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Abstract

Let L g, be the last exit time from the ball, = {|x| < a} for a nondegenerate transientemistable procegX;} on R4, The
problem to determine the s&tdefined by? = {0} U {n > 0: E[L g, "] < oo} is studied. The proce$X} is called first-class or
second-class according as it is striathsemistable or not. A unique location parameter R? is introduced in connection to
the space—-time relation ¢X;}; r = 0 if and only if {X;} is first-classy is the drift if 0< « < 1 and the center if X o < 2.

The set¥ is determined in the casé= 1 and in the following cases withh > 2: (i) 0 <o < 1; (ii) 1 <« < 2 andr =0;
(il <a<2,t#0,ando({—7/I7|}) > 0; (V) 1< a < 2,7 #0,and—1/|t| ¢ Cy. Hereo is the spherical component of the
Lévy measure, and,; is a set defined by the support®f

Weak transience and strong transience correspond¢t@ hnd le ¥, respectively, and they are completely classified in
terms ofd, «, T, and another parametgr

Applications to the Spitzer type limit theorems involving capacity are given.

0 2005 Elsevier SAS. All rights reserved.
Résumé

Soit L g, le dernier temps de passage dans la b&yle- {|x| < a} pour un processus-semi-stable transitoire non-dégénére
{X;} & valeur dan®“. On étudie le probléme de déterminer 'ensentble {0} U { > O: E[Lp, "] < co}. Le processu$X;}
est appelé de la premiére classe (resp. de la seconde classe), s'il est strictesmemiistable (resp. s'il n’est pas strictement
a-semi-stable). Un paramétre unique de positioaR? est introduit par rapport & la relation de temps-espace du processus
{X:}. On montre que = O si et seulement $iX,} est de la premiéere classe, quest la dérive quand @ o < 1 et quer est le
centre quand k o < 2.

L'ensembl€eX est déterminé dans le cas@t= 1. Quant au cas adl > 2, il est déterminé dans les cas suivants: @@ < 1;
(l<a<2etr=0;((i)l<a<2,7#40eto({—1/I7|}) >0; (V) 1<a<2,t#0et—1/|t| ¢ Cs, OUo estla partie
sphérique de la mesure de Lévy&t est un ensemble défini par le supportode

La propriété faiblement transitoire du processus et celle fortement transitoire correspondent respectivement ag €as ou 1
et ou 1€ %. Elles sont classées complétement en termes des param@irasavec un autre parametfe
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Des applications aux théoremes limite de type Spitzer mettant en jeu la capacité sont données.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

After the paper [20] we have been working on classification of transient stable proce&bythe properties
of the last exit timel g, from the ballB, = {|x| < r}, and its extension to transient semistable processes. Accom-
plishment of this objective is still far from us, but here we present in this paper some progress in our knowledge.
This classification aims to express a degree of transience of those processes. It originated from the understanding
of the difference between weak and strong transience in limit theorems for hitting times of the Spitzer type involv-
ing capacity by Spitzer [26], Getoor [4], Port [10-12], Port and Stone [16] in 1960s; the study was continued by
Port [13,14] for stable processes around 1990. Le Gall [8] made a refinement of the limit theorem in the case of
Brownian motion. Jain and Pruitt [7] also met weak and strong transience in limit theorems of the ranges of random
walks and there are many subsequent works. Earlier Takeuchi [27] took up the problem of the last exit times of
rotation-invariant stable processes.

In [24] we gave some results on the moments of the last exit figefor a general transient Lévy process
{X,;} on R?: among others, an analytic criterion for finitenessEgiL g, ") for a givenn > 0 was given in terms
of the functiony(z), the distinguished logarithm of the characteristic function of the distributioX 0fThis
was an extension to a general case of Hawkes’s criterion [5] in the symmetric case. However, it turned out that
this analytic criterion was often difficult to apply to concrete nonsymmetric Lévy processes. Weak transience and
strong transience are respectively equivalent to infiniteness and finitenEss gf), but it is very hard to classify
by the analytic criterion weak and strong transience of one-dimensional stable processes. Here in this paper we lay
a basis of our study on reduction of the problem to estimation of the density funation) of the distribution of
X;. Itis known thatE(L”Br) < oo for all (equivalently for some) if and only if f, _, dx Jo~ t"p(t, x)dt < oo for
all (equivalently for some). In the case of stable or semistable processes, the problem is transformed to estimation
of p(1, x) when|x| is large or small, by a space—time relation. Thus our objective to determine wIﬂi(tb%}r) is
finite or not for a general nondegenerate transieeemistable process for any giver- 0 is completely achieved
in the case of one dimensiod & 1). In multi-dimensional casel(> 2), it is achieved except in the case where
1<a<2,7#0,—1/|t| € Cs, ando ({—1/|7]}) = 0. Here the measure is the spherical component of the Lévy
measure, the sei, is the radial projection to the unit sphere of a cone-like set spanned by the suppoit of
some sense, and the vectoe R? is a location parameter, one of whose properties istha0 if and only if the
process is strictly semistable. Our results will be summarized in Theorems A and B in Section 2. The difficulty of
our problem stems from the fact that we do not know in general asymptotic behaviors of the stable or semistable
density p(1, x) as|x| is large. They delicately depend on the directionxoiih relation tor ando. However,
Theorems A and B are strong enough to give a complete classification of transient semistable procR€ses on
d > 1, into weakly transient and strongly transient. This result is new even for stable processe®,if = 1, and
not strictly stable.

In the case of stable processes, one can get better results on tail estimatésxoffor 4 > 2, based on the
explicit form of the radial component of the Lévy measure. These make it possible to determinestire\vaaious
situations in the remaining case. They will be given in another paper by one of the authors.

A nontrivial Lévy proces$X;} onR? is calleda-semistable if, for some > 0 with a # 1 and for some € R¢,

(X} and{a¥*X, + tc} are identical in law. Here we necessarily have 8 < 2. This is an extension ef-stable
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processes, which are deeply studied Lévy processes. By this extension the class is much enlarged and unexpecte
phenomena occur. For example{X,} is a stable process dR, then the distribution o, is unimodal and, as
increases, the movement of the mageof X; changes its direction at most once. But among semistable processes
{X;} on R, there is a case where the distributionXyf is not unimodal for any > 0; also there is a case where
the distribution is unimodal for any > O but its modem, oscillates ag increases; also there is a case where
the distribution is unimodal for sonreand not unimodal for someand unimodality and nonunimodality appear
alternately as time passes. See Choi [3], Sato [19,22], and Watanabe [30,31] for properties of semistable processes
Historically, semistable distributions were introduced in probability theory by Lévy [9].

In the last section of the paper we discuss the implication of the finiteneﬁsuﬁr) in the Spitzer type limit
theorems.

