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Abstract

We prove invariance principles for phase separation lines in the two dimensional nearest neighbour Ising model
critical temperature and for connectivity lines in the general context of high temperature finite range ferromagnetic Ising
 2005 Elsevier SAS. All rights reserved.

Résumé

Nous démontrons des principes d’invariance d’une part pour les lignes de séparation de phase, dans le cas du mod
bidimensionnel à plus proches voisins jusqu’à la température critique, et d’autre part pour les lignes de connectivit
contexte général des modèles d’Ising ferromagnétiques à portée finie, pour les hautes températures.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction and results

1.1. Phase separation lines

A canonical example of phase separation lines is given in the framework of the nearest neighbour two
sional Ising model below the critical temperatureTc. It would be convenient to draw these lines through the bo
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of the integer latticeZ2, which means that the corresponding spins should live on the vertices of the shifte
latticeZ

2∗ = (1/2,1/2) + Z
2. Let

S∗
M = (1/2,1/2) + [0, . . . ,M − 1] × Z ⊂ Z

2∗

be an infinite dual strip of widthM . A spin configurationσ on S∗
M is an element of{−1,1}S∗

M . Given a unit vector
n ∈ S

1 with n1 � 1/
√

2 consider the so called Dobrushin’s boundary conditions

σ̄n(y) =
{+1, if (n⊥, y)2 � 0,

−1, if (n⊥, y)2 < 0
(1.1)

wheren⊥ = (−n2,n1) and(· , ·)2 is the usual scalar product onR2. In this way the configuration̄σn is defined on
the whole ofZ2∗ with all the spins above or on the line{y: (n⊥, y)2 = 0} being set to+1 and all the remaining
spins being set to−1. Given a configurationσ ∈ {−1,1}S∗

M consider a concatenation

σn
M(y) =

{
σ(y), if y ∈ S∗

M,

σ̄n(y), if y ∈ Z
2∗ \ S∗

M.

A bondb∗ = (x, y) of Z
2∗ is called frustrated inσn

M if σn
M(x) �= σn

M(y). Each dual bondb∗ intersects (as an interva
of R

2) a unique direct bondb of Z
2. Thus, everyσ ∈ {−1,1}S∗

M gives rise to the set

Bn
M(σ) = {b: b∗ is frustrated}.

Connected (as subsets ofR
2) components ofBn

M(σ) are called contours. These are microscopic boundaries bet
regions occupied with spins of different signs. Using a “rounding of corners” procedure [12] contours
represented as either open or closed self-avoiding curves inR

2. Of course, all the contours ofσ are confined to
the stripSM = [0, . . . ,M] × Z except for a unique infinite open contourγ which, outsideSM is frozen by the
Dobrushin’s boundary conditions (1.1) but, of course, varies insideSM depending on a particular choice ofσ . This
portion ofγ insideSM which, with a slight abuse of notation, we shall continue to callγ is a self-avoiding line
connecting the points 0 anduN , where (Fig. 1)⌊

M

n1
n

⌋
�= �Nn� �= uN . (1.2)

The contourγ models then-oriented microscopic interface between co-existing phases of the nearest nei
Ising model at the inverse temperatureβ∗ > βc, whereβc = 1/Tc is the phase transition threshold. The statis
P

n
N,β∗ of γ is read from the Ising Gibbs distributionµn

M,β∗ of σ ∈ {−1,+1}S∗
M under Dobrushin boundary con

ditions σ̄n defined in (1.1). The relation between the strip widthM and the projected length of the interfaceN is
given by (1.2) above.

Fig. 1. Phase separation lineλ.
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Our result, which we shall formulate in Subsection 1.6 asserts that underP
n
N,β∗ an appropriate rescaling o

the interfaceγ converges to a Brownian bridge. We prove such convergence for anyβ∗ > βc. The fact that the
Brownian bridge picture persists all the way to the critical temperature was a well known conjecture.

Over the years statistical properties of phase separation lines have attracted a fair amount of attentio
from very specific exact computations of mean magnetization profiles (see e.g. [1,3]) and a study of a scal
for a simplified model of random strings [13], the Brownian bridge/random walk structure of interfaces
dimensions has been previously investigated only for particular models in a perturbative (very low temp
regime building upon the method of cluster expansions. Important results along these lines include a
Gaussian scaling for the interface height in [14] and a full invariance principle for the phase separation line
The local structure of very low temperature interfaces has been addressed in [5] and in [4].

