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Abstract

We prove a nonequilibrium central limit theorem for the position of a tagged particle in the one-dimensional nearest neighbor
symmetric simple exclusion process under diffusive scaling starting from a Bernoulli product measure associated to a smooth
profile ρ0 : R → [0,1].
© 2005 Elsevier SAS. All rights reserved.

Résumé

Nous démontrons un théorème central limite hors d’équilibre pour la position de la particule marquée dans l’exclusion simple
symétriqué unidimensionelle à plus proche voisin en partant d’un produit de mesures de Bernoulli produit associée à un profil
ρ0 : R → [0,1] lisse.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The asymptotic behavior of a tagged particle appears as one of the central problems in the theory of interacting
particle systems and remains mostly unsolved.

The first important result on the position of a tagged particle in the diffusive scaling is due to Kipnis and Varad-
han [4]. By proving an invariance principle for additive functionals of reversible Markov processes, Kipnis and
Varadhan deduced an equilibrium central limit theorem for the position of a tagged particle in symmetric simple exclu-
sion processes. This result was extended by Varadhan [11] for mean-zero asymmetric exclusion processes, through an
invariance principle for Markov processes with generator satisfying a sector condition; and by Sethuraman, Varadhan
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and Yau [9] to asymmetric exclusion processes in dimension d � 3, relaxing the sector condition by a graded sector
condition. In these three contexts the authors prove that

XtN2 − E[XtN2]
N

converges in law, as N ↑ ∞, to a Brownian motion with diffusion coefficient given by a variational formula. Here Xt

stands for the position of the tagged particle at time t .
The nonequilibrium picture is much less clear. Even a law of large numbers for a tagged particle starting from a

Bernoulli product measure with slowly varying parameter seems still out of reach. Rezakhanlou [7] proved a propaga-
tion of chaos result which states that the average behavior of tagged particles is described by diffusion process. A large
deviations from this diffusive limit in dimension d � 3 was obtained by Quastel, Rezakhanlou and Varadhan [5].

We prove in this article the first nonequilibrium central limit theorem for a tagged particle. Consider the one-
dimensional nearest neighbor symmetric situation. In this context, as already observed by Arratia [1], the scaling
changes dramatically since to displace the tagged particle from the origin to a site N > 0, all particles between the
origin and N need to move to the right of N . This observation relates the asymptotic behavior of the tagged particle
to the hydrodynamic behavior of the system. The correct scaling for the law of large numbers should therefore be
XtN2/N and we expect (XtN2 − E[XtN2])/√N to converge to a Gaussian variable.

The central limit theorem in equilibrium was obtained by Rost and Vares [8] for a slightly different model. They
proved that for each fixed t > 0, XtN2/

√
N converges to a fractional Brownian motion Wt with variance given by

E[W 2
t ] = αt1/2. We extend their result to the nonequilibrium case.

The idea of the proof is to relate the position of the tagged particle to the well known hydrodynamic behavior of
the symmetric exclusion process. Since particles cannot jump over other particles, the position of the tagged particle
is determined by the current over one bond and the density profile of particles. Therefore, a nonequilibrium central
limit theorem for the position of the tagged particle follows from a joint central limit theorem for the current and the
density profile. Since the current over a bond can itself, at least formally, be written as the difference between the mass
at the right of the bond at time t and the mass at time 0, a central limit theorem for the position of the tagged particle
should follow from a nonequilibrium central limit theorem for the density field. This is the content of the article.

This general method permits to deduce a nonequilibrium central limit theorem for the tagged particle for one-
dimensional nearest neighbor systems from the nonequilibrium fluctuations of the current and sharp estimates on the
two point space-time correlation functions.

There are three main ingredients in the proof. In Section 3 we present a nonequilibrium central limit theorem for
the current over a bond and show how it relates to the fluctuations of the density field. In Section 5 we obtain a
formula which relates the position of the tagged particle to the current over one bond and the density field. Finally,
in Appendix A we present a sharp estimate on the difference of the solution of the hydrodynamic equation and the
solution of a discretized version of the hydrodynamic equation.