2. Main results

We use the terminology in Sato’s book [23]. See also Bertoin [1] for general properties of Lévy processes. Let
{X,: t >0} be a Lévy process oR?, 4 > 1, with generating tripletA, v, y). Here A is the Gaussian covariance
matrix, v is the Lévy measure, andis the location parameter. That is,

Eexpli(z, X,)) =exp(1y (2)), zeRY, (2.2)
with
; ) ) 1
V(z) = /(e“”) —1— 1<y @)ifz, x))v(dy) +i(y, z) — 5(Az.2), (2.2)
R4

wherev is a measure oR? satisfyingv({0}) =0 anded(l A |x]Pv(dx) < o0, y € R?, andA is a nonnegative-
definite matrix. The process¥,} is of type A if A = 0 andv(R?) < oo; of type B if A =0, v(R%) = o0, and
]#Kl |x|v(dx) < oo; of type C otherwise. IA =0, {X,} is said to be purely non-Gaussianj‘l);‘|<1 |x|v(dx) < oo,
then

¥ (2) = / (@44 — Du(dx) +i(yo, 2) — %<Az, 2), (2.3)
R4
whereyy is called the drift of X, }. If fm>1 |x|v(dx) < oo (equivalently, IfE| X1| < o0), then
v(z) = /(ei(”) —1—i(z, x))v(dx) +i(y1. 2) — :—ZL(AZ, ), (2.4)
R4

whereys is called the center dfX;} andy; = EX.
The supportS, of a measurep on R¢ is the smallest closed set that carries the whole measure Bhe

distribution of anR?-valued random variabl& is denoted byZ(X). We write {X,} 4 {Y;} for two stochastic
processe$X;} and{Y;} if they have an identical system of finite-dimensional joint distributions. For a Lévy process
{X,}, we denoteu = £(X1) andu! = L(X,). The support ofu’ is denoted by§(X,). A setB in R? is calledone-
sidedif there isc # 0 in R? such thatB C {x: (c,x) > 0}. A measurep on R? is called one-sided i, is
one-sided. A measureonR? is calleddegeneratéf there arex € R? and a proper linear subspateof R¢ such

that S, C a + V; otherwisep is called nondegenerate. A Lévy procgss} on R? is called degenerate i(X,)

is degenerate for eveny> O (equivalently, for some > 0); otherwise{X;} is called nondegenerate. See [23],
Proposition 24.17 for conditions for nondegenerateness on the generating triplet. A Lévy gogess R? is
called a trivial process if there ise R4 such that, for every, X, =tc a.s.; otherwis¢X,} is said to be nontrivial.
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A Lévy procesqX;} onRR?, d > 1, is calledstableif, for everya > 0, there aré > 0 andc € R such that

(Xar: 1 =00 2 (bX, +1¢: 1> 0). (2.5)

A Lévy procesg X;} onR4, d > 1, is calledsemistablef, for somea > 0 with a # 1, there aré > 0 andc € R?
satisfying (2.5). In this case we can choase 1 without loss of generality. The following fact is found in [23]
Theorems 13.11 and 13.15.

Proposition 2.1. Let {X,} be a nontrivial semistable process &1. Let I" be the set of > 0 such that there are
b > 0andc € R? satisfying(2.5). Then eaclu € I" uniquely determines andc; there is a uniquer € (0, 2] such
thath = a/® for all a € I". The setl" is either equal ta0, o) or expressed afuy: n € Z} by a uniquenp > 1.

The procesgX,} in Proposition 2.1 is called a semistable process with index «-semistable process. If
I = (0,00), {X,} is a stable process with indexor «-stable process. i € I N (1, 00), thena anda/* are
called, respectively, an epoch and a spafgf.

In this paper, when we s&;} is semistable (or stable), we implicitly assume th#}} is a nontrivial Lévy
process. Le{X;} be ana-semistable process d&f. If « = 2, then it is Gaussian. If @ « < 2, then it is purely
non-Gaussian and

av(B)=v(a~Y*B) (2.6)

forall a € I' and Borel set8 ([23], Theorem 14.3). If < @ < 1, then{X,} is of type B andE | X;| = oo for ¢t > 0.
If « =1, then{X,}is of type C andE|X;| =00 for¢ > 0. If 1 <« < 2, then{X,} is of type C andE|X;| < oo for
t > 0. ([23], Proposition 14.5)

Let {X;} be a semistable processBA. If ¢ =0 in (2.5) for every in the setl”", we call{X,} afirst-classsemi-
stable process. Otherwise we c@!l;} a second-classemistable process. (¢f= 0 in (2.5) for somez € I" \ {1},
then{X,} is first-class semistable. This is a consequence of Proposition 2.4 below.){Sifjds assumed to be
nontrivial, it is first-class semistable if and only if it is strictly semistable in the terminology of [23]; it is second-
class semistable if and only if it is semistable but not strictly semistable. Similarly we use the words first-class
stable and second-class stable.

Let {X;} be a Lévy process dR?. Transience and recurrence{df, } are defined in [23]. LeL 3 be the last exit
time from an open seR, that is,

Lp =supt >0: X; € B}.
Let B, = {x: |x| < r}. The process is recurrent if and onlylis, = oo a.s. for allr > 0O; it is transient if and only
if Lp, <oo a.s. forallr > 0.

Proposition 2.2. Let {X,} be a transient Lévy process ®&{. Lety > 0. Then one of the following is true

E[Ly]<oco forallr>0, (2.7
E[L'};r] =oo forallr>0. (2.8)

This is Theorem 2.8 of [24]. Given a transient Lévy proces&®ndenote
T={0}U {n>0: (2.7)is trug. (2.9)

The bigger is this sef, the stronger is a degree of transience. The progégss called strongly transient if & T;
it is called weakly transient if & ¥.

The purpose of this paper is to investigate theskir nondegenerate transient semistable processB¢ dret
us recall the following fact ([23], Theorems 37.8, 37.16, 37.18).
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Proposition 2.3. Let {X;} be a nondegenerate-semistable process dk. If d > 3, then it is transient. 1 = 1
or 2, thenitis recurrent if and only if it is first-clags-semistable witll < a < 2.

The first of our main results is the following.

Theorem A. Assume thatX,} is a nondegenerate transiemtsemistable process @& with Lévy measure.
(i) If 0<a <1andv is one-sided, thef = [0, c0).

(i) If 0<a <2landv is not one-sided, the® =[0,d/a — 1).

(i) If 1<a <2and{X,} s first-class semistable, théh= [0, d/a — 1).

(iv) If « =2and{X;} is second-class semistable, thEge- [0, co).

By the assumption of transience p¥,}, the case of (iii) is empty ifl = 1. The remaining case of nondegen-
erate transienk-semistable processes &9, d > 1, not covered by Theorem A is the case of second-class with
1<a<?2.

In order to formulate the next result, we need the following facts.

Proposition 2.4. Let{X;} be anx-semistable process d&r.

() There exists a unique elemené R? such that, for every € I,

Xa} 2 {aYX, +1(a — a7} (fa#1), (2.10)
[Xar} 2 {aX, + ta(loga)r) (fa=1). (2.11)
(i) If 0<a <1, thent in (i) is the driftyp. If 1 <« < 2, thent is the centen. If @ = 1, then
1
T=— / xv(dx) foreverya eI’ N (1, 0). (2.12)
loga
1<|x|<a

(iif) The proces$X,} is first-class semistable or second-class semistable according=a3or 7 £ 0.
(iv) If @ # 1, thent is a unique element il®? such that{X, — 7t} is first-class semistable. #f = 1 and t # 0,
then there is na’ € R? such that{X; — r7’} is first-class semistable.

