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Abstract

An explicit formula is derived for the Fourier transform of a Gaussian measure on the Heisenberg group at the Schrodinger
representation. Using this explicit formula, necessary and sufficient conditions are given for the convolution of two Gaussian
measures to be a Gaussian measure.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Une formule explicite est donnée pour la transformée de Fourier de la mesure gaussienne sur le groupe d’Heisenberg dans la
représentation de Schrodinger. A ’aide de celle-ci, des conditions nécessaires et suffisantes sont données pour que la convolée de
deux mesures gaussiennes soit gaussienne.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Fourier transforms of probability measures on a locally compact topological group play an important role in several
problems concerning convolution and weak convergence of probability measures. Indeed, the Fourier transform of the
convolution of two probability measures is the product of their Fourier transforms, and in case of many groups the con-
tinuity theorem holds, namely, weak convergence of probability measures is equivalent to the pointwise convergence
of their Fourier transforms. Moreover, the Fourier transform is injective, i.e., if the Fourier transforms of two proba-
bility measures coincide at each point then the measures coincide. (See the properties of the Fourier transform, e.g.,
in Heyer [7, Chapter I].) In case of a locally compact Abelian group, an explicit formula is available for the Fourier
transform of an arbitrary infinitely divisible probability measure (see Parthatsarathy [11]). The case of non-Abelian
groups is much more complicated. For Lie groups, Tomé [16] proposed a method how to calculate Fourier transforms
based on Feynman’s path integral and discussed the physical motivation, but explicit expressions have been derived
only in very special cases.

¥ Corresponding author.
E-mail addresses: barczy @inf.unideb.hu (M. Barczy), papgy @inf.unideb.hu (G. Pap).

0246-0203/$ — see front matter © 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2005.07.002



608 M. Barczy, G. Pap / Ann. I. H. Poincaré — PR 42 (2006) 607-633

In this paper Gaussian measures will be investigated on the 3-dimensional Heisenberg group H which can be
obtained by furnishing R3 with its natural topology and with the product

1
(g1, 82,83)(h1, ha, h3) = (gl +hi,82+h2, 83+ h3+ 5(81’12 - g2h1)>.

The Schrodinger representations {m4,: A > 0} of H are representations in the group of unitary operators of the
complex Hilbert space L?(R) given by

[ (@] (x) := eFiOs TR A8/ (¢ 4 /gy (1.1)

for g =(g1,82,83)€H,uce L2(R) and x € R. The value of the Fourier transform of a probability measure © on H
at the Schrodinger representation 7, is the bounded linear operator (i (1)) : L*(R) > L*(R) given by

A )u = / w1 (Quu(dg), ueL*R),
H
interpreted as a Bochner integral.
Let (1/)r>0 be a Gaussian convolution semigroup of probability measures on H (see Section 2). By a result of

Siebert [13, Proposition 3.1, Lemma 3.11, (&t; (7)) ¢>0 1s a strongly continuous semigroup of contractions on LZ(R)
with infinitesimal generator

N(my)) =1l +arx +a3D +a4x2 + as(xD + Dx) +Ol6D2,

where ay, ..., ag are certain complex numbers (depending on (u;);>0, see Remark 3.1), I denotes the identity oper-
ator on LZ(R), x is the multiplication by the variable x, and Du(x) = u’(x). One of our purposes is to determine the
action of the operators

() =N >0,
on L2(R). (Here the notation (e'4), >0 means a semigroup of operators with infinitesimal generator A.) When N ()
has the special form %(D2 — x2), the celebrated Mehler’s formula gives us

(x> + y?)cosht — 2xy

1
—— [ ex _
A/ 27 sinh t H!. p{ 2sinht

et(Dz—xz)/Zu(x) _

}u(y) dy

forallt >0, u € Lz(R) and x € R, see, e.g., Taylor [15], Davies [4]. Our Theorem 3.1 in Section 3 can be regarded
as a generalization of Mehler’s formula.

It turns out that ft; (743) =€’ N@m1) ¢ > 0 are again integral operators on Lz(R) if g is a positive real number. One
of the main results of the present paper is an explicit formula for the kernel function of these integral operators (see
Theorem 3.1). We apply a probabilistic method using that the Fourier transform ji (74, ) of an absolutely continuous
probability measure w1 on H can be derived from the Euclidean Fourier transform of p considering p as a measure
on R3 (see Proposition 4.1). We note that a random walk approach might provide a different proof of Theorem 3.1,
but we think that it would not be simpler than ours.

The second part of the paper deals with convolutions of Gaussian measures on H. The convolution of two Gaussian
measures on a locally compact Abelian group is again a Gaussian measure (it can be proved by the help of Fourier
transforms; see Parthatsarathy [11]). We prove that a convolution of Gaussian measures on H is almost never a
Gaussian measure. More exactly, we obtain the following result (using our explicit formula for the Fourier trans-
forms).

Theorem 1.1. Let 1’ and " be Gaussian measures on H. Then the convolution ' x 1" is a Gaussian measure on H
if and only if one of the following conditions holds:

(C1) there exist elements Yy, Y, Y1, Y in the Lie algebra of H such that [Y1, Y21 = 0, the support of ' is contained
in exp{Y;+ R - Y1 + R - Y2} and the support of n" is contained in exp{Yy + R - Y1 + R - Y2}. (Equivalently,
there exists an Abelian subgroup G of H such that supp(u’) and supp(u”’) are contained in “Euclidean cosets”

of G.)
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(C2) there exist a Gaussian semigroup (i;);>0 and t',t” > 0 and a Gaussian measure v such that supp(v) is con-
tained in the center of H and either ' = py, W’ = % v or W' =y v, W' = holds. (Equivalently, u'
and (1" are sitting on the same Gaussian semigroup modulo a Gaussian measure with support contained in the
center of H.)

We note that in case of (C1), u’ and u” are Gaussian measures also in the “Euclidean sense” (i.e., considering them
as measures on R3). Moreover, Theorem 6.1 contains an explicit formula for the Fourier transform of a convolution
of arbitrary Gaussian measures on H.

The structure of the present work is similar to Pap [10]. Theorems 1.1 and 3.1 of the present paper are generaliza-
tions of the corresponding results for symmetric Gaussian measures on H due to Pap [10]. We summarize briefly the
new ingredients needed in the present paper. Comparing Lemma 6.1 in Pap [10] and Proposition 5.1 of the present pa-
per, one can realize that now we have to calculate a much more complicated (Euclidean) Fourier transform (see (5.5)).
For this reason we generalized a result due to Chaleyat-Maurel [3] (see Lemma 5.2). We note that using Lemma 6.2
one can easily derive Theorem 1.1 in Pap [10] from Theorem 1.1 of the present paper.

It is natural to ask whether we can prove our results for non-symmetric Gaussian measures using only the results for
symmetric Gaussian measures. The answer is no. The reason for this is that in case of H the convolution of a symmetric
Gaussian measure and a Dirac measure is in general not a Gaussian measure. For example, if a = (1,0, 0) € H and
(4r)r>0 1s a Gaussian semigroup with infinitesimal generator X 12 + X2, then using Lemma 4.2, one can easily check
that w1 * &, is not a Gaussian measure on H, where &, denotes the Dirac measure concentrated on the element a € H.
(For the definition of an infinitesimal generator and X1, X», X3, see Section 2.)

We note that if the convolution of two Gaussian measures on H is again a Gaussian measure on H, then the
corresponding infinitesimal generators not necessarily commute, nor even if the infinitesimal generator corresponding
to the convolution is the sum of the original infinitesimal generators. Now we give an illuminating counterexample. Let
w1 and u” be Gaussian measures on H such that the corresponding Gaussian semigroups have infinitesimal generators

1 1
N’:E(X1+X2)2 and N”=§(X1+X2)Z+X1X3, respectively.

Using Theorem 6.2 and Lemma 6.2, u’ * u” is a symmetric Gaussian measure on H such that the corresponding
Gaussian semigroup has infinitesimal generator N’ + N”. But N’ and N” do not commute. Indeed, N'N” — NN’ =
—(X1 + X2) X3 #0.

At the end of our paper we formulate Theorem 1.1 in the important special case of centered Gaussian measures
for which the corresponding Gaussian semigroups are stable in the sense of Hazod. This kind of Gaussian measures
arises in a standard version of central limit theorems on H proved by Wehn [17]. In this special case Theorem 1.1 can
be derived from the results for symmetric Gaussian measures in Pap [10].

2. Preliminaries

The Heisenberg group H is a Lie group with Lie algebra 7, which can be realized as the vector space R furnished
with multiplication
[(P1, P2, P3). (q1.92.93)] = (0,0, p1g2 — paq).

An element X € H can be regarded as a left-invariant differential operator on H, namely, for continuously differen-
tiable functions f:H — R we put

Xf(g):= }g%r—l(f(g exp(tX)) — f(g)), geH,

where the exponential mapping exp: H — H is now the identity mapping.

A family (u/);>0 of probability measures on H is said to be a (continuous) convolution semigroup if we have
Ms ¥ by = pg4 forall s, ¢ > 0, and limy o 1t = po = €., where e = (0, 0, 0) is the unit element of H. Its infinitesimal
generator is defined by

(Nf)(g) = ltiﬁ)lt_l /(f(gh) — f(@)m(dh), geH,

H
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for suitable functions f:H — R. (The infinitesimal generator is always defined for infinitely differentiable func-
tions f:H — R with compact support.) A convolution semigroup (u;);>0 is called a Gaussian semigroup if
lim; o t~ ', (H\ U) =0 for all (Borel) neighbourhoods U of e. Let {X1, X7, X3} denote the natural basis in H (that
is, exp X1 = (1,0, 0), exp X = (0, 1, 0) and exp X3 = (0, 0, 1)). It is known that a convolution semigroup (i4;);>0 is
a Gaussian semigroup if and only if its infinitesimal generator has the form

3 3 3
N:Zaka+%Zij,kaXk, (2.1)
k=1

j=lk=1

where a = (aj,a2,a3) € R3 and B = (b i k)1<j,k<3 18 a real, symmetric, positive semidefinite matrix. A probabil-
ity measure p on H is called a Gaussian measure if there exists a Gaussian semigroup (i4s);>0 such that u = u;.
A Gaussian measure on H can be embedded only in a uniquely determined Gaussian semigroup (see Baldi [2],
Pap [9]). (Neuenschwander [8] showed that a Gaussian measure on H can not be embedded in a non-Gaussian con-
volution semigroup.) Thus for a vector a = (ay,az,a3) € R3 and a real, symmetric, positive semidefinite matrix
B = (b 1)1< k<3 We can speak about the Gaussian measure p with parameters (a, B) which is by definition  := p1,
where (u;);>0 is the Gaussian semigroup with infinitesimal generator N given by (2.1). If v is a Gaussian measure
with parameters (a, B) and (vg),>0 is the Gaussian semigroup with infinitesimal generator N given by (2.1) then v; is
a Gaussian measure with parameters (ta, t B) for all # > 0, since g := v, s 2 0 defines a Gaussian semigroup with
infinitesimal generator ¢ N. Hence v, = i1, so it will be sufficient to calculate the Fourier transform of 1.

