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Abstract

This paper gives sharp rates of convergence to stationarity for a Markov chain generating Bose–Einstein configuran
balls ink boxes. The analysis leads to curious identities for the arc sine distribution.
 2005 Elsevier SAS. All rights reserved.

Résumé

On décrit la vitesse de convergence vers l’état stationnaire pour une chaîne de Markov générant des configurations
Einstein pourn boules dansk boîtes. Cela conduit à quelques identités curieuses concernant la loi arcsinus.
 2005 Elsevier SAS. All rights reserved.
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0. On a personal note

In 1971, as a beginning graduate student at Harvard’s Department of Statistics, I badly wanted to lear
probability. Someone told me that the deepest, best book was Paul-Andre Meyers’ “Probability and P
Theory” [24]. For the next year and a half, three of us ran a reading group on this book. We moved
like ants on a page, without any global understanding but happy to be in the presence of a master. I ca
I internalized any abstract potential theory but I learned a lot of measure theory and the last chapter (on
Theory) made a big impact on my ability to abstract de Finettis theorem. As the magisterial sequence o
[8–10] by Dellacherie–Meyer evolved, my familiarity with the original made them welcome and accessible

I only met Paul-Andre Meyer once (at Luminy in 1995). He kindly stayed around after my talk and we
for about an hour. I was studying rates of convergence of finite state space Markov chains. He made it c

E-mail address:diaconis@math.stanford.edu (P. Diaconis).
0246-0203/$ – see front matter 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.09.007
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for him, finite state space Markov chains is a trivial subject. Hurt but undaunted, I explained some of our
and methods. He thought about it and said, “I see, yes, those are very hard problems”.

The analytic parts of Dirichlet space theory have played an enormous role in my recent work. I am su
there is much to learn from the abstract theory as well. In the present paper I treat rates of convergence for
Markov chain. I am sorry not to have another hour with Paul-Andre Meyer. Perhaps he would say “This p
our story might help you”. Perhaps one of his students or colleagues can help fill the void.

1. Background

The use of Markov chains in Monte Carlo simulations has become a mainstay of scientific computing
are a bewildering variety of methods for constructing reversible Markov chains with a given stationary distri
[23] is a good overview of the present state of the art. Some order has appeared by the realization th
different algorithms are special cases of one general algorithm. Known variously as auxiliary variables [
augmentation [29], slice sampling [25] or hit and run, these algorithms include the celebrated Swedse
algorithm of statistical mechanics. They seem to allow “big moves” which suggests rapidly converging cha

There has been very little rigorous work on rates of convergence for any of these algorithms. One spe
exception are the negative result of Gore and Jerrum [15] and Borgs et al. [4] showing that the Swedse
algorithm does not mix rapidly at the critical temperature. [17] proves rapid mixing for Swedsen–Wang s
far from the critical temperature. The discussion in [25] contains pointers to a few examples where proo
been possible.

The present paper studies a class of problems called the “Burnside Process”, introduced by comput
tists Mark Jerrum and Leslie Goldberg [12,13,18,19]. These are a special case of the algorithms above; e
general convergence results are far off in the future, but a successful analysis is possible for a subclass
lems with Bose–Einstein stationary distributions. The Burnside process is closely connected to Polya’s m
enumeration. A short overview of this is contained in Appendix.

Let X be a finite set. LetG be a finite group acting onX . This splitsX into disjoint orbitsX = O1 ∪ O2 ∪
· · · ∪ Ok . The problem is to choose anorbit uniformly at random. The problem of picking unlabeled object
random is familiar to probabilists from Bose–Einstein statistics. Another example arises in enumerating
is well known that there arenn−2 labeled trees onn vertices and it is easy to pick a random tree using e.g. Pr
codes. There is no simple enumeration of unlabeled trees and generating random subtrees of a graph is
research area. Here and throughout, ifX = O1 ∪ O2 ∪ · · · ∪ Ok andXi , 0� i � ∞, is a Markov chain onX , the
image processYi = a if Xi is in Oa is called the lumped chain. For background, see Chapter Three in [20].

