{Xt }, we denoteµ = L(X1) andµt = L(Xt ). The support ofµt is denoted byS(Xt ). A setB in R

d is calledone-
sided if there is c �= 0 in R

d such thatB ⊂ {x: 〈c, x〉 � 0}. A measureρ on R
d is called one-sided ifSρ is

one-sided. A measureρ on R
d is calleddegenerateif there area ∈ R

d and a proper linear subspaceV of R
d such

thatSρ ⊂ a + V ; otherwiseρ is called nondegenerate. A Lévy process{Xt } on R
d is called degenerate ifL(Xt )

is degenerate for everyt > 0 (equivalently, for somet > 0); otherwise{Xt } is called nondegenerate. See [2
Proposition 24.17 for conditions for nondegenerateness on the generating triplet. A Lévy process{Xt } on R

d is
called a trivial process if there isc ∈ R

d such that, for everyt , X = tc a. s.; otherwise{X } is said to be nontrivial
t t
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A Lévy process{Xt } on R
d , d � 1, is calledstableif, for everya > 0, there areb > 0 andc ∈ R

d such that

{Xat : t � 0} d= {bXt + tc: t � 0}. (2.5)

A Lévy process{Xt } on R
d , d � 1, is calledsemistableif, for somea > 0 with a �= 1, there areb > 0 andc ∈ R

d

satisfying (2.5). In this case we can choosea > 1 without loss of generality. The following fact is found in [2
Theorems 13.11 and 13.15.

Proposition 2.1. Let {Xt } be a nontrivial semistable process onR
d . LetΓ be the set ofa > 0 such that there are

b > 0 andc ∈ R
d satisfying(2.5). Then eacha ∈ Γ uniquely determinesb andc; there is a uniqueα ∈ (0,2] such

thatb = a1/α for all a ∈ Γ . The setΓ is either equal to(0,∞) or expressed as{an
0: n ∈ Z} by a uniquea0 > 1.

The process{Xt } in Proposition 2.1 is called a semistable process with indexα or α-semistable process.
Γ = (0,∞), {Xt } is a stable process with indexα or α-stable process. Ifa ∈ Γ ∩ (1,∞), thena anda1/α are
called, respectively, an epoch and a span of{Xt }.

In this paper, when we say{Xt } is semistable (or stable), we implicitly assume that{Xt } is a nontrivial Lévy
process. Let{Xt } be anα-semistable process onRd . If α = 2, then it is Gaussian. If 0< α < 2, then it is purely
non-Gaussian and

a ν(B) = ν(a−1/αB) (2.6)

for all a ∈ Γ and Borel setsB ([23], Theorem 14.3). If 0< α < 1, then{Xt } is of type B andE|Xt | = ∞ for t > 0.
If α = 1, then{Xt } is of type C andE|Xt | = ∞ for t > 0. If 1 < α < 2, then{Xt } is of type C andE|Xt | < ∞ for
t > 0. ([23], Proposition 14.5)

Let {Xt } be a semistable process onR
d . If c = 0 in (2.5) for everya in the setΓ , we call{Xt } afirst-classsemi-

stable process. Otherwise we call{Xt } a second-classsemistable process. (Ifc = 0 in (2.5) for somea ∈ Γ \ {1},
then{Xt } is first-class semistable. This is a consequence of Proposition 2.4 below.) Since{Xt } is assumed to b
nontrivial, it is first-class semistable if and only if it is strictly semistable in the terminology of [23]; it is sec
class semistable if and only if it is semistable but not strictly semistable. Similarly we use the words firs
stable and second-class stable.

Let {Xt } be a Lévy process onRd . Transience and recurrence of{Xt } are defined in [23]. LetLB be the last exit
time from an open setB, that is,

LB = sup{t � 0: Xt ∈ B}.
Let Br = {x: |x| < r}. The process is recurrent if and only ifLBr = ∞ a.s. for allr > 0; it is transient if and only
if LBr < ∞ a.s. for allr > 0.

Proposition 2.2. Let {Xt } be a transient Lévy process onR
d . Letη > 0. Then one of the following is true:

E[Lη
Br

] < ∞ for all r > 0, (2.7)

E[Lη
Br

] = ∞ for all r > 0. (2.8)

This is Theorem 2.8 of [24]. Given a transient Lévy process onR
d , denote

T = {0} ∪ {
η > 0: (2.7) is true

}
. (2.9)

The bigger is this setT, the stronger is a degree of transience. The process{Xt } is called strongly transient if 1∈ T;
it is called weakly transient if 1/∈ T.

The purpose of this paper is to investigate the setT for nondegenerate transient semistable processes onR
d . Let

us recall the following fact ([23], Theorems 37.8, 37.16, 37.18).
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Proposition 2.3. Let {Xt } be a nondegenerateα-semistable process onRd . If d � 3, then it is transient. Ifd = 1
or 2, then it is recurrent if and only if it is first-classα-semistable withd � α � 2.

The first of our main results is the following.

Theorem A. Assume that{Xt } is a nondegenerate transientα-semistable process onRd with Lévy measureν.

(i) If 0< α < 1 andν is one-sided, thenT = [0,∞).
(ii) If 0< α < 1 andν is not one-sided, thenT = [0, d/α − 1).

(iii) If 1� α � 2 and{Xt } is first-class semistable, thenT = [0, d/α − 1).
(iv) If α = 2 and{Xt } is second-class semistable, thenT = [0,∞).

By the assumption of transience of{Xt }, the case of (iii) is empty ifd = 1. The remaining case of nondege
erate transientα-semistable processes onR

d , d � 1, not covered by Theorem A is the case of second-class
1� α < 2.

In order to formulate the next result, we need the following facts.

Proposition 2.4. Let {Xt } be anα-semistable process onRd .

(i) There exists a unique elementτ ∈ R
d such that, for everya ∈ Γ ,

{Xat } d= {
a1/αXt + t (a − a1/α)τ

}
(if α �= 1), (2.10)

{Xat } d= {
aXt + ta(loga)τ

}
(if α = 1). (2.11)

(ii) If 0< α < 1, thenτ in (i) is the driftγ0. If 1< α � 2, thenτ is the centerγ1. If α = 1, then

τ = 1

loga

∫
1<|x|�a

xν(dx) for everya ∈ Γ ∩ (1,∞). (2.12)

(iii) The process{Xt } is first-class semistable or second-class semistable according asτ = 0 or τ �= 0.
(iv) If α �= 1, thenτ is a unique element inRd such that{Xt − tτ } is first-class semistable. Ifα = 1 and τ �= 0,

then there is noτ ′ ∈ R
d such that{Xt − tτ ′} is first-class semistable.

Proof. (i) For anya ∈ Γ \ {1} defineτ = τa by the formula (2.10) or (2.11). We claim that thisτa does not depen
ona. First, it follows by induction that

{Xant } d= {
an/αXt + t (an − an/α)τa

}
(if α �= 1), (2.13)

{Xant } d= {
anXt + tnan(loga)τa

}
(if α = 1) (2.14)

for all n ∈ N. Hence

{Xt } d= {
a−n/αXant − ta−n/α(an − an/α)τa

}
(if α �= 1),

{Xt } d= {
a−nXant − tn(loga)τa

}
(if α = 1).

