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Abstract

This paper concerns the Monge’s transport problem in a general Polish space. We find optimal conditions to establish the equality
between the infimum of Monge’s problem and the minimum of the Kantorovich’s relaxed version of the problem. A preliminary
version of the results of this paper is contained in the Ph.D. thesis [A. Pratelli, Existence of optimal transport maps and regularity
of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2003. Available on
http://cvgmt.sns.it/].
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Ce papier considère le problème du transport de Monge dans un espace Polonais général. Nous trouvons des conditions optimales
pour établir l’égalité entre l’infimum du problème de Monge et le minimum de la version relâchée du problème de Kantorovich.
Une version préliminaire des resultats de ce papier est contenue dans la thèse de Doctorat [A. Pratelli, Existence of optimal transport
maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy,
2003. Available on http://cvgmt.sns.it/].
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Setting of the problem and statement of the main results

In 1781, G. Monge [8] first proposed the mass transport problem. Today, one can restate his idea as follows: we
are given two Polish spaces X and Y and two measures f 0 ∈ M+(X) and f 1 ∈ M+(Y ) of the same total mass
‖f 0‖ = ‖f 1‖. A transport map from f 0 to f 1 is any function t :X → Y such that t#f

0 = f 1 (of course, t need to be
measurable with respect to the σ -algebra of the f 0-measurable sets on X and to the Borel σ -algebra B(Y ) on Y ); we
are also given a l.s.c. function c :X × Y → �R+ := R+ ∪ {+∞}, and to each transport map one associates the cost
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C(t) :=
∫
X

c
(
x, t (x)

)
df 0(x). (1.1)

The interpretation of this problem as a transportation of mass is very easy: if f 0 and f 1 measure the height of some
soil and the depth of some hole of the same volume, a transport map t :X → Y says how to move the mass into the
hole, and C(t) represents the cost of carrying out this transportation if c(x, y) is the cost of moving a unitary mass
from the point x ∈ X to the point y ∈ Y .

In general, it may happen that there are no optimal transport maps (i.e. minimizers of C among the transport maps):
for instance, if X = Y = RN and c(x, y) = |y − x| is the Euclidean distance, the existence of optimal transport maps
is true only under the hypothesis that f 0 is absolutely continuous w.r.t. the Lebesgue measure (see [1], or also [4,3,13,
2,11] or [10] for general references). Even worse, it may happen that there are no transport maps at all: for instance, if
f 0 is a Dirac mass in the point x ∈ X, then t#f

0 is the Dirac mass in the point t (x) ∈ Y , therefore there is no transport
map if f 1 is not a Dirac mass.

In 1940’s, Kantorovich proposed [6,7] a relaxed version of the problem, that is of fundamental importance to
understand it and to find solutions. His idea, roughly speaking, is to allow the splitting of mass, removing the obstacle
in the example with the Dirac mass we mentioned above: to do that, one defines transport plan between f 0 and f 1 any
probability measure γ ∈M+(X × Y) whose marginals πXγ and πY γ are f 0 and f 1 respectively. Any such measure
can be interpreted as a way to transport mass, where γ (A × B) represents the amount of mass originally contained in
the set A ⊆ X and to be moved inside B ⊆ Y . Analogously to (1.1), one defines a cost for any transport plan as

C(γ ) :=
∫∫
X×Y

c(x, y)dγ (x, y). (1.2)

It is to be noticed that the transport plans are a generalization of the transport maps: indeed, the map t is “naturally”
associated with the plan γt := (1, t)#f

0, and also the cost is the same. More in general, a transport plan γ “is” a
transport map – i.e. there is a transport plan t such that γ = γt – if and only if γ is concentrated in a graph: formally,
the following result holds.

Lemma 1.1. A transport plan γ is induced by a transport map if and only if γ is concentrated in a σ -compact set S

such that for f 0-a.e. x the set {y: (x, y) ∈ S} consists of exactly a point.

Of course an implication is trivial, the other one is quite easy but not completely straightforward: for a formal proof
of this fact one can refer to [1,2], or to Lemma 1.6 in [10] for the general case of the Polish spaces. Since the transport
maps are a particular case of the transport plans, of course one has

min(1.2) � inf(1.1) (1.3)

(the fact that the first one is a minimum will be discussed in a moment). One can easily notice that the relaxed problem
is much simpler: in fact, while the cost (1.1) depends in an involved way by the map t and the set of the transport maps
has no good structure, the cost (1.2) depends linearly by the plan γ , and the transport plans are a bounded and weak*
closed subset of M+(X × Y). Moreover, since the function c :X × Y is l.s.c., so is the function γ 	→ C(γ ): therefore,
while – as we noticed before – there could be no optimal transport maps or no transport maps at all, the following is
true for the transport plans.