Very low temperature cluster expansion based approach to a study of phase separation lines culmin
series of works [12,9–11,16–18]. In these works fluctuations of phase separation lines have been investi
Ising, Blume–Capel and lattice Widom–Rowlinson interfaces. The so called Dobrushin–Hryniv theory de
fluctuation of interfaces around limiting equilibrium crystal shapes and, furthermore, exactly quantifies the
of the curvature of the equilibrium shape on the microscopic interface fluctuations in the corresponding dir

In all the above works the role of very low temperature (very largeβ) was a purely technical one, for a bro
class of models Dobrushin–Hryniv theory should be intrinsic for the whole of the (two) phase co-existing r
Indeed, in two dimensions interfaces look like essentially one dimensional aggregates of possibly com
geometric objects and the fact that the original two-dimensional system is away from criticality should, in pri
find an expression in good mixing properties of the induced interface measures. In this respect interface
dimensional low temperature models should resemble connectivity lines/clusters in high temperature mod
subsequently, a fluctuation analysis of the former should fit into a general framework of the Ornstein–
theory.

Our results are based on a recent version of the Ornstein–Zernike theory developed in [6–8]. In the
the two-dimensional nearest neighbour Ising model, due to very specific self-duality properties, there is
correspondence between phase separation lines in a low temperature model and connectivity lines of
temperature dual model. In particular, an invariance principle for low temperature nearest neighbour Isin
separation lines is equivalent to a modification of an invariance principle for high temperature connectivity
the context of nearest neighbour Ising models confined to lattice stripsSM .

In Subsection 1.5 we formulate an invariance principle for connectivity lines in the complete genera
high temperature finite range ferromagnetic Ising type models. A [6]-based proof of an invariance princ
subcritical percolation clusters has been previously given in [20].

Relevant facts from the Ornstein–Zernike theory [7] are collected in Section 2 and are used there for
sharp asymptotics for certain partition functions which are needed in order to conclude the proof in Sectio

1.2. Random line representation on Z
d

We consider a class of finite range Ising models onZ
d , d � 2 with pair interactions given by the formal Ham

tonian∑
(x,y)

J|y−x|σxσy, (1.3)

where the coupling constants{Jx} are non-negative and the set{x: J|x| �= 0} is bounded. To avoid trivialities w
shall also assume that a random walk with jump rates{Jx} is irreducible. Letβc be the inverse critical temperatu
corresponding to (1.3). For everyβ < βc the following random line representation of two point functions is va

〈σ0σx〉β =
∑

qβ(λ), (1.4)

λ : 0→x
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where〈·〉β it the unique infinite volume Gibbs state for the Hamiltonian (1.3) atβ. We refer to [7] for a discussio
of (1.4), in particular for the compatibility conditions employed in the construction of pathsλ.

Givenn ∈ S
d−1, consider the setPn

N of all compatible pathsλ : 0 → uN
�= �Nn�. The weightsqβ(·) induce a

probability distribution onPn
N :

P
n
N,β(λ) = 1

〈σ0σuN
〉β qβ(λ). (1.5)

We would like to say that under the diffusive scaling, with the direction ofn playing the role of time and th
remaining(d −1) transverse dimensions playing the role of space, the family of measures{Pn

N,β} weakly converges
to the distribution of the(d − 1)-dimensional Brownian bridge.

In order to make such a statement precise we need to recall some facts related to the geometry of th
correlation length and to the irreducible decomposition [7,8] of paths fromPn

N .

1.3. The geometry of the problem

The inverse correlation lengthξβ is defined via

ξβ(y) = − lim
n→∞

1

n
log〈σ0σ�ny�〉β.

By [2], ξβ is an equivalent norm onRd for everyβ < βc. It is natural to study fluctuations of random linesλ ∈ Pn
N

in terms of the geometry ofξβ . Define

Uβ
�= {

x ∈ R
d : ξβ(x) � 1

}
and Kβ

�=
⋂

n∈Sd−1

{
t ∈ R

d : (t, n)d � ξβ(n)
}
.

Uβ is, of course, just the unit ball in theξβ norm, whereasKβ is the effective domain of the convex conjuga
(Fenchel transform) ofξβ . Clearly,ξβ could be completely recovered from either of the two compact convex
above. For example,

ξβ(·) = max
t∈∂Kβ

(t, ·)d , (1.6)

where(· , ·)d stands for the usual scalar product onR
d . As it was proved in [7]∂Kβ is locally analytic and ha

positive Gaussian curvature at anyt ∈ ∂Kβ for every finite range Ising model atβ < βc. In particular, for every
y ∈ R

d \ 0 the maximum in (1.6) is attained at the unique dual pointt = ty . For any t ∈ ∂Kβ let κi = κi(t),
i = 1, . . . , d − 1, be the principal curvatures of∂Kβ at t . As we shall see below the magnitude of fluctuations
pathsλ ∈ Pn

N underPn
N,β depends on the curvaturesκ1, . . . , κd−1 at the dual pointtn.