It follows that (2.13) and (2.14) hold for alln ∈ Z. If a anda′ in Γ \ {1} satisfya′ = an for somen ∈ Z, then (2.13)
or (2.14) shows thatτa′ = τa . If Γ = {an

0: n ∈ Z} with somea0 > 1, this finishes the proof. IfΓ = (0,∞), then we

fix a0 > 1 and see thatτ
a

n/m
0

= τ
a

1/m
0

= τa0 for all n ∈ Z andm ∈ N. Since such pointsan/m

0 are dense in(0,∞)

and sinceτ is continuous with respect toa in the intervals(0,1) and(1,∞), this finishes the proof.
a



934 K. Sato, T. Watanabe / Ann. I. H. Poincaré – PR 41 (2005) 929–951

ely
(ii) If α = 2, then{Xt } is Gaussian and it is easy to see thatτ = EX1. If α �= 2, thenν satisfies, by (2.6),

a

∫
Rd

f (x)ν(dx) =
∫
Rd

f (a1/αx)ν(dx) for a ∈ Γ (2.15)

for all nonnegative measurable functionsf . Hence it is easy to see thatτ = γ0 or τ = γ1 according as 0< α < 1
or 1< α < 2.

Let α = 1 anda ∈ Γ ∩ (1,∞). Then, by (2.1), (2.2), and (2.15), we get

Eei〈z,Xat 〉 = Eei〈z,aXt 〉 exp

[
it

∫
1/a<|x|�1

〈z, ax〉ν(dx)

]

and hence, by (2.11),(loga)τ = ∫
1/a<|x|�1 xν(dx). This means (2.12), since

∫
1/a<|x|�1 xν(dx) = ∫

1<|x|�a
xν(dx)

by (2.15).
(iii) This is a consequence of (i).

(iv) Let α �= 1. We have{Xat − atτ } d= {a1/α(Xt − tτ )} from (2.10). This shows that{Xt − tτ } is first-class
α-semistable. Conversely, if{Xt − tτ ′} is first-classα-semistable for someτ ′ ∈ R

d , then there isa > 0 with a �= 1

such that{Xat − atτ ′} d= {a1/α(Xt − tτ ′)}, that is,{Xat } d= {a1/αXt + t (a − a1/α)τ ′} and hencea ∈ Γ andτ ′ = τ .
The remaining assertion forα = 1 is found in [23] Theorem 14.8.�
Remark 2.5. For anyα-semistable process onRd with 0< α < 2, defineβ ∈ R

d as

β =
∫

1<|x|�a1/α

xν(dx)

/ ∫
1<|x|�a1/α

|x|ν(dx) (2.16)

for a ∈ Γ ∩ (1,∞). Then, using (2.15), we can prove thatβ does not depend on the choice ofa ∈ Γ ∩ (1,∞).
Obviously,|β| � 1. If α = 1, thenβ = cτ , wherec is a positive constant independent ofa ∈ Γ ∩ (1,∞). In the
case of anα-stable process onR, thisβ coincides with the parameterβ in [23] Definition 14.16.

Proposition 2.6. Let {Xt } be anα-semistable process onRd with α �= 2. Then there are a probability measureσ
onSd−1 = {ξ ∈ R

d : |ξ | = 1} and measuresνξ on (0,∞) for ξ ∈ Sd−1 such that

νξ (E) is measurable inξ for eachE ∈ B(0,∞), (2.17)

ν(B) =
∫

Sd−1

σ(dξ)

∞∫
0

1B(rξ)νξ (dr) for B ∈ BRd , (2.18)

∞∫
0

(1∧ r2)νξ (dr) is a finite constant independent ofξ ∈ Sd−1. (2.19)

Thisσ is uniquely determined andνξ is unique forσ -a.e.ξ ∈ Sd−1. Further, forσ -a.e.ξ ∈ Sd−1,

a νξ (E) = νξ (a
−1/αE) for E ∈ B(0,∞) anda ∈ Γ . (2.20)

In particular, for σ -a.e.ξ ∈ Sd−1, νξ ((1, a1/α]) > 0.

Proof. Existence and uniqueness ofσ andνξ are proved by the conditional distribution theorem for every infinit
divisible distribution with nonzero Lévy measure. The property (2.20) is a consequence of (2.6).�

When{X } is anα-semistable process onRd with α �= 2, let
t
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C0
σ =

{
ξ ∈ Sd−1: ξ =

d∑
j=1

cj ξj for somecj > 0 andξj ∈ Sσ , j = 1, . . . , d,

such thatξ1, . . . , ξd are linearly independent

}
, (2.21)

whereSσ is the support ofσ . This set was introduced by Hiraba [6]. LetCσ = C0
σ , the closure ofC0

σ . The setC0
σ

is nonempty if{Xt } is nondegenerate.
Now we formulate the second of our main results.

Theorem B. Let {Xt } be a nondegenerate transient, second-class (that is,τ �= 0), α-semistable process onRd with
1� α < 2.

(i) If α = 1, thenT ⊃ [0, d − 1].
(ii) If α = 1 andσ({−τ/|τ |}) > 0, thenT = [0, d − 1].

(iii) If 1< α < 2, thenT ⊃ [0, (d − 1)/α + α − 1).
(iv) If 1< α < 2 andσ({−τ/|τ |}) > 0, thenT = [0, (d − 1)/α + α − 1).
(v) If −τ/|τ | /∈ Cσ , thenT = [0,∞).

When 1< α < 2 andτ �= 0, we haveXt ∼ tτ , t → ∞, almost surely and we observe that the largeness o
last exit timeLBr is determined by the relationship of the point−τ/|τ | with the measureσ as in (iv) and (v) above
This is in similarity to the fact that the largeness ofLBr of a one-dimensional transient Lévy process with fin
positive mean is determined by its Lévy measure in the negative half line ([24], Theorem 5.1).

We will study in Section 3 the support ofL(Xt ) and the positivity of the density ofL(Xt ) for general Lévy
processes{Xt } and especially for semistable processes, using the works of Tortrat [29] and Sharpe [25
proofs of Theorems A and B will be given in Sections 4 and 5. Now the case where we do not have a
description ofT is that 1� α < 2, −τ/|τ | ∈ Cσ , andσ({−τ/|τ |}) = 0. If d = 1, then this case is void, sinc
S = {1,−1}. But, if d � 2, the setT is delicate in this case.

Ford = 1, Theorems A and B completely determine the setT as follows.

Corollary 2.7. Let {Xt } be a transientα-semistable process onR.

(i) If 0< α < 1 and |β| = 1, thenT = [0,∞).
(ii) If 0< α < 1 and |β| �= 1, thenT = [0,1/α − 1).

(iii) If α = 1 and |β| = 1, thenT = [0,∞).
(iv) If α = 1 and0< |β| < 1, thenT = {0}.
(v) If 1< α < 2, τ �= 0, |β| = 1, andτβ < 0, thenT = [0, α − 1).