Lemma 1.2. There always exist optimal transport plans.

Concerning the existence of transport plans, just notice that the rescaled tensor product f 0 �f 1 is clearly a transport
plan. For the existence of optimal transport plans, it is a consequence of the boundedness and the weak* closure of
the set of the transport plans, as well as of the lower semicontinuity of C: this is immediately obtained if X and Y

are compact, the general case of the Polish spaces is standard and well known, see for example Theorem 1.11 in [10]
or [11].

In this paper we give an answer to a very natural question concerning inequality (1.3): in fact, it is of great impor-
tance to know whether or not it is an equality, also because of course otherwise one cannot hope the relaxed problem
to give some help in studying the original one. First of all, notice that the example above with the Dirac mass tells that
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the existence of transport maps is not always true, and in particular that Dirac masses in f 0 can prevent this existence.
On the other hand, if f 0 is non-atomic then there exist transport maps, as it is well known that a non-atomic measure
can be transformed into any probability measure (see Theorem 1.4). Our first result is the following one.

Theorem A. If f 0 is non-atomic, there exists a transport map t such that

C(t) � C
(
f 0 � f 1) (� +∞).

Once established this first property, we will prove our main result – that is sharp thanks to the examples we will
provide at the beginning of Section 4 – stating that a sufficient condition for the validity of (1.3) is the non-atomicity
of f 0 together with the continuity of c.

Theorem B. Assume that f 0 is non-atomic and c is continuous (but still possibly +∞-valued somewhere): then
inf(1.1) = min(1.2) (possibly +∞).

A particular case of our theorems has been proved by Ambrosio in [1]:

Theorem 1.3 (Ambrosio). If X = Y is a convex and compact subset of RN , f 0 is non-atomic, and the cost function
c :X × Y → �R+ is continuous and bounded, then the equality inf(1.1) = min(1.2) holds.

Let us briefly discuss the main differences between Theorem B and the previous Theorem 1.3: we remark that
the equality inf(1.1) = min(1.2) in Theorem 1.3 was stated in RN only for simplicity, but the proof can be easily
adapted to work in a more general compact Polish space. Moreover, the relevant property is the boundedness of the
cost function c, which is ensured by the compactness of the space since we consider continuous cost functions: if c is
bounded, then the equality inf(1.1) = min(1.2) is true also for a non-compact Polish space. Therefore, the new feature
of Theorem B is to allow a cost function that is not bounded, and also possibly assuming the value +∞ somewhere.

The strategy to prove Theorem 1.3 was to show that, under the hypotheses of the claim, the subset of the transport
plans made by the transport maps is dense with respect to the weak* convergence of measures; notice that this fact
does not depend on the choice of a cost function. As a consequence, to any transport plan one can associate a weak*-
converging sequence of transport maps: therefore, given any continuous and bounded cost function c, the costs of
the transport maps converge to the cost of the transport plan, and this gives the thesis. On the other hand, to show
Theorem B one needs a more subtle construction which depends in a substantial way on the choice of the cost function:
given a transport plan γ and given the cost function c, we will build transport maps tε with C(tε) � C(γ ) + ε; but the
same transport maps tε may not work with another cost function.

Throughout the paper, we will use the following notation: given two Polish spaces X and Y and two measures
μ ∈ M+(X) and ν ∈ M+(Y ) with ‖μ‖ = ‖ν‖ > 0, we define the rescaled tensor product of μ and ν as the unique
measure μ � ν ∈ M+(X × Y) such that

μ � ν(A × B) = μ(A) · ν(B)

‖μ‖ = μ(A) · ν(B)

‖ν‖ ∀A ∈ B(X), ∀B ∈ B(Y ),

or in other words μ � ν = (μ ⊗ ν)/‖μ‖ = (μ ⊗ ν)/‖ν‖: the projections of μ � ν are precisely μ and ν, and in
particular f 0 � f 1 is the trivial transport plan between f 0 and f 1.

The plan of the paper is the following: in Subsection 1.2 we discuss the relation between Theorem B and the
classical results of isomorphisms of measure spaces; in Section 2 we prove a general result valid in Polish spaces that
is the main ingredient for our following constructions. In Sections 3 and 4 we show Theorems A and B.