Proof. (i) Foranya € I' \ {1} definet = 7, by the formula (2.10) or (2.11). We claim that thjsdoes not depend
ona. First, it follows by induction that

(Xanr) 2 {a" X, +1(@" — ")z} ((f @ £1D), (2.13)

[(Xar} 2 {a"X, + tna"(loga)z,)  (if a=1) (2.14)
for all n € N. Hence

X2 {a™ X gy — ta™*(@" — a7} ([ a# 1),

(X} 2 {a" Xy, — tn(loga)r,) (if @ = 1).

It follows that (2.13) and (2.14) hold for alle Z. If a anda’ in I" \ {1} satisfya’ = a" for somen € Z, then (2.13)
or (2.14) shows that, = 7,. If I" = {ag: n € Z} with someqag > 1, this finishes the proof. If' = (0, o), then we

n/m

fix ap > 1 and see thaztan/m =T um = Ty for all n € Z andm € N. Since such points,’™ are dense irf0, co)
0 0
and sincer, is continuous with respect in the intervalg0, 1) and(1, co), this finishes the proof.
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(i) If =2, then{X,}is Gaussian and it is easy to see that £ X;. If « # 2, thenv satisfies, by (2.6),

a/f(x)v(dx)=/f(a1/°‘x)v(dx) foraer (2.15)
R4 R4

for all nonnegative measurable functiofisHence it is easy to see that=yg or T = y1 accordingas & a < 1
orl<a<?2.
Lete =1anda € I' N (1, 00). Then, by (2.1), (2.2), and (2.15), we get

Eei(Z,Xat) — Eei<Z,aXt> exp|:it / (Z, ax)l)(dx)]
1/a<|x|<1
and hence, by (2.11}loga)t = fl/a<\x|<lxv(dx)' This means (2.12), Sin9‘°1/a<|x\<1x"(dx) = fl<\x|<a xv(dx)

by (2.15).

(i) This is a consequence of (i).

(iv) Let « # 1. We have{X,, — art) 2 {a¥/* (X, — t1)} from (2.10). This shows thatX, — ¢} is first-class
a-semistable. Conversely, {iX; — t7'} is first-classy-semistable for some’ € R?, then there isi > 0 witha # 1

such tha X,; — art’} 2 (aV/ (X, — t7')}, thatis,{ X o} 2 (a/* X, + 1 (a — a¥/*)7'} and hence € I" andt’ = 7.
The remaining assertion far= 1 is found in [23] Theorem 14.8.0

Remark 2.5. For anya-semistable process @ with 0 < « < 2, defineg e R as

B= / xv(dx)/ / [x]v(dx) (2.16)
1<|x|<Lal/® 1<|x|<Lall
fora € I' N (1, 00). Then, using (2.15), we can prove thatdoes not depend on the choicew& I' N (1, c0).

Obviously,|8| < 1. If « =1, theng = ct, wherec is a positive constant independentw€& I" N (1, co). In the
case of anw-stable process 0R, this 8 coincides with the parametgrin [23] Definition 14.16.

Proposition 2.6. Let {X,} be ana-semistable process dk¢ with o # 2. Then there are a probability measuse
ons?~1={& e RY: |&] = 1} and measures; on (0, co) for & € S~ such that

ve (E) is measurable i for eachE € Bg, o), (2.17)
o
v(B) = / G(dS)/lB(ré)vg(dr) for B € Bga, (2.18)
gd—1 0
o
/(1 A r?)vg (dr) is a finite constant independentio $9-1. (2.19)

0
Thiso is uniquely determined ang is unique foro-a.e.£ € S¢~1. Further, foro-a.e.& € S971,

ave(E)=ve(a Y*E) for E € B anda e, (2.20)
In particular, foro-a.e.& € S97%, v (1, a¥/*]) > 0.

Proof. Existence and uniquenessofindv;: are proved by the conditional distribution theorem for every infinitely
divisible distribution with nonzero Lévy measure. The property (2.20) is a consequence of (2.6).

When{X,} is ane-semistable process @®f with « # 2, let
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d
%= {é e s g =" c;; forsomec; >0andg; €S, j=1.....d,
j=1

such thaty, ..., &; are linearly independe}wt (2.21)

wheres,, is the support of. This set was introduced by Hiraba [6]. LE} = C_g, the closure otg. The seth,’
is nonempty if{ X, } is nondegenerate.
Now we formulate the second of our main results.

Theorem B. Let{X,} be a nondegenerate transient, second-class (that#0), «-semistable process d with
1<a<?2.

(i) fa=1,thenT>[0,d —1].

(i) fe=21ando({—1/|7|}) >0, thenT =[0,d — 1].

(i) fl<a<2then¥D[0,(d—-1)/a+a—1).

(iv) If l<a<2ando({—1/|7]}) >0,then¥=[0,(d — 1)/a +a — 1).
) If —t/|7| ¢ Cy, thenT = [0, 00).

When 1< « < 2 andt # 0, we haveX,; ~ tt, t — oo, almost surely and we observe that the largeness of the
last exit timeL g, is determined by the relationship of the point/|7| with the measure as in (iv) and (v) above.

This is in similarity to the fact that the largenessiof, of a one-dimensional transient Lévy process with finite
positive mean is determined by its Lévy measure in the negative half line ([24], Theorem 5.1).

We will study in Section 3 the support @f(X,) and the positivity of the density of(X,) for general Lévy
processegX;} and especially for semistable processes, using the works of Tortrat [29] and Sharpe [25]. Then
proofs of Theorems A and B will be given in Sections 4 and 5. Now the case where we do not have an exact
description of¥ is that 1< @ < 2, —1/|t| € Cy, ando ({—7/|7|}) = 0. If d = 1, then this case is void, since
S=1{1, —1}. But, if d > 2, the seff is delicate in this case.

Ford =1, Theorems A and B completely determine theEeas follows.

Corollary 2.7. Let {X,} be a transientr-semistable process dr.

(i) f0<a <1land|B|=1,thenT =0, c0).

(i) fO<a<land|B|#1,thenT=][0,1/0 —1).

(i) If e =1and|B| =1, then¥ =[O0, c0).

(iv) fa=1and0< |B| < 1, thenT = {0}.

V) fl<a<2,7#0,|8=1, andzB <0,then¥=[0,a — 1).
(Vi) fl<a<2,7#0,|8]=1,andzB > 0, then¥ = [0, c0).
(vi) fl<a<2,1t#£0and|B|#1,thenT=[0,a — 1).

(viii) If e =2andt #0, thenT =[O0, 00).

Sinced = 1, we have the followingy is one-sided if and only if| = 1; if || =1 andt # 0, thentg <0
is equivalent too ({—t/|7|}) > 0 =0 ({z/|7]}), and B > O is equivalent tos ({—7/|t|}) = 0 < o ({r/|T|}). If
a =1, thent =0 andp = 0 are equivalent. The eight cases in the corollary above exhaust all transient semistable
processes oR, according to Proposition 2.3.

Proof of Corollary. Assertions (i), (ii), and (viii) are consequences of Theorem A (i), (ii), and (iv), respectively.
Assertions (iii)—(vi), and (vii) follow from Theorem B (v), (i), (iv), (v), and (iv), respectivelyn
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Although we do not have full knowledge of the s&tweak and strong transience of nondegenerate transient
semistable processes B is completely determined as follows.