(vi) If 1< α < 2, τ �= 0, |β| = 1, andτβ > 0, thenT = [0,∞).
(vii) If 1< α < 2, τ �= 0, and|β| �= 1, thenT = [0, α − 1).
(viii) If α = 2 andτ �= 0, thenT = [0,∞).

Sinced = 1, we have the following:ν is one-sided if and only if|β| = 1; if |β| = 1 andτ �= 0, thenτβ < 0
is equivalent toσ({−τ/|τ |}) > 0 = σ({τ/|τ |}), and τβ > 0 is equivalent toσ({−τ/|τ |}) = 0 < σ({τ/|τ |}). If
α = 1, thenτ = 0 andβ = 0 are equivalent. The eight cases in the corollary above exhaust all transient sem
processes onR, according to Proposition 2.3.

Proof of Corollary. Assertions (i), (ii), and (viii) are consequences of Theorem A (i), (ii), and (iv), respecti
Assertions (iii)–(vi), and (vii) follow from Theorem B (v), (ii), (iv), (v), and (iv), respectively.�
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Although we do not have full knowledge of the setT, weak and strong transience of nondegenerate tran
semistable processes onR

d is completely determined as follows.

Corollary 2.8. Let {Xt } be a nondegenerate transientα-semistable process onRd . Then it is strongly transient i
and only if one of the following conditions holds:

(1) d = 1 and0< α < 1/2;
(2) d = 1, 1/2� α � 1, and|β| = 1;
(3) d = 1, 1< α < 2, τ �= 0, |β| = 1, andτβ > 0;
(4) d = 1, α = 2, andτ �= 0;
(5) 2� d � 4 and0 < α < d/2;
(6) 2� d � 4, d/2� α � 2, andτ �= 0;
(7) d � 5.

Proof. If d = 1, cases (1)–(4) exhaust strongly transient case by Corollary 2.7. If 2� d � 4, use Theorem A
(i)–(iv) and Theorem B (i) and (iii) to see that the process is strongly transient if and only if (5) or (6) ho
d � 5, then strong transience comes from Theorem A(i), (ii) for 0< α < 1, from Theorem A(iii) for first-class
with 1 � α � 2, and from Theorem B(i), (iii) for second-class with 1� α � 2. But strong transience ford � 5 is a
consequence of a general result in Theorem 2.17 of [21].�

As a special case of Corollary 2.8, any nondegenerate second-class 1-semistable process onR
2 is strongly

transient. This is a new result even in stable case; Port [14] did not treat this case.
In the proofs of Theorems A and B we will use the following facts.

Proposition 2.9. Let {Xt } be a transient Lévy process onR
d . Letη > 0. Thenη ∈ T if and only if

∞∫
0

tηP [Xt ∈ Bε]dt < ∞ for all ε > 0; (2.22)

η /∈ T if and only if

∞∫
0

tηP [Xt ∈ Bε]dt = ∞ for all ε > 0. (2.23)

This is Lemma 2.3 of [24].

Proposition 2.10. Let {Xt } be a nondegenerateα-semistable process onRd . Then, for anyt > 0, µt has aC∞
densityp(t, x) on R

d and

p(ant, x) = a−nd/αp
(
t, a−n/αx + (1− a(1−1/α)n)tτ

)
(if α �= 1), (2.24)

p(ant, x) = a−ndp
(
t, a−nx − n(loga)tτ

)
(if α = 1) (2.25)

for a ∈ Γ andn ∈ Z.

Proof. As in [23] Proposition 24.20 there is a constantc > 0 such that∣∣µ̂t (z)
∣∣ � e−ct |z|α for t > 0, z ∈ R

d , (2.26)
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whereµ̂t (z) is the characteristic function ofµt . Henceµt has a continuous densityp(t, x) expressed as

p(t, x) = (2π)−d

∫
Rd

e−i〈x,z〉µ̂t (z)dz for t > 0, x ∈ R
d . (2.27)

Further,p(t, x) is of C∞ in x. By (2.10) or (2.11)p(t, x) satisfies (2.24) or (2.25) fora ∈ Γ andn = 1. But, since
a ∈ Γ impliesan ∈ Γ for n ∈ Z, (2.24) or (2.25) is true fora ∈ Γ andn ∈ Z. �

3. Supports of semistable processes

A subsetH of R
d is said to be a closed additive semigroup ifH is a closed set such thatH + H ⊂ H . If

moreover−H ⊂ H , thenH is called a closed additive group. Given a Lévy process{Xt } on R
d with generating

triplet (A, ν, γ ), let V = A(Rd). If we denote by{X′
t } the Lévy process with triplet(A,0,0), that is, the centere

Gaussian component of{Xt }, thenV = S(X′
t ) for t > 0.

Tortrat [29] and Sharpe [25] prove the following remarkable result.

Proposition 3.1. Let {Xt } be a Lévy process onRd with Lévy measureν. LetM be the linear subspace defined

M =
{
y ∈ R

d :
∫

|x|�1

|〈y, x〉|ν(dx) < ∞
}

(3.1)

and letΠM be the orthogonal projection fromRd ontoM . Let{XM
t } be the Lévy process defined byXM

t = ΠMXt .
Then the Lévy measureνM of {XM

t } satisfies∫
|x|�1

|x|νM(dx) < ∞. (3.2)

Denote the drift of{XM
t } byγ M

0 . Then,S(Xt ) − tγ M
0 , which we denote byH , does not depend ont ∈ (0,∞). That

is,

S(Xt ) = tγ M
0 + H for t > 0. (3.3)

The setH has an expression

H = Π−1
M Sgp(νM) + V , (3.4)

whereSgp(νM) is the smallest closed additive semigroup containing{0} andSνM
.

It follows from (3.4) thatH is a closed additive semigroup containing{0}. Following [25], we callH the
invariant semigroupof {Xt }. If {Xt } is of type A or B, thenM = R

d , V = {0}, andH = Sgp(ν). If M = {0}, then
S(Xt ) = H = R

d for t > 0.
Sharpe [25] writes (3.4) without taking the closure in the right-hand side by an oversight, butΠ−1

M Sgp(νM)+V

may not be closed. The assertion (3.3) is written by him asS(Xt ) = tb + H with someb ∈ R
d , but we can choos

b = γ M
0 in his proof.

Remark 3.2. Let {Xt } be a nondegenerate Lévy process onR
d .

(i) Suppose that{Xt } is of type A or B. Then the invariant semigroupH is a closed additive group if and only
ν is not one-sided.
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(ii) Suppose that{Xt } is of type C and purely non-Gaussian. ThenH is a closed additive group if and only if eith
M = {0} or νM is not one-sided inM .

Proof follows from the fact proved in [24] that any closed additive semigroup which is not one-sided
additive group. Note that{XM

t } is nondegenerate inM , since{Xt } is nondegenerate.

Sharpe [25] gives another nice result. For stable processes this is shown by Taylor [28] and Port and Vit

Proposition 3.3. Let {Xt } be a Lévy process onRd such that, fort > 0, L(Xt ) is absolutely continuous and ha
densityp(t, x) measurable as a function of(t, x) and satisfying

p(t + s, x) =
∫
Rd

p(t, x − y)p(s, y)dy for all x ∈ R
d, t > 0, s > 0. (3.5)

LetG(Xt) = {x ∈ R
d : p(t, x) > 0} for t > 0. Then, using the notation in Proposition3.1,

G(Xt) = intS(Xt ) for t > 0, (3.6)

intS(Xt ) = tγ M
0 + intH for t > 0, (3.7)

whereint means “the interior of”.