1.2. Isomorphism results and Theorem B

In [5], concerning the problem of proving the equality between inf(1.1) and min(1.2), W. Gangbo suggested the
idea of making use of the classical isomorphism Theorems of measure spaces. We rewrite here one of such results, due
to Oxtoby (Theorem 2 in [9], see also [12], Theorem 9 in Chapter 15); in the sequel, we will denote by I = [0,1] \Q

the set of the irrational numbers in [0,1], and by L the Lebesgue measure on I .
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Theorem 1.4. Let Z be a Polish space and μ a non-atomic probability measure on Z. Then (Z,μ) is isomorphic to
(I ,L ): this means that there is a Borel subset Z̃ of Z of full μ-measure and an homeomorphism ϕ : Z̃ → I with
the property that ϕ#μ = L , ϕ−1

# L = μ.

The proposal of Gangbo was to use this result to reduce oneself to a known setting: in other words, to show the
existence of a transport map from (X,f 0) to (Y,f 1), one could use the isomorphisms given by the above theorem
to reduce to the case when X and Y are [0,1] and f 0 and f 1 are L , apply the well known (and trivial) existence
result in [0,1] to find transport maps between [0,1] and itself, and then use the isomorphisms again to come back to
transport maps between X and Y .

Unfortunately, this argument cannot be used to derive a proof for Theorem B: indeed, the equality between inf(1.1)

and min(1.2) is true only under a continuity assumption on the cost function (the reason for this fact will be discussed
in the beginning of Section 4). But the continuous map ϕ in Theorem 1.4 cannot – of course – be extended to a
continuous map between X̃ and [0,1], and more in general it is not possible to give an homeomorphism between a
full-measure subset of X and the whole [0,1]. Therefore, it is possible to transform the general problem in a problem
with X = Y = [0,1], but the continuous cost function c :X × Y → �R+ may be transformed in a discontinuous cost
function from [0,1] × [0,1] to �R+, for which the searched equality is not true.

However, our approach will be in the same direction of Gangbo’s proposal: we will use a clever decomposition of
the Polish spaces to provide an explicit construction of almost optimal transport maps.

2. A general result about Polish spaces

This section is devoted to show a simple decomposition of a Polish space endowed with a probability measure; this
decomposition helps to regard the Polish space as (a subset of) {0,1}N, that is a very standard reduction in probability.
First, we fix some notations for the binary sequences that we will use extensively throughout the paper.

Definition 2.1. A finite sequence (resp. a finite binary sequence) is any I ∈ Nk (resp. I ∈ {0,1}k) with k ∈ N. A count-
able sequence (resp. a countable binary sequence) is any I ∈ NN (resp. I ∈ {0,1}N). The length (finite or +∞) of any
sequence is denoted by l(I ), and whenever s � l(I ) we denote by Is the subsequence of I made by the first s terms.
If I = (i1, i2, . . . , ik) is a finite sequence of length k ∈ N, we write (I, n) to denote the sequence (i1, i2, . . . , ik, n), of
length k + 1. We give also a partial order to the sequences saying that I � J if J extends I , that is if l(I ) � l(J ) and
Jl(I ) = I . To give a formal consistence to our constructions, we will need to consider also the set {0,1}0 of the finite
binary sequences of length 0, whose unique element is ∅.

Now, we can state and prove our result.

Proposition 2.2. Let Z be a Polish space and let μ ∈ P(Z) be a probability measure. Then there are measures μI

and sets ZI ⊆ Z for the finite binary sequences I with the following properties:

(i) for any finite sequence I of length k = l(I ), ‖μI‖ = 2−k ;
(ii) for any finite sequence I , μI = μ(I,0) + μ(I,1); hence, for any k ∈ N it is μ = ∑

{l(I )=k} μI ;
(iii) for any finite sequence I , μI is concentrated in ZI ;
(iv) for any I � J , ZJ ⊆ ZI ;
(v) for any countable binary sequence I except countably many,

⋂
k∈N

ZIk
consists of at most a point;

(vi) if, in addition, μ is non-atomic, then for any k ∈ N the sets ZI with I ∈ {0,1}k are 2k disjoint sets such that
μ(ZI ) = μ(ZI ) and μI = μ ZI .

Remark 2.3. With a more elaborate proof, one can strengthen the property (vi) as follows – notice that of course (vi′)
is stronger than (vi):

(vi′) if, in addition, μ is non-atomic, then for any k ∈ N the sets ZI with I ∈ {0,1}k are 2k disjoint open sets, and
μI = μ ZI .
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Proof of Proposition 2.2. Let us first consider the easier case of a non-atomic measure μ: in this case, by Theorem 1.4
there is a full-measure set Z̃ ⊆ Z and an homeomorphism ϕ : Z̃ → I . The decomposition is trivial for I : indeed it
suffices to define, for any finite binary sequence I = (i1, i2, . . . , ik) of length l(I ) = k ∈ N,

II :=
(

i1 2k−1 + i2 2k−2 + · · · + ik

2k
,
i1 2k−1 + i2 2k−2 + · · · + ik + 1

2k

)
∩ I , LI := L II .