Let us consider a Gaussian semigroup (i4,);>0 with parameters (a, B) on H. Its infinitesimal generator N can be
also written in the form

d
1 2
N=Y0+§§. ly., 2.2)
J:

where 0 < d <3 and

3 3
Yozzakxk, Y./:fok,jxk, 1<j<d,
k=1 k=1

where X' = (o, ;) is a 3 x d matrix with rank(X) = rank(B) = d. Moreover, B = X - > 7. Then the measure Uy can
be described as the distribution of the random vector Z (1) = (Z,(t), Z»(t), Z3(¢)) with values in R3, where

d d
Ziy=ait+ Y onuWet),  Za)=apt+ Y o Wi(0),

k=1 k=1
d | !
230 =at + Y Wet) + 5 [ (2169042206) = 226)4210)
k=1 0

d d
=ast+ Y onWi() + Y (@o1x —aioa Wi+ Y (014020 — 01,0020 Wi (D),

k=1 k=1 1<k<e<d
where (W1 (), ..., Wa(t)):>0 is a standard Wiener process in R4 and
t t
Wi@t) = %(/ Wi (s)ds — /dek(s)),
0 0

t t
1
Wi (1) := E(/ Wi(s) dWe(s) _/WZ(S)de(S)>~
0 0

(See, e.g., Roynette [12].) The process (W ¢(1));>0 is the so-called Lévy’s stochastic area swept by the process
(Wk(s), We(s))sefo.) on R,
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3. Fourier transform of a Gaussian measure

The Schrodinger representations are infinite dimensional, irreducible, unitary representations, and each irreducible,
unitary representation is unitarily equivalent with one of the Schrodinger representations or with x4 g for some
a, B € R, where xq g is a one-dimensional representation given by

i(eg1+Bg2) ,

Xa,p(8) =€ g=1(g1,82,83) € H.

The value of the Fourier transform of a probability measure 1 on H at the representation xq g is
i) 1= [ tap(@ia(de) = [ Hudg) = e .0,
H H
where /i : R — C denotes the Euclidean Fourier transform of .,

Al B.y) = / el sty (dg).
H

Let us consider a Gaussian semigroup (u;);>0 with parameters (a, B) on H. The Fourier transform of u :=
at the one-dimensional representations can be calculated easily, since the description of (it;);>0 given in Section 2
implies that

d d
(X p) = Eexp!i(aal + Baz) + i(a Y onaWi() + 8 Zoz,kwk(l)) }

k=1 k=1

for , § € R. The random variable

d d
<ZG""W"(1)’ Zdz,ka(1)>
k=1 k=1

has a normal distribution with zero mean and covariance matrix
01,1 02,1
o1 ... Old ) .| | b1 b1z
021 ... 024 : : by1 ban |’
01,d 02d

since ¥ ¥ T = B. Consequently,

N . 1
W (Xa,p) = eXP{I(Otal + Baz) — E(bmaz +2b1 208 + bz,zﬁz) }

One of the main results of the present paper is an explicit formula for the Fourier transform of a Gaussian measure
on the Heisenberg group H at the Schrodinger representations.

Theorem 3.1. Let u be a Gaussian measure on H with parameters (a, B). Then

f KanGropuG)dy ifbiy >0,
[Arenu]() =14 &

Ly ()u(x +v2ar) ifby1 =0,

forue L2(R), x € R, where

1
Kﬂ:)\.(‘x7 )’) = Ci)»(B) exp{_EZTDik(a’ B)Z}’ 7= (X, y’ I)Ta
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where, with § :== /b1 1by 2 — b%,z, 81:=b1,1b23 —b12b13, 82:=a1b12 —azb1 1,

1

V2mAby 1

Ci(B) = 5
| %  ifsso0
27br sy 107

and D4 (a, B) = (dji‘li‘ (a, B))1<j kg3 are symmetric matrices defined for by 1 > 0 and 6 =0 by

if§ =0,

A tib A Fib
dit(a, B) =0 T2 d%(a,B):=———,  di}(a,B):= ATz
' by : Aby 1 : by
+iAb AS +iAb AS
d¥(a, B) = L2003 (Y A (a, By = - L1013 (V82
' Vbi 2b11 - Vb1 2b1 1
+irb;3)2  A%82
di%(a, B) == (@ 137 L 20 2 o 2ikas,
’ bl,l 12b1,1 ’

and for § > 0 by

8 _ Scoth(A8) Fiby

Scoth(A8) £ib1, 4, o
d% @ B) = — 2 g B)y=———— di*a,B)= — L%
1@ B) b 12 B = ey 2@ B) by
a; £iib; 3 A8 £ ibo a; £ilb; 3 A8 L ibn
di}(a, B) := , dy(a,B):=— ,
: NAIR V/Ab1 18 coth(18/2) ’ NIV /by 18 coth(18/2)
+irb13)2 (A8 £i80)2

di%(a, B) = (a1 £1rb13)7 (401 £1%) (18 — 2tanh(1.8/2)) + A2b3 3 F 2ihaz,

b1 kb1,153

and

ivVa 22 5
L) (x) :=exp :tT(x/X(Z(n + a1az) + 2arx) — €(3b3,3 +3aiby3 +aib )

2372 A
— T(2b2’3 +aiby)x — Ebz,zxz}.

We prove this theorem in Section 5.

Remark 3.1. Consider a Gaussian convolution semigroup (u;);>0 with infinitesimal generator N given in (2.1).
Siebert [13, Proposition 3.1, Lemma 3.1] proved that ({; (7r+ 2))¢>0 1s a strongly continuous semigroup of contractions
on L?(R) with infinitesimal generator

3 303
1
Ny = ;akxk(n:tk) + 5 21 ];bj,kxj(n:tk)xk(ﬂ:tx),

where

X (r)u = tlij(])fl (7. (exp(t X)) u — u)
for all differentiable vectors u. Hence

[X1 Gran)u] () = V' (x) = Va.Du (),

[X2(ra)u](x) = +ivaxu(x),
[X3(rau] () = Firu(x)
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for all x € R. Consequently,
N(myy) =oa1l +arx +a3D + a4x2 +as(xD + Dx) + Ot6D2,

where

1
o] = —Ekzb3’3 +ilaz, ap= —)»3/2b2’3 + i)»l/zaz, o3 = )»1/2611 + i)»3/2b1,3,

1 i 1
=—-Aby, =+-Ab 2, = by 1.
oy 5 2,2, 05 ) 1,2, U6 ) 1,1

4. Absolute continuity and singularity of Gaussian measures

A probability measure p on H is said to be absolutely continuous or singular if it is absolutely continuous or
singular with respect to the normalized Haar measure on H which coincides with the Lebesgue measure on R3. The
following proposition is the same as Proposition 2.1 in Pap [10]. But the proof given here is simpler, we do not use
Weyl calculus.

Proposition 4.1. If  is absolutely continuous with density f then the Fourier transform j1(;+,) is an integral oper-
ator on Lz(R),

[[L(nﬂ)u](X)=/Kix(x,)’)u()’)dy
R

with kernel function K+ :R*> — C given by

1 - _
Kip(x,y) = Txfz,3(yﬁx,iﬁ<y;x),ix>,

where

23051, 52, 53) 1=/‘ei(‘gz‘”ﬁ”‘*)f(ﬁ,S27S3)d82 ds3, (s1,52,53) e R3
R2

denotes a partial Euclidean Fourier transform of f.
Proof. Using the definition of the Schrodinger representation we obtain

[AGren)u](x) = / eHI O HVARFAR /Dy (x4 Srsy) f (51, 52, 53) dsy ds ds

R3

1 / +i(As3 v A x VA —x)s y— 4
eFi O3+ a2+ VA=0)52/D) (3 £ , 82,83 | dy dsyds3
=/ 3 Vi
R

_ / K. (x, y)u(y)dy,

R

where

1 i3 HvAGs2/2) o[ Y T X
Ki(x,y)= —/ejm(mJr (7)52/2) ¢ , 82,83 | dsads3
VA ; VA
R

1 ~ (y—x <y+x> )
=— —,iﬁ — ], A ).
) 23( v 2

Hence the assertion. O
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The partial Euclidean Fourier transform f~2,3 can be obtained by the inverse Euclidean Fourier transform:

~ 1 S s
f2,3(s17 52, 53) = E/‘eilslslf(gl, 52, 53)(15‘1, (Sl, 52, §3) eR3, 4.1)
R

where f denotes the (full) Euclidean Fourier transform of f:

fN(Ely 5, 53) — / ei(§|s1+§2s2+§3s3)f(sl, 52, 53)ds dsy ds3
R3
for (51, 52, 83) € R3. Moreover, i1 (+) is a compact operator. If the density f of u belongs to the Schwarz space then
(1) is a trace class (i.e., nuclear) operator.
In order to apply Proposition 4.1 we shall need the description of the set of absolutely continuous Gaussian mea-

sures on H. Using a general result due to Siebert [14, Theorem 2] one can prove the following lemma as in Pap [10,
Lemma 3.3].

Lemma 4.1. A Gaussian measure (1 on H with parameters (a, B) is either absolutely continuous or singular. More
precisely, u is absolutely continuous if by 1b22 — b% o > 0 and singular if by 1b2 2 — b% ,=0.