Remark 3.4. Let {Xt } be a Lévy process onRd satisfying the conditions in Proposition 3.3.

(i) Suppose that{Xt } is of type A or B. ThenG(Xt) = R
d for all t > 0 if and only if ν is not one-sided.

(ii) Suppose{Xt } is of type C and purely non-Gaussian. ThenG(Xt) = R
d for all t > 0 if and only if either

M = {0} or νM is not one-sided inM .

To see (i), note that intH �= ∅ by Proposition 3.3, use Remark 3.2, and conclude that 0∈ intH if ν is not
one-sided. The proof of (ii) is similar.

Let us apply these results to semistable processes.

Theorem 3.5. Let {Xt } be a nondegenerateα-semistable process onRd with 0< α � 2.

(i) Suppose that0 < α < 1 andν is one-sided. Then the invariant semigroupH equalsSgp(ν) and is one-sided
convex, and closed under multiplication by nonnegative reals, and

S(Xt ) = tγ0 + H and G(Xt) = tγ0 + intH for t > 0, (3.8)

whereG(Xt) = {x: p(t, x) > 0}.
(ii) Suppose that1� α � 2, or suppose that0< α < 1 andν is not one-sided. Then

S(Xt ) = G(Xt) = R
d for t > 0. (3.9)

Proof. The estimate (2.26) and the expression (2.27) show thatp(t, x) is continuous in(t, x) and bounded fo
(t, x) ∈ [ε,∞) × R

d for everyε > 0. Hence the conditions in Proposition 3.3 are satisfied.
(i) In this case{Xt } is of type B. ThusH = Sgp(ν), S(Xt ) = tγ0 + H , G(Xt) = tγ0 + intH for t > 0. Let

x ∈ H and c � 0. We claim thatcx ∈ H . This is obvious ifx = 0 or c = 0. Let x �= 0 andc > 0. There is a
sequencexk → x such that eachxk is the sum of a finite number of elements ofSν . Thusxk = ∑nk

j=1 x
j
k , x

j
k ∈ Sν .

Let a ∈ Γ andb = a1/α , a span. Chooseh = 2 or 3 such that the ratio logh/ logb is irrational. Then there ar
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positive integerslk , mk increasing to∞ such thatlk logh−mk logb → logc ask → ∞. Sinceb−mkx
j
k ∈ Sν by the

property (2.6), we havehlkb−mkxk ∈ H and this tends tocx ask → ∞. Hencecx ∈ H . It follows thatH is convex.
(ii) If 0 < α < 1 andν is not one-sided, then (3.9) follows from Remark 3.4(i). Ifα = 2, then the assertion i

obvious. Suppose 1� α < 2. Use the decomposition ofν in Proposition 2.6. Then,∫
|x|�1

∣∣〈y, x〉∣∣ν(dx) =
∫

Sd−1

∣∣〈y, ξ 〉∣∣σ(dξ)

∫
(0,1]

rνξ (dr) =
{

0 if y ⊥ Sσ ,

∞ otherwise,

since we get
∫
(0,1] rνξ (dr) = ∞ from (2.20) as in [23] Proposition 14.5. Now it follows from nondegeneracy

M = {0}, and henceG(Xt) = R
d by Remark 3.4(ii). �

Corollary 3.6. Let {Xt } be a nondegenerateα-semistable process onRd with 0 < α � 2. Then the following
conditions are equivalent:

0< α < 1 and −γ0 /∈ intH , (3.10)

p(t,0) = 0 for all t > 0. (3.11)

p(t,0) = 0 for somet > 0. (3.12)

Proof. If (3.10) holds, thenν is one-sided andH is closed under multiplication by nonnegative reals, which sh
that −tγ0 /∈ intH for all t > 0 and (3.11). If (3.12) holds, then 0< α < 1, ν is one-sided, and−tγ0 /∈ intH for
somet > 0, from which follows (3.10). �

For stable processes the dichotomy resulting from the corollary above was found by Taylor [28]; the pr
satisfying (3.10)–(3.12) were called by him of type B and the other processes were called of type A, but we
use his terminology. For semistable processes, the part concerningS(Xt ) in Theorem 3.5 was given also by Rajp
et al. [18], but they did not studyG(Xt).

The following fact will be useful.

Proposition 3.7. Let {Xt } be a nondegenerateα-semistable process onRd , 0 < α < 2, with Lévy measureν. Let

{Yt } and{Zt } be independent Lévy processes such that{Xt } d= {Yt + Zt } and{Zt } is a compound Poisson proce
with Lévy measure equal toν restricted to{|x| > θ} for someθ > 0. ThenS(Yt ) = S(Xt ) andG(Yt ) = G(Xt) for
t > 0.

Proof. DenoteµZ = L(Z1). Then | logµ̂Z(z)| is bounded inz. HenceL(Yt ) is absolutely continuous for eac
t > 0 and the densitypY (t, x) is continuous in(t, x) as in the case of{Xt }. We express the objects related to{Yt }
by putting subscriptY .

Let 0< α < 1. ThenM = MY = R
d . Similarly to the proof of Theorem 3.5, Sgp(νY ) is closed under multipli-

cation by nonnegative reals. Hence, by (2.6), Sgp(ν) = Sgp(νY ). Since{Xt } and{Yt } have an identical drift, we
haveS(Yt ) = S(Xt ) andG(Yt ) = G(Xt).

Let 1 � α < 2. Then M = MY = {0} as in the proof of Theorem 3.5. HenceS(Yt ) = G(Yt ) = R
d like

for {Xt }. �

4. Proof of Theorem A

Let {Xt } be a nondegenerate transientα-stable process onRd , 0< α � 2. Leta ∈ Γ . We denoteX0
t = Xt − tτ .

Let p0(t, x) be the continuous density ofL(X0) for t > 0.
t
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Lemma 4.1. Assume that0< α < 1 andν is one-sided. Then, for any integern � 1 and anyε > 0,

sup
t�ε

sup
x∈Rd

|x|−np0(t, x) < ∞. (4.1)

Proof. There isc �= 0 in R
d such thatS(X0

t ) ⊂ F = {x: 〈c, x〉 � 0} for any t > 0, by Theorem 3.5(i). Thus a
partial derivatives ofp0(t, ·) vanishes on(intF)c. It follows from (2.26) and (2.27) that any partial derivative
p0(t, ·) is bounded onRd uniformly in t � ε. Hence, using Taylor’s theorem around 0, we get (4.1).�
Lemma 4.2. Assume that0< α < 1 andν is one-sided. Then, for anyc > 0 and anyε > 0,

sup
|x|�ε

an+1∫
an

p(t, x)dt = o(a−cn), n → ∞. (4.2)

Proof. Use (2.24). Then

an+1∫
an

p(t, x)dt =
a∫

1

p0(anu, x − anuτ)an du =
a∫

1

p0(u, a−n/αx − a(1−1/α)nuτ)a(1−d/α)n du. (4.3)

Choose a positive integerl such thatc + 1− d/α + (1− 1/α)l < 0. It follows from Lemma 4.1 that there arec1,
c2 such that

p0(u, a−n/αx − a(1−1/α)nuτ) � c1|a−n/αx − a(1−1/α)nuτ |l � c2a
(1−1/α)nl

for |x| � ε and 1� u � a. Hence

an+1∫
an

p(t, x)dt � c2(a − 1)a(1−d/α+(1−1/α)l)n = o(a−cn)

as in (4.2) �
Lemma 4.3. Suppose that0 < α < 1 andν is not one-sided, or suppose that1 � α � 2 and first-class semistable
Then, for anyε > 0,

an+1∫
an

p(t, x)dt ∼ a(1−d/α)n

a∫
1

p0(u,0)du (4.4)

uniformly in |x| � ε asn → ∞.