2. Notation and results

The nearest neighbor one-dimensional symmetric exclusion process is a Markov process on {0,1}Z which can be
described as follows. Particles are initially distributed over Z in such a way that each site is occupied by at most
one particle. A particle at a site x waits for an exponential time and then jumps to x ± 1 provided the site is vacant.
Otherwise the jump is suppressed and the process starts again.

The state space of this Markov process is denoted by X = {0,1}Z and the configurations by the Greek letter η, so
that η(x) = 1 if site x is occupied for the configuration η and 0 otherwise. The generator LN of the process speeded
up by N2 is given by

(LNf )(η) = N2
∑
x∈Z

[
f

(
σx,x+1η

) − f (η)
]
,

where σx,x+1η is the configuration obtained from η by interchanging the occupation variables η(x) and η(x + 1):

(
σx,x+1η

)
(z) =

{
η(x + 1) if z = x,
η(x) if z = x + 1,

η(z) otherwise.
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For each configuration η, denote by π(η) the positive measure on R obtained by assigning mass N−1 to each
particle:

π(η) = N−1
∑
x∈Z

η(x)δx/N

and let πt = π(ηt ).
Fix a profile ρ0 : R → [0,1] with the first four derivatives limited. Denote by νN

ρ0(·) the product measure on X
associated to ρ0:

νN
ρ0(·)

{
η,η(x) = 1

} = ρ0(x/N)

for x in Z. For each N � 1 and each measure μ on X , denote by Pμ the probability on the path space D(R+,X )

induced by the measure μ and the Markov process with generator LN . Expectation with respect to Pμ is denoted
by Eμ. Note that we omitted the dependence of the probability Pμ on N to keep notation simple. This convention is
adopted below for several other quantities which also depend on N . The hydrodynamic behavior of the symmetric
simple exclusion process is well known and described by the heat equation.

Theorem 2.1. Fix a profile ρ0 : R → [0,1]. Then, for all time t � 0, under PνN
ρ0(·)

the sequence of random measures πt

converges in probability to the absolutely continuous measure ρ(t, u)du whose density ρ is the solution of the heat
equation with initial condition ρ0:{

∂tρ = 
ρ,

ρ(0, ·) = ρ0(·). (2.1)

Here and below, 
 stands for the Laplacian.

This theorem establishes a law of large numbers for the empirical measure. To state the central limit theorem some
notation is required. For k � 0, denote by Hk the Hilbert space induced by smooth rapidly decreasing functions and
the scalar product 〈·, ·〉k defined by

〈f,g〉k = 〈
f,

(
x2 − 


)k
g
〉
,

where 〈·, ·〉 stands for the usual scalar product in R
d . Notice that H0 = L2(Rd) and denote by H−k the dual of Hk .

Let ρN
t (x) = EνN

ρ0(·)
[ηt (x)]. A trivial computation shows that ρN

t (x) is the solution of the discrete heat equation:{
∂tρ

N
t (x) = 
NρN

t (x),

ρN
0 (x) = ρ0(x/N),

(2.2)

where (
Nh)(x) = N2 ∑
y,|y−x|=1[h(y) − h(x)].

Fix k � 4 and denote by {YN
t , t � 0} the so-called density field, a H−k-valued process given by

YN
t (G) = 1√

N

∑
x∈Z

G(x/N)
{
ηt (x) − ρN

t (x)
}

for G in Hk . Denote by QN the probability measure on the path space D(R+,H−k) induced by the process YN
t

and the measure νN
ρ0(·). Next result is due to Galves, Kipnis and Spohn [3] in dimension 1 and to Ravishankar [6] in

dimension d � 2.