For the rest of this section let us a fix any particular model (interaction potentialJ = {Jy}) with the Hamil-
tonian (1.3) and an inverse temperatureβ < βc(J).

1.4. Irreducible decomposition of paths

Let n ∈ S
d−1 and t = tn ∈ ∂Kβ is the dual point;(t,n)d = ξβ(n). Given δ > 0, a directionu ∈ R

d is called
forward if

(t, u)d > (1− δ)ξβ(u).

Let Cδ(t) be the cone of forward directions. In the sequel we shall fixδ small enough in order to ensure that a
forward directionu has a positive projection onn, (n, u)d > 0.

Given a compatible pathλ = (u0, u1, . . . , un) and a numberK , let us say thatul ∈ λ is aK-correct break poin
if the following two conditions hold:



L. Greenberg, D. Ioffe / Ann. I. H. Poincaré – PR 41 (2005) 871–885 875

f

fined

osition
of
)

e

] apply.

ng two

rward
educible
(A) (uj ,n)d < (ul,n)d < (ui,n)d for all j < l < i.
(B) The remaining sub-path(ul+1, . . . , un) lies inside the set

2KUβ(ul) + Cδ(t).

A path is said to beK-irreducible if it does not containK-correct break point at all. We useS to denote the set o
all irreducible paths (moduloZd -shifts). Define also the following three subsets ofS :

SL = {
λ = (u0, . . . , um) ∈ S: ∀l > 0 (ul,n)d < (um,n)d

}
,

SR = {
λ = (u0, . . . , um) ∈ S: ∀l > 0 (ul,n)d > (u0,n)d andλ ⊂ KUβ(u0) + Cδ(t)

}
, (1.7)

S0 = SL ∩ SR.

For any pathγ = (u0, . . . , um) on Z
d setV (γ ) = um − u0. In other words,V (γ ) is just the displacement alongγ .

We employ the irreducible decomposition of pathsλ ∈ Pn
N ,

λ = ηL � γ1 � · · · � γn � ηR. (1.8)

For anyλ ∈ Pn
N which has at least twoK-correct break points the decomposition (1.8) is unambiguously de

by the following set of conditions:

ηL ∈ SL, ηR ∈ SR and γ1, . . . , γn ∈ S0.

In the above definition we have followed [8]. The only difference between (1.8) and the irreducible decomp
employed in [7] is that the break points here are defined with respect ton-orthogonal hyper-planes instead
tn-orthogonal hyper-planes. This is to ensure that the displacements along all theλ-paths which appear in (1.8
have positive projection on the direction ofn.

The renormalization calculus developed in [7] (see Theorem 2.3 there) implies that once the scaleK is chosen
sufficiently large, pathsλ ∈ Pn

N with only oneK-correct break point or withoutK-correct break points at all hav
exponentially smallPn

N,β probabilities. From now on we shall tacitly assume that such large scaleK is fixed and,
hence, the notion of irreducible decomposition (1.8) is well defined and the renormalization estimates of [7

1.5. Invariance principle for connection paths

Our approach to the invariance principle is based on the irreducible decomposition (1.8). The followi
properties are crucial for the very formulation of the corresponding results:

min
{(

V (ηL),n
)
d
,
((

V (γ1),n
)
d
, . . .

((
V (γn),n

)
d
,
(
V (ηR),n

)
d

}
> 0 (1.9)

and

P
n
N,β

(
diam(ηL) + max

i
diam(γi) + diam(ηR) > (logN)2

)
= O

(
1

Nρ

)
, (1.10)

for anyρ > 0.
Property (1.9) simply follows from the definition (1.7) of irreducible paths. Property (1.10) is a straightfo

consequence of the abovementioned renormalization result (Theorem 2.3 in [7]) on the mass gap for irr
connections.

DefineLN [λ] to be the linear interpolation inRd through the vertices

0,V (ηL),V (ηL) + V (γ1), . . . , V (ηL) +
n∑

V (γl), �Nn�.

1
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By (1.9) the intersection number #(LN [λ] ∩Hn
h) = 1 for everyh ∈ [0, (n, �Nn�)d ], where the(d −1)-dimensional

hyper-planeHn
h is defined via

Hn
h = {

u ∈ R
d : (u,n)d = h

}
.

Therefore, there is a natural parameterization ofLN [λ] as a functionΦN on the interval[0, (n, �Nn�)d ]:
ΦN(h) = LN [λ] ∩Hn

h − hn.