The next lemma describes the support of a Gaussian measure on H.

Lemma 4.2. Let (1) >0 be a Gaussian semigroup on H with infinitesimal generator N given by (2.2). According to
the structure of N we can distinguish five different types of Gaussian semigroups:

i N=Yo+ %(le + Y22 + Y32) with Y1, Y2 and Y3 linearly independent. Then the semigroup is absolutely continuous
and supp(u;) = H for all t > 0. Moreover, rank(B) =3, b1 1b2 2 — b%z #0.

(i) N=Yy+ %(le + Y22) with Y1 and Y, linearly independent and [Y1, Y2] # 0. Then the semigroup is absolutely
continuous and supp(u;) = H for all t > 0. Moreover, rank(B) =2, b1 1by 2 — b%,z #0.

(i) N =Y+ (Y2 +Y?) with Yy and Y, linearly independent and [Y, Y>] = 0. Then the semigroup is singular; it
is a Gaussian semigroup on R3 as well, and it is supported by a ‘Euclidean coset’ of the same closed normal
subgroup, namely,

supp(u;) =exp(tYo+R- Y1 + R - 12)

for all t > 0. Moreover, tank(B) =2, b1 1by2 — b , =0.

iv) N=Yo+ %Y ]2 Then the semigroup is singular, it is a Gaussian semigroup on R? as well, and it is supported by
a “Euclidean coset” of the same closed normal subgroup, namely,

supp(ir) = exp(t¥o + R - Y1 + R - [Y, Y1])
forall t > 0. Moreover, rank(B) = 1, by 1b5 5 — b? , =0.

(v) N =Yq. Then the semigroup is singular and consists of point measures, namely, [L; = gexp(rvy) for all t = 0.

Proof. From general results due to Siebert [14, Theorem 2 and Theorem 4], it follows that a Gaussian measure i on
H is absolutely continuous if and only if G := L(Y;, [Y;, ¥i]: 1 <i<d,0<j<k<d) = R3, where £(-) denotes
the linear hull of the given vectors, and Y; € ‘H, 0 <1 < d are described in (2.2). Moreover, the support of u; is

°° tYo\\"
supp(u;) = U (M exp(f)) forall t > 0,

n=1

where M is the analytic subgroup of H corresponding to the Lie subalgebra generated by {Y;: 1 <i < r} and the bar
denotes the closure in H. Clearly [Y;, Y;]1 =0, [Y;, Y;] = (01,i02,j —01,j02,,) X3 for 1 <i < j <dand[Y, Z] € L(X3)
forallY,Z e H.

We prove only the cases (iii) and (iv), the other cases can be proved similarly.
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In case of (iii) we have G = L(Y7, Y2, [Yo, Y1], [Yo, Y2]). Clearly [Yo, Y11, [Yo, Y2] € £(X3). Since [Y],Y2] =0
we have 01,1022 — oﬁ » =0, s0 Y| and Y, are linearly dependent in their first two coordinates, thus their linear
independence yields X3 € L(Y1, Y>2). So G = LY, Y») # R3, i.e., the semigroup (4;);>0 is singular.

To obtain the formula for the support of u, it is sufficient to prove that (M exp(% Yo)"=exp(tYo+R-Y1+R-Y>5)
for all + > 0 and n € N, where now M =exp(R - Y1 + R - Y2). The multiplication in H can be reconstructed by the
help of the Campbell-Haussdorf formula

exp(X)exp(Y):exp<X+Y+%[X, Y]), X, Y eH.

Applying induction by n gives the assertion. Indeed, for n = 1 we have M exp(tYo) =exp(R- Y| +R-Y2)exp(tYy) =
exp(tYo + R -Y; + R - Y»), since X3 € L(Y1, Y2). Suppose that (M exp( 1 Yo))"™ '=—exp(tYo+R-Y; +R-Y>)
holds. Using the Campbell-Haussdorf formula and the induction hypothesis we get (M exp( Y0))" = exp(*~ LYo +
R-Y14+R-Y) exp(n Yo+ R-Y;+R-Y>). Since X3 € L(Y1,Y) and [Y, Z] € L(X3) for all Y ZeH, apphcatlon of
the Campbell-Haussdorf formula once more gives the assertion.

The case (iv) can be obtained similarly. Indeed, we have G = L(Y1, [Yo, Y1]) # R3, M = exp(R - Y1), hence
supp(us) =exp(tYo+R-Y1 +R-[Y1,Yg]) forallt >0. O

5. Euclidean Fourier transform of a Gaussian measure and the proof of Theorem 3.1

Now we investigate the processes (W (¢));>0 and (Wi ¢(1));>0 (defined in Section 2). Let 1 > 0 be fixed. We
prove that W/ (r) and Wy ¢(t) can be constructed by the help of infinitely many independent identically distributed
real random variables with standard normal distribution. Because of the self-similarity property of the Wiener process
it is sufficient to prove the case t = 2.

Lemma 5.1. Let (Wi (s), ..., Wa(s))se[0,27] be a standard Wiener process in R? on a probability space (2, A, P). Let
us consider the orthonormal basis f,(s) = (27'()_1/2 e, s €[0,27], n € Z in the complex Hilbert space Lz([O, 27 ]).
If (8(5))se[0,2] is an adapted, measurable, complex valued process, independent of (W1(s), ..., Wa(s))se[0,27] Such

that E( [ 1g(s)|* ds) < oo then

2

/ &) dW; () = (g, fu) / Fu) AW () s, j=1,....d, 5.1)

0 nez

where (-, -) denotes the inner product in L*([0, 21]) and the convergence of the series on the right-hand side of (5.1)
is meant in L*($2, A, P).

Proof. Let 1 < j < d be arbitrary, but fixed. First we prove that the right-hand side of (5.1) is convergent in
L2(2, A, P). Us1ng that the processes (g(s))se[0,27] and (Wi(s), ..., Wa(s))se[0,27] are independent of each other,

forn,m € Z, n # m, we get
/fm(s)dW (S))

— E((g. fu) g Forl) ( / Fu(s) AW (s) f fm(v)dw,(v>)

(g ) / Fus) AW, (5) (g

=E((g, fu){g: fm)) / Jn(s) fin(s)ds = 0.

Using again the independence of (g(s))se[0,27] and (Wi (s), ..., Wa(s))se[0,27], We have



616 M. Barczy, G. Pap / Ann. I. H. Poincaré — PR 42 (2006) 607-633

2
=E|(g, fu)|'E

2

2
/fn(s) dW;(s)
0

2
El(g. fu) / Fuls)dW; (5)
0

2
—E|(g, fn>|2f|fn<s>|2ds=E|<g,fn>|2.
0

Since E(fozn |g(s)|>ds) < oo, Parseval’s identity in L2([0, 27]) gives us that

> lie il —/Ig(s)| ds as.

nez

This implies that

2w
ZE|(g, fn)|2 = E/}g(s)|2ds < 00.
nez 0

Hence the right-hand side of (5.1) is convergent in L2(.Q, A, P).
We show now that

2 2
E /g(S)de(S) (85 Jfn) ffn(s)dW (s)
0 nez
which implies (5.1). We have
2w 2 2
E /g(S)dW ()= D g fu) /fn(s)dW (s)| =E /g(S)dW (S) +E|D (g fu) /fn(s)dW (5)
0 ne 0 nez
2
—2ReE</g(s)dW/(s)Z (g, fo) /fn(s)dWJ(s)) =:A; + A, — 2Re As.
0 nez
Then we get
2
A =Ef|g(s)|2ds,
2
Ar=Y"E|(g. fu) /fn(S)dW of ZE!<g,fn>|2=E/|g<s>|2ds,
nez nez 0
A=) E( / g(s)dW;(s)(g Fa(s)dW; (s))
nez

Let us denote the o -algebra generated by the process (g(s))se[0,27] by F(g). Then we obtain

Az = ZEE( / g(s)dW;(s)(g f(g))

nez
2

=ZE(<g, ( / g(s)dW;(s) fn<s>dwj<s)f<g)>)
0

/fn(s)dW (s)

nez
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nez nez

21
—ZE( (g, m/g(s)fn(s)ds) ZE}(g,fn>|2=E/|g<s)|2ds.
0

Hence the assertion. O

The next statement is a generalization of Section 1.2 in Chaleyat-Maurel [3].

Lemma 5.2. Let (W1(s), ..., Wa(s))se[0.27] be a standard Wiener process in R4. Then there exist random variables
a,(zj ), b,(Lj ), neN, j=1,...,d, with standard normal distribution, independent of each other and of the random
variable (W1 (2r), ..., Wa(2m)) such that the following constructions hold
Wy =S L[ (g0 _ L wf 0 _ Lo
ik (2m) _; " |:b,, (an — ﬁWk(Zn)> —b, (an - ﬁWJ(Zn))} a.s., 5.2)
00 b(f)
Wi Q) = —2IZ L (5.3)

n=1

forall1 < j<k<dand L =1,...,d, where the series on the right-hand sides of (5.2) and (5.3) are convergent
almost surely.