Theorem 2.2. The sequence QN converges to Q, the probability measure concentrated on C(R+,H−k) correspond-
ing to the Ornstein–Uhlenbeck process Yt with mean zero and covariance given by

E
[
Yt (H)Ys(G)

] =
∫
R

(Tt−sH)Gχs −
s∫

0

dr

∫
R

(Tt−rH)(Ts−rG){∂rχr − 
χr}

for 0 � s < t and G,H ∈ Hk . In this formula, {Tt : t � 0} stands for the semigroup associated to the Laplacian and
χs for the function χ(s,u) = ρ(s,u)[1 − ρ(s,u)].
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Note that in the case of the heat equation, ∂rχr − 
χr = 2(∂xρ)2. Also, in the equilibrium case, χ is constant in
space and time so that the second term vanishes and we recover the equilibrium covariances. Finally, integrating by
parts twice the expression with 
χr , we rewrite the limiting covariances as

E
[
Yt (H)Ys(G)

] =
∫
R

(TtH)(TsG)χ0 + 2

s∫
0

dr

∫
R

(∇Tt−rH)(∇Ts−rG)χr , (2.3)

where ∇f is the space derivative of f .
We examine in this article nonequilibrium central limit theorems for the current through a bond and the position

of a tagged particle. For a bond (x, x + 1), denote by Jx,x+1(t) the current over this bond. This is the total number of
jumps from site x to site x + 1 in the time interval [0, t] minus the total number of jumps from site x + 1 to site x in
the same time interval.

Theorem 2.3. Fix u in R and let

ZN
t = 1√

N

{
JxN ,xN+1(t) − EνN

ρ0(·)

[
JxN ,xN+1(t)

]}
,

where xN = [uN ]. Then, for every k � 1 and every 0 � t1 < · · · < tk , (ZN
t1

, . . . ,ZN
tk

) converges in law to a Gaussian
vector (Zt1 , . . . ,Ztk ) with covariance given by

E[ZsZt ] =
0∫

−∞
dvP [Bs � v]P [Bt � v]χ0(v) +

∞∫
0

dvP [Bs � v]P [Bt � v]χ0(v)

+ 2

s∫
0

dr

∞∫
−∞

dv pt−r (0, v)ps−r (0, v)χr(v)

provided s � t and u = 0. In this formula, Bt is a standard Brownian motion starting from the origin and pt(v,w) is
the Gaussian kernel.

By translation invariance, in the case u �= 0, we just need to translate χ by −u in the covariance.
Let H0 = 1{[0,∞)}. The covariance appearing in the previous theorem is easy to understand. Formally the current

N−1/2J−1,0(t) centered by its mean corresponds to YN
t (H0)−YN

0 (H0) since both processes increase (resp. decrease)
by N−1/2 whenever a particle jumps from −1 to 0 (resp. 0 to −1). The limiting covariance E[ZsZt ] corresponds to
the formal covariance

E
[{

Yt (H0) − Y0(H0)
}{

Ys(H0) − Y0(H0)
}]

.

Denote by ν
N,∗
ρ0(·) the measure νN

ρ0(·) conditioned to have a particle at the origin.

Remark 2.4. The law of large numbers and the central limit theorem for the empirical measure and for the current
starting from ν

N,∗
ρ0(·) follow from the law of large numbers and the central limit theorem for the empirical measure and

the current starting from the measure νN
ρ0(·) since we may couple both processes in such a way that they differ at most

at one site at any given time.

Fix a profile ρ0 with the first four derivatives limited, and consider the product measure ν
N,∗
ρ0(·). Denote by Xt

the position at time t � 0 of the particle initially at the origin. A law of large numbers for Xt follows from the
hydrodynamic behavior of the process:

Theorem 2.5. Fix t � 0. Xt/N converges in P
ν

N,∗
ρ0(·)

-probability to ut , the solution of

u̇t = − (∂uρ)(t, ut )

ρ(t, ut )
·
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Note that the solution of the previous equation is given by
ut∫

0

duρ(t, u) = −
t∫

0

ds(∂uρ)(s,0).