Hence, we define ZI = ϕ−1(II ) and μI = μ ZI = ϕ−1
# (LI ): it is then obvious that (i)–(v) hold; in particular (v)

hold for all the countable sequences instead of all but countably many. Concerning (vi), by construction the sets ZI

with fixed length l(I ) = k are 2k disjoint sets, which are open inside Z̃ since ϕ is continuous. Therefore, for each I

one has ZI ⊆ ZI ⊆ ZI ∪ (
Z \ Z̃

)
and, since Z \ Z̃ is μ-negligible, also (vi) follows.

Let us turn now to the case of a general measure, and let us write μ = μna + μpa , where μna is non-atomic while
μpa = ∑

αnδzn is purely atomic (αn > 0 and zn ∈ Z). By Theorem 1.4 we can find an isomorphism ϕ between a subset
Z̃ of Z of full μna-measure and I na := (0,‖μna‖)∩I such that ϕ#μ

na = L na := L I na and ϕ−1
# (L na) = μna .

Let us define now a map ψ :I → X as follows: if x � ‖μna‖ then ψ(x) = ϕ−1(x); otherwise ψ(x) = zm, where m

is the integer such that∥∥μna
∥∥ +

∑
m<n

am < x �
∥∥μna

∥∥ +
∑
m�n

am;

finally we define, for all the finite binary sequences I , ZI := ψ(II ) and μI := ψ#LI .
It is then obvious that all the properties (i)–(v) hold; notice that in the general case (v) may not hold for all the

countable sequences, since for some I ∈ {0,1}N the intersection
⋂

k∈N
ZIk

might contain two different points zm

and zl ; however, it holds for all but countably many sequences, thus (v) is true. Notice also that, again due to the
purely atomic part of μ, it is not always true neither that μI = μ ZI , nor that μ(ZI ) = μ(ZI ), nor that the sets ZI

with fixed length are disjoint. �
3. Proof of Theorem A

In this section we will prove the existence Theorem A which asserts that, provided f 0 is non-atomic, there exists
some transport map having cost not greater that f 0 � f 1 (recall that f 0 � f 1 is always a transport plan). This
comparison with f 0 � f 1 will be essential in next section to show the equality between inf(1.1) and min(1.2).

Proof of Theorem A. We divide the proof in three steps.
Step I. Definition of the sequence {γk}.
We assume without loss of generality that ‖f 0‖ = ‖f 1‖ = 1; then, we apply Proposition 2.2 to X and f 0, and to

Y and f 1, finding the sets XI and YI and the measures f 0
I and f 1

I . To show the existence of a transport map, we will
build a sequence {γk} of transport plans between f 0 and f 1 weakly* converging to a transport map (that is, weakly*
converging to a plan induced by a transport map).

To define γk , we will take a suitable bijective function ϕk : {0,1}k → {0,1}k , and set

γk :=
∑

I∈{0,1}k
f 0

I � f 1
ϕk(I ); (3.1)

notice that the above definition makes sense and defines a transport plan for any choice of ϕk thanks to (i) in Proposi-
tion 2.2. We choose the functions ϕk subject to the following two requirements:

C(γk) � C(γk−1) � · · · � C(γ1) � C(γ0) = C
(
f 0 ⊗ f 1), (3.2)

∀0 � r � s � k, ∀I ∈ {0,1}s one has ϕr(Ir ) = (
ϕs(I )

)
r
. (3.3)

The first condition is taken, of course, to ensure the bound on the cost of the transport map that we will eventually
define; concerning the second one, we remark that it means that the different functions ϕk are “compatible”, or in other
words that any one refines the preceding one. Hence, the sequence {γk} is defined by (3.1) once given the functions
ϕk satisfying (3.2) and (3.3).
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Step II. Induction proof of the existence of the functions ϕk .
We show now that it is possible to define the functions ϕk subject to the constraints (3.2) and (3.3). For k = 0, the

unique function between {0,1}0 and itself is ϕ0(∅) = ∅, and of course (3.2) and (3.3) hold emptily: indeed, keeping
in mind our assumption that f 0 and f 1 have unitary mass, it is γ0 = f 0 � f 1 = f 0 ⊗ f 1. For k > 0, we argue by
induction: once ϕ0, ϕ1, . . . , ϕk are given, we have to define ϕk+1. Since we want (3.3) to hold, to define ϕk+1 we have
2k decisions to take: for any I ∈ {0,1}k , we can set

either

{
ϕk+1(I,0) = (ϕk(I ),0),

ϕk+1(I,1) = (ϕk(I ),1)
or

{
ϕk+1(I,0) = (ϕk(I ),1)

ϕk+1(I,1) = (ϕk(I ),0).

These 2k choices are clearly independent, and they correspond to all the possible ϕk+1 satisfying (3.3): therefore,
we can give a bijective correspondence between the functions satisfying (3.3) and the functions τ : {0,1}k → {0,1},
associating to any such τ the function ϕτ given by

ϕτ (I, i) =
{

(ϕk(I ), i) if τ(I ) = 0,(
ϕk(I ),1 − i

)
if τ(I ) = 1.