Proof. Retain the notations of Lemma 5.1 and let us denote c(/) : 2” fu(s)dW;(s),n€Z,j=1,...,d. Then c,(lj),

neZ,j=1,...,d, are independent identically distributed complex random variables with standard normal distribu-

(]) (J)+1b)(lj)
2

tion, i.e., the decompositions ¢ ,neZ,j=1,...,d, hold with independent identically distributed real

random variables a(j ) b(] ) ne Z,j=1,...,d, having standard normal distribution. Specifying g as the indicator

function 1y s of the interval [0, ¢] (¢ € [0, 27r]) in Lemma 5.1, we have for all ¢ € [0, 27 ]
()

t
We(t) = (‘” (f_ 1) — fo(0) + 00 ast=1,....d (5.4)
nEZZI;;ﬁO \/ﬂ

In fact, there is a set £29 with P (£2¢9) = 0 such that (5.4) holds for all w ¢ §2y and for almost every ¢ € [0, 21] (see,
e.g., Ash [1, p. 107, Problem 4]). Applying (5.1) with g = W} and the construction (5.4), Chaleyat-Maurel [3] showed
that (5.2) holds. Choosing g(s) = s, (s) (¢ € [0, 2r]) in Lemma 5.1 it can be easily checked that

!
(e) Lnt 4+ 1) Y

2
t
dWe(s) = () — 2 folt 2 .
[samo= 3 SEEDp 0 3 a0+ T 8
0 neZ, n#0 neZ, n#0

By It0’s formula we get W/ (1) = %IWZ 1) — fot s dW,(s). Using the construction (5.4) of W, (¢) and the definition of

( ) a simple computation shows that (5.3) holds. By Lemma 5.1 the series in the constructions (5.2), (5.3) and (5.4)
are convergent in Lz(.Q, A, P). Since the summands in each series are independent of each other, Lévy’s theorem
implies that they are convergent almost surely, too. O

Taking into account Proposition 4.1 and the representation of a Gaussian semigroup (u;);>0 by the process
(Z(1))t>0 (given in Section 2), in order to prove Theorem 3.1 we need the joint (Euclidean) Fourier transform of
the 9-dimensional random vector

(W1(), Wa(r), Wa(2), W (), W3 (1), W5 (), Wia(2), Wi a(r), Wa3(D)). (5.5)

Proposition 5.1. The Fourier transform F:R%—>C of the random vector (5.5) is

Fr(n1,m2, m3, 1, €2, 63, 1.2, €13, €2.3)
B I { r (1 2 ) . ||§||2||ﬁ||2+x<§,ﬁ>2—m(l+K>||;||2}
=————€eXpy———= - — = &)y  + =
cosh(r[||/2) HE aHE 201+ 1) €1
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for & = (&3, —&13,612) T € R3with & #0, where n:= (n1,m2,m3)T €R3, ¢:= ({1, 0,¢83) " €R3, and

z z 0 §12 13
3 tl|§ 1l - \/— \ ‘
= 75 coth(TE) — 1 d=eoEc+ivin Ei=| =62 0 &3 (5.6)
€1 —§13 —53 0
(Here || - || and (-, -) denote the Euclidean norm and scalar product, respectively.)

To calculate the Fourier transform of (5.5) we will use the constructions of the processes (W (¢));>0 and
(Wi,e(1))>0 (see Lemma 5.2) and the following lemma.

Lemma 5.3. Let X be a k-dimensional real random vector with standard normal distribution. Then we have

1 1

forall ij € CK, s € RY and real symmetric positive semidefinite matrices B. (Here I denotes the k x k identity matrix.)

Eexp{(7, X) —s(BX, X)} =

Proof. Consider the decomposition B = U AU, where A is the k x k diagonal matrix containing the eigenvalues
of B in its diagonal and U is an orthogonal matrix. Then the random vector ¥ := U " X has also a standard normal
distribution. This implies that

Eexp{(7, X) —s(BX, X)} =Eexp{(7, UY) —5(AY,Y)}

1 1
=7 ~9U - A ) - A5 ) d )
\/WR[GXP{(” y) —s(Ay,y) 2<y y)} y

where y = (y1, ..., yk)T e R¥. Let Aq, ..., At denote the eigenvalues of the matrix B. A simple computation shows
that

k k
- 1 - ) -
(7, Uy) = ¢4y, 3) = 5 () = Z(m + )y, S (U Redi) vy +i YW Iy,

j=1 j=1 j=1

k k Topasm \2 k(7T Ram?2
1+ 252, UT Re); (UT Reij)?
ZUTImn I + iy, - W Rem,; T Sy
i = 1 +2S)Lj - 2(1 +2s)\.j)

Using the well-known formula for the Fourier transform of a standard normal distribution
—m)? 1
/exp ixt — M dx =+/2mo expqimt — —o2t? , (5.8)
202 2
R

for all 1, m € R and o > 0, we obtain

Eexp{(7, X) —s(BX, X)}

1 {Z (U Re#);(UT Im#); 2": (U T Im7); 2": (UT Req);
= exp i
JIoa+2s - UiS I+ 254, S2(1+250)) | 21+ 252y

Hence the assertion. O

Proof of Proposition 5.1. Because of the self-similarity property of the Wiener process, the random vectors
(W), W (1), Wy g(): 1<k, <d, 1< p<q<d) and (™ 2Wi(ct), c32W)(ct), e W) 4 (ct): 1 <k, £ <d,
1 < p < g < d) have the same distribution for all # > 0 and ¢ > 0. Hence

Fr(,n2,m3, 81,82, 83,612,613, 62,3)

= ([ [t [t t \/? t \/? t \/? tE tE tE
= Fyy an’ 271712, 271773, . 1, . &, . 3, 2 o2 5813 5823 )
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so it is sufficient to determine an. By the definition of the Fourier transform we get

For (1, 213, 81, 82, 83, 61,2, 61,3, £2.3)
3 3
= Eexp{i(anWj(Zn) +Y Gwiem + Y g,»,kwj,k(zn)> , (5.9)
j=1 j=1 1<j<k<3
For abbreviation let 1?271 denote fzn (1, M2, 13, 1, 82, 83, &1.2, &1,3, £2.3). Define the random vector x := (x1, x2, X3)T
by

1 1
1= —E10—=Wa(2n) — &1 3—=W3(27) — 2/7 ¢y,

N N
1
X2 = 51,2ﬁW1 (2rm) — 52,3EW3(27T) — 27,
X3 =813—= : WiQr) +&3—= : Wa(2m) — 24/mis.
N N
Substituting the expressions (5.2), (5. 3) for W; 1 (2m) and W;(Zn) into the formula (5.9), taking conditional expecta-
tion with respect to {W;(2r), a(] ) 1 < j <3,n > 1}, and using the identity E(E(X|Y)) = EX (where X, Y random

variables, E| X| < 00), we obtain

Py = E[exp{i(m W1 Q2m) + mWa(2m) + n3 W3 (2m))

o0
1
XE(exp{iZ (& -ay+ x,bn) }‘W(Zn) a(’) <j<3,n>l>:|,

n=1

where a,, := (a,(,l), a,(f), a, >)T and b, := (b,g]), b,(,z) , b,(f))—r. Taking into account that b,(ll), b(z) b(%) are independent
of the condition above and of each other for all n € N, using the dominated convergence theorem and the explicit
formula for the Fourier transform of a standard normal distribution we get

- ad 1
Fon = E[eXp{i(nlwl 27) + mWa(27) + 13 W3(27)) } Hexp{—wns can + x||2H.
n=1

Since & is a skew symmetric matrix, there exists an orthogonal matrix M = (m x)1< k<3 such that
0O p O
MTEM = |:—p 0 o} =
0O 0 O
The orthogonality of M implies M~! = M, hence EéM = M P. We have
pmiz pmig 0
MP=|—pmys pmy; O |=[-pmy, pmy,0],
—pm32 pm3z; 0
where m;, i = 1, 2, 3, denotes the column vectors of M, that is, M = [mj, my, m3]. Obviously, EM = [Em;, Emy,

&Emgz], hence ém| = —pmy, Eémy = pmy, £Em3 = 0. Taking into account that M is orthogonal, we have |m3| =1,
hence

1
m; =+ - - 5 (23, —E13.610) "
Vel T&i3t+83

Moreover, £2m; = £(§m;) = &£(—pmy) = —p”m,. The only nonzero eigenvalue of £2 is —(5122 + 5123 + 5223), hence

p ==, /512’2 + 512’3 + 533, and M can be chosen such that m3 = §/|I§||, p= I€]l, and thus

u)?, (5.10)

1 .
(my, 1)+ (mo, ) = | M u]* = (m, ) = |Ju)® _W@
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for all u € R3. We also get

€12 0 0
—£2=M| 0 &) O|M =MAMT.
0 0 0

To continue the calculation of the Fourier transform of (5.5) we take conditional expectation with respect to
{W12r), Wa(2m), W3(2m)}. A special case of Lemma 5.3 is that

n
1
Eexp{‘s > Yf} — s ool D+ 200) D — )

for all s € RT, where Y = (Y], ...,Yk)—r is a k-dimensional random variable with normal distribution such that

EY =m and VarY = D. Applying this formula for Y =& - a, + x with s = CnH) ', m=yand D=¢-¢" =
—E2=MAMT we get

For = E[exp{i(mwl Q2m) + mWa(2m) + 13 W3(27)) |

H \/ﬁ exp{%((n“ﬂ(l +n24) VA —n 2 M 'y, M‘X)H.

Clearly det(/ + n2A) =1 +n"2E M2 Using that

|| k' =" xcothx—l—ng # xeR
Pl kK272 +x2  sinhx’ — K22 +x2°

(see [5], formulas 1.431 and 1.421), the identity (5.10) and the fact that (€, x)? = 4 (¢, £)? we obtain

= | €|l exp{ 73 (1 " )@ g }
2t = T TN e
sinh(r||€]]) €2 n2||€2

><EexP{i(mW1(2ﬂ)+nzW2(2ﬂ)+n3W3(27r)) 4||g||2”X” }

where k = ||§ || coth(r ||§ ) — 1. A simple computation shows that
1
17 = — (&8 + &) WI Q) + (5 +83) W3 @) + (655 + &7 5) W3 2m)) + 4[|

2
+ (513623W1Qm)W2(2) — £12623W12m) W3 (27) + £1261,3 W2 2) W3 (27))
— 4120+ 61383 W1(2r) + 461,281 — 62,383)Wa(2m) +4(61,381 + 62,382) W3 (27).