Corollary 2.8. Let {X,} be a nondegenerate transiemtsemistable process dk¢. Then it is strongly transient if
and only if one of the following conditions holds

(1) d=1land0<a <1/2;

() d=11/2<a <1, and|B| =1,
B)d=11<a<2,1t#0,|8=1,andz8 > 0;
(4) d=1,a=2,andt £#0;

(B) 2<d<4and0<a <d/2;

(6) 2<d<4,d/2<a <2 andt #0;

(7) d >5.

Proof. If d =1, cases (1)—(4) exhaust strongly transient case by Corollary 2.7<Ifl 2 4, use Theorem A
(h—(iv) and Theorem B (i) and (iii) to see that the process is strongly transient if and only if (5) or (6) holds. If
d > 5, then strong transience comes from Theorem A(i), (ii) for @ < 1, from Theorem A(iii) for first-class
with 1 <« < 2, and from Theorem B(i), (iii) for second-class withlle < 2. But strong transience fak> 5 is a
consequence of a general result in Theorem 2.17 of [2d]].

As a special case of Corollary 2.8, any nondegenerate second-class 1-semistable pr&#ss stnongly
transient. This is a new result even in stable case; Port [14] did not treat this case.
In the proofs of Theorems A and B we will use the following facts.

Proposition 2.9. Let{X,} be a transient Lévy process @&f. Lety > 0. Theny € ¥ if and only if
o

/t”P[X, € B.]dt <oo forall e > 0; (2.22)
0
n ¢ < if and only if

e ¢]

/t”P[Xt € B;]ldr =00 forall ¢ > 0. (2.23)
0

This is Lemma 2.3 of [24].

Proposition 2.10. Let {X;} be a nondegenerate-semistable process di?. Then, for any > 0, u' has aC>®
densityp(z, x) onR¢ and

pd't,x) = cf"d/o‘p(t, a V% +(1-— a(lfl/“)")tt) (ifa #1), (2.24)
pd't,x) = cf"dp(t, a 'x — n(loga)tt) (ifa=1) (2.25)

foraeI' andn € Z.

Proof. Asin [23] Proposition 24.20 there is a constant 0 such that

()| <& forr>0, zeRY, (2.26)



K. Sato, T. Watanabe / Ann. |. H. Poincaré — PR 41 (2005) 929-951 937

whereﬁ’ (z) is the characteristic function @f’. Henceu' has a continuous densip(z, x) expressed as

p(t,x) = (Zn)—d/e—”mﬁf(z) d: forr>0, x e R%. (2.27)
R4

Further,p(z, x) is of C* in x. By (2.10) or (2.11)p(z, x) satisfies (2.24) or (2.25) fer € I" andn = 1. But, since
a eI impliesa” e I' forn € Z, (2.24) or (2.25) istruefoe € I" andn € Z. O

3. Supports of semistable processes

A subsetH of R? is said to be a closed additive semigroupfifis a closed set such that + H ¢ H. If
moreover—H C H, thenH is called a closed additive group. Given a Lévy prodegsg on R? with generating
triplet (A, v, y), let V = A(R?). If we denote by( X/} the Lévy process with tripletA, 0, 0), that is, the centered
Gaussian component ¢X,}, thenV = S(X)) for ¢ > 0.

Tortrat [29] and Sharpe [25] prove the following remarkable result.

Proposition 3.1. Let{X,} be a Lévy process dR? with Lévy measure. Let M be the linear subspace defined by
M={y€Rdi / I(y,X>Iv(dx)<00} (3.1)
lx|<1
and letITy; be the orthogonal projection frofR? onto M. Let{XM} be the Lévy process defined 5§ = Ty, X, .
Then the Lévy measurg, of { XM} satisfies
/ [x]var(dx) < oo. 3.2)
lx|<1

Denote the drift of X} by yd7. Then,S(X,) — tyd?, which we denote bj#, does not depend are (0, cc). That
is,

S(X)=tyd" + H fort>0. (3.3)

The setH has an expression

H =11, Sgptvy) + V, (3.4)

whereSgp(vy) is the smallest closed additive semigroup contair{idjgand S,,,, .

It follows from (3.4) thatH is a closed additive semigroup containif@. Following [25], we callH the
invariant semigroupf {X;}. If {X,} is of type A or B, thenM =R¢, V = {0}, andH = Sgp(v). If M = {0}, then
S(X,)=H =R fort > 0.

Sharpe [25] writes (3.4) without taking the closure in the right-hand side by an oversigm;ﬁlﬁgp(vM) +V
may not be closed. The assertion (3.3) is written by hir§@&) = b + H with someb € R?, but we can choose
b =y in his proof.

Remark 3.2. Let {X;} be a nondegenerate Lévy processRdn

(i) Suppose thatX,} is of type A or B. Then the invariant semigroudpis a closed additive group if and only if
v is not one-sided.
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(i) Suppose thatX,} is of type C and purely non-Gaussian. Thiéns a closed additive group if and only if either
M = {0} or vy, is not one-sided i/

Proof follows from the fact proved in [24] that any closed additive semigroup which is not one-sided is an
additive group. Note th&tx ¥} is nondegenerate iW, since{X,} is nondegenerate.

Sharpe [25] gives another nice result. For stable processes this is shown by Taylor [28] and Port and Vitale [17].

Proposition 3.3. Let {X;} be a Lévy process oR“ such that, forr > 0, £(X;) is absolutely continuous and has
densityp(z, x) measurable as a function @&f, x) and satisfying
pt+s,x)= / p(t,x —y)p(s,y)dy forallxeR? >0, s>0. (3.5
R4
LetG(X,) = {x e R?: p(r, x) > 0} for r > 0. Then, using the notation in Propositi&al,
G(X;)=intS(X;) forr>D0, (3.6)
intS(X,) =ty +intH fort >0, (3.7)

whereint means “the interior of”.
Remark 3.4. Let {X,} be a Lévy process dR? satisfying the conditions in Proposition 3.3.

(i) Suppose thatX;} is of type A or B. ThenG(X,) =R¢ for all r > 0 if and only if v is not one-sided.
(i) Suppose{X;,} is of type C and purely non-Gaussian. ThéiiX;) = R? for all # > 0 if and only if either
M = {0} or vy is not one-sided /.

To see (i), note that il # ¢ by Proposition 3.3, use Remark 3.2, and conclude thair@ H if v is not
one-sided. The proof of (ii) is similar.

Let us apply these results to semistable processes.
Theorem 3.5. Let{X,} be a nondegenerate-semistable process @&f with 0 < o < 2.

(i) Suppose thad < @ < 1 andv is one-sided. Then the invariant semigrodpequalsSgp(v) and is one-sided,
convex, and closed under multiplication by nonnegative reals, and

SX)=tyw+H and G(X;)=rty+intH forr>0, (3.8)

whereG (X;) = {x: p(t,x) > 0}.
(i) Suppose that < o < 2, or suppose thald < « < 1 andv is not one-sided. Then

SX)=GX)=R? fort>0. (3.9)

Proof. The estimate (2.26) and the expression (2.27) showltr) is continuous in(z, x) and bounded for
(1, x) € [, 00) x R? for everyes > 0. Hence the conditions in Proposition 3.3 are satisfied.

() In this case{X,} is of type B. ThusH = Sgpv), S(X;) =tyo+ H, G(X;) =tyo +intH for t > 0. Let
x € H andc > 0. We claim thatcx € H. This is obvious ifx =0 orc =0. Letx # 0 andc > 0. There is a
sequencey — x such that eachy is the sum of a finite number of elements®Hf Thusx; = Z:szl x,f, x,f €s,.