Theorem 2.6. Assume that ρ0 has a bounded fourth derivative. Let Wt = N−1/2 (Xt − Nut). Under P
ν

N,∗
ρ0(·)

, for

every k � 1 and every 0 � t1 < · · · < tk , (WN
t1

, . . . ,WN
tk

) converges in law to a Gaussian vector (Wt1, . . . ,Wtk ) with
covariance given by

ρ(s,us)ρ(t, ut )E[WsWt ] =
0∫

−∞
dvPus [Bs � v]Put [Bt � v]χ0(v) +

∞∫
0

dvPus [Bs � v]Put [Bt � v]χ0(v)

+ 2

s∫
0

dr

∞∫
−∞

dv pt−r (ut , v)ps−r (us, v)χr(v).

In this formula, Pu stands for the probability corresponding to a standard Brownian motion starting from u.

The assumption made on the smoothness of ρ0 appears because in the proof of Theorem 2.6 we need a sharp
estimate on the difference of the discrete approximation of the heat equation (2.2) and the heat equation (2.1). In
Appendix A we show that there exists a finite constant C0 for which |ρN

t (x) − ρ(t, x/N)| � C0tN
−2 for all N � 1, x

in Z and t � 0 under the assumption that ρ0 has a bounded fourth derivative.

3. Nonequilibrium fluctuations of the current

Suppose for a moment that the profile ρ0 has a compact support. Then, η0 is almost surely a configuration with a
finite number of particles, and it is easy to see that we have a simple formula for the current J−1,0(t):

J−1,0(t) =
∑
x�0

ηt (x) − η0(x). (3.1)

In particular, we can write J−1,0(t) in terms of the fluctuation field:

1√
N

{
J−1,0(t) − EνN

ρ0(·)

[
J−1,0(t)

]} = YN
t (H0) − YN

0 (H0),

where Ha is the indicator function of the interval [a,∞):

Ha(u) = 1
{[a,∞)

}
(u).

Since the profile has compact support, it is possible to define Yt (H0) as the limit Yt (Gn) for some sequence Gn of
compact supported function converging to H0 on compact subsets of R and to prove that YN

t (H0), defined in a similar
way, converges to Yt (H0).

In the general case, however, when ρ0 is an arbitrary profile, neither formula (3.1) makes sense, nor the fluctuation
field YN

t (H0) is well defined. Nevertheless, there is a way to calculate the fluctuations of the current by appropriated
approximations of the function G, as made by Rost and Vares [8] in the equilibrium case.

Define the sequence {Gn: n � 1} of approximating functions of H0 by

Gn(u) = {
1 − (u/n)

}+1{u � 0}.
From here we use the next convention: if X is a random variable, we denote by �X the centered variable X−EνN

ρ0(·)
[X].

Proposition 3.1. For every t � 0,

lim
n→∞EνN

ρ0(·)

[
N−1/2J̄−1,0(t) − YN

t (Gn) + YN
0 (Gn)

]2 = 0

uniformly in N .
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Proof. Clearly,

Mx,x+1(t) := Jx,x+1(t) − N2

t∫
0

ds
{
ηs(x) − ηs(x + 1)

}

is a martingale with quadratic variation given by

〈Mx,x+1〉t = N2

t∫
0

ds
{
ηs(x) − ηs(x + 1)

}2
.

The goal is to express the difference YN
t (Gn) − YN

0 (Gn) in terms of the martingales Mx,x+1(t) and to notice that
these martingales are orthogonal, since they have no common jumps.

Since

Jx−1,x(t) − Jx,x+1(t) = ηt (x) − η0(x)

for all x in Z
d , t � 0,

YN
t (Gn) − YN

0 (Gn) = N−1/2
∑
x∈Z

Gn(x/N)
{
J̄x−1,x(t) − J̄x,x+1(t)

}
.