Using Lemma 5.3 with

~ V K
+iv2mn, B:=-2 2, =—
= ||s||2 T iV T

and taking into account that v/det(/ + 2s B) = 1 4+ « we conclude
~ & 7 (1 K -
an, = - = exp ——= 5 o 2IEN2 (gs 5)2
(14 «) sinh(r [I€])) 1E12\3  =2|&|

Xexp{ HE 1< ( _WE> 1ﬁ>}'

Using (5.10) we get
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_1 ~ ~2
~ k0 ~\ 1 ~2 kK (&, 1)
<”’ (1 ||§||2§> ”>_1+f<”"” T

Hence the assertion. O

Proof of Theorem 3.1. We prove only the case rank(B) = 3. The cases rank(B) = 1 and rank(B) = 2 can be handled
in a similar way. In case rank(B) = 3 the measure wu is absolutely continuous and so Proposition 4.1 implies that
the partial Euclidean Fourier transform f5 3 of the measure u has to be calculated in order to obtain the Fourier
transform /[t (+). Let (us)r>0 be a Gaussian semigroup such that p1 = p and let p1 := 01,1022 — 012021, P2 1=
01,102,3 — 01,302,1, P3 :=01,202,3 — 01,3022 by definition. In case rank(B) = 3, the representation of (u,);>0 by the
process (Z(t));>0 (see Section 2) gives us

3 3
Zi)=ai+Y o W),  Za(D)=ax+ Y o2 Wi(l),
k=1 k=1
3 3
Zs()=az+ Y _oa W) + Y _(a201x — a102,) Wi (1) + p1 Wi2(1) + p2 Wi 3(1) + p3 Waa (D).
k=1 k=1

This implies that the (full) Euclidean Fourier transform of the measure u is

G152, 53) =Eexpli(51 21 (1) + 52Z2(1) + 53 Z3(D) } = expliGrar + 52a2 + 53a3) }

3 3
x Eexp{i< D @141+ 02452 + 0315 Wi (1) + Y (@201 & — 102,05 Wy (1)
k=1 k=1

+ 5301 Wi 2(1) + 5300 W1 3(1) + 53,03W2,3(1)> }

Proposition 4.1 shows that we may suppose 53 # 0. Using Proposition 5.1 and the facts that

d
Z(GZUI,k —ajon ) = bz,za% —2b1a1az + b1,1a§, d=1,2,3,
k=1
p1(a1023 — azo13) — p2(a102,2 — axo12) + p3(a10z,1 —azoy,1) =0,
8% = p? + p3 + p3, (5.11)
we get
- - . 1 e - - K
S (51,52, 83) = cosh(516/2) GXP{I(Slal + $2a2 + §3a3) — ﬁ(bz,za% —2byparaz + by 1a3)
1 - ko (E,7)?
il + 5 1
2(1 +«) 2(14+x) 8
where
5318 $3|8
K=%COth<%> -1, ﬁ:—;—z(vl,vz,v3)T+iZ‘T§

with
v1 = p1(a102,2 — axo1,2) + p2(aio2,3 — a201.3),
vy = —p1(a102,1 —axoy,1) + p3(ajoz3 — ao 3),
v3 = —p(a102,1 —axo1,1) — p3(a1022 — axo12),

and §:= (51,52, 53) 7, € := (p3, —p2, p1) . It can be easily checked that
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(€,7)* =53 det B,
-2 ~ o~ K2 Ko ~ 2~
7l =—(Bs,S>+5—4<v,v)—218—2((S1a1+sza2)8 + 53(a183 + a281)),

T e . bigst by 3§3>2 1577182 675

T : : 2 1] 52

s Bs=b sS1+—m—7— +—1 - ~ s
1’1< ! bl,l b1,1 s3 01 04 53

where 83 := b1 3b22 —b12b2 3 and 84 := by 1b33 — b% 3. Using (4.1), the identities above and (5.8), the partial Fourier
transform ];2’3 can be calculated as follows

- 5318
f2,3(51,52,53) = #exp ——
’ 27 by 1 sinh(|53]8) 2(1 4+ k)82
K 1 517182 8 1[5] 1+« a 2
——————5§detB— ————— | _ - — 5
21 + ©)82 20+ 001 L5 ] L8 a5 2610 T+«

_bips+b13ss [ ar
bi1 1+«

(br2at —2b1 2a1a2 + by 1a3)

- Sl) + i<§202 + 5303 — §2a08% +53(a183 + a251))> }

—
(1+ )82

Finally Proposition 4.1 implies that the Fourier transform /1(7+,) is an integral operator on L*(R),

[AGran)u](x) = / K. (x, y)u(y)dy,
R
where K4, has the form given in Theorem 3.1. O

6. Convolution of Gaussian measures

The convolution of two probability measures p’ and 1 on H is defined by

W 1) (A) = / W Ay (dh),
H

for all Borel sets A in H.
First we give an explicit formula for the Fourier transform of a convolution of two Gaussian measures on H.

Theorem 6.1. Let ' and (i’ be Gaussian measures on H with parameters (a’, B') and (a”, B"), respectively. Then
we have

051yt p) = x|l + )+ (a5 a1) )

1
5((1’/1,1 + 17/1/,1)052 +2(by 2+ b1 2)ap + (by o+ b/zl,z)ﬂz) }

L (u(x +/A(a) +af)) ifby =bi; =0,

[ * 1) (ras)u](x) = f Ky (x, u(y)dy otherwise,

R
where Ly, (x) is given by

exp {1105+ 05 + (0o} + a{)/2) + V(e + o) -+ Aaja)

)\‘2
= 5 (U5 b3 by 5 + (20 +a)b s+ ((a) 05 + (af) 53 5) /3 + i (a] + )3 )
23/2

A
= ES (20 4 20+ + (20 ) - 53705+ ),
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and K13 (x,y) := Cexp{—3z'Vz}, z:= (x,y, )T, with

C+1(B) ifb/Ll >Oandb/ﬁ1 =0,
Co— Cﬁ(B”) ifb/H :0andb’1/’] >0,
2 .
Cj:)\(B/)Ci)L(BN) m lfb/l,l > 0 and b/l/,l >0
(taking the square root with positive real part) and
0 0 —Vadldy,
Di)h(a/, B') + 0 )\.b/z/gz D23 lfb/l,l > 0 and b/l/,l =0,
—Vhia{d], p32 P33
_)\b/2’2 0 q1.3
V= 0 0 Viayd{, | + Dxi(a", B”) if b}, =0and b} | >0,
L g31 ~hajd{, 933
4, 0 4 - |
0 dé/,z dé”3 _—déz‘f'di/l ifby > 0and bi | >0,
! 1 / 1" 5 s
L d3, d3, diztdy,

where d) :=d}(a', B)), d}, :=d;}(a", B") for 1 < j,k <3 and

U= (dj,.dy 1. d3, +d§/,1)Tv

P23 1= p3oi=—vAa(dy, + 332 (26 5 — ab,) /2 F ivadl,

P33 i=—ha{ (dh 5 +di o) + 2 (a) ds o + 22055 — aib5 5 + (af) 85 5/3) F iA (245 — afa3).
q13:=q3.1 :=vaajd] | + 23 (a|b} , +2b 3) /2 F iVad),

@33 1= ) (d] 5 + df )+ 2 (a]) d] 4+ W2 (B 5+ ajbh s + (a)) b 2/3) Fir(2ds + aldh).

Proof. If b} | > 0and b{ | > 0 then the assertion can be proved as in Pap [10, Theorem 7.2]. If b ; > 0 and b] ; =0
then by Theorem 3.1

[ (ra)u] (x) = f K, (x, y)u(y)dy
R
with
1
K, (x,y) :=Cxi(B) exp{—EZTDiA(a', B’)z}, z=(x,y, )7,

and
: 2
[M//(nik)u] )= exp{ i# (ﬁ(Zag +ajay) +2a3y) — %(3b/3/,3 + 3ai/b/2/73 + (ai/)zb/z/’z)

PR ey Ao, o9 B
- T(szs +a bz,z)y - Ebz,zy M(y + \/)_»al).
Clearly we have
[ Y (rea)u] (o) = [ﬁ’(nﬂ)/ﬁ(ﬂﬂ)u](x)=/K§:x(x,y)[fﬁ(nﬂ)u](y)dy.
R

Using the formulas for ,17 () and ;ﬁ’ (r+,) an easy calculation yields that K, has the form given in the theorem.
The other cases b,1,1 =0, b’l’,1 > 0 and b’l’ 1= b’l’,1 = 0 can be handled in the same way. O

We need two lemmas concerning the parameters of a Gaussian measure on H.
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Lemma 6.1. Let us consider a Gaussian semigroup (j4;);>0 such that py is a Gaussian measure on H with parameters
(a, B). Then we have

a;=EZ;, i=1,2,3, bi,j=Cov(Z;,Z;) if(,J)#(3,3),

and
b33 = VarZ3 — %(Vaer Var Z, — Cov(Z1, Z5)?)
— 11—2(Var Z5(EZ1)* — 2Cov(Z1, Z2)EZ\EZ> + Var Z1(EZ>)?),
where the distribution of the random vector (Z1, Z», Z3) with values in R3 is .

Proof. Let Z(¢) := (Z(t), Z>(t), Z3(t)), t = 0 be given as in Section 2. Taking the expectation of Z(1) yields that
E(Z;(1)) =a;,i =1, 2,3. Using again the definition of Z(1) and the fact that B = X' - T we get

d
Var(Z1(1)) ZmeE Wi(DWe(D) =) ot =bu1.
k_

k=1¢=1
Similar arguments show Var(Z,(1)) = by » and Cov(Z1(1), Z»(1)) = b1,2. We also obtain

Cov(Z1(1), Z3(1)) = [Zm ,Wl(1)<263kwk(1) +Z(azal K —alm)wk(n)

i=1 k=1 k=1
d
+) oiWi(l) Y. (014020 — UI‘EUZ,k)Wk,Z(l)],
i=1 1<k<t<d
which implies that

d d d
Cov(Zi1(1), Z3s(D)) =Y o1ko3k+ Y Y ovi(@ork — a102,)E(W; (W} (1))
k=1 i=1 k=1
d

+Y > onio1k02e — 01002 DE(Wi(D Wi e (1) = b1 3,
i=1 1<k<€<d

since W; (1), 1 <i <d, are independent of each other and
E(Wi(HWE (D) =E(W;(DWi (1)) =0, 1<i<d, 1<k<t<d. 6.1)
Indeed,
1
(M W) =5t | WD SO 7)o, ) - s |

j=1

E(Wi (D)W e(1)) = 1 lim E|:W,(1)Z(Wk D) (We(s) = we(s§)))

W) )

forall 1 <i<d,1<k<?<d, where {s : j=0,...,n} denotes a partition of the interval [0, 1] such that

max|g;<n (s. — s(.'i)l) tends to 0 as n goes to infinity. We can obtain Cov(Z2(1), Z3(1)) = by 3 in the same way.
Using again the form of Z(#), (6.1) and the facts that
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Cov(Wi j (1), Wi e(1)) =0 forall 1<i<j<d, 1<k<t<d,(,J)) # kL),
Cov(Wi (), WS(1))=0 forall 1 <k,£<d, k#¢,
we get

d d

Var(Z3 (D) =Y o3, + Y (@01x —aio2)* Var(WE(D) + Y (014020 — 01,002.4)° Var(Wi ¢(1)).
k=1 k=1 1<k<0<d
Lévy proved that the (Euclidean) Fourier transform of Wy (1), 1 <k < £ < d (i.e., the characteristic function of Wy ;)
is
E( lthz(l)) ; 1<k <t<d,
cosh(t/2)’

for all ¢ € R (this follows also from Proposition 5.1), so

d? 1 1
Var(Wkg(l)) _ :—, 1<k <€<d.
' ~ dr2\ cosh(t/2) 4
Clearly Wk has a normal distribution with zero mean and with variance Var(W*(l)) lz 1 <k <d. Using (5.11)

we have
1
Var(Z3(1)) b33+ — (b1 1b22—b1 2) lz(a%bz’z—zalazbl,z +a%b1’1).