(3.4)

Now, we have to care about (3.2). Notice that any function τ : {0,1}k → {0,1} can be associated to a function
ϕτ : {0,1}k+1 → {0,1}k+1 via (3.4), therefore to a transport plan γ τ given – remind (3.1) – by

γ τ :=
∑

I∈{0,1}k+1

f 0
I � f 1

ϕτ (I ).

By the construction, and recalling property (ii) in Proposition 2.2, it is immediately seen that the “mean” of the
different γ τ is γk , that is

γk = 1

22k

∑
τ : {0,1}k→{0,1}

γ τ :

by the linearity of the cost C in (1.2), it follows the existence of at least a τ : {0,1}k → {0,1} with C(γ τ ) � C(γk):
setting ϕk+1 := ϕτ , then, both (3.3) and (3.2) are satisfied and our induction argument is completed. Having the
functions ϕk and thanks to (3.3), we can also define ϕ : {0,1}N → {0,1}N the unique function extending all the ϕk .

Step III. Proof that γk weakly* converges to a transport map t with C(t) � C(f 0 � f 1).
Thanks to Prokhorov’s Theorem, the sequence {γk} of transport plans is weakly* sequentially compact, thus there

is a weak* limit γ of some subsequence (recall that all the measures γk have the same marginals f 0 and f 1, thus
Prokhorov’s Theorem can be applied). Our aim is to show that γ is in fact induced by a transport map t , and our
argument will also show as a byproduct the full weak* convergence of the sequence {γk} to γ ; notice that this will give
the thesis, since C(γ ) � C(f 0 �f 1) follows by the lower semicontinuity of C and by (3.2). Recalling Lemma 1.1, it is
sufficient to find a set S ⊆ X×Y of full measure w.r.t. γ and to check that for f 0-a.e. x ∈ X the set {y ∈ Y : (x, y) ∈ S}
has diameter 0.

Define Xk := ⋃{XI : l(I ) = k}, that is a set of full f 0-measure by (ii) and (iii) in Proposition 2.2; hence, also the
set X̃ := ⋂{Xk, k ∈ N} is of full measure. By (iv) and (vi) in Proposition 2.2 we can define a function ψ : X̃ → {0,1}N

which associates to any x ∈ X̃ the unique countable binary sequence I = ψ(x) with the property that x ∈ XIk
for any

k ∈ N. According to (v) in Proposition 2.2, we define now A the subset of {0,1}N of those countable binary sequences
I such that diam(YIk

) does not converge to 0; since A is countable and ϕ is a bijection, and by (i) in Proposition 2.2,
the set

�X := {
x ∈ X̃: ϕ

(
ψ(x)

)
/∈ A

}
has full f 0-measure. For k ∈ N, we define now

Sk :=
⋃{

XI × �Yϕk(I): I ∈ {0,1}k}:

notice that by definition (3.1) the plan γk is concentrated in Sk , and thanks to (3.3) also each γn with n > k is
concentrated in Sk . We want to infer that also γ is concentrated in Sk : to this aim recall that, by (vi) in Proposition 2.2,
for any I ∈ {0,1}k one has f 0(XI ) = f 0(�XI ). Consequently,
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γ
(
XI × �Yϕk(I)

) = γ
( �XI × �Yϕk(I)

)
� lim sup

n→∞
γn

( �XI × �Yϕk(I)

) = lim sup
n→∞

γn

( �XI × Y
) = f 0( �XI

)
= f 0(XI ) = γ

(
XI × Y

)
� γ

(
XI × �Yϕk(I)

)
,

and this ensures that γ (XI ×Y) is concentrated in XI ×�Yϕk(I): since the union of the different XI for I ∈ {0,1}k has
full f 0-measure, we infer that in fact γ is concentrated in Sk – keep in mind that π1γ = f 0. Hence, γ is concentrated
in S := ⋂

k∈N
Sk : as pointed out in the beginning of this step, the thesis will be reached showing that for any x ∈ �X –

thus, for f 0-a.e. x – the set {y ∈ Y : (x, y) ∈ S} has diameter 0. Indeed, if (x, y) ∈ S and x ∈ �X then y ∈ Yϕ(ψ(x)) and,
since ϕ(ψ(x)) /∈ A, Yϕ(ψ(x)) has diameter 0; this concludes the proof. Notice that the transport map can be defined
almost everywhere by t (x) := Yϕ(ψ(x)) (our argument shows that the set in the right consists of exactly a point for
a.e. x). �
4. Proof of Theorem B

In this section we will prove Theorem B, which shows the equality inf(1.1) = min(1.2) in the case when f 0 is
non-atomic and the cost function c is continuous. First of all, we briefly discuss the hypotheses to convince the reader
that they are sharp.