Goldberg and Jerrum have developed a Markov chain called the Burnside process onX which has a uniform
stationary distribution when lumped to orbits. Fromx ∈ X , choose uniformly among allg ∈ G with xg = x.
Giveng, choose uniformly among ally with yg = y. The chain moves fromx to y. If Xg = {x: xg = x}, Gx =
{g: xg =x}, and 0x is theG orbit containingx, it is easy to see that this Burnside process is a reversible Ma
chain onX with transition matrix and stationary distribution

K(x,y) = |0x |
|G|

∑
g∈Gx∩Gy

1/|Xg|, π(x) = z−1

|0x | ,

wherez is a normalizing constant (which in fact equals the number of orbits). It follows that the chain lum
orbits has a uniform stationary distribution.
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2. Bose–Einstein statistics

If n balls are dropped intok boxes so that each configuration of unlabeled balls is equally likely, the res
probability distribution on

(
n+k−1
k−1

)
configurations is called the Bose–Einstein distribution. In statistics it is so

times called the beta-binomial or Dirichlet-multinomial distribution. See [11] for background. To put thing
the notation of Section 1, let[k] = {1,2, . . . , k} andX = [k]n. The coordinates of a vector inX represent the vari
ous balls andxi represents the box containing ball labeledi. The symmetric groupG = Sn acts onX by permuting
coordinates and the problem of choosing a random orbit becomes the problem of choosing a random Bose
configuration.

Let Gx be the subgroup ofSn permuting coordinates with equal entries inx. If x containsnj entries labeledj ,
1 � j � k, thenGx

∼= Sn1 × Sn2 × · · · × Snk
. Let the set of points inX fixed byg be denotedXg . This is the set

of vectors having constant values on the cycles of the permutationg. From here, the Burnside process is easy
describe explicitly:

Fromx, identify the set of coordinatesIj with common valuej , 1� j � k. Choose uniform

random permutationsw1,w2, . . . ,wk of these sets. Break eachwi into cycles and label the

coordinates of each cycle with a uniform choice in[k]. Let the final configuration bey. (2.1)

Here is an example. Supposek = 2, n = 10 soX is the space of binary ten-tuple. The symmetric groupS10 acts
onX . The orbits areO0,O1, . . . ,O10, with Oi the ten-tuple withi ones. The Burnside process is a Markov ch
onX with stationary distributionπ(x) = z−1/

(
n
i

)
for x in Oi . Suppose the process is currently at

z = 1011001110

sincex has four zeros and six ones the subgroup ofS10 fixing x is isomorphic toS4 × S6; with S4 permuting
{2,5,6,10} andS6 permuting{1,3,4,7,8,9}. The algorithm proceeds by picking, uniformly at random, perm
tionsW1 in S4 andW2 in S6. Suppose these are

W1
2 5 6 10
5 10 6 2

W2
1 3 4 7 8 9
3 1 4 9 7 8

these are expressed as cycles

W1
(2 5 10) (6)

1 0
W2

(1 3) (4) (7 9 8)
1 0 0

the cycles are randomly colored zero or one by flipping a fair coin. Finally, the elements ofx are relabeled zero o
one using the labels fromW1 andW2. This results in the next step in the chain. Here

y = 1 1 1 0 1 0 0 0 0 1.