Hence the assertion. O

Lemma 6.2. Let 1’ and u” be Gaussian measures on H with parameters (a’, B') and (a”, B"), respectively. If the
convolution ' * u” is a Gaussian measure on H with parameters (a, B) then we have

1
w=djtal. m=dytal ay=a+al+ 3 (aef — aaf),

Vi / i
bll—b11+b1 1s b1,2:b1,2+b1’2, b22—b22+b227
1
Vi 1./ /AN IR N IR N
b13—b13+b13+2( 11— a{by o +ajby , —asby ),
1
/ i 1./ 1./ IB N IBN
b2,3=b23+b23+§(a2 12— aiby, +aiby, —ayby ),
"1/ "1/ IR N/ IR N/
b33 ="by5+by3+ayby 3 —aibyy+aby 3 —ayb
1 / i /AN VAw/a N, /Bwa N, /A
+€<—a1a1b22+( )b22+( ) 20 —a1ayby 5 +ajay by, +ajayby , —2ajay b,
1 o "orn ’ o1y N2/ N2 o
—2a\ayby 5 +ajayby 5 +ajayby , — ayaiby |+ (a)) by | 4 (a5) by | — ara) 1,1)-
Proof. Let Z' = (Z', 7., Z)" and Z” = (Z", 2%, Z")T be independent random variables with values in R3 such
2043 2:43 p

that the distribution of Z’ is ' and the distribution of Z” is u”, respectively. Then the convolution p’ % p” is the
distribution of the random variable

1
(Zi +ZY, 2,4+ 75, Z5 + Z5 + E(ZiZé’ — Zi’Zé)) =:(Z1, 22, Z3).
Using Lemma 6.1 we get

a1 =EZ| =EZ|+EZ| =a] +4df,
ay=EZy=EZ,+EZ)=da5+dj,

1 1
=EZ3=EZ,+EZ] + E(EziEzg —EZ/EZ)) =d5+d5 + 5(aiag — ayay),

since Z’ and Z” are independent of each other. Similar arguments show that
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b,y =VarZy =VarZ| 4 Var Z{ = by | + b} |,

by = Var Zy = Var Zy + Var Zy = b5 , + by 5,

b12=Cov(Z1, Zy) = b/1,2 + b/l/,Z'
We also have

b3 =Cov(Zy,Z3) = Cov(Zi, Zé) + COV(Z/I/, Zé’)

1
+3 (Cov(Z1,Z21Z%) — Cov(Zy, Z4 Z}) + Cov(Z{, Z} Z}) — Cov(Z{, Z{ Z})).

Using this and Lemma 6.1 the validity of the formula for b; 3 can be easily checked. For example we have

Cov(2}. 2)25) =E((21)°25) — EZ{E(Z;23) = (], + (a})")a5 — (a}) as = a5 ;.

The validity of the formula for b; 3 can be proved in the same way. Lemma 6.1 implies that

1 1
VarZz =b3 3+ Z(bl'lb2’2 — b%’z) + E(a]zbZJ —2ayaxby1 2 + agbl,l) =Cov(Z3, Z3)

= Cov(Z3, Z5) + Cov(Z5, Z5) + Cov(Z5, Z1 Z5) — Cov(Z4, Z{Z5) + Cov(Z5, Z1 Z5)
—Cov(Z5,2VZ}) + % (Cov(zg Zy,Z,Z5) — Cov(Z1 25, Z{Z))
— Cov(Z{ 75, 2 23) + Cov(Z] 25, 2 Z5)).

Using again Lemma 6.1 and substituting the formulas for by 1, b12, b22, a1 and a; into the formula above, an easy
calculation shows the validity of the formula for b3 3. O

Our aim is to give necessary and sufficient conditions for a convolution of two Gaussian measures to be a Gaussian
measure. Using the fact that the Fourier transform is injective (i.e., if u and v are probability measures on H such that
A(Xa,8) =V(Xa,p) for all o, B € R and fi(7r+;) =V (7r+,) for all A > 0 then = v), our task can be fulfilled in the
following way. We take the Fourier transform of the convolution of two Gaussian measures " and p” with parameters
(a’, B") and (a”, B”) at all one-dimensional and at all Schrodinger representations and then we search for necessary
and sufficient conditions under which this Fourier transform has the form given in Theorem 3.1. First we sketch our
approach to obtain necessary conditions. By Theorem 6.1, (i u”)(7+;) is an integral operator for b} | + b7 | > 0,
and it is a product of certain shift and multiplication operators for | | + by | = 0. If the convolution g/ * 1" is a
Gaussian measure with parameters (a, B) then, by Theorem 3.1, (i * u”Y (4, is an integral operator for by | > 0,
and it is a product of certain shift and multiplication operators for b1,; = 0. By Lemma 6.2, we have b; | = b/l,l +0bf 1
hence by 1 = 0if and only if b} | + b} | = 0. If (1’ * u") (7r+2) is an integral operator then it is uniquely determined
by its kernel function K., hence, by Theorems 3.1 and 6.1, d; = v, for all 1 < j,k <3 with (j, k) # (3,3)
and for all A > 0, where d]i,i” = dj%,?(a, B),1<j,k<3,and V =: (vji’,)g)lgj’k<3 are defined in Theorem 3.1 and

Theorem 6.1, respectively. (The quantities d;tg‘ C1(B) from Theorem 3.1 and v3i%‘ C from Theorem 6.1 also satisfy
an equation, but we will not use it.) We derive necessary conditions from the above equations and prove that they are
also sufficient. This train of thoughts will be used in the proof of Proposition 6.1 and Theorem 6.2.

Remark 6.1. By Lemma 4.2, it can be easily checked that a Gaussian measure p admits parameters (a, B) with
bjx=0for 1< j, k<3 with (j, k) # (3,3) and a; = a =0 if and only if the support of u is contained in the center
of HL.

Now we can derive a special case of Theorem 6.2 which will be used in the proof of Theorem 6.2.
Proposition 6.1. If 1" is a Gaussian measure on H such that the support of 1" is contained in the center of H

then for all Gaussian measures ', the convolutions ' * " and u” * p' are Gaussian measures with parameters
(a/ +a//, B/ _"_ B//), and M/ *I/L// :/1/// */.L/-
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Proof. Let u be a Gaussian measure with parameters (a’ + a”, B’ + B”). By the injectivity of the Fourier transform,
in order to prove that u’ % u” = p is valid, it is sufficient to show that (i * 1" Y (xa,g) = fi(Xq,p) forall a, B >0
and (i * "y (;w45) = fi(;r4,) for all A > 0. Theorem 6.1 implies that (1" * ") (xa,g) = (X p) is valid for all
one-dimensional representations xa,g, &, B € R. Suppose that b} | # 0 and b} b, , — (b’l‘z)2 # 0. By Theorem 6.1,
to prove (' * Y (mw+) = fi(mwsy) for all A > 0 it is sufficient to show that '

0 0 0
Dy, (a’, B') + [0 0 0 } =Dy, (a’ +a", B+ B")
0 0 b, F2ira}

for all & > 0. Since b7, =0 for 1 < j, k <3 with (j, k) # (3,3), we have dﬂ(a +da’,B' + B") _dﬁ(a B') for
1< j, k<3 with (j, k) # (3, 3). So we have to check only that

dy%(d'. B) + A*b5 ; F 2iray = dys(a' +a”, B'+ B")

for all A > 0. Theorem 3.1 implies this. The case b} | # 0, b/l_lb/2 , — (b 2)2 = 0 can be proved similarly. Suppose
that b} | = by | = 0. Using again Theorem 3.1, we have

22
[ /’(nik)u](x) = exp{:l:l)»ag — —b3 3 }u(x)

~ v A )\’2
7)o = exp Y2 (VR0 )+ 2ak) — (3 4 3+ ) 5.

s A
(2b23+a§ ))x — Eb/z’zxz}u(x+«/xaﬁ).

Theorem 3.1 implies that [f(my)ul(x) = [(1' % Y (re)ul(x) for all A > 0, u € L>(R) and x € R. Hence the
assertion. [

Now we give necessary and sufficient conditions under which the convolution of two Gaussian measures is a
Gaussian measure.