The meaning of the continuity assumption on c is easy to understand: indeed, there are situations when the splitting
of masses (not allowed for the transport maps) is necessary due to the discontinuities of c, as the next example shows.

Example 4.1. Let R, S and T be three parallel segments of length 2 and with dist(R,S) = dist(S,T ) = 1; then, let f 1

be the one-dimensional Hausdorff measure on R and T , and let f 0 be the Hausdorff measure on S, multiplied by 2 to
get ‖f 0‖ = ‖f 1‖ = 4. Finally, set the non-continuous cost

c(x, y) :=
{

1 if dist(x, y) = 1;
2 otherwise.

It is clear that the minimum of the Kantorovich problem is min(1.2) = 4, and it is achieved only by the transport
plan splitting the central segment in two parts and translating them on the left and on the right; on the other hand, the
infimum of the Monge problem is easily shown to be inf(1.1) = 8 > min(1.2) (and it is also a minimum)

In the example above, it is clear how the non-continuity of c has the effect of making inf(1.1) strictly greater than
min(1.2), and then why the hypothesis of continuity of c in Theorem B is sharp. It could seem less clear the reason to
ask also the non-atomicity of f 0: indeed, by Theorem A we already know that without this assumption there could be
no transport maps, so one could think that the non-atomicity of f 0 is needed only to get existence of transport maps.
In particular, one could ask if the equality between the infimum and the minimum is still true if c is continuous and
there exists some transport map; as the example below shows, this is not true, since the non-atomicity of f 0 plays a
crucial role: roughly speaking, if there are Dirac masses, the fact that they cannot be split by a transport map is a too
heavy obstacle.

Example 4.2. Let x+ and x− be two points in X = Y = R3, let B+ and B− be two balls of unitary volume, take the
Euclidean cost function c(x, y) := |y − x|, and define f 0 := δx+ +L B+ and f 1 := δx− +L B−. If the point x+
is close to the ball B− and the point x− is close to the ball B+, but x+ and B− are very far from x− and B+, then the
equality inf(1.1) = min(1.2) does not hold true. Indeed, the transport plan that distributes the mass in x+ on B− and
moves the mass in B+ on x− has a low cost; on the other hand, any transport map must necessarily move x+ on x−
and B+ on B−, therefore it has a very high cost.

In the example above, the equality between the Monge infimum and the Kantorovich minimum does not hold, even
though c is continuous and the existence of transport maps is true. This explains how also the non-atomicity condition
on f 0 in Theorem B is sharp. Now, we turn to the proof of Theorem B.

Proof of Theorem B. The proof of this result is a quite involved construction, so we divide it in several steps. First of
all, take an optimal transport plan γ , which exists thanks to Lemma 1.2; we can assume that C(γ ) = min(1.2) < +∞,
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since otherwise by (1.3) the claim is immediate. We fix a metric on X and on Y according to the definition of Polish
spaces; moreover we take ε > 0, and the thesis will be reached finding a transport map t such that C(t) � C(γ )+ε‖γ ‖.

Step I. Definition of AI , BI , MI , mI .
Our first step consists in defining sets AI ⊆ X and BI ⊆ Y for the finite sequences I , which must be so small that

c(x, y) is almost constant for (x, y) ∈ AI × BI , but not too small in order to fill γ -a.a. X × Y . Moreover we want that
AI and AJ do not to intersect unless I � J or J � I , while AJ ⊆ AI if I � J : this will be needed to glue the different
“local transport maps” that we will find.

First of all, we take two sequences {xi} and {yi} dense in X and in Y respectively; then, take any (i, j) ∈ N2: if
c(xi, yj ) = +∞, define Ci,j := ∅ ⊆ X and Di,j := ∅ ⊆ Y . On the other hand, if c(xi, yj ) < +∞, we set

Ci,j := BX(xi, r), Di,j := BY (yj , r),

where r is the maximum real number such that

sup
{
c(x, y) − c(z,w): (x, y), (z,w) ∈ BX(xi, r) × BY (yj , r)

}
� ε;

notice that, thanks to the continuity of c, the number r is well-defined and strictly positive. By the density of the
sequences and again by the continuity of c, we have⋃

(i,j)∈N2

Ci,j × Di,j = X × Y \ {
(x, y) ∈ X × Y : c(x, y) = +∞};

therefore, recalling that C(γ ) < +∞, we have

γ

(
(X × Y)

∖⋃
i,j

Ci,j × Di,j

)
= 0. (4.1)

We want now to define the sets AI and BI for the finite sequences I , in such a way that the following properties hold:

∀I, sup
{
c(x, y) − c(z,w): (x, y), (z,w) ∈ AI × BI

}
� ε; (4.2)