Leta e I' andb = a'/?, a span. Choosk = 2 or 3 such that the ratio ldg/ logb is irrational. Then there are
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positive integerg;,, m; increasing tao such that; logh — my logb — logc ask — oo. Sinceb"”kx,{ € S, by the
property (2.6), we havisb~"x; ¢ H and this tends tox ask — oo. Hencecx € H. It follows thatH is convex.
(ii) If 0 <« < 1 andv is not one-sided, then (3.9) follows from Remark 3.4(i)x I 2, then the assertion is
obvious. Suppose € « < 2. Use the decomposition ofin Proposition 2.6. Then,
0 ifylsS,,
f [, x)[w(che) = / (v, &)]o (d) / "Vg(dr)={ D
gd—1

oo otherwise,
[x[<1 0,1]

since we ge_r[(o,l] rvg (dr) = oo from (2.20) as in [23] Proposition 14.5. Now it follows from nondegeneracy that
M = {0}, and henc& (X,) = R? by Remark 3.4(ii). O

Corollary 3.6. Let {X;} be a nondegenerate-semistable process dR¢ with 0 < « < 2. Then the following
conditions are equivalent

O<a<1l and —yp¢intH, (3.10)
p(t,00=0 forallt=>0. (3.11)
p(,00=0 forsomer > 0. (3.12)

Proof. If (3.10) holds, then is one-sided and is closed under multiplication by nonnegative reals, which shows
that—typ ¢ int H for all r > 0 and (3.11). If (3.12) holds, then®« < 1, v is one-sided, and-typ ¢ int H for
somer > 0, from which follows (3.10). O

For stable processes the dichotomy resulting from the corollary above was found by Taylor [28]; the processes
satisfying (3.10)—(3.12) were called by him of type B and the other processes were called of type A, but we do not
use his terminology. For semistable processes, the part concefitiingin Theorem 3.5 was given also by Rajput
et al. [18], but they did not studg (X;).

The following fact will be useful.

Proposition 3.7. Let {X;} be a nondegeneraie-semistable process d&¢, 0 < o < 2, with Lévy measure. Let

{Y;} and{Z,} be independent Lévy processes such tia} 4 {Y; + Z;} and{Z,} is a compound Poisson process
with Lévy measure equal torestricted to{|x| > 0} for somed > 0. ThenS(Y;) = S(X;) andG(Y;) = G(X;) for
t>0.

Proof. Denoteuz = £(Z1). Then|log/iz(z)| is bounded inz. HenceL(Y;) is absolutely continuous for each
t > 0 and the densityy (¢, x) is continuous in¢, x) as in the case dfX,}. We express the objects related{16}
by putting subscript'.

Let 0< a < 1. ThenM = My = R<. Similarly to the proof of Theorem 3.5, Sgg') is closed under multipli-
cation by nonnegative reals. Hence, by (2.6), @gp- Sgpvy). Since{X,} and{Y;} have an identical drift, we
haveS(Y;) = S(X;) andG(Y;) = G(X,).

Let 1<« <2. ThenM = My = {0} as in the proof of Theorem 3.5. Hen&&Y;) = G(¥;) = R? like
for{X;}. O

4. Proof of Theorem A

Let {X;} be a nondegenerate transienstable process oR¢, 0 < « < 2. Leta € I'. We denoteX? =X, —trt.
Let p°(z, x) be the continuous density @f(X°) for 7 > 0.
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Lemma4.1. Assume thad < o < 1 andv is one-sided. Then, for any integee> 1 and anye > 0,

supsup |x| " p°(z, x) < oo. (4.1)
t>¢e xeRd

Proof. There isc # 0 in R? such thatS(X°) ¢ F = {x: (c, x) > 0} for anyt > 0, by Theorem 3.5(i). Thus all
partial derivatives of?(z, -) vanishes oriint F)°. It follows from (2.26) and (2.27) that any partial derivative of
pO(z, ) is bounded oR? uniformly inz > . Hence, using Taylor’s theorem around 0, we get (4.1).

Lemma4.2. Assume thad < o < 1 andv is one-sided. Then, for ary> 0 and anys > 0,

antl

sup pit,x)dt =0(a™"), n— oc. (4.2)

<
lx|<e P

Proof. Use (2.24). Then

gt a

a
/ p(t,x)dt = / po(a"u, x —d"ut)a" du = / po(u, a My — g1y g A=d/an gy, (4.3)
a" 1 1

Choose a positive integérsuch thaic + 1 — d/a + (1 — 1/a)l < 0. It follows from Lemma 4.1 that there arg,
c2 such that

pO(u’a—n/ax _a(l—l/a)nu_r) < cl|a—n/<xx _a(l—l/a)nu.L,'l < cza(l—l/a)nl

for |x| < e and 1< u < a. Hence

antl

/ p(t,x)di < ca(a — Dat- /et = o(gem)
an

asin(4.2) O

Lemma 4.3. Suppose thad < o < 1 andv is not one-sided, or suppose thHa& o < 2 and first-class semistable.
Then, for any > 0,

a1 a
/ p(t, x) dt’va(l*d/"‘)”/po(u,O) du (4.4)
a" 1

uniformly in|x| < & asn — oo.

Proof. We use (4.3). We hawe "/ x — g1~/ ¢ — 0 uniformly in|x| < ¢ and 1< u < a asn — oo, recalling
thatr = 0 in the case of first-class. Thus we get (4.4). Noticeﬂﬁqﬁo(u, 0) du > 0 by virtue of Theorem 3.5. O

Proof of Theorem A. Let

I(n) = / dx/t"p(t,x)dt. (4.5)

lxI<1 1
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(i) We assume that @ o < 1 andv is one-sided. Given > 0, choose > n and apply Lemma 4.2. Then

n+1
00 a

o
1(g) = Z / dx / p(t, x)dr < constZa(”“’)" < 0.
":O|x\<l a n=0

It follows from Proposition 2.9 thaj € ¥.

(ii) and (iii) We assume that & o« < 1 andv is not one-sided, or that & « < 2 and{X;} is first-class. By
Lemma 4.3/ (1) < oo if and only if >-°° ; a=4/«+Dn < oo Hence¥ = [0, d /o — 1).