Finally, we extend the domain ofΦN(·) to [0,N ] by setting it to zero on((n, �Nn�)d ,N ]. Notice thatΦN(·) takes
values in the tangent spaceR

d−1 to ∂Kβ at the dual pointtn. From now on we shall record the values ofΦN(·) in
the orthonormal coordinate system given by the principal curvature directionsv1, . . . ,vd−1 of ∂Kβ at t = tn.

Since by (1.10) the Hausdorff distancedH(·) betweenLN [λ] andλ satisfies,

P
n
N,β

(
dH

(
LN [λ], λ)

>
(
logN

)2) = O

(
1

Nρ

)
,

any limit law for ΦN(·) which arises on length scales much larger than(logN)2 has a natural interpretation as
limit law for original pathsλ under the family of probability measures{Pn

N,β}.
Define now the rescaled versionφN of the effective pathΦN as

φN(h) = 1√
N

ΦN(Nh); h ∈ [0,1]. (1.11)

By construction,φN(h) ∈ Cd−1
0 [0,1] = ×d−1

0 C0[0,1], where the latter is the space of continuous functi
φ : 0 �→ R

d−1 satisfying the boundary conditionsφ(0) = φ(1) = 0.

Theorem 1.1. The distribution of φN(·) under P
n
N,β weakly converges on Cd−1

0 [0,1] to the distribution of(√
κ1B1(·), . . . ,√κd−1Bd−1(·)

)
, (1.12)

where B1(·), . . . ,Bd−1(·) are independent standard Brownian bridges on [0,1] and κ1, . . . , κd−1 are the principal
curvatures of ∂Kβ at tn.

1.6. Phase boundaries in the nearest neighbour 2D Ising model

In the sequelβ∗ > βc is an inverse low temperature andβ < βc is the corresponding dual inverse (high) tempe
ture. We refer to [21,23] for a description of the duality relation between high and low temperature two dime
nearest neighbour Ising models. In particular inverse correlation lengthξβ(·) at β equals to the surface tensio
τβ∗(·) atβ∗.

Let us proceed with the notation introduced in the opening Subsection 1.1. Recall thatµn
M,β∗ is the Gibbs

measure on{−1,+1}S∗
M subject to Dobrushin’s boundary conditionsσ̄n defined in (1.1). The relation between t

strip widthM and the projected interface lengthN was given in (1.2) and we usedPn
N,β∗ to denote the induce

measure on crossing low temperature interfacesλ : 0 �→ uN = �Nn�. However, the set of such interfaces is precis
the set of high temperature connectivity lines inside the direct stripSM . With a slight abuse of notation we sha
continue to call this setPn

N . Furthermore, by duality,

P
n
N,β∗(λ) = 1

〈σ0σuN
〉N,β

qN,β(λ). (1.13)

Apart from the fact that in the case of phase boundaries all our considerations are confined to two dimens
only difference with (1.5) is that now both the weightsqN,β and the expectation〈·〉N,β correspond to the free Ising
Gibbs state at the inverse temperatureβ on S . As we shall see, however, the boundary effects have no impa
M
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the corresponding invariance principle. In order to decouple these effects from the predominant bulk beha
shall need, though, a slightly different setup for the decomposition of paths (phase boundaries)λ ∈ Pn

N . Namely,
instead of (1.8) we shall employ:

λ = ηL � γ � ηR, (1.14)

where γ = (γ1, . . . , γn) is a string of elements fromS0, whereas each of the left and right barriersηL =
(ηL

1 , . . . , ηL
r ) andηR = (ηR

1 , . . . , ηR
r ) contain exactly

r = ⌊
(logN)2⌋

elements withηL
1 ∈ SL and the rest belonging toS0.

As in the case of (1.10) the renormalization Theorem 2.3 of [7] and the strong triangle inequality of [
imply:

P
n
N,β∗

(
diam(ηL) + diam(ηR) + max

i
diam(γi) > (logN)4

)
= O

(
1

Nρ

)
, (1.15)

for anyρ > 0.
Similarly to the full-space case defineLN [λ] to be the linear interpolation inRd through the vertices

0,V (ηL),V (ηL) + V (γ1), . . . , V (ηL) +
n∑
1

V (γl), �Nn�,

and then define the rescaled effective pathφN(·) exactly as in (1.11).
By (1.15) the Hausdorff distancedH(·) betweenLN [λ] andλ is now bounded as,

P
n
N,β

(
dH

(
LN [λ], λ)

> (logN)4) = O

(
1

Nρ

)
,

which is still a vanishing quantity under the diffusive scaling.