The main result of this paper may now be stated:

Theorem 1. For any fixedk andn, let K(x,y) be the transition matrix defined in(2.1) on [k]n. Let

π = 1

/(
n + k − 1

k − 1

)

be its stationary distribution. Then, there isc = c(k) such that for alln and�,

‖K�
0 − π‖T V � (1− c)�

with K�
0 the transition matrix of the chain started with all coordinates equal.
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Remarks. The theorem shows that for fixedk the mixing time is independent ofn. In the proof we show thatc(2)

may be taken as 1/π (with π = 3.14159. . .) and give bounds for other values ofk. The proof of the theorem i
given in Section 3. It is based on an explicit expression for the transition matrix of the lumped chain. This in
a curious appearance of the discrete arc sine distribution. Section 4 gives lower bounds and a coupling
Aldous. The Appendix gives a brief, self-contained overview of the needed Polya theory. Of course, there a
easier ways to directly generate Bose–Einstein configurations. One may place then balls sequentially intok boxes,
each time choosing a box with probability proportional to its current content plus one. Starting from the
configuration this results in a Bose–Einstein distribution for every stage. The study of the Burnside process
example is a prelude to more substantial studies.

A referee notes that the main technical tool used here is a classical Doeblin bound. These have gon
fashion. But, for the kind of problem considered here where a Markov chain takes big steps, they are quite

3. Proof of Theorem 1

The argument is given in detail for generaln andk = 2 with indication of what is needed for generalization
the end. By construction, for anyx, y ∈ X and anyg ∈ Sn, K(x,y) = K(xg, yg) and soK�(x, y) = K�(xg, yg)

for all �. It follows that Dynkin’s criterion ([20], Chapter Three) is satisfied and so the chain lumped to orbi
Markov chain. Whenk = 2, the orbits are 00,01, . . . ,0n with 0i the set of all binary vectors of lengthn with i ones
andn − i zeros. Let�K(i, j) be the transition probabilities for the lumped chain 0� i, j � n. Let π̄ (i) ≡ 1/(n + 1)

be the uniform distribution. SinceK�(x, y) andπ(x) areSn invariant for allx, y, �,

‖K�
0 − π‖ = 1

2

∑
x

∣∣K�
0(x) − π(x)

∣∣ = 1

2

∑
i

∣∣K�
0(Oi) − π(Oi)

∣∣ = ‖�K�
0 − π̄‖.

So, it is enough to study the lumped chain.
Let

αn
k =

(
2k

k

)(
2n − 2k

n − k

)/
22n

be the discrete arc sine distribution 0� k � n ([11], Chapter 3). We show that

�K(0, k) = αn
k = �K(n, k), (3.1)

�K(j, k) =
∑

�

α
j

� α
n−j

k−� (j + k − n)+ � � � j ∧ k. (3.2)

�K(j, k) = �K(k, j) = �K(n − j, k) = �K(j,n − k) for all k, j. (3.3)

The proof of all parts of (3.1)–(3.3) follows from the lumping argument and simple symmetry, save on
assertion for�K(0, k).

To prove�K(0, k) = αn
k we recall Polya’s cycle index. If a permutationg hasai(g) cycles of lengthi, define the

polynomial

pn(x1, . . . , xn) = 1

n!
∑
g∈Sn

n∏
i=1

x
ai(g)
i (p0 = 1). (3.4)

Polya proved that the sum of these polynomials factors

∞∑
tnpn =

∞∏
et ixi/i .
n=0 i=1
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are thus claiming

�K(0,0) = 1

n!
∑
g∈Sn

(
1

2

)c(g)

= αn
0 =

(2n
n

)
22n

with c(g) = a1 + · · · + an

the number of cycles ing. This follows by setting allxi = 1
2 in the cycle index:

∞∑
n=0

tn �Kn(0,0) =
∞∏
i=1

et i /(2i) = 1√
1− t

=
∞∑
i=0

(−1
2

i

)
(−t)i =

∞∑
n=0

(2n
n

)
22n

tn.

This proves (3.1) fork = 0.
Consider next�Kn(0,1). This counts events where each cycle except for one fixed point is labeled zero a

fixed point is labeled one. There area1 fixed points that can be chosen. Hence

�Kn(0,1) = 1

n!
∑
g∈Sn

a1

(
1

2

)a1+···+an

.