I � J �⇒ AI ⊇ AJ ; (4.3)

AI ∩ AJ = ∅ unless I � J or J � I ; (4.4)

BI ∩ BJ = ∅ if I < J or J < I ; (4.5)

γ

(
(X × Y)

∖⋃
I

(AI × BI )

)
= 0. (4.6)

Let us start with the sequences of length one: we set A1 := Ci,j and B1 := Di,j , where the pair (i, j) is chosen so
that γ (A1 × B1) is “almost maximal”: this means, γ (A1 × B1) � γ (Cm,n × Dm,n)/2 for any (m,n) ∈ N2. Then, we
proceed by induction: if Am and Bm have been chosen for 1 � m < n, we set

An := Ci,j

∖ n−1⋃
m=1

Am, Bn := Di,j ,

where the pair (i, j) ∈ N2 is again chosen in such a way that γ (An × Bn) is almost maximal. In this way, we have
defined An and Bn for any integer n ∈ N, and by construction we know that Ai ∩ Aj = ∅ whenever i �= j . We also
claim that the sets Ai cover f 0-a.a. X, that is

f 0
(

X
∖⋃

n

An

)
= γ

((
X

∖⋃
n

An

)
× Y

)
= 0 : (4.7)

indeed, if not there would be, thanks to (4.1), a pair (i, j) such that γ ((Ci,j × Di,j ) \ (
⋃

n∈N
An × Y)) = δ > 0; by

construction, this would imply that γ (An × Bn) � δ/2 for any n ∈ N, since otherwise An and Bn would have been
chosen differently. Since the sets An are disjoint by construction, this would give γ (

⋃
n An × Bn) = +∞, and the

absurd yields (4.7).
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Let us consider now the sequences of length 2: first we introduce the measure

γ1 := γ

(
(X × Y)

∖(⋃
n

An × Bn

))
;

then, for any m ∈ N we define

Am,1 := Ci,j ∩ Am, Bm,1 := Di,j\Bm

where, as before, the pair (i, j) is chosen almost maximizing γ1(Am,1 × Bm,1). Again by induction we set also,
choosing (i, j) to maximize γ1(Am,n × Bm,n),

Am,n := (Ci,j ∩ Am)
∖ n−1⋃

i=1

Am,i, Bm,n := Di,j\Bm,

so that Am,n ⊆ Am and Bm,n ∩ Bm = ∅. In this way we define all the sets Am,n and Bm,n, and the property (4.7) can
be generalized as

π1γ1

(
X

∖⋃
m,n

Am,n

)
= 0 : (4.8)

indeed, as before, otherwise there would be by (4.1) – recall that γ1 � γ – a pair (i, j) such that γ1((Ci,j\⋃
m,n Am,n)×

Di,j ) > 0. By (4.7), we would infer the existence of some m̂ ∈ N such that γ1((Ci,j ∩ Am̂\⋃
m,n Am,n) × Di,j ) =

δ > 0. Recall that, by definition of γ1, γ1(Am̂ × Bm̂) = 0, therefore for any n ∈ N one has

γ1

((
(Ci,j ∩ Am̂)

∖ n−1⋃
i=1

Am̂,i

)
× (Di,j\Bm̂)

)
� δ :

this implies, by the definition of Am,n and Bm,n, that γ1(Am̂,n ×Bm̂,n) � δ/2 for any n ∈ N. As before, since the Am̂,n

are, varying n, disjoint sets, this would imply ‖γ1‖ = +∞ and the absurd shows (4.8).
Iterating the same procedure, we can define the measures

γp := γ

(
(X × Y)

∖( ⋃
I : l(I )�p

AI × BI

))
(4.9)

and the sets

A(I,n) := (Ci,j ∩ AI )
∖ n−1⋃

i=1

A(I,i), B(I,n) := Di,j\BI

almost maximizing γl(I )(A(I,n) × B(I,n)), and it is shown exactly as before that

π1γp−1

(
X

∖ ⋃
l(I )=p

AI

)
= 0. (4.10)

We have now to check the validity of (4.2)–(4.6): (4.2)–(4.5) are obvious from the construction; concerning (4.6), if it
were not true then there would exist (i, j) such that γ (Λ) = δ > 0, where

Λ := (Ci,j × Di,j )
∖(⋃

I

AI × BI

)
,

using again (4.1). For any p ∈ N and any I with l(I ) = p, call now

δI := γ
(
Λ ∩ (AI × Y)

) = γp−1
(
Λ ∩ (AI × Y)

);
thanks to (4.10), we have then

∑
l(I )=p δI = δ. Arguing as before, it is clear that γp(A(I,1) × B(I,1)) � δI /2 for any

I ∈ Np , so that a fortiori

γp

( ⋃
J∈Np+1

AJ × BJ

)
� δ/2.