Theorem 1.2. The distribution of φN(·) under P
n
N,β∗ weakly converges on C0[0,1] to the distribution of

1√
τ ′′
β∗(x) + τβ∗(x)

B(·) (1.16)

where B(·) is the standard Brownian bridge and τβ∗ is the surface tension of the dual low temperature model
(considered here as a function on the unit circle S

1). Alternatively, (τ ′′
β∗(x) + τβ∗(x))−1 is the curvature of the

boundary ∂Kβ of the Wulff shape at the dual point tn, ξβ(n) = τβ∗(n) = (tn,n)2.

2. Decomposition of path weights

2.1. Properties of qβ(·)-weights

We use notationqβ,Λ(·) for path weights which correspond to the Ising model with Hamiltonian (1.3) atβ < βc

with free boundary conditions on∂Λ. As before notationqβ(·) is reserved for infinite volume path weights . A ba
reference for the definition and properties of these path weights and for the related path-compatibility con
is [7,22,23]. As in [7] we shall repeatedly rely on the following decoupling property of theqβ(·)-weights (see
Lemma 5.3 in [23] or the proof of Lemma 3.1 in [7]):
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Lemma 2.1. Let γ be a (compatible) path and A,B ⊆ Z
2. Then,

qβ,A(γ )

qβ,B(γ )
� exp

{
−c1

∑
x∈γ

y∈A�B

θ |y−x|
}
, (2.17)

where c1 = c1(β) and θ = θ(β) ∈ (0,1).

Given two compatible pathsγ andλ define the conditional weights

qβ,A(γ | λ) = qβ,A(γ ∪ λ)

qβ,A(λ)
.

By (2.17)

qβ,A(γ | λ)

qβ,A(γ | η)
� exp

{
−c1

∑
x∈γ

y∈λ�η

θ |y−x|
}
. (2.18)

2.2. Strings of paths and semi-norm ‖ · ‖θ

It would be convenient to consider countable stringsλ of irreducible paths. Any finite stringλ = (λ1, . . . , λn)

is canonically extended to an infinite string by attaching from the right the dummy string of empty path∅ =
(∅,∅, . . .);

(λ1, . . . , λn) → (λ1, . . . , λn,∅,∅, . . .) = (λ,∅).

For any two countable stringsλ,α define the proximity index

i( λ,α ) = inf{k: λk �= αk},
and withθ = θ(β) ∈ (0,1) from (2.18) define the distance

dθ ( λ,α ) = θ i( λ,α )−1.

Let us say that a functionf is locally uniformly Lipschitz continuous if

‖f ‖θ
�= sup

dθ ( λ,α )<1

|f (λ ) − f (α )|
dθ ( λ,α )

< ∞.

2.3. Uniform Ornstein–Zernike formula

Let us fix notation: unless it is explicitly mentioned, all paths or strings of paths are assumed to origina
Given a stringλ and a pointu, let us useu � λ ( λ � u) to denote the shift ofλ which starts (respectively ends u
in u.

Here is our main input from [7]: Given positive constantsa1, a2 anda3 the OZ formula

∑
γ :V (γ )=�Nm�

qβ

(
γ | V (γ ) � η

)
f (γ ) = Cf,η(m)√

Nd−1
e−Nξβ(m)

(
1+ o(1)

)
, (2.19)

holds uniformly inm ∈ S
d−1 ∩ Cδ(t), boundary stringsη and functionsf satisfying

1 � f (·) � a2 and ‖f ‖θ � a3. (2.20)

a1
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For everyη and f the functionCf,η(·) is real analytic onS
d−1 ∩ Cδ(t) and, furthermore, there existc1 =

c1(a1, a2, a3) andc2 = c2(a1, a2, a3) such that

0< c1 � inf
f,η

Cf,η(·) � sup
f,η

Cf,η(·) � c2 < ∞,

where both the inf and sup above are over all boundary stringsη and over all functionsf satisfying (2.20).

2.4. Decomposition of qN(ηL � γ � ηR)

Let q�,β andq�,β be the path weights in the right (respectively left) half-spaces{z ∈ Z
d : z1 � 0} (respectively

{z ∈ Z
d : z1 � 0}. Then, in view of the decoupling property (2.18), the super-logarithmic choice of the siz

barriersηL andηL in (1.14) ensures:

qN,β(ηL � γ � ηR)

q�,β(ηL)q�,β(ηR)
= qβ

(
γ |V (γ ) � ηR

)
fηL(γ )

(
1+ o(1)

)
, (2.21)

where

fηL(γ ) = qβ(ηL|V (ηL) � γ )

qβ(ηL)
.

Notice thatfηL satisfies (2.20) for all possible choices of the left barrierηL.