Proof. We use (4.3). We havea−n/αx −a(1−1/α)nuτ → 0 uniformly in |x| � ε and 1� u � a asn → ∞, recalling
thatτ = 0 in the case of first-class. Thus we get (4.4). Notice that

∫ a

1 p0(u,0)du > 0 by virtue of Theorem 3.5. �
Proof of Theorem A. Let

I (η) =
∫

dx

∞∫
tηp(t, x)dt. (4.5)
|x|�1 1
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(i) We assume that 0< α < 1 andν is one-sided. Givenη > 0, choosec > η and apply Lemma 4.2. Then

I (η) =
∞∑

n=0

∫
|x|�1

dx

an+1∫
an

tηp(t, x)dt � const
∞∑

n=0

a(η−c)n < ∞.

It follows from Proposition 2.9 thatη ∈ T.
(ii) and (iii) We assume that 0< α < 1 andν is not one-sided, or that 1� α � 2 and{Xt } is first-class. By

Lemma 4.3,I (η) < ∞ if and only if
∑∞

n=1 a(η−d/α+1)n < ∞. HenceT = [0, d/α − 1).
(iv) Assumption is thatα = 2 and{Xt } is of second-class. Thus{Xt } is Gaussian with nonzero center. There

a constantc > 0 such that

sup
|x|�1

p(t, x) = o(e−ct ), t → ∞.

HenceI (η) < ∞ for all η > 0. �

5. Proof of Theorem B

Let {Xt } be a nondegenerateα-semistable process onRd with 0 < α < 2. Leta ∈ Γ . Our basic technique is t
decompose{Xt } into the sum of independent Lévy processes{Yt } and{Zt } as in Proposition 3.7. We takeθ = 1 in
that proposition; thus their Lévy measuresνY andνZ are the restrictions ofν to {|x| � 1} and{|x| > 1}, respectively,
and{Zt } is a compound Poisson process. LetµY = L(Y1) andµZ = L(Z1). Since| logµ̂Z(z)| is bounded, we ge
|µ̂t

Y (z)| � e−ct |z|α+c1t with somec > 0 andc1 > 0 from (2.26). ThusL(Yt ), t > 0, has a densitypY (t, x), which is
continuous in(t, x), of classC∞ in x, and bounded for(t, x) ∈ [ε1, ε2]× R

d for every 0< ε1 < ε2 < ∞. We write
pY (t, x) = q(t, x) andL(Zt ) = µt

Z = λt .

Lemma 5.1. There are positive constantsc1, c2 such that

sup
1�t�a

q(t, x) � c1 exp
(−c2|x| log|x|) for |x| > 0. (5.1)

Proof. Let c3 = sup1�t�a supx∈Rd q(t/2, x). Theorem 26.1 of [23] tells us that∫
|y|>r

q(a/2, y)dy � c4 exp(−c5r logr) for r > 0

with some positive constantsc4, c5. Let c6 = P(sup1�t�a |Ya/2 − Yt/2| � N), choosingN so large thatc6 > 0.
Then

P
(|Ya/2| > r − N

)
� c6P

(|Yt/2| > r
)

for r > N and 1� t � a. Now,

q(t, x) =
∫

|x−y|�|x|/2

q(t/2, x − y)q(t/2, y)dy +
∫

|x−y|>|x|/2

q(t/2, x − y)q(t/2, y)dy

� 2c3

∫
|y|�|x|/2

q(t/2, y)dy � 2c3c4c
−1
6 exp

(−c5
(|x|/2− N

)
log

(|x|/2− N
))

� c7 exp
(−c8|x| log|x|)

for large|x| with some positive constantsc7, c8. This gives (5.1). �



942 K. Sato, T. Watanabe / Ann. I. H. Poincaré – PR 41 (2005) 929–951
Lemma 5.2. There are positive constantsc1, c2 such that, for every positive integerk and everyr > 0,

νk∗
Z

({|x| > r
})

� c1c
k
2k

1+α(1+ r)−α. (5.2)

Proof. Let c2 = ν(|x| > 1) and letWj , j = 1,2, . . . , be i. i. d. sequence of random variables onRd each with
distributionc−1

2 νZ . By (2.6) we have

P
(|W1| > an/α

) = c−1
2 ν

(|x| > an/α
) = c−1

2 a−nν
(|x| > 1

) = a−n

for all integern � 0. Thus there isc1 such that

P
(|W1| > s

)
� c1(1+ s)−α for s > 0.

Hence

νk∗
Z

(|x| > r
) = ck

2P

(∣∣∣∣∣
k∑

j=1

Wj

∣∣∣∣∣ > r

)
� ck

2P
(|Wj | > r/k for somej � k

)
� ck

2kP
(|W1| > r/k

)
� ck

2c1k(1+ r/k)−α � c1c
k
2k

1+α(1+ r)−α,

as asserted.�
We need a lemma to estimate the integral ofρ(B1 + y + tξ ) with respect tot for a measureρ. As before letBr

be the open ball with center 0 and radiusr .

Lemma 5.3. Letρ be a measure onRd and let0� b1 < b2 < ∞, ξ ∈ Sd−1, andy ∈ R
d . Then

(
(b2 − b1) ∧ 4−1)ρ( ⋃

b1�t�b2

(B1/2 + y + tξ )

)
�

b2∫
b1

ρ(B1 + y + tξ )dt

� 4ρ

( ⋃
b1�t�b2

(B1 + y + tξ )

)
. (5.3)

Proof. The second inequality is obvious ifb2 − b1 � 1. So, suppose thatb2 − b1 > 1. Since

b+1∫
b

ρ(B1 + y + tξ )dt � ρ

( ⋃
b�t�b+1

(B1 + y + tξ )

)
,

we have
b2∫

b1

ρ(B1 + y + tξ )dt �
[b2−b1]−1∑

n=0

ρ

( ⋃
b1+n�t�b1+n+1

(B1 + y + tξ )

)
+ ρ

( ⋃
b2−1�t�b2

(B1 + y + tξ )

)

� 4ρ

( ⋃
b1�t�b2

(B1 + y + tξ )

)
,

where[b2 − b1] is the integer part ofb2 − b1.
In order to see the first inequality in (5.3), note that

b+1/2∫
ρ(B1 + y + tξ )dt � 1

2
ρ

( ⋃
(B1/2 + y + tξ )

)
.

b b�t�b+1/2
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If b2 − b1 � 1/2, then

b2∫
b1

ρ(B1 + y + tξ )dt � 1

4

[2(b2−b1)]−1∑
n=0

ρ

( ⋃
b1+n/2�t�b1+(n+1)/2

(B1/2 + y + tξ )

)

+ 1

4
ρ

( ⋃
b2−1/2�t�b2

(B1/2 + y + tξ )

)

� 1

4
ρ

( ⋃
b1�t�b2

(B1/2 + y + tξ )

)
.