A summation by parts and the explicit form of Gn permits to rewrite this expression as

N−1/2J̄−1,0(t) − N−1/2
nN∑
x=1

1

nN
J̄x−1,x(t).

Representing the currents Jx,x+1(t) in terms of the martingales Mx,x+1(t), we obtain that

N−1/2J̄0(t) − [
YN

t (Gn) − YN
0 (Gn)

] = 1√
N

nN∑
x=1

1

nN
Mx−1,x(t) + 1√

N

t∫
0

ds
N

n

[
η̄s(0) − η̄s(nN)

]
.

We claim that the martingale and the integral term converge to 0 in L2(PνN
ρ0(·)

). In fact, since the martingales are

orthogonal, estimating their quadratic variations by tN2, an elementary computation shows that

EνN
ρ0(·)

[
1√
N

nN∑
x=1

1

nN
Mx−1,x(t)

]2

� t

n
.

The integral term is more demanding, because in nonequilibrium the two-point correlations are not easy to estimate.
Expanding the square we have that

EνN
ρ0(·)

[
1√
N

t∫
0

ds
N

n

[
η̄s(0) − η̄s(nN)

]
ds

]2

= 2N

n2

t∫
0

ds

s∫
0

drEνN
ρ0(·)

[(
η̄s(0) − η̄s(nN)

)(
η̄r (0) − η̄r (nN)

)]
.

By Lemma 3.2 the previous expression is less than or equal to C0t
5/2n−2 for some finite constant C0 depending only

on ρ0. This concludes the proof of the proposition. �
A central limit theorem for the current J̄−1,0(t) is a consequence of this proposition.

Proof of Theorem 2.3. Fix t � 0 and n � 1. By approximating Gn in L2(R)∩L1(R) by a sequence {Hn,k: k � 1} of
smooth functions with compact support, recalling Theorem 2.2, we show that YN

t (Gn) converges in law to a Gaussian
variable denoted by Yt (Gn).

By Proposition 3.1, {YN
t (Gn) − YN

0 (Gn): n � 1} is a Cauchy sequence uniformly in N . In particular, Yt (Gn) −
Y0(Gn) is a Cauchy sequence and converges to a Gaussian limit denoted by Yt (H0) − Y0(H0). Therefore, by Proposi-
tion 3.1, N−1/2J̄−1,0(t) converges in law to Yt (H0) − Y0(H0).
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The same argument show that any vector (J̄−1,0(t1), . . . , J̄−1,0(tk)) converges in law to (Yt1(H0) − Y0(H0), . . . ,

Ytk (H0) − Y0(H0)). The covariances can be computed since by (2.3)

E
[{

Yt (H0) − Y0(H0)
}{

Ys(H0) − Y0(H0)
}] = lim

n→∞E
[{

Yt (Gn) − Y0(Gn)
}{

Ys(Gn) − Y0(Gn)
}]

= lim
n→∞

{∫
R

{
(TtGn)(TsGn) + G2

n − (TtGn)Gn − (TsGn)Gn

}
χ0 + 2

s∫
0

dr

∫
R

(∇Tt−rGn)(∇Ts−rGn)χr

}
.

(3.2)

A long but elementary computation permits to recover the expression presented in the statement of the theorem.
Indeed, the first term in the previous integral can be written as∫

R

(TtGn − Gn)(TsGn − Gn)χ0.

By definition of Gn, for u � 0, TtGn(u)−Gn(u) is absolutely bounded by and converges to Pu[Bt � 0], as n ↑ ∞,
which is integrable in R−. Here, Pu stands for the probability corresponding to a Brownian motion starting from u.
In particular, the integral over R− of the first term in (3.2) converges to∫

R−

Pu[Bt � 0]Pu[Bs � 0]χ0(u) =
∫

R−

P0[Bt � u]P0[Bs � u]χ0(u).