2.5. Partition function ZN(n)

By (1.10) we may restrict attention only to pathsλ : 0 → uN such that each irreducible piece in the decomp
tion of λ has a diameter bounded above by(logN)2. In particular, we may assume that the diameters of the bar
ηR andηL in (2.21) are bounded above by(logN)4. By the uniform Ornstein–Zernike formula (2.19),

ZN(n)
�=

∑
λ∈Pn

N

qN,β(λ) = C(n)√
Nd−1

e−Nξβ(n)
(
1+ o(1)

)
, (2.22)

whereC is a strictly positive locally analytic function onSd−1 ∩ Cδ(t),

C(n) =
∑

ηL,ηR

q�,β(ηL)q�,β(ηR)exp
{(

t, V (ηL) + V (ηR)
)}

Cf
ηL,ηR (n).

2.6. Decomposition of qβ(γ L � α � γ R | V (γ ) � ηR)

In order to prove convergence of finite dimensional distributions we shall consider a further splitting oγ in
(1.14) as

γ = γ L � α � γ R,

where each of the three strings above contain at least(logN)2 irreducible pieces. The induced decomposition
the conditional weights on the right-hand side of (2.21) is:

qβ(γ L � α � γ R | V (γ ) � ηR) = qβ

(
γ L|V (γ ) � α

)(
γ R|V (γ R) � ηR

)
fα(γ R). (2.23)
qβ(α) L
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Again, notice thatfα satisfies (2.20) for all possible choices of the barrierα. Furthermore,

fηL(γ L � α � γ R) = fηL(γ L)
(
1+ o(1)

)
, (2.24)

whenever the stringγ L contains at least(logN)2 irreducible pieces (which it will always do).

2.7. Partition function ZN(n, v,α)

Define the interior of the strip

S0
M = {

y = (y1, y2) ∈ SM : min{y1,M − y1} > (logN)4}.
Let us fix v ∈ S0

M such that bothv anduN − v belong to the forward coneCδ(t). Fix also an irreducible string
α = (α0, α1, . . . , α(logN)2). The partition functionZN(n, v,α) corresponds to the pathsλ : 0→ uN = �Nn� whose

irreducible decompositionηL � γ � ηR containsv � α as a substring. By (2.21), (2.23) and (2.24),

ZN(n, v,α ) = gα(n,nv,nuN−v)
e−ξβ (v)−ξβ(uN−v)qβ(α )e(t,V (α ))√|v|d−1|uN − v|d−1

(
1+ o(1)

)
, (2.25)

where, as beforet = tn, n• = •/| • | and given two unit vectorsm, l ∈ Cδ(t) ∩ S
d−1,

gα(n,m, l) =
∑

ηL,ηR

q�,β(ηL)q�,β(ηR)exp
{(

t, V (ηL) + V (ηR)
)}

Cf
ηL,α(m)Cfα,ηR (l).

3. Proof of the invariance principle

In this section we prove the invariance principle for phase boundaries as stated in Theorem 1.2. Since w

the high temperature dual representation (1.13) it would be convenient to writeP
n
N,β

�= P
n
N,β∗ for the corresponding

interface measures, where, of course,β∗ > βc is an inverse low temperature whereasβ < βc is the dual inverse
high temperature. The general invariance principle for high temperature connectivity lines (Theorem 1.1)
along the very same lines and, since we do not have to bother about boundary effects, is actually simp
corresponding multi-dimensional curvature computation could be found in [8].

3.1. The curvature computation

Let n = (n1,n2) ∈ S
1 andn⊥ = (−n2,n1) be the unit orthogonal direction. Then, usingθ(ε) to denote the angl

of n + εn⊥;

θ(ε) = arctan
n2 + εn1

n1 − εn2

and recording the derivatives ofτβ∗ in it restriction to the unit circleS1, we obtain:

τβ∗(n + εn⊥) − τβ∗(n) =
√

1+ ε2τβ∗
(
θ(ε)

) − τβ∗
(
θ(0)

)
= 1

2
ε2(τβ∗(n) + τ ′′

β∗(n)
) + τ ′

β∗(n)
(
θ(ε) − θ(0)

) + o(ε2). (3.26)

Let now uN = �Nn� be as in the statement of Theorem 1.2 and, givenh ∈ (0,1) anda ∈ R, let vN = Nhn +√
Nan⊥ be an intermediate point inside the interior stripS0

M . Then (3.26) (notice thatθ(ε) + θ(−ε) − 2θ(0) =
o(ε2)) readily implies:
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2)
τβ∗(vN) + τβ∗(uN − vN) − τβ∗(uN)

= hN

(
τβ∗

(
n + a

h
√

N
n⊥

)
− τβ∗(n)

)
+ (1− h)N

(
τβ∗

(
n − a

(1− h)
√

N
n⊥

)
− τβ∗(n)

)