If b2 − b1 � 1/2, then

b2∫
b1

ρ(B1 + y + tξ )dt � (b2 − b1)ρ

( ⋃
b1�t�b2

(B1/2 + y + tξ )

)
.

This completes the proof.�
Lemma 5.4. Suppose that1 � α < 2 and {Xt } is of second-class. Letε > 0. Let x ∈ R

d be such that|x| � ε and
let

ut,x,n =
{

a−n/αx + (1− a(1−1/α)n)tτ (1 < α < 2),

a−nx + n(loga)tτ (α = 1).
(5.4)

Let yx,n ∈ R
d satisfy|yx,n| � inf1�t�a |ut,x,n|/2. Then, there is a constantc1 > 0 independent of the choice ofx

andyx,n such that
a∫

1

λt (B1 + yx,n + ut,x,n)dt �
{

c1a
−(1−1/α)(1+α)n (1 < α < 2),

c1n
−2 (α = 1)

(5.5)

for all sufficiently large integern. If, moreover,σ({−τ/|τ |}) > 0, then there is a constantc2 > 0 independent of the
choice ofx such that

a∫
1

λt (B1 + ut,x,n)dt �
{

c2a
−(1−1/α)(1+α)n (1< α < 2),

c2n
−2 (α = 1)

(5.6)

for all sufficiently large integern.

Proof. We give the proof only in the case 1< α < 2, as the discussion in the caseα = 1 is quite similar. Let
c3 = ν(|x| > 1). There isc4 > 0 such that

|yx,n + ut,x,n| � |ut,x,n|/2 � c4a
(1−1/α)n

for all largen uniformly in |x| � ε andt ∈ [1, a]. Hence, for largen,

a∫
1

λt (B1 + yx,n + ut,x,n)dt =
a∫

1

dt

∞∑
k=1

e−c3t t k(k!)−1νk∗
Z (B1 + yx,n + ut,x,n)

� e−c3

∞∑
ak(k!)−1

a∫
νk∗
Z (B1 + yx,n + ut,x,n)dt.
k=1 1
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By Lemmas 5.2 and 5.3,

a∫
1

νk∗
Z (B1 + yx,n + ut,x,n)dt � 4νk∗

Z

( ⋃
1�t�a

(B1 + yx,n + ut,x,n)

)
(a(1−1/α)n − 1)−1|τ |−1

� c5k
1+αck

3a
−(1−1/α)na−(1−1/α)nα

for largen with somec5. Thus we get (5.5).
To see (5.6), letn be sufficiently large. By Lemma 5.3 and (2.18),

a∫
1

λt (B1 + ut,x,n)dt �
a∫

1

e−c3t tνZ(B1 + ut,x,n)dt � c6νZ

( ⋃
1�t�a

(B1/2 + ut,x,n)

)
a−(1−1/α)n

� c6σ
({ξ}) (a(1−1/α)n−1)|τ |a∫

(a(1−1/α)n−1)|τ |
νξ (dr)a−(1−1/α)n

with somec6 > 0, whereξ = −τ/|τ |. Let an = (a(1−1/α)n − 1)|τ |. Sincea > a1/α , we have

νξ

(
(a(1−1/α)n − 1)|τ |(1, a]) � νξ

(
an(1, a1/α]).

Choosek = k(n) such thata(k−1)/α < an � ak/α . Using (2.20), we get

νξ

(
an(1, a1/α]) = νξ

(
(an, a

k/α]) + νξ

(
(ak/α, ana

1/α])
= aνξ

(
(ana

1/α, a(k+1)/α]) + νξ

(
(ak/α, ana

1/α]) � νξ

(
(ak/α, a(k+1)/α])

= a−kνξ

(
(1, a1/α]) � a−α

n a−1νξ

(
(1, a1/α]) = c7a

−(1−1/α)αn

with somec7 > 0. This completes the proof.�
Proof of Theorem B. Now we assume that{Xt } is a nondegenerate transient second-classα-semistable proces
on R

d with 1� α < 2. We begin with the case 1< α < 2.
(iii) Let |x| � ε. We claim that there is a constantc1 > 0 independent ofx such that

an+1∫
an

p(t, x)dt � c1a
−(α−1+(d−1)/α)n (5.7)

for all largen. Indeed, from (2.24),

an+1∫
an

p(t, x)dt = a−(d/α−1)n

a∫
1

p(t, ut,x,n)dt, (5.8)

whereut,x,n is of (5.4). Letbx,n = inf1�t�a |ut,x,n|/2 and consider

p(t, ut,x,n) =
∫

|y|>bx,n

q(t,−y)λt (ut,x,n + dy) +
∫

|y|�bx,n

q(t,−y)λt (ut,x,n + dy).

Denote byJ1 andJ2 the first and second terms in the right-hand side. Asn → ∞, bx,n → ∞ uniformly in x and,
from Lemma 5.1, there isc2 > 0 such that

J = o
(
exp(−c b logb )

)
. (5.9)
1 2 x,n x,n
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Chooseyx,n,j for j = 1, . . . ,N = N(x,n) such that

|yx,n,j | � bx,n,

N⋃
j=1

(B1 + yx,n,j ) ⊃ {
y: |y| � bx,n

}
,

N∑
j=1

Qx,n,j � c3 whereQx,n,j = sup
y∈B1+yx,n,j ,t∈[1,a]

q(t,−y)

with c3 independent ofx andn. This is possible because of Lemma 5.1. Then,

J2 �
N∑

j=1

Qx,n,j λ
t (B1 + yx,n,j + ut,x,n).

It follows from Lemma 5.4 that
a∫

1

J2 dt � c4a
−(1−1/α)(1+α)n (5.10)

with a constantc4. Thus we get (5.7) from (5.9) and (5.10). DefineI (η) by (4.5). It follows thatI (η) < ∞ if
η < α + (d − 1)/α − 1.

(iv) Assumption is that 1< α < 2 andσ({−τ/|τ |}) > 0. We claim that there is a constantc5 > 0 independen
of x such that

an+1∫
an

p(t, x)dt � c5a
−(α−1+(d−1)/α)n (5.11)

for all largen. We have

a∫
1

p(t, ut,x,n)dt �
a∫

1

dt

∫
B1

q(t,−y)λt (ut,x,n + dy) � c6

a∫
1

λt (B1 + ut,x,n)dt,

wherec6 = infy∈B1,1�t�a q(t,−y) > 0 by Proposition 3.7 and by the continuity ofq(t, x) in (t, x). Thus we can
use (5.6) to get (5.11). We see thatI (η) = ∞ for η � α + (d − 1)/α − 1.