(iv) Assumption is thatr = 2 and{X,} is of second-class. Thy¥,} is Gaussian with nonzero center. There is
a constant > 0 such that

sup p(t,x) =o€ "), t— oco.
lx]<1

Hencel (n) <ocoforalln>0. O

5. Proof of Theorem B

Let {X,} be a nondegeneratesemistable process @f with 0 < « < 2. Leta € I". Our basic technique is to
decomposéX,} into the sum of independent Lévy proces§Eg and{Z;} as in Proposition 3.7. We takke= 1 in
that proposition; thus their Lévy measutgsandv; are the restrictions aofto {|x| < 1} and{|x| > 1}, respectively,
and{Z;} is a compound Poisson process. ugt= L(Y1) anduz = £(Z1). Since|logfiz(z)| is bounded, we get
it (2)] < etl"+eat with somee > 0 andey > 0 from (2.26). ThuC(Y;), ¢ > 0, has a densityy (¢, x), which is
continuous in, x), of classC™ in x, and bounded fofr, x) € [e1, e2] x R? for every O< g1 < 2 < co. We write
py(t,x) =q(t,x) andL(Z;) = ply ="

Lemma5.1. There are positive constantg, ¢> such that

sup ¢g(t,x) <c1 exp(—cz|x| |Og|x|) for |x| > 0. (5.1)
1<r<a

Proof. Letcs=suUp<,<,SUPRcre q(1/2, x). Theorem 26.1 of [23] tells us that

/ g(a/2,y)dy < caexp(—csrlogr) forr >0

[yI>r

with some positive constants, c¢s. Let cg = P(sUpic,<q |Yas2 = Yij2l < N), choosingN so large thatg > 0.
Then

P(IYas2l >r — N) = ceP(|Yy)2] > r)
forr > N and 1<t < a. Now,

q(t,x)= / q(t/2,x —y)q(t/2, y)dy + / q(t/2,x —y)q(t/2, y)dy

lx—yI<Ixl/2 lx—y|>|x]/2
<22 [ (/2.0 < 2es0acq ™ expl—cs(141/2— V) log(lx1/2~ )
lyl=Ix]/2

<c7 exp(—cg|x| log |x|)
for large|x| with some positive constants, cs. This gives (5.1). O



942 K. Sato, T. Watanabe / Ann. |. H. Poincaré — PR 41 (2005) 929-951

Lemma 5.2. There are positive constants, c> such that, for every positive integerand every > 0,

U%*({|x| > r}) < c1c§k1+“(l+ r)~®. (5.2)
Proof. Letc; =v(|x| > 1) and letW;, j =1,2,..., be i. i. d. sequence of random variables ®h each with

distributioncz_lvz. By (2.6) we have

P(|W1| > a”/“) = cz_lv(|x| > a”/“) = cz_la_"v(|x| >1)=a"
for all integern > 0. Thus there is; such that

P(|W1| > s) <c1(l+s5)7* fors>0.
Hence

vé*(|x| >r) =c§P<

< cherk(L+r/k) ™ < cackk™ (14 1) 77,

k
W

j=1

> r> < cSP(IW;| > r/k for somej < k) < csk P(IW1| > r/k)

as asserted. O

We need a lemma to estimate the integraboB1 + y + t&) with respect ta for a measure. As before letB,
be the open ball with center 0 and radius

Lemma5.3. Let p be a measure oR“ and let0 < b1 < by < 00, &€ € §4~1 andy € R%. Then

by
((bz—bl)/\41),o< U (31/2+y+t€)></P(31+y+f§)df
b1<i<bz 4
<a( U @uryrem) 53)

b1<t<h2

Proof. The second inequality is obvioush$ — b1 < 1. So, suppose théb — b1 > 1. Since
b+1

/ p(Bi+y+1&)dr <p( U (Bl+y+rs>),
b b<t<b+1
we have

by [b2—b1l-1
/p(Bl+y+t5)dr < > p( U (Bl+y+r$)) +p< U (Bl+y+ts>)
by n=0 b1+n<t<b1+n+1 bo—1<t<b2

< 4p< U Bi+y +rs)),

b1<1<b2

where[by — b1] is the integer part ob, — b1.
In order to see the first inequality in (5.3), note that
b+1/2

1
/p<31+y+rs)dt>§p< U (Bl/z+y+rs>).
b

b<t<b+1/2
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If b, — b1 >1/2, then

bz [2b2—b1)]-1
/,o(B1+y—i—t$)dt>‘—1 Z ,o( U (31/2+y+l$)>
by n=0 b1+n/2<t<b1+(n+1)/2

1
+Z,0< U (31/2+y+t5))

by—1/2<t<bo

1
> Zp( U (31/2+y+f§)>'

b1<t<bz
If b — b1 <1/2,then
b
/0(31 +y+1§)d = (b2 — bl)p( U Brz+y+ t$)>.
by b1<1<b2

This completes the proof.O

Lemma 5.4. Suppose that < « < 2 and {X,} is of second-class. Let> 0. Letx € R¢ be such thatx| < ¢ and
let
—n/a _ q1=1/o)n
ez = a_n x+A—a ytr (l<a<?2), (5.4)
a"x +n(loga)tt (x=1).
Lety,., € R? satisfy|y,. | < inf1</<a lus x,n1/2. Then, there is a constant > 0 independent of the choice of
andy, , such that

—(1-1/a)(14a)n (1 <o < 2)’

a
/)VT(BI + Y+ U xn) df < { Cla_z

cin (=1 (5.5)

for all sufficiently large integer. If, moreoverg ({—t/|t|}) > O, then there is a constanp > 0 independent of the
choice ofx such that

a
/)Lt(Bl + ut,x,n) dr > {
1
for all sufficiently large integen.

—(1-1/a)(A4a)n 1 2
c2a72 ( ia <2, (5.6)
con (=1

Proof. We give the proof only in the cased « < 2, as the discussion in the cage= 1 is quite similar. Let
c3=v(|x| > 1). There isc4 > 0 such that
|yx,n + ut,x,n| = |ul,x,n |/2 = c4a(l—1/a)n
for all largen uniformly in |x| < e andt € [1, a]. Hence, for larger,
a 00
/)"I(Bl + Yen + ut,x,n) dr = f dr Ze_CSItk(k!)_lvé*(Bl + Yy + Mt,x,n)
k=1

1 1
a

o
<es Za"(k!)_lf"@*(lﬁ + Yot xn) O
k=1 1
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By Lemmas 5.2 and 5.3,

a

/ v§*<31+yx,n+u,,x,n)dr<4v’5*( U (Bl+yx,,,+u,,x,n>)<a<l1/“)"—1)l|r|1
1<r<a

< Csk1+aCléa—(l—l/a)na—(l—l/a)na

for largen with somecs. Thus we get (5.5).
To see (5.6), let be sufficiently large. By Lemma 5.3 and (2.18),

a a

/)‘t(Bl + s xn) dt > / e7c3tth(Bl + s xn) dt > C6VZ< U (B1j2 + ut,x,n)>a(ll/a)n
1 1 1<1<a

(@Yo _1|z|a
eolle) [ @G
(@@=Yem_pje|
with somecg > 0, wheret = —1/|7|. Leta, = (aX~1/®" — 1)|7|. Sincea > a¥/*, we have
ve (@71 — 1)[71(1, al) = ve (an (1, a¥/*7).
Choosek = k(n) such thau*—1/® < 4, <a*/*. Using (2.20), we get

ve (an (1, al/"‘]) = ve ((an, ak/a]) + vg ((ak/“, anal/“])
:av%_ ((anal/a’a(k-‘rl)/a]) + V§ ((ak/ot’anal/a]) 2 Vg ((ak/a,a(k+1)/°‘])
:a_kV§ ((1’ al/ot]) > an—aa—lwg_ ((1’ al/oz]) — C7a—(l—l/a)om

with somec7 > 0. This completes the proof.O

Proof of Theorem B. Now we assume thdtX;} is a nondegenerate transient second-aasemistable process
onR? with 1 < o < 2. We begin with the case4 o < 2.
(i) Let |x| < e. We claim that there is a constant> 0 independent of such that

antl
/ p(t, x)dt < cpg~ @ IHE=D/@n (5.7)
for all largen. Indeed, from (2.24),

n+1

/ p(t,x)dt:a_(d/“_l)”/‘p(t,ut,x,,,)dt, (5.8)
a” 1

whereu; . , is of (5.4). Letb, , = infi¢;<q lus x n|/2 and consider

p(t, ut,x,n) = / q(t, _Y))\t(ut,x,n + d}’) + / q(t, _)’))\[ (ut,x,n + d)’)
[¥1>bx n [YI<bxn