Theorem 6.2. Let 1/ and 1" be Gaussian measures on H with parameters a’ = (a))1<i<3, B' = (b.//’k)lgj,k<3 and
=(a])1<i<3 B" = (b;!k)lgj,kga respectively. Then the convolution ' * n” is a Gaussian measure on H if and
only if one of the following conditions hold:

(C1) by ;>0,8>00b{,>08">0, andthereexzstsg>Osuchthatb]k—gb]kf0rl J.k <3 with (j, k) #
(3 3) and a] = ga] fori=1,2,

(C2) by 1>0,8=00b,>03"=0, andthereexlstsg>Osuchthatb]k—gb;.’kf0r1<j,k<2,

(93) b 11>0, 8§ >0, b;’k—Oforl\] k <3 with (j,k)# (3,3) and a =0 fori =1,2,

(©4) bj ;> 0,8/ =0, =0for | < j.k <3 with (j.k) #(3,3),

(SS) b/l’,1 >0,8" >0, hfiyk=0f0r1 < j, k<3 with (j, k) #(3,3) and a =0 fori = 1,2,

(©6) by, > 0,8" =0, =0for 1 < j.k <3with (j,k) # (3.3),

©7) b, =0and b}, =0,

where §' := b} b} , — (b} ))? and §" := [b] b} , — (b ,)%. In cases (C1), (C3), (C5) the parameters of the con-

volution p' * u” are (@’ +a”, B' + B"), but in the other cases it does not necessarily hold (compare with Lemma 6.2).
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Proof. First we show necessity, i.e., if ' * " is a Gaussian measure then one of the conditions (61)—(67) holds. Let
us denote the parameters of the convolution p' % ” by (a, B) and we write d; ; := d]i,)(‘ (a, B), d} P = d]i,? (a’, B)

and d” | = df,?(a”, B") for 1 < j, k <3 as in Theorem 6.1. If b| | > 0 and bi”l > 0, we can easily prove that

Jok T
/ Vi / "
bio by, b, byy by, b5,
3/ — — 7/ — 0
by b1,1 bl,l bi1 bl,l bl,l

and dy, +dj | € Ii&i as in Pap [10, Theorem 7.3]. This implies that there exists ¢ > 0 such that b7/, = ob’; , for
1</, k<2, ie., (C2) holds. ~
When b’ly1 >0,8 >0 and b’l’,l >0, §” > 0, we show that (C1) holds. To derive this it is sufficient to show that
13 =0D) 3, by 3 =0Db) 3, a = oa) and aj = gaj. Using Theorem 6.1 we obtain

(i) (d,+d] )(Red] 5 —Red) 3) =d] ,(Red] ; +Red, 3),
(i) (d,+d] )(Red} y —Redr3) =d] ,(Red] ; +Red, ),
(it) (d; 5 +d} (Amd} y —Imdy 3) =d; ,(imd[ 3 +Imd; ),
(iv) (dy,+df )(Amdj 5 —Imdy3) =d] ,(Imd] y + Imd} 3).

Le.t us der}f).te 8 = b/l,lb/2,3 — b/1,2b/1,3’ 81 = b/l/,lb/2/,3 — b/l/,zb/l/,y 8 = a/lb’L2 — aéb/l’l, 8 = cz/l/b/l”2 — aé’b’{’l. Sum-
ming up (iii) and (iv) we have
(di2 + d{”])(lmdi3 + Ima’é”3 —Imd; 3 — Imd2’3) = (d{’2 + dil,Z) (Ima’{”3 + Imdéj).

Using the definition of d x, d}’k, d}/,k (1< j,k<3) we get

bi 85 by 8y 26> >

b, b 8 coth(i8/2) B, T Ab] 8 cothG7/2) | Ak ibcoth(36/2)

(coth(r8") + coth(r8")) (

b// 1 b/ /
_ Lo N 85 B 8
sinh(A8") ~ sinh(r8”) J\ b, ~ Ab] 8" coth(r8”/2) b}, = Ab| 8 coth(28'/2) )

An easy calculation shows that

b/ b//
13 bisy, . Lo ,
< Y >)»smh(k8 /2) sinh(A8" /2)
by, by,
1 b 1,0, . / ,
- ——a) - Sld - h(r8'/2) cosh(r8” /2
<5/+5”<a1b1,1 az) 8/(a1b/1,1 @ | | sinh(28'/2) cosh(257/2)
1 b1 1 //b’1’2 , / ' .,
PemCEl ey = h(r8'/2) sinh(A8" /2
+(5/+5”(mb1,1 a2> 8" <al by @ ) | cosh(28'/2) sinh(257/2)

for all A > 0. We show that the functions
Asinh(18'/2) sinh(x8”/2), sinh(A8'/2) cosh(x8”/2) and cosh()8’/2) sinh(A8”/2)
are linearly independent on (0; +-00). We have
Asinh(1.8'/2) sinh(18” /2) = 1 (¢ H3"/2 _ HO"=00/2 _ 0'=01/2 4 =2 @'+81)/2) 1y
sinh(1.8"/2) cosh(r8” /2) = (¥ +)/2 4 2 ('=8")/2 _ h("=00/2 _ =2 (0+31)/2) 4
cosh(r8'/2) sinh(18” /2) = (e*C+3/2 _ hO'=81/2 | r (=802 _ o=hE'+31/2) g,

The linear independence of these functions follows from the following fact: if ¢y, ..., ¢, are pairwise different
complex numbers and Q1,..., Q, are complex polynomials such that Z’}zl ;) e‘i* =0 for all A > 0 then
Q1=---= 0, =0. Hence we get

b/ b// 1 b 1 b/ 1 b//
e R e (al—” —az) = —/(ai—f’z —aé) = —,,<ai/ - —aéf)- (6.2)
b, b, AR s\ s\ 7|
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Subtracting the equation (i) from (ii) we get
(diz + di/’l)(Redij —Re dé/,s —Red;3+Redy3) = (di,z — di/,z)(Redi/j +Re déﬁ).

Using again the definition of d t, d}’k, d}’)k (1 < J, k < 3) we obtain

! " 2 )\,(S/ )\.8//
(COth(AS/)+Coth(k8//))< a; " a 24 b A 1 R VA 1 )
Vaby o VB by by g8 coth(A8/2) by 87 coth(A6/2)
B 1 1 ay a NExY NAY
~ \sinh(A8”)  sinh(Ad') \/Xb’l’l \/Xb’l . b 18’ coth(Rd'/2) by 8" coth(r8"/2) '

A simple calculation shows that

6/ 5//
1 1
A(1 + tanh(28'/2) tanh(18" /2)) <5’bi ; — o7, )

= (coth(28") + coth(15")) D B B/ U W G N a9
by by, B, sinh(w) i) J\B} b))

It can be easily checked that the functions A(1 4+ tanh(18’/2) tanh(A8” /2)), coth(18") 4+ coth(18”) and (sinh(18")) ™' —
(sinh(A8”))~ ! are linearly independent on (0; +00). Hence we have

I Vi / / 1

a_ 4q —0 2a1 I -0 8 _ 8 (6.3)
/ T / T 11,/ — enp :
b1,1 b1,1 b1 b1,1 b1,1 5b1,1 8 b1,1

Taking into account (6.2) and (6.3), we conclude that (61) holds. Using Lemma 6.2 it turns out that in this case
a=a +a’"and B=B + B".

If b’lg1 > 0,8 >0 and b;”l > 0, 8” = 0 one can show that u/ * u” cannot be a Gaussian measure, as in Pap [10,
Theorem 7.3]. ~

If b/l,l > 0,8 >0, and b/l’,1 = 0 we show that (C3) holds. The symmetry and positive semi-definiteness of the
matrix B” imply by, = b} ; = 0. Lemma 6.2 yields that by1 = b} | + b | > 0. Hence Theorem 3.1 implies that
(1 * (Y (7wxy) is an integral operator and Im(d; 1 + d2,2) = 0 holds. By Theorem 3.1 and Theorem 6.1 we obtain
Im(di1 + dr2) = Im(di’1 + dé,z + )‘blz/,z) = Im()»b’z”z). Thus b/zl,z = 0, which implies that b/2”3 =0and § =48"> 0.
Using again Theorem 6.1 we get

di3=d; 3 —V1ald) 5, (6.4)
dr3=db 5 —~rdd} , Fivadj. (6.5)
Taking the real part of the difference of Eqs. (6.4) and (6.5) we have
oL G| Ly AL (Lt coshGI)) 6.6)
b1 by b 4 sinh(A8")

Since (6.6) is valid for all A > 0, we have a{ = 0. Taking the imaginary part of (6.5) and using the fact that a] = 0 we
get

1 b b
ajf1- ——— =2 L 6.7)
A8 coth(x8'/2) )~ biy b,

Since (6.7) is valid for all A > 0, we get aj =0, so (C3) holds. If b’ly1 >0,8 =0 and ’1’11 = 0 a similar argument
shows that (C4) holds.

The aim of the following discussion is to show the converse. Suppose that (C1) holds. We prove that the convolu-
tion w1’ * u” is a Gaussian measure on H with parameters (¢’ + a”, B’ + B”). By Theorem 6.1, the Fourier transform
(1 * 1Y (xa,p) equals the Fourier transform of a Gaussian measure with parameters (a’ +a”, B’ + B”) at the repre-
sentation xo g for all &, B > 0. Since b/l,l + b/l’y1 > 0, the Fourier transform (' * u” Y (7+,) is an integral operator on
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L?(R) with kernel function K, given in Theorem 6.1 for all A > 0. All we have to show is that C = C, (B’ 4+ B")
and V = Du;(a’ +d”, B'+ B") = (d}}(a' +d", B'+ B"))1<j k<3 We have

8’ sinh(k(l + Q)(S/)
bi | sinh(A8") sinh(r08')’

hence using Theorem 6.1 we obtain

C= i =Cx, (B + B").
27b, ; sinh(A(1 + )"

Let (14)r>0 be a Gaussian semigroup such that x| is a Gaussian measure with parameters (a’, B"). By the help of the
semigroup property we have i1 * pt, = ft14. Taking into account that a) and bg,3 appear only in d3i§ (@, B') (see
Theorem 3.1) and the fact that u; is a Gaussian measure with parameters (ta’, t B) for all ¢ > 0, Theorem 3.1 and
Theorem 6.1 give us

vk = df,)(‘(a/ +a",B'+ B")

dy,+di | =

for 1 < j,k <3 with (j, k) # (3,3). So we have to check only that v3 3 = dfg(a’ +a”, B’ + B”). By the help of
Theorem 6.1 we get

v3=dyy+dy;— (d5, + dél,l)z- (6.8)

dyp+dy,
Calculating the real and imaginary part of (6.8) one can easily check that v3 3 = d;f%‘(a’ +a”, B+ B") is valid.