It is easy to show that the integral over [n,∞) vanishes since in this interval TtGn(u)−Gn(u) vanishes pointwisely
as n ↑ ∞ and is bounded by the integrable function Pu[Bt � n].

Finally, on the interval [0, n], TtGn(u) − Gn(u) is equal to

−Eu

[
1{Bt � 0}(1 − Bt/n)

] − Eu

[
1{Bt � n}(1 − Bt/n)

]
.

By Schwarz inequality, Eu[1{Bt � 0}Bt/n] and Eu[1{Bt � n}(1−Bt/n)] vanish in L2(R+) as n ↑ ∞. Therefore, the
integral on [0, n] of the first term on the right-hand side of (3.2) is equal to a negligible term in n plus

n∫
0

Pu[Bt � 0]Pu[Bs � 0]χ0(u) →
∫

R+

P0[Bt � u]P0[Bs � u]χ0(u).

To compute the second term, note that

∇TtGn = pt(0, u) + 1

n

n−u∫
−u

pt (0, v)dv,

where pt is the Gaussian kernel. It follows from Schwarz inequality that the second term vanishes in L2(R). Therefore,
the second term on the right-hand side of (3.2) converges, as n ↑ ∞, to

2

s∫
0

dr

∫
R

pt−r (0, u)ps−r (0, u)χr(u).

This concludes the proof of the theorem. �
We conclude this section with some elementary estimates on two points correlation functions. For 0 � s � t and

x �= y in Z, let

φ(t;x, y) = EνN
ρ0(·)

[
ηt (x);ηt (y)

]
, φ(s, t;x, y) = EνN

ρ0(·)

[
ηs(x);ηt (y)

]
.

In this formula and below, Eμ[f ;g] stands for the covariance of f and g with respect to μ.
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Lemma 3.2. There exists a finite constant C0 = C0(ρ0) depending only on the initial profile ρ0 such that

sup
x,y∈Z

∣∣φ(t;x, y)
∣∣ � C0

√
t

N
, sup

x,y∈Z

∣∣φ(s, t;x, y)
∣∣ � C0

N

{√
s + 1√

t − s

}
.

The first statement is a particular case of an estimate proved in [2]. In sake of completeness, we present an elemen-
tary proof of this lemma.

Proof. Consider a symmetric simple exclusion process with only two particles on Z and denote by L2 the generator
of this process. An elementary computation shows that φ(t;x, y) satisfies the difference equation{

(∂tφ)(t;x, y) = N2(L2φ)(t;x, y) − 1
{|x − y| = 1

}
N2

[
ρN(t, x) − ρN(t, y)

]2
,

φ(0;x, y) = 0.

This equation has an explicit solution which is (negative and) absolutely bounded by

C0(ρ0)

t∫
0

ds Px,y

[|Xs − Ys | = 1
]

for C0 = ‖∂ρ0‖2∞. In this formula, (Xs,Ys) represent the position of the symmetric exclusion process speeded up by
N2 and starting from {x, y}. A coupling argument shows that Px,y[|Xs − Ys | = 1] � P

0
x,y[|Xs − Ys | = 1] where in the

second probability particles are evolving independently. Since P
0
x,y[|Xs −Ys | = 1] � C(sN2)−1/2, the first part of the

lemma is proved.
To prove the second statement, recall that we denote by 
N the discrete Laplacian in Z. φ(t;y) = φ(s, t;x, y)

satisfies the difference equation⎧⎨
⎩

(∂tφ)(t;y) = (
Nφ)(t;y),

φ(s;y) = φ(s;x, y) if y �= x,
φ(s;y) = ρN(s, x)

[
1 − ρN(s, x)

]
for y = x.

This equation has an explicit solution

φ(s;y) =
∑
z �=x

pt−s(y, z)φ(s;x, z) + pt−s(y, x)ρN(s, x)
[
1 − ρN(s, x)

]
,

where ps(x, y) stands for the transition probability of a nearest neighbor symmetric random walk speeded up by N2.
The first part of the lemma together with well known estimates on ps permit to conclude. �
4. Law of large numbers for the tagged particle

We prove in this section Theorem 2.5. We assume the initial measure to be ν
N,∗
ρ0(·), the product measure νN

ρ0(·)
conditioned to have a particle at the origin. Keep in mind Remark 2.4.