= τβ∗(n) + τ ′′
β∗(n)

2h(1− h)

∣∣∣∣vN − Nhn√
N

∣∣∣∣
2

+ O

(
1√
N

)
. (3.27)

3.2. Finite dimensional distributions

We proceed with the setup of Subsection 1.6. Letκβ = (τβ∗(n) + τ ′′
β∗(n))−1 be the curvature of∂Kβ at the dual

point tn. In this section we shall prove convergence of one-dimensional distributions:

Lemma 3.1. For any h ∈ (0,1) and any f ∈ C0(R),

lim
N→∞ E

n
N,βf

(
φN(h)

) = Ef
(√

κβB(h)
)
. (3.28)

As it will be clear from the proof, a generalization to finite dimensional distributions of higher order is str
forward.

It would suffice to show that one can find a sequenceεN → 0 such that for anyh ∈ (0,1),

lim
N→∞

1

2εN

h+εN∫
h−εN

E
n
N,βf

(
φN(s)

)
ds = Ef

(√
κβB(h)

)
. (3.29)

Givenh ∈ (0,1) anda ∈ R define

vN = vN(h, a) = Nhn + √
Nan⊥.

Thus,{
φN(h) = a

} = {
vN ∈ LN [λ]} �= {

λ ∈ Pn
N(vN)

}
.

We record the decomposition (1.14) of each regular (that is satisfying the condition in (1.15)) pathλ ∈ Pn
N(vN) as,

see Fig. 2,

λ = ηL � γ L � α � γ R � ηR,

where the barrierα = (α0, α1, . . . , αr) (recallr = �(logN)2�) is unambiguously defined by the condition

vN ∈ (
V (ηL) + V (γ L),V (ηL) + V (γ L) + V (α0)

)
,

where[u,v) is the semi-open linear segment inR
2 with end-points atu andv. In the notation of Subsections 2

and 2.7,

P
n
N,β

(
vN ∈ LN [λ]) =

∑
(v,α ):

vN∈[v,v+V (α0))

ZN(n, v,α )

ZN(n)
. (3.30)

By (1.15) we can restrict attention tov-s satisfying|v − vN | � (logN)4. Then the asymptotic expressions (2.2
and (2.25) and the curvature computation (3.27) yield:

P
n
N,β

(
vN ∈ LN [λ])(1+ o(1)

) = 1√
Nh(1− h)

exp

{
− |vN − Nhn|2

2Nh(1− h)κβ

} ∑
(v,α ):

G(α ), (3.31)
vN∈[v,v+V (α0))
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Fig. 2. Decomposition of a pathλ ∈ Pn
N

(vN ). The point vN belongs to the segment[V (ηL) + V (γ L),V (ηL) + V (γ L) + V (α0)).
α = (α0, . . . , αr ) is a decoupling barrier.

whereG(α) = gα(n,n,n)qβ(α)e(t,V (α )) in the notation of (2.25).
Consequently,

E
n
N,βf

(
φN(h)

)(
1+ o(1)

) =
∑

(v,α ):
[v,v+V (α0))∩Hn

Nh �=∅

f

(
v − (v,n)2n√

N

)
e−|v−(v,n)2n|2/(2Nh(1−h)κβ)

√
Nh(1− h)

G(α ),

where we have again relied on the possibility to restrict attention to|V (α0)| � (logN)2.
We are now in a position to derive (3.29): ChooseεN in such a way thatNεN � (logN)2. Then,

(
1+ o(1)

) h+εN∫
h−εN

E
n
N,βf

(
φN(s)

)
ds

= 1√
Nh(1− h)

∑
v,α

f

(
v − (v,n)2n√

N

)
e−|v−(v,n)2n|2/(2Nh(1−h)κβ)G(α )

h+εN∫
h−εN

1{(v,n)2�sN�(v+V (α0),n)2} ds

= C(n)√
h(1− h)

1

N3/2

∑
N(h−εN )�(v,n)2�N(h+εN )

f

(
v − (v,n)2n√

N

)
e−|v−(v,n)2n|2/(2Nh(1−h)κβ) + o(εN),

where

C(n) =
∑
α

(
V (α0),n

)
2G(α ). (3.32)

In fact,C(n) = 1/
√

2π + o(1). Indeed, the expression above is just the Riemannian sum for the integral

2εN

∞∫
−∞

f (z)
e−z2/(2h(1−h)κβ)√

2h(1− h)κβ

dz + o(εN),

and (3.29) follows.
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3.3. Tightness

In this section we prove tightness of theϕN . In order to simplify the proof we introduce a modification ofϕN ,
which is a linear approximation ofϕN on a larger mesoscopic scale with step sizeSN = �N1/2−δ�.