(i) Assumeα = 1. Then we can findc7 > 0 independent ofx ∈ {|x| � ε} such that

an+1∫
an

p(t, x)dt � c7n
−2a−(d−1)n (5.12)

for all largen. Proof is similar to that of (5.7), using (5.5) of Lemma 5.4. Then,I (η) < ∞ for η � d − 1, as in the
proof of (iii).

(ii) Assumption is thatα = 1 andσ({−τ/|τ |}) > 0. Now there existsc8 > 0 independent ofx ∈ {|x| � ε} such
that

an+1∫
an

p(t, x)dt � c8n
−2a−(d−1)n (5.13)

for all largen. Proof of this and the remaining discussion is similar, using (5.6).
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(v) Assumption is that−τ/|τ | /∈ Cσ . LetΠ be the radial projection fromRd \{0} ontoSd−1, that is,Πx = x/|x|.
For any integerk � 1, we claim that

if xj ∈ Sν andaj � 0 for j = 1, . . . , k, then
k∑

j=1

ajxj ∈ Π−1Cσ ∪ {0}. (5.14)

In the case wherex1, . . . , xk are linearly independent, the assertion (5.14) is evident from the definition ofCσ . In
the case wherex1, . . . , xk are linearly dependent, (5.14) is shown by induction ink since, if

∑k
j=1 bjaj xj = 0 with

bk = 1� bj for j = 1, . . . , k −1, then
∑k

j=1 ajxj = ∑k−1
j=1(1−bj )aj xj , in which the coefficients are nonnegativ

Next we claim that there is a constantc9 > 0 such that

an+1∫
an

p(t, x)dt =
{

o
(
exp(−c9a

(1−1/α)nn)
)

(1 < α < 2),

o
(
exp(−c9n logn)

)
(α = 1),

(5.15)

uniformly in x ∈ {|x| � ε} asn → ∞. Let 1< α < 2 (the caseα = 1 is similarly handled). Defineut,x,n by (5.4).
There areδ > 0 andn0 such that(

ut,x,n + {
y: |y| � δ|ut,x,n|

}) ∩ Π−1Cσ = ∅ if n � n0, |x| � ε, t ∈ [1, a]. (5.16)

Indeed, writingan = a(1−1/α)n − 1 andu = ut,x,n = a−n/αx − antτ , considerz = u + y with |y| � δ|u|. We have
an → ∞ and

|u| ∼ ant |τ | uniformly in |x| � ε andt ∈ [1, a]. (5.17)

Then

|Πz + Πτ | � |y + a−n/αx|
|y + u| +

∣∣∣∣ −antτ

|y + u| + τ

|τ |
∣∣∣∣.

Let I1 andI2 be the first and second terms in the right-hand side. ThenI1 � (1+ δ|u|)/((1− δ)|u|) → δ/(1− δ)

andI2 = |antτ ||1/|y + u| − 1/(ant |τ |)| � |y + u + antτ |/|y + u| = I1. Thus (5.16) follows from−Πτ /∈ Cσ for
smallδ and largen0. Now (5.14) and (5.16) yield

νk∗
Z

(
ut,x,n + {

y: |y| � δ|ut,x,n|
}) = 0 for k � 1.

Hence,

p(t, ut,x,n) =
∫

|y|>δ|ut,x,n|
q(t,−y)λt (ut,x,n + dy) � c10exp

(−c11δ|ut,x,n| log
(
δ|ut,x,n|

))
with somec10 > 0 andc11 > 0 by Lemma 5.1. This combined with (5.8) and (5.17) shows (5.15). Now we
I (η) < ∞ for all η > 0. �

6. Applications to Spitzer type limit theorems involving capacity

We study implications of our results on the setT in the Spitzer type limit theorems mentioned in the fi
paragraph of Section 1. LetX = (Ω,F ,Ft ,Xt , θt ,P

x) be the Hunt process in the sense of Blumenthal and Ge
[2] induced by a Lévy process{Xt } on R

d . That is,P x(Xt ∈ B) = P(x + Xt ∈ B) for any x ∈ R
d , t � 0, and

Borel setB. Let TB be the hitting time of a Borel setB defined byTB = inf{t > 0: Xt ∈ B}, where we understan
TB = ∞ if Xt /∈ B for all t > 0. Let

EB(t) =
∫

P x(TB � t)dx. (6.1)
Rd
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Asymptotic expansion ofEB(t) ast → ∞ for a bounded Borel setB is a subject of research in many papers si
Spitzer [26] in 1964. The first order term is connected to the capacityC(B) of B. Assume that the original Lév
process{Xt } on R

d is transient and nondegenerate. Denote the dual process ofX by X̃ = (Ω,F ,Ft ,Xt , θt , P̃
x),

which is the Hunt process induced by the Lévy process{−Xt }. The equilibrium measuresmB andm̃B of B for the
processesX andX̃, respectively, have a common total mass, which is the capacityC(B) of Port and Stone [16
(see also [23], Chapter 8). We have 0� C(B) < ∞ for any bounded Borel setB. Fix a nonnegative continuou
functionf (x) with compact support such thatf (0) > 0 and

∫
f (x)dx = 1. Let

r(t) =
∞∫
t

ds

∫
Rd

f (x)
(
Exf (Xs)

)
dx, (6.2)

whereEx is the expectation underP x . We haver(t) < ∞ for t � 0 because of the transience. For anyη > 0, it
follows from Proposition 2.9 that

∫ ∞
0 tη−1r(t)dt < ∞ if and only if η ∈ T. Throughout this section, letB be a

bounded Borel set inRd . In the case whereXt has a purely singular distribution for everyt > 0, we make an
additional assumption thatP x(TB = TintB) = 1 for almost everyx. It follows from the boundedness ofB that
EB(t) < ∞ (use (3.18) of [16] and the duality formula). Let

ϕB(x) = P x(TB < ∞), ϕ̃B(x) = P̃ x(TB < ∞). (6.3)

If 1 ∈ T, then
∫

Rd ϕ̃B(x)ϕB(x)dx < ∞ (see Theorem 14.2 of [16]).
The following two propositions are among the results obtained by a series of works [26,4,10–12,16].

Proposition 6.1. Let

∆
(1)
B (t) = EB(t) − tC(B). (6.4)

If 1 /∈ T, then

∆
(1)
B (t) = (

C(B)
)2

t∫
0

r(s)ds + o

( t∫
0

r(s)ds

)
, t → ∞. (6.5)

Proof is given in Theorem 14.2 of [16].