We get the generating function for these numbers by differentiating (3.4) once inx1, multiplying byx1, and setting
all xi = 1

2. Thus

∞∑
n=0

tn �Kn(0,1) = t

2

1√
1− t

=
∞∑

n=0

�Kn(0,0)

2
tn+1,

�Kn(0,1) = �Kn(0,0)

2
= 2

(2n−2
n−1

)
22n

.

For the general case,�Kn(0, j) we sum over partitions ofj :

�K(0, j) = 1

n!
∑
λ� j
g∈Sn

j∏
i=1

(
ai(g)

bi(λ)

)(
1

2

)a1+···+an

,

whereg hasai(g) i-cycles andλ hasbi(λ) parts equal toi. Differentiating (3.4)bi times inxi and multiplying
by x

bi

i givesai(ai − 1) · · · (ai − bi − 1) in the generating function. This also brings down a factor of(t i/i)bi .
Finally, all xi are set to 1/2. The upshot is

∞∑
n=0

tn �Kn(0, j) = tj√
1− t

∑
λ� j

j∏
i=1

1

(bi(λ))!(2i)bi
.

Multiply the sum overλ by j !/j ! to get

tj

j !√1− t

∑
λ� j

(
1

2

)b1+···+bj j !∏
i=1 bi !ibr

= tj√
1− t

Kj (0,0) = tj√
1− t

(2j
j

)
22j

.

This proves (3.1) on comparing coefficients.
The proof of Theorem 1 is completed by showing thatK satisfies a Doeblin Condition. As is well known, t

arc sine distribution is smallest forj = 
n/2� when it has the following asymptotics

�K (
0, 
n/2�) ∼ 1

.
n
πn
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By a straightforward induction�Kn(i, j) � �Kn(0, 
n/2�) for all i, j . Thus

�Kn(i, j) � cπ̄(j) all i, j,

wherec ∼ 1/π for largen. This Doeblin Condition shows that the total variation distance of�K� to π̄ is at most
(1− c)�, as desired. �
Remarks.

1. The appearance of the discrete arc sine distribution from labeling cycles is apparently new. It can
without mentioning permutations: Divide[n] = {1,2, . . . , n} into pieces as follows: choosej1 ∈ [n] uniformly.
The first piece is{1,2, . . . , j1}. The second piece is chosen by choosingj2 uniformly in {j1 + 1, . . . , n}. This
continues untiln is chosen. Call this ‘discrete stick breaking.’ Label the pieces by flipping a fair coin for
piece. The sum of the lengths of the ‘heads’ pieces has the discrete arc sine distribution. This result was
from the infinite version: break the unit interval into countably many pieces by uniform stick breaking. Flip
coin for each piece. The sum of the lengths of the ‘heads’ pieces has the arc sine density 1/(π

√
x(1− x)) on

[0,1]. This known result [7,22] suggested the discrete result. The fact that the uniform distribution on{0,1, . . . , n}
is stationary for�K gives (after passage to the limit asn → ∞) the following result for the continuous arc sine la
Let U be uniform on[0,1]. Let X1 andX2 be independent arc sine variables. Then

UX1 + (1− U)X2 has a uniform distribution.

2. Jim Pitman has shown us a neat generalization of the discrete arc sine results. Suppose the original
tionsWi in (2.1) are chosen from the Ewens distribution on permutations

Pθ(w) = Z−1θc(w), 0< θ � 1, Z(θ) = (1+ θ)(1+ 2θ) · · · (1+ (n − 1)θ
)
,

with C(W) the number of cycles inW , and the cycles are colored zero or one with probabilityp, 1− p. Then, the
sum of the lengths of the cycles labeled one has a discreteβθp,θ(1−p) distribution:

P(length= k) =
(

n

k

)
E

(
Xk(1− X)n−k

)
(3.5)

with X having a beta(pθ, (1−p)θ) distribution. The integrals are easy to do and agree with the special case
The form (3.5) is provable from the developments around the Blackwell–McQueen version of Polya’s Urn
Dubins–Pitman ‘Chinese Restaurant’ processes.