Denote byJ; andJ> the first and second terms in the right-hand sidenAs oo, by , — oo uniformly in x and,
from Lemma 5.1, there is; > 0 such that

J1 = 0(exp(—c2by,, [0gby »)). (5.9)
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Choosey, , ; for j=1,..., N = N(x,n) such that

N
|yx,n,j|<bx,na U(Bl_'_yx,n,])D{y |y|<bx,n},
j=1
N
Z Qx,n,j <c3 WhereQx,n,j = sup Q(ts _Y)
j=1 yEB1+yx n,j t€lla]

with c¢3 independent of andn. This is possible because of Lemma 5.1. Then,

N
Jo < Z Qx,n,j)”t(Bl + Yx,n,j + ut,x,n)'
i=1

It follows from Lemma 5.4 that
a

/ Jodr < cga~ I Y Atain (5.10)

1
with a constanty4. Thus we get (5.7) from (5.9) and (5.10). Defihé;) by (4.5). It follows that/ (n) < oo if
n<a+(d-1)/a—1.

(iv) Assumption is that k a < 2 ando ({—7/|t|}) > 0. We claim that there is a constant> 0 independent

of x such that

antl

/ p(t,x)dr > cga™ @ tH@=D/en (5.11)
o
for all largen. We have
a a a
/p(t,ut,x,n)dt > /dt/q(t,—y)/\’(uz,x,n +dy) >ce/v(31+uz,x,n)dt,
1 1 B 1
wherecg = infycp, 1<r<a ¢ (¢, —y) > 0 by Proposition 3.7 and by the continuity @fz, x) in (¢, x). Thus we can

use (5.6) to get (5.11). We see thdh) =ocoforn>a + (d — 1)/a — 1.
(i) Assumexa = 1. Then we can find; > 0 independent of € {|x| < ¢} such that

gt

/ p(t, x)dt <cn=2q=@-Dn (5.12)
for all largen. Proof is similar to that of (5.7), using (5.5) of Lemma 5.4. Them) < oo for n <d — 1, asin the
proof of (iii).

(i) Assumption is thatr = 1 ando ({—7/|t|}) > 0. Now there existgsg > 0 independent af € {|x| < ¢} such
that

an+1
/ p(t, x)dt > cgn=2q=@"Dn (5.13)
al’l

for all largen. Proof of this and the remaining discussion is similar, using (5.6).
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(v) Assumptionis that-7/|t| ¢ C,. LetIT be the radial projection frol? \ {0} ontoS¢~1, thatis,[Tx = x/|x|.
For any integek > 1, we claim that

k
if xj €S, anda; > 0forj=1,....k,then > "a;x; € 17*C, U{0}. (5.14)

j=1
In the case wheres, ..., x; are linearly independent, the assertion (5.14) is evident from the definiticp.dh
the case wherey, ..., x; are linearly dependent, (5.14) is shown by inductiok gince, if2§:1 bjajx; =0 with

be=1>b;for j=1,... k—1,theny_ a;x; =Y "1(1—bj)ajx;, in which the coefficients are nonnegative.
Next we claim that there is a constagt> 0 such that
an+1

/ (= o(exp(—coaI"Yp))  (1<a <2), (5.15)
PO E= O(exp(—CQn |Ogn)) (x=1), '

all
uniformly in x € {|x| < ¢} asn — oo. Let 1 < o < 2 (the casex = 1 is similarly handled). Define, , , by (5.4).
There areS > 0 andng such that

(ut,x,n + {y: Iyl < 8|Mt,x,n|}) N H71C0' =0 ifn> no, |x| <e, t €[l al. (516)

Indeed, writinga, =a®~Y*" —1 andu =u, , , =a~"/*x — a,tt, consider; = u + y with |y| < 8|u|. We have
a, — oo and

lu| ~ ayt|t| uniformly in |x| < e andr € [1, a]. (5.17)
Then
—njo —a-t
|Hz+17r|<|y+a x| n? L.
ly +ul ly+ul |zl

Let I; and I be the first and second terms in the right-hand side. Theti (1 + 8|u|)/((1 — &) |u|) — §/(1— )
andl = |aytt||1/|y +u| — 1/(ant|t))| < |y +u + aptt|/|y + u| = I1. Thus (5.16) follows from-1Tt ¢ C,, for
smallé and largezg. Now (5.14) and (5.16) yield

Ve (uren + {30 191 <8lusxnl}) =0 fork>1

Hence,

p(t,upxn) = / q(t, _y))&t(ut,x,n +dy) < ClOqu_Cll8|”t,x,n| |Og(8|ut,x,n|))
|y‘>8|ut.x,n‘

with somecig > 0 andcy1 > 0 by Lemma 5.1. This combined with (5.8) and (5.17) shows (5.15). Now we get
I(n) <ocoforallp>0. O

6. Applicationsto Spitzer typelimit theoremsinvolving capacity

We study implications of our results on the setin the Spitzer type limit theorems mentioned in the first
paragraph of Section 1. Lét = (£2, F, F;, X;, 6;, P*) be the Hunt process in the sense of Blumenthal and Getoor
[2] induced by a Lévy processX;} onR¢. That is, P*(X, € B) = P(x + X; € B) for anyx e R¢, t > 0, and
Borel setB. Let Tp be the hitting time of a Borel s&® defined byl's = inf{r > 0: X; € B}, where we understand
Tp=o0if X; ¢ Bforallr> 0. Let

EB(t)=/PX(TB <1)dx. (6.1)
R4



K. Sato, T. Watanabe / Ann. |. H. Poincaré — PR 41 (2005) 929-951 947

Asymptotic expansion of g (1) ast — oo for a bounded Borel s&k is a subject of research in many papers since
Spitzer [26] in 1964. The first order term is connected to the capatiB) of B. Assume that the original Lévy
process X;} onR? is transient and nondegenerate. Denote the dual proce)SsbnyX =(R2,F,F, X,;,6,, px ),
which is the Hunt process induced by the Lévy prodesX;}. The equilibrium measuresy andm g of B for the
processex andX, respectively, have a common total mass, which is the capé&ciB) of Port and Stone [16]
(see also [23], Chapter 8). We have<QC(B) < oo for any bounded Borel se®. Fix a nonnegative continuous
function f (x) with compact support such th#(0) > 0 and/ f(x)dx = 1. Let

o]

= [ o / FOO(E £ (X)) d, 6.2)
t
whereE* is the expectanon unde?*. We haver(r) < oo for t > 0 because of the transience. For any 0, it
follows from Proposition 2.9 tha}’O 1" 1r(r)dr < oo if and only if n € . Throughout this section, lek be a
bounded Borel set iiR?. In the case where; has a purely singular distribution for every> 0, we make an

additional assumption thaP* (T = Tintg) = 1 for almost every. It follows from the boundedness df that
Ep(t) < oo (use (3.18) of [16] and the duality formula). Let
¢p(x)=P*(Tp <o0),  §p(x)=P*(Tp < 00). (6.3)

If 1 €%, then [, ¢p(x)@p(x)dx < oo (see Theorem 14.2 of [16]).
The following two propositions are among the results obtained by a series of works [26,4,10-12,16].