The number of irreducible components in the decomposition (1.8) of a pathλ before thei-th step on the meso
scopic grid will be denoted byTN,i(λ)

TN,i(λ) = max

{
k:

(
V (ηL),n

)
2 +

k∑
j=0

(
V (λj ),n

)
2 � iSN

}
;

the coordinates of the displacement of the firstTN,i(λ) irreducible components in the pathλ denoted by

CN,i(λ) = V (ηL) +
TN,i∑
j=0

V (λj ).

Our mesoscopic linear approximation ofλ : 0 �→ uN , which will be denoted byLN , is the linear interpolation
through the points

0, �V1, . . . , �V�N/SN �−1, uN ∈ R
2,

where the�Vi is recorded in(n,n⊥)-coordinate system as:

�Vi = iSNn + (
CN,i−1(λ),n⊥)

2n
⊥.

The above definition of the vertices{�Vi} is tuned in such a way that theirn (time) projections live on the step-SN

mesoscopic grid.
Similarly to the rescaled version of the effective pathϕN , we define a rescaled version of the approxima

by ϕN . Note that the irreducible decomposition procedure along with the restriction on the length of the irre
components by(logN)4 imply that

lim
N→∞ dH(ϕN,ϕN) = 0, (3.33)

where dH(·, ·) is Hausdorff distance.
To prove tightness ofϕN it is enough to show that

E
n
N,β

∣∣ϕN(h2) − ϕN(h1)
∣∣4 � C|h2 − h1|2 (3.34)

uniformly on 0� h1 < h2 � 1.

Lemma 3.2. There exist c1, c2 > 0 such that

P
n
N,β

(∣∣ϕN(h)
∣∣ � a

√
h

)
< c1 exp

(−c2 min(a2, a)
)

(3.35)

holds uniformly on h ∈ (0,1) and a > 0.

Proof. By definition ofϕN , we have

P
n
N,β

(∣∣ϕN(h)
∣∣ � a

√
h

) =
∑

(v,α ):
|(v,n⊥)2|�a

√
hN

(v,n)2�hN<(v+V (α0),n)2

ZN(n, v,α )

ZN(n)
; (3.36)

moreover it is sufficient to prove (3.35) forh ∈ (0,1) ∩ (Z · SN ).

N
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We divide the sum in (3.36) into two regimes: the very large deviations regime when eitherv /∈ Cδ(t) or uN −v /∈
Cδ(t) and the large to moderate deviations regime when bothv anduN − v belong to the forward coneCδ(t). It
enough to show that the bound (3.35) holds when we restrict the sum to each of the regimes.

Let v /∈ Cδ(t). Then the renormalization Theorem 2.3 of [7] readily implies: There existsc3 > 0 such that,∑
ηL�γ : 0�→u

qβ,N (ηL � γ | α ) � e−ξβ (u)−2c3|u|,

uniformly in α and in|u − v| � (logN)2. Consequently,

ZN(n, v,α )

ZN(n)
� exp

{−(
ξβ(v) + ξβ(uN − v) − ξβ(uN)

) − c3|v|},
and, in view of convexity ofξβ , a substitution of the above estimate to (3.36) clearly implies (3.35). A compl
similar argument applies in the case ofuN − v /∈ Cδ(t).

It remains to consider the case when bothv anduN − v belong to the forward coneCδ(t). In this case we are
entitled to use the asymptotic formula (2.25). In fact, since the strict triangle inequality of [19,23] implies th

ξβ(v) + ξβ(uN − v) − ξβ(uN) � c4
|(v,n)2|2

N
,

we can restrict attention only to the case of moderate deviations|(v,n)2| � N1/2+δ . For such values ofv we,
exactly as in (3.31), infer that the right-hand side of (3.36) is bounded above by

C(n)√
Nh(1− h)

∑
√

Nb∈(
√

Nha,∞)∩Z

exp

{
− b2

2h(1− h)κβ

}(
1+ o(1)

)
,

whereC(n) is given in (3.32), and (3.35) follows from the usual Gaussian summation procedure.�
The decomposition bounds imply that

qN,β(ηL � γ
1
� γ

2
� ηR) � c4qN,β(ηL � γ

2
� γ

1
� ηR)

which along with Lemma 3.2 yields: there existC2,C3 > 0 such that

P
n
N,β

( |ϕN(h2) − ϕN(h1)|
|h2 − h1| � a

)
� C3 exp

(−C2 min(a2, a)
)

(3.37)

holds uniformly on 0� h1 < h2 � 1 anda > 0.
Finally, the bound (3.37) gives us the tightness criterion (3.34) forϕN , which along with (3.33) implies th

tightness of theϕN .
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