What isnot obvious is why the special case treated above(θ = 1,p = 1/2) agrees with the discrete arc si
distribution from elementary probability. There must be some bijective proof that relates 2-colorings of cy
coin-tossing paths.

3. The proof given above is fork = 2. For generalk the lumping argument works to show it is enough
consider the orbit chain which takes values on compositions(y1, . . . , yk) with yi equal to the number of time
color i occurs. Thus 0� yi � n with y1 + · · · + yk = n. The stationary distribution of the lumped chain is t
Bose–Einstein distribution

π̄ (y1 . . . yk) = 1(
n+k−1
k−1

) .

The transition matrix�K is now indexed by compositions ofn into k parts. It is determined as above by knowi
the chance of going from(n,0, . . . ,0) to (y1, . . . , yk). Using Polya theory, this equals

�Kn(n,0 . . .0;y1 . . . yk) =
(

n

y1 . . . yk

)
1

n!
[
�

(
1

k

)]k k∏
i=1

�

(
yi + 1

k

)

=
(

n

y1 . . . yk

)
1

knn!
k∏ yi−1∏

(1+ kj). (3.6)

i=1 j=1



P. Diaconis / Ann. I. H. Poincaré – PR 41 (2005) 409–418 415

eneral

ment as

nite
lt
n

ution
],
d

This can be shown to be minimal when all theyi are within one ofn/k (if k dividesn all yi = n/k). We need
Gauss’s approximation for the Gamma function in the form

�(z) = lim
n→∞

n!nz−1

z(z + 1) · · · (z + n − 1)
,

m∏
j=1

(1+ kj) ∼ km+1m!m1/k

�(1/k)
.

From here, when allyi = n/k, calculation shows that

Kn

(
n0 . . .0,

n

k
. . .

n

k

)
∼ kk−1

nk−1�(1
k
)k

.

Whenk is large�(1
k
)k ∼ kk soKn(n . . .0; n

k
. . . n

k
) ∼ 1

knk−1 . We thus have

1

knk−1
� c(k)

(k − 1)!
(n + 1) . . . n + k − 1

provided that

(1+ 1/n) . . . (1+ (k − 1)/n)

k! � c(k).

This entailsc(k) ∼ 1
k! .

4. Aldous’ theorem and lower bounds

In [1], David Aldous proved a remarkable bound for the Bose–Einstein walk. His bound works for g
values ofn andk.

Theorem 2 (Aldous).For the Burnside walk applied ton balls dropped intok boxes defined at(2.1)

‖K�
x − π‖tv � n

(
1− 1

k

)�

.

The upper bound is uniform in the starting statex ∈ [k]n.

Remarks. For k large, this is markedly better than Theorem 1. However, for fixedk (or k growing very slowly
with n) Theorem 1 gives better bounds. Aldous uses an inspired coupling and a careful study of his argu
well as effort to apply it to more general problems in this class seems fully warranted.

Turn next to lower bounds. For fixedk and largen, Theorem 1 shows the Burnside walk converges in a fi
number of steps. Fork growing with n, Aldous’ theorem shows orderk logn steps suffice. The following resu
shows that fork = n at least order logn steps are needed. We conjecture that this is the correct answer whek is
of ordern.

Proposition. Consider the Burnside walk applied ton balls dropped inton boxes, defined at(2.1). There is a fixed
constantc > 0 independent ofn such that for� � logn.

‖K�
0 − π‖T V � c.