Proposition 6.1. Let

AP (1) = Ep(t) —tC(B). (6.4)
If 1¢ T, then
t t
AP @) = (C(B))Z/r(s)ds—I—O(/r(s)ds), t — oo. (6.5)

0 0

Proof is given in Theorem 14.2 of [16].

Proposition 6.2. Assumel € ¥ and let

Af)(t)=EB(l)—lC(B)—/QZB(X)wB(X)dX- (6.6)
R4
Then
AP = —/@B(x)PX(t < Tp < 0o)dx :O(/r(s)ds), t — oo. (6.7)
R4 t

If, in addition, we assume
Supr(t/z) <
t>0 I’(l‘)
then

00, (6.8)

o0

Ag)(t) = —(C(B))Z/r(s) ds + 0(/ r(s) ds), t — 00. (6.9)
t

t
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Proof. The assertion (6.7) is obtained from (3.19) and (14.13) of [16]. The property (6.8) is the so-called dominated
variation and it follows from (6.8) that(r) > byt 1 for larger with some positive constants, b,. Therefore, if
(6.8) holds, then

lim sup(/ﬁ(K))l/’ =1 for some compact sé. (6.10)

—>0o0

Indeed, ifX does not satisfy (6.10), then there is a constant0 such that (r) = o(e™“") ast — oo. Hence the
second half of the proposition is a consequence of Lemma 3.3 of [15].

Combining the limit theorems above and our estimates in Sections 4 and 5, we get the following results.

Proposition 6.3. Let{X,} be a nondegenerate transient Lévy proces&6n
(i) Suppose that ¢ ¥ andb € ¥ for some0 < b < 1. Then

AP0 =00¥?), 1 0. (6.11)
(i) Suppose that € ¥ andb € ¥ for someb > 1. Then

ottty ifr>1,

ol) ifb=1 (6.12)

AP @) = {

ast — o0.

Proof. (i) Since
r()<e™? f s? ds f FOO(E* f(X)) dx =0t ™),
t

we havefé r(s)ds = o(t1~?). Hence (6.11) follows from Proposition 6.1.
(i) Since we have from & ¥ that

tr(r) < /sds/f(x)(Exf(XS))dx —0, t— oo,
t
we see that

oo o0 o

/r(s)ds = —trt) —/sr’(s)ds < —tr(r)+z1*b/s” ds/f(x)(EXf(Xs)) dx = o(t1 7).
t t t

Thus (6.12) follows from Proposition 6.2.0

In the case of stable processes, Port [14] gives detailed analysis of asymptmjé],g(mf and Af) (t). Our
Theorems A and B make it possible to give some asymptotics of these quantities for semistable processes.

Proposition 6.4. Let {X,} be a nondegenerate transiemtsemistable process dk’. Suppose that either it is the
one treated ini)—(iii ), and(iv) of TheoremA, or itis in the casel = 1 treated in Corollary2.7, but the one iriv)
of Corollary 2.7is excluded. Thef = [0, b), with someD < b < oo, and the following are true.

() fO<b<1,then

AP @) =< 1 0. (6.13)
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(i) If b=1,then

Ag)(t) <logt, t— oo. (6.14)
(i) fl<b<oo,

—Ag)(t) =17V 15 0. (6.15)
(iv) If b = o0, then, for any > 0,

A1) =017, 1 c0. (6.16)

Here, in general for two positive functionsr) and B(z), we write A(t) < B(t), t — oo, if there are constants
0 < c¢1 < c2 <oosuchthat B(t) < A(t) < c2B(¢) for all sufficiently larger.

Proof of Proposition. Theorem A or Corollary 2.7 says th@t= [0, ), with some O< b < co. Let us consider
the cases treated in (ii) and (iii) of Theorem A. Thus ® = d/a — 1 < co. We can show that condition (6.8) is
satisfied. In order to see this, it is enough to show
Supr(t/a)
t>0 V([)
fora e ' N (1, 00). Let K be a compact set. By Lemma 4.3

< 00 (6.17)

e ¢]

o0
/p(s, x)ds ~ constz a * = consta """
k=n

an
uniformly in x € K, and hence forn” < 1 <a"**
oo
ft/aP(S,x)dS - L;o,lp(s,x)ds 2

ftoo p(s,x)ds f;,oﬂ p(s,x)ds
uniformly in x € K. Thus the definition (6.2) of(¢) shows that (6.17) is satisfied. We also have

oo

/p(s, x)ds < 17?
t

and hence

r(t) < t_b, t — o0.

Thus (i), (i), and (iii) follow from Propositions 6.1 and 6.2.

Among the cases treated in Corollary 2.7, (ii) is included in (ii) of Theorem A; (v) and (vii) haweé & oo
and a similar argument works, using the proofs of (iii) and (iv) of Theorem B.

The remaining cases have= oo and our assertion (iv) is a straightforward consequence of Proposi-
tion 6.3(ii). O

Proposition 6.5. Let {X,} be a nondegenerate transient second-classemistable process d& with 1 < o < 2
treated in TheorerB. Assume thad > 2. Then the following hold for — oc.

(i) If @ =1, then

O((logn)~1) ford =2,

O(r?>~?(logr)~2) ford >3. (6.18)

A2 (1) = {
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(i) fa=1lando({—1/|t|}) > 0, then

@ | ognt ford =2,
A ()= {tz“’(logt)‘2 ford > 3. (6.19)

(i) If 1<a <2, then

A%Z) (1) = O(12~9—@=D/ey (6.20)
(iv) If 1<a <2ando({—1/|7]}) > 0, then

—Ag)(t) < j2-a—(d-D/a (6.21)

(V) If —t/|t| ¢ Cs, then, for every > 0,

AP 1) =0a7). (6.22)
Proof. (i) Denote positive constants lay, co, ... . It follows from (5.12) that
o 00 o
/p(t, x)dr <1 Zk‘za_(d_l)k <o / (log t)_zt_d dr < 03n_2a_<d_1)”
an k=n an,]_

uniformly in x in any compact set. Thus
00
/ p(s, x)ds < ca(log )~2~@-D
t

uniformly in x in any compact set. Hence

e ¢]

-1
_ es(logt) ford =2,
fr(S)dS < {ce(logt)‘zt_(d_z) ford > 3.
t

Now use Proposition 6.2(i).
(ii) The estimate from below is obtained similarly, by (5.13).
(iii), (iv) Similarly use (5.7) and (5.11).
(v) Since¥ = [0, 00), this is a consequence of Proposition 6.3(ii)z

Remark 6.6.1f d =1,« =1, and O< |B| < 1 (the case (iv) of Corollary 2.7), then
AP 1) < t(logr)~*  ast — oo. (6.23)

Indeed, since this is in the case (ii) of Theorem B, we have

oo

o
/p(t, x)dr < Zk‘z =n"t

an k=n

uniformly in x in any compact set by (5.12) and (5.13). This) =< (logr)~1 andfé r(s)ds < t(logr)~t. Then
use Proposition 6.1.
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