Now suppose that (62) holds. Using the parameters of p’ and ", define a vector a = (a;)1<ig3 and a matrix
B = (b; j)i<i,j<3» as in Lemma 6.2. We show that the convolution 4 := p/ % ;1" is a Gaussian measure on H with
parameters (a, B). An easy calculation shows that the Fourier transforms of u’ % u” and u at the one-dimensional
representations coincide. Concerning the Fourier transforms at the Schrodinger representations, as in case of (C1), all
we have to prove is that

2
C43(B)=C4+3(B)C£1(B") | ———+~
+2(B) = C,(B')Cx1(B") ],
and V = Dy, (a’ +a”, B’ + B”). Using Theorem 3.1 we have

2 1 1
Sy, Joman], / G )+ 1G0T )T/ = BLaT0 0 fomaey, 467, Vb

since by ,/bY | = b} ,/b} | = 0. Using similar arguments one can also easily check that V = Dy; (a' +a", B’ + B")
holds. We note that in this case the parameters of u’ * 1" is not the sum of the parameters of x" and 1"

Suppose that (C3) holds. Proposition 6.1 gives us that the convolution wxp is a Gaussian measure on H with
parameters (a’ +a”, B’ + B”). In cases (C4), (C5), (C6), (C7) we can argue as in cases (C2), (C3). Consequently,
the proof is complete. O

For the proof of Theorem 1.1 we need the following lemma about the support of a Gaussian measure on H.

Lemma 6.3. Let (v be a Gaussian measure on H with parameters (a, B) such that by,1b22 — b%,z =0. Let Yo € H be
defined as in Section 2. If rank(B) = 2 then supp(n) =exp(Yo + R - U + R - X3), where
U b11X1+by1Xy ifb1,1 >0,
T b2 X> ifb1,1=0and by » > 0.
Ifrank(B) = 1 then supp(u) =exp(Yo + R - U + R - [Yo, U]), where
biaX1+b21 X2+ b31X3 ifb1,1>0,
U:={ b2X2+b32X3 ifby11 =0and by >0,
b3 3X3 ifb11=>byp=0and b33 > 0.

If rank(B) = 0 then supp(u) = exp(¥Yp).
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Proof. We apply (iii)—(v) of Lemma 4.2, respectively. If rank(B) = 2 then one can check that L(Y1, Y2) = L(U, X3).
If rank(B) = 1 then £(Y) = L(U). O

Pl‘oof ‘Lf Theorem 1.1. First we prove that if one of the conditions (C1) and (C2) holds then one of the conditions
(C1)—(C7) in Theorem 6.2 is valid, which implies that the convolution " * 1" is a Gaussian measure on H.

Suppose that (C1) holds. Lemma 4.2 implies §' = §” = 0.

If b | =b{ | =0 then (C7) holds.

Ifb),>0,8=0 and by =0, 38" =0 we show that (C4) holds. It is sufficient to show that by , = 0. Suppose
that, on the contrary, b 2’2 # 0. When rank(B’) = rank(B”) = 2, by the help of Lemma 6.3, we get

supp(u) =exp(Yg+R-U'+R- X3), supp(u”) =exp(Yy +R-U" +R- X3),

where U’ =b| | X + b/2,1 X, and U” = b)) , X>. Since in this case supp(u’) and supp(u”') are contained in “Euclidean
cosets” of the same 2-dimensional Abelian subgroup of H, we obtain that £L(U’, X3) = £(U”, X3). From this we
conclude b} | =0, which leads to a contradiction. When rank(B’) = 1, rank(B”) = 2 and in other cases one can argue

similarly, so (64) holds. ~
If bll,l =0,8'=0and b’l”l > 0, §” = 0 the same argument shows that (C6) holds.
If b}, >0,8 =0and b}, >0, 8" =0 we show that (C2) holds. When rank(B’) = rank(B”) = 2, Lemma 6.3
implies that
/ / / 1 1 "
supp(u’) =exp(Ys+R- U +R- X3), supp(”) =exp(Yy +R-U" + R+ X3),
where U’ = ba’le + b’2 (X2 and U” = b’l’le + b/z’ , X2. Condition (C1) yields that L(U’, X3) = L(U", X3), hence
we have by | b} | =D, |bY . Since §' = 8" =0 we get by b | = b)) ,b] |. Thus (C2) holds with ¢ := by 1/b |- When
rank(B’) = rank(B”) = 1, Lemma 6.3 implies that
supp(u’) =exp(Yg+R-U +R-[Y;, U']), supp(u”) =exp(Yy +R-U"+R-[Yy,U"]),
where U’ = b’UXl +b2’1X2 +b3’1X3 and U” = b’l”le +b’2”1X2 —I—bg”1X3. Condition (C1) yields L(U’, [}, U']) =
LW",[Y),U"]), hence L(b] X1 + b, | X2) = L(b] X1 + b} X2). It can be easily checked that (C2) holds with
0 :=b{,/b| ;. When rank(B’) = 1, rank(B") = 2 or rank(B’) = 2, rank(B") = 1 we also have (C2) holds.

Suppose that (C2) holds (i.e., ' =y, &’ = g x v or W' = uy x v, W' = u,» with appropriate nonnegative real
numbers ¢/, ¢ and a Gaussian measure v with support contained in the center of H). Then we have

Wk = g s g kv =gk voor s = vk g = g % .

Remark 6.1 and Proposition 6.1 yield that i/ * u” is a Gaussian measure on H.
__ Conversely, suppose that ' * u” is a Gaussian measure on H. Then by Theorem 6.2, one of the conditions (CDH-
(CT7) holds. We show that then one of the conditions (C1) and (C2) is valid.
Suppose that (C1) holds. If bg’ 3 Qb3 3 = 0 then let (a7);>0 be a Gaussian semigroup such that &} = u” and let v
be a Gaussian measure on H with parameters (a,, B,) such that

0 0 0 0
BU:=|:O 0 0 :|, av:=|: 0 :|
0 0 by3—obs; ay — oaj
Remark 6.1 and Proposition 6.1 imply that p” = (xé * v, hence (C2) holds. If b/3’ Qb3 5 < 0 then let (;');>0 be a
Gaussian semigroup such that o{ = 1" and let v be a Gaussian measure on H with parameters (a,, B,) such that

0 0 0 0
BU:=|:O 0 0 j|, aU:=|: 0 i|
0 0 b, _Q_lbgj —o'a

Remark 6.1 and Proposition 6.1 imply that 1’ = af,, * v, hence (C2) holds.
Suppose that (62) holds. Lemma 6.3 implies that

supp(u’) Cexp(Ys+R-U' +R- X3), supp(u”) Cexp(Yy +R-U" +R- X3),
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where U’ = b’l’le + b’z’le and U” = b’l/’le + b’z”le. Condition (C2) gives us that L(U’) = L(U"), hence (C1)
holds.

Suppose that (63) holds. Let («;);>0 be a Gaussian semigroup such that o} = 1" and let v be a Gaussian measure
with parameters (a,, B,) such that

0 0 O 0
BU:=|:O 0 0], av:=|:0:|.
0 0 bg’,3 ag’

Then we have 1" = v = o, * v, so (C2) holds.
Suppose that (C4) holds. By the help of Lemma 6.3, we have

supp(u) Cexp(Yg+R-U' +R- X3), supp(u”) Cexp(Yy +R-U"),
where U’ = b | X1+ b, X2 and U” = b} ,X3. Hence the support of 11" is contained in exp(Yj +R- U’ +R - X3) and
the support of u” is contained in exp(Y(;’ +R-U'+R-X 3), so (C1) holds. Similar arguments show that when (C5)
holds then (C2) is valid, and when (C6) holds then (C1) is valid.
Suppose that (C7) holds. Using Lemma 6.3, we have
supp(’) Cexp(Yg+R-U' +R- X3), supp(”) Cexp(Yy +R-U" +R- X3),
where U’ = b’z’zXz and U” = b’z”QXz, so (C1) holds. O

Remark 6.2. In case of (C1) in Theorem 1.1, u’ and u” are Gaussian measures also in the “Euclidean sense” (i.e.,
considering them as measures on R?), but the parameters of the convolution i % 1" is not necessarily the sum of the
parameters of 1/ and . In case of (C2) in Theorem 1.1, u’ and " are not necessarily Gaussian measures in the
“Euclidean sense”, but the parameters of the convolution " * 1 is the sum of the parameters of u' and u”.

Remark 6.3. We formulate Theorem 1.1 in the important special case of centered Gaussian measures for which the
corresponding Gaussian semigroups are stable in the sense of Hazod. First we recall that a probability measure © on
H is called centered if

/ xip(dx) = / xa(d) =0,
H H

A convolution semigroup (u;);>0 on H is called centered if 1, is centered for all t > 0. For each ¢ > 0 let d; denote
the dilation

di(x) = (tx1 ,1Xx2, t2x3), xeH, r>0.

By Hazod [6, page 229], a Gaussian semigroup (4;);>0 is centered and stable in the sense that u, = dﬁm, t>0
(Hazod stability) if and only if its infinitesimal generator has the form

1 2.2
a3X3+EZZbi,inXj. (6.9)
i=1 j=1
Wehn [17] proved the following central limit theorem. Let | - | be a fixed homogeneous norm on H and let us consider
a centered probability measure p on H. If fH |x|2u(dx) < 400, then (d; / ﬁ(u*")),@l converges towards v weakly,
where v is a Gaussian measure on H such that the corresponding Gaussian semigroup has infinitesimal generator (6.9).
For centered and stable Gaussian measures Theorem 1.1 has the following form.
Let ' and w" be Gaussian measures on H such that the corresponding Gaussian semigroups have infinitesimal
generators

2 2 2 2
1 1
a§X3—|—§ E E bl{’jX,-Xj and ag’X3+§ E E bl/-ij,-Xj, respectively.
i1 j=1 i=1 j=1

Then the convolution ' * u’ is a Gaussian measure on H if and only if there exist t',t” > 0, a Gaussian semigroup
(1r)r>0 with infinitesimal generator (6.9) and an element x € H which is contained in the center of H such that either
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W=y, ) =k ex or W = py x &y, W = pyr holds. Moreover, in this case a3 = ay + af and b; j = bl/-’j + bl/{j,
1<i,j<2.

The proof of this statement can be carried out in a direct way applying Theorem 7.3 in Pap [10], and Lemma 6.2
and Proposition 6.1 of the present paper.
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