Proof. If n balls are dropped inton boxes using Bose–Einstein statistics, the configuration has the distrib
of n Geometric(1

2) variables conditional on their sum beingn. By standard conditioned limit arguments [16
the maximum box count has the same limit distribution as the maximum ofn independent identically distribute
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On the other hand consider the Burnside process started at a configuration with all balls in a given cell.

step chooses a random permutation uniformly inSn and labels the cycles independently withn colors. The larges
cycle is of ordern multiplied by a random variable with mean.61. . . (the length of the largest piece in unifor
stick-breaking). See [3,14,27] for details. At step two, this largest cycle is broken into pieces, the largest o
is of ordern multiplied by a product of two independent copies ofL. Continuing, we see that the walk must be r
order logn steps to have the sequence of largest subpieces drop to size logn. Further details are omitted.�
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Appendix. Pointers to Polya theory

Polya theory concerns itself with question such as: How many ways can we paint ten dice with colors red
blue? Here the ordering of the dice and their position does not matter. As mathematics, the questions bec
X be a finite set. Let a finite groupG act onX . This splitsX into orbitsX = 01 ∪02 · · · ∪0k . What isk? In the dice
example, identify the faces of the ten dice with points in[6]10. Let X be all functions from[6]10 into {R,W,B}.
The groupG1 of rotations of the usual cube acts on[6]; thusG10

1 acts on[6]10. Similarly, the symmetric groupS10

acts on[6]10. Putting these actions together gives an action ofG = S10 � G10
1 onX . The number of orbits equa

the number of distinct colorings.
The best short introduction to Polya theory is in [6] where one finds extensions to counting functions b

two finite setsA,B with groups acting on each side. Polya’s original article was aimed at chemistry problems
the number of labelings of a Benzine ring with two colors up to dihedral symmetry). A translation and a long
of developments is in [26]. Chemists are still interested – see [5]. An extensive mathematical development
in [21].

Polya theory can be seen as a chapter of symmetric function theory; indeed it is thus treated in the las
of the last chapter of [28]. To see the connection, considerG acting onX . TheCycle Indexis

ZG(P1,P2, . . . ,P|X |) = 1

|G|
∑
g

∏
P

ai(g)
i .

Here Pi are indeterminates and for permutationsg ∈ G, ai(g) is the number ofi-cycles. As above, letC =
{c1, c2, . . .} be a set of colors and letF = {f : X → C}. Then G acts onF by gf (x) = f (gx). For vari-
ablesz1, z2, . . . , define theweight of f as wt(f ) = z

c1(f )

1 z
c2(f )

2 . . . with ci(f ) the number ofx with color ci

(ci(f ) = |f −1(ci)|). The generating function

FG =
∑

0∈F/G
wt(f )

summed over orbits 0 ofF , with any choice off ∈ 0, has the coefficient ofzb1
1 z

b2
2 . . . the number of orbits with

color i occurringbi times. In the dice example, the coefficient ofx1x
3
2x6

3 is the number of colorings with one re
three white and six blue. The main theorem of Polya theory states
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Theorem. ZG(P1,P2, . . .) = FG(z1, z2, . . .) = ch INDSn

G (1).

Here Pi = ∑
j zi

j is the ith power sum symmetric function. The GroupG is a subgroup ofSn with

n = |X |. INDSn

G (1) is the permutation character and for any characterχ , the characteristic map isch(χ) =∑
h χ(g)

∏
i Pai (g).

Corollary. The number of inequivalent colorings ofX with m colors equalsZG(m,m, . . . ,m).

The symmetric function formulation of Polya theory allows tools such as character theory and Schur Fu
For a proof of the main theorem and remarkable applications, see [28].

Computer science theorists have opened a new chapter in Polya theory by proving that the evalu
ZG(2,2, . . . ,2) is #-P complete, even forG an Abelian 2-group. They also show that computing a single c
ficient in ZG(P1,P2, . . . ,Pn) is intractable. The problems are reduced to counting the number of coloring
graph. For these results see [12]. The probabilistic approach to approximate counting develops Markov c
sample problem instances. If these chains can be proved to mix rapidly, then accurate, efficient approxima
be proved. This was the genesis of the Burnside process. [13] relates these problems to approximation of
tion functions of Ising and Potts Models. They use these connections to give examples where the Burnside
mixes slowly. More precisely, they show there is an infinite family of permutation groupsG such that the mixing
time of the Burnside process is exponential in the degree ofG. The present example shows that for some gr
actions, the Burnside process mixes rapidly.
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