Proposition 6.2. Assume1∈ T and let

∆
(2)
B (t) = EB(t) − tC(B) −

∫
Rd

ϕ̃B(x)ϕB(x)dx. (6.6)

Then

∆
(2)
B (t) = −

∫
Rd

ϕ̃B(x)P x(t < TB < ∞)dx = O

( ∞∫
t

r(s)ds

)
, t → ∞. (6.7)

If, in addition, we assume

sup
t>0

r(t/2)

r(t)
< ∞, (6.8)

then

∆
(2)
B (t) = −(

C(B)
)2

∞∫
t

r(s)ds + o

( ∞∫
t

r(s)ds

)
, t → ∞. (6.9)
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Proof. The assertion (6.7) is obtained from (3.19) and (14.13) of [16]. The property (6.8) is the so-called dom
variation and it follows from (6.8) thatr(t) � b2t

−b1 for larget with some positive constantsb1, b2. Therefore, if
(6.8) holds, then

lim sup
t→∞

(
µt(K)

)1/t = 1 for some compact setK. (6.10)

Indeed, ifX does not satisfy (6.10), then there is a constantc > 0 such thatr(t) = o(e−ct ) ast → ∞. Hence the
second half of the proposition is a consequence of Lemma 3.3 of [15].�

Combining the limit theorems above and our estimates in Sections 4 and 5, we get the following results

Proposition 6.3. Let {Xt } be a nondegenerate transient Lévy process onR
d .

(i) Suppose that1 /∈ T andb ∈ T for some0< b < 1. Then

∆
(1)
B (t) = o(t1−b), t → ∞. (6.11)

(ii) Suppose that1∈ T andb ∈ T for someb � 1. Then

∆
(2)
B (t) =

{
o(t1−b) if b > 1,

o(1) if b = 1
(6.12)

as t → ∞.

Proof. (i) Since

r(t) � t−b

∞∫
t

sb ds

∫
f (x)

(
Exf (Xs)

)
dx = o(t−b),

we have
∫ t

0 r(s)ds = o(t1−b). Hence (6.11) follows from Proposition 6.1.
(ii) Since we have from 1∈ T that

tr(t) �
∞∫
t

s ds

∫
f (x)

(
Exf (Xs)

)
dx → 0, t → ∞,

we see that
∞∫
t

r(s)ds = − tr(t) −
∞∫
t

sr ′(s)ds � − tr(t) + t1−b

∞∫
t

sb ds

∫
f (x)

(
Exf (Xs)

)
dx = o(t1−b).

Thus (6.12) follows from Proposition 6.2.�
In the case of stable processes, Port [14] gives detailed analysis of asymptotics of∆

(1)
B (t) and∆

(2)
B (t). Our

Theorems A and B make it possible to give some asymptotics of these quantities for semistable processe

Proposition 6.4. Let {Xt } be a nondegenerate transientα-semistable process onRd . Suppose that either it is th
one treated in(i)–(iii ), and(iv) of TheoremA, or it is in the cased = 1 treated in Corollary2.7, but the one in(iv)

of Corollary2.7 is excluded. ThenT = [0, b), with some0< b � ∞, and the following are true.

(i) If 0< b < 1, then

∆
(1)
B (t) � t1−b, t → ∞. (6.13)
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(ii) If b = 1, then

∆
(1)
B (t) � logt, t → ∞. (6.14)

(iii) If 1< b < ∞,

−∆
(2)
B (t) � t−(b−1), t → ∞. (6.15)

(iv) If b = ∞, then, for anyc > 0,

∆
(2)
B (t) = o(t−c), t → ∞. (6.16)

Here, in general for two positive functionsA(t) andB(t), we writeA(t) � B(t), t → ∞, if there are constant
0< c1 � c2 < ∞ such thatc1B(t) � A(t) � c2B(t) for all sufficiently larget .

Proof of Proposition. Theorem A or Corollary 2.7 says thatT = [0, b), with some 0< b � ∞. Let us consider
the cases treated in (ii) and (iii) of Theorem A. Thus 0< b = d/α − 1 < ∞. We can show that condition (6.8)
satisfied. In order to see this, it is enough to show

sup
t>0

r(t/a)

r(t)
< ∞ (6.17)

for a ∈ Γ ∩ (1,∞). Let K be a compact set. By Lemma 4.3
∞∫

an

p(s, x)ds ∼ const
∞∑

k=n

a−kb = consta−nb

uniformly in x ∈ K , and hence foran < t � an+1∫ ∞
t/a

p(s, x)ds∫ ∞
t

p(s, x)ds
�

∫ ∞
an−1 p(s, x)ds∫ ∞
an+1 p(s, x)ds

∼ a2b

uniformly in x ∈ K . Thus the definition (6.2) ofr(t) shows that (6.17) is satisfied. We also have
∞∫
t

p(s, x)ds � t−b

and hence

r(t) � t−b, t → ∞.

Thus (i), (ii), and (iii) follow from Propositions 6.1 and 6.2.
Among the cases treated in Corollary 2.7, (ii) is included in (ii) of Theorem A; (v) and (vii) have 0< b < ∞

and a similar argument works, using the proofs of (iii) and (iv) of Theorem B.
The remaining cases haveb = ∞ and our assertion (iv) is a straightforward consequence of Pro

tion 6.3(ii). �
Proposition 6.5. Let {Xt } be a nondegenerate transient second-classα-semistable process onRd with 1 � α < 2
treated in TheoremB. Assume thatd � 2. Then the following hold fort → ∞.

(i) If α = 1, then

∆
(2)
B (t) =

{
O

(
(logt)−1

)
for d = 2,

O
(
t2−d(logt)−2

)
for d � 3.

(6.18)
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(ii) If α = 1 andσ({−τ/|τ |}) > 0, then

−∆
(2)
B (t) �

{
(logt)−1 for d = 2,

t2−d(logt)−2 for d � 3.
(6.19)

(iii) If 1< α < 2, then

∆
(2)
B (t) = O(t2−α−(d−1)/α). (6.20)

(iv) If 1< α < 2 andσ({−τ/|τ |}) > 0, then

−∆
(2)
B (t) � t2−α−(d−1)/α. (6.21)

(v) If −τ/|τ | /∈ Cσ , then, for everyc > 0,

∆
(2)
B (t) = o(t−c). (6.22)

Proof. (i) Denote positive constants byc1, c2, . . . . It follows from (5.12) that

∞∫
an

p(t, x)dt � c1

∞∑
k=n

k−2a−(d−1)k � c2

∞∫
an−1

(logt)−2t−d dt � c3n
−2a−(d−1)n

uniformly in x in any compact set. Thus

∞∫
t

p(s, x)ds � c4(logt)−2t−(d−1)

uniformly in x in any compact set. Hence

∞∫
t

r(s)ds �
{

c5(logt)−1 for d = 2,

c6(logt)−2t−(d−2) for d � 3.

Now use Proposition 6.2(i).
(ii) The estimate from below is obtained similarly, by (5.13).
(iii), (iv) Similarly use (5.7) and (5.11).
(v) SinceT = [0,∞), this is a consequence of Proposition 6.3(ii).�

Remark 6.6. If d = 1, α = 1, and 0< |β| < 1 (the case (iv) of Corollary 2.7), then

∆
(1)
B (t) � t (logt)−1 ast → ∞. (6.23)

Indeed, since this is in the case (ii) of Theorem B, we have

∞∫
an

p(t, x)dt �
∞∑

k=n

k−2 � n−1

uniformly in x in any compact set by (5.12) and (5.13). Thusr(t) � (logt)−1 and
∫ t

0 r(s)ds � t (logt)−1. Then
use Proposition 6.1.
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