Fix a positive integer n. The tagged particle is at the right of n at time t if and only if the total number of particles
in the interval {0, . . . , n − 1} is less than or equal to the current J−1,0(t):

{Xt � n} =
{

J−1,0(t) �
n−1∑
x=0

ηt (x)

}
. (4.1)

This equation indicates that a law of large numbers and a central limit theorem for the position of the tagged particle
are intimately connected to the joint asymptotic behavior of the current and the empirical measure. We prove in this
section the law of large numbers.

Denote by �a� the smallest integer larger than or equal to a. Fix u > 0 and set n = �uN� in (4.1) to obtain that

{Xt � uN} = {
N−1J−1,0(t) �

〈
πN

t ,1
{[0, u)

}〉}
. (4.2)

By Theorem 2.1, 〈πN
t ,1{[0, u]}〉 converges in probability to

∫ u

0 ρ(t,w)dw, where ρ is the solution of the heat
equation (2.1).
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On the other hand, the law of large numbers for J−1,0(t) under PνN
ρ0(·)

is an elementary consequence of the central

limit theorem proved in the last section and the convergence of the expectation of N−1J−1,0(t). By the martingale
decomposition of the current and by Theorem A.1,

EνN
ρ0(·)

[
N−1J−1,0(t)

] =
t∫

0

dsN
[
ρN

s (−1) − ρN
s (0)

] = −
t∫

0

∂uρ(s,0)ds + O
(
N−1).

Hence, N−1J−1,0(t) converges in probability to − ∫ t

0 ∂uρ(s,0)ds.
In view of (4.2) and the law of large numbers for the current and the empirical measure,

lim
N→∞P

ν
N,∗
ρ0(·)

[
N−1Xt � u

] =
{

0 if − ∫ t

0 ∂uρ(s,0)ds <
∫ u

0 ρ(t,w)dw,

1 if − ∫ t

0 ∂uρ(s,0)ds >
∫ u

0 ρ(t,w)dw.

By symmetry around the origin, a similar statement holds for u < 0. Thus, XN
t /N converges to ut in probability,

where ut is the solution of the implicit equation
ut∫

0

ρ(t,w)dw = −
t∫

0

∂uρs(0)ds.

5. Central limit theorem for the tagged particle

In this section we prove Theorem 2.6 developing the ideas of the previous section. Assume first that ut > 0 and fix
a in R. By Eq. (4.1), the set {Xt � Nut + a

√
N} is equal to the set in which

J̄−1,0(t) �
Nut∑
x=0

η̄t (x) +
a
√

N−1∑
x=1

ηt (x + Nut) −
{

EνN
ρ0(·)

[
J−1,0(t)

] −
Nut∑
x=0

ρN
t (x)

}
, (5.1)

where ρN
t (x) is the solution of the discrete heat equation (2.2).

We claim that second term on the right-hand side of (5.1) divided by
√

N converges to its mean in L2. Indeed, by
Lemma 3.2, its variance is bounded by C0aN−1/2 for some finite constant C0. Since by Theorem A.1,

1√
N

a
√

N−1∑
x=1

ρN
t (x + Nut)

converges to aρ(t, ut ), the second term on the right-hand side of (5.1) converges in probability to aρ(t, ut ).
An elementary computation based on the definition of ut and on Theorem A.1 shows that the third term on the

right-hand side of (5.1) divided by
√

N is of order N−1/2.
Finally, by Proposition 3.1, for fixed t , N−1/2{J̄−1,0(t) − ∑Nut

x=0 η̄t (x)} behaves as YN
t (Gn) − YN

0 (Gn) −
YN

t (1{[0, ut ]}), as N ↑ ∞, n ↑ ∞. Repeating the arguments presented at the beginning of the proof of Theorem 2.3,
we show that this latter variable converges in law to a centered Gaussian variable, denoted by Wt , and which is
formally equal to Yt (Hut ) − Y0(H0).

Up to this point we proved that

lim
N→∞PνN

ρ0(·)

[
Xt − utN√

N
� a

]
= P

[
Wt � aρ(t, ut )

]
provided ut > 0. The same arguments permit to prove the same statement in the case ut = 0, a > 0. By symmetry
around the origin, we can recover the other cases: ut < 0 and a in R, ut = 0 and a < 0.

Putting all these facts together, we conclude that for each fixed t , (Xt − Nut)/
√

N converges in distribution to
the Gaussian Wt/ρ(t, ut ) = [Yt (Hut ) − Y0(H0)]/ρ(t, ut ). The same arguments show that any vector (N−1/2[Xt1 −
Nut1 ], . . . ,N−1/2[Xtk − Nutk ]) converges to the corresponding centered Gaussian vector.

It remains to compute the covariances, which can be derived as in the proof of Theorem 2.3. We leave the details
to the reader.
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Appendix A

In sake of completeness, we present in this section a result on the approximation of the heat equation by solutions
of discrete heat equations.

Fix a profile ρ0 : R → R with a bounded fourth derivative. Let ρ : R+ × R → R be the solution of the heat equation
with initial profile ρ0:{

∂tρ(t, x) = ∂2
xρ(t, x),

ρ(0, x) = ρ0(x).

Recall that we denote by 
N the discrete Laplacian. For each N ∈ N, define ρN
t (x) as the solution of the system

of ordinary differential equations{
(d/dt)ρN

t (x) = (

NρN

t

)
(x),

ρN
0 (x) = ρ0(x/N).

(A.1)

The main result of this section asserts that ρN approximates ρ up to order N−2:

Theorem A.1. Assume that ρ0 : R → [0,1] is a function with a bounded fourth derivative. There exists a finite constant
C0 such that∣∣∣∣ρN

t (x) − ρ

(
t,

x

N

)∣∣∣∣ � C0t

N2

for all N � 1, t � 0, x ∈ Z.

An easy way to prove this statement is to introduce a time discrete approximation of the heat equation. For each N

in N and each δ > 0, we define ρ
δ,N
l (k), k in Z, l � 0 by the recurrence formula{

ρ
δ,N
l+1 (k) = ρ

δ,N
l (k) + δN2

[
ρ

δ,N
l (k + 1) + ρ

δ,N
l (k − 1) − 2ρ

δ,N
l (k)

]
,

ρ
δ,N
0 (k) = ρ0(k/N).

(A.2)

We now recall two well known propositions whose combination leads to the proof of Theorem A.1. The first one
states that the solution of (A.2) converges as δ ↓ 0 to the solution of (A.1) uniformly on compact sets. The second
one furnishes a bound on the distance between the solution of the discrete equation (A.2) and the solution of the heat
equation.

For a in R, denote by �a� the largest integer smaller or equal to a.

Proposition A.2. For each N � 1,

lim
δ→0

ρ
N,δ
�t/δ�(k) = ρN

t (k)

uniformly on compacts of R+ × Z.

Proposition A.3. Suppose that δN2 < 1/2. Then, there exist a finite constant C0 = C0(ρ0) such that

∣∣ρδ,N
l (k) − ρ(δl, k/N)

∣∣ � C0

{
δ2l + δl

N2

}

for all l � 0, k ∈ Z.

Clearly, Theorem A.1 is an immediate consequence of Propositions A.2 and A.3. Proposition A.2 is a consequence
of Proposition A.3 and the Cauchy–Peano existence theorem for ordinary differential equations. Proposition A.3 is a
standard result on numerical analysis (see [10] for instance).
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