Since γp � γ ∀p and recalling (4.9), this would give the absurd ‖γ ‖ = +∞: hence, also (4.6) is shown.
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We conclude now this first step by giving the following definitions:

MI := f 0(AI ), mI := γ (AI × BI ); (4.11)

it is clear that for any finite sequence I one has mI � MI ; more precisely, one has that

MI �
∑

{mJ : J � I } (in particular, MI =
∑

{mJ : J � I } if l(I ) = 1), (4.12)∑
I

mI = ‖γ ‖. (4.13)

These two properties follow immediately by the following easy but remarkable consequence of (4.4) and (4.5):

AI × BI ∩ AJ × BJ = ∅ ∀I �= J finite sequences. (4.14)

Step II. Definition of the sets XI .
In this second step we want to define sets XI , essentially disjoint w.r.t. f 0, with the property that XI ⊆ AI and that

f 0(XI ) = mI .
To do that, we will define sets X

p
I for any finite sequence I and for any p � l(I ), and each set XI will be found as

the limit of the sequence {Xp
I } as p goes to ∞. More precisely, we will define arbitrarily the set X

l(I)
I ⊆ AI , we will

build sets X
s,+
I and X

s,−
I for s � l(I ), and we will take as inductive definition for X

p
I with any p > l(I ) the following:

X
p+1
I := X

p
I ∪ X

p,+
I \Xp,−

I ; (4.15)

in words, the sequence of sets X
p
I is obtained adding the sets X

s,+
I and subtracting the sets X

s,−
I . The sets X

p
I and the

sets X
s,±
I will satisfy the following number of properties (the choice of the index p + 1 instead of p in some of the

equations below may seem a bit odd at first glance, but this will be needed to show them in the same induction step).

For any p � 0, the sets X
p+1
I with l(I ) � p + 1 are disjoint w.r.t. f 0; (4.16)

for any 1 � l(I ) � p + 1, X
p+1
I ⊆ AI ; (4.17)

for any 1 � l(I ) � p + 1, f 0(Xp+1
I

) = mI ; (4.18)

for any 1 � l(I ) � p, X
p,+
I ∩ X

p
I = ∅, while X

p,−
I ⊆ X

p
I ; (4.19)

for any 1 � l(I ) � p, f 0(X
p,+
I ) = f 0(Xp,−

I

); (4.20)

for any 1 � l(I ) � p, f 0(Xp,−
I

)
�

∑
l(J )=p+1

mJ . (4.21)

We leave to the next step the proof that it is possible to choice sets X
p
I , X

s,±
I in such a way; now, we only show that

once fulfilled these properties we can obtain the sets XI as claimed in the beginning of this step.
Consider any fixed finite sequence I , and the sequence

{
X

p
I

}
with p � l(I ); it is a sequence of sets, each of them

with measure mI according with (4.18): notice that, in fact, the property (4.18) is a straightforward consequence of the
definition (4.15) together with (4.19) and (4.20). It is clear from the construction that the sequence X

p
I converges to

some set (in the sense of the measure f 0) if the sequence σm := ∑+∞
p=m f 0(X

p,−
I ) converges to 0 when m goes to ∞.

Write now λp := ∑
l(I )=p mI : from the property (4.14) one obtains, directly from the definitions (4.9) and (4.11), that

λp = ‖γp − γp−1‖. Therefore, by (4.21) we have

σm �
+∞∑
p=m

λp+1 =
+∞∑
p=m

‖γp+1 − γp‖ = ‖γm‖:

indeed, {γp} is a decreasing sequence of measures by (4.9), and it strongly converges to 0 thanks to (4.6). It follows
that σm converges to 0, and then that the sequence {Xp

I } converge in the sense of the measure f 0 to a set, that we
denote by XI . The fact that the different sets XI are disjoint and that each XI is contained in the corresponding set
AI and has mass mI is clear from (4.16), (4.17) and (4.18), so this step is concluded.
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Step III. Construction of sets fulfilling (4.16)–(4.21).
This step is devoted to build the sets X

p
I and X

s,±
I fulfilling the requirements (4.16)–(4.21); we will do it via an

inductive construction on p.
The starting case p = 0 is trivial, since we have only to take care of (4.16), (4.17) and (4.18). To do that, it suffices to

choose arbitrarily for any i ∈ N a set X1
i ⊆ Ai with f 0(Xi) = mi : this is possible since f 0(Ai) = Mi � mi by (4.12),

and in this way the three properties are clearly satisfied.
Before to face the induction in the general case, we briefly show the particular case p = 1, to help the reader to

understand the construction. First of all, we choose arbitrarily, for i, j ∈ N, sets X2
i,j ⊆ Ai,j with mass f 0(X2

i,j ) =
mi,j : this is possible, as before, because f 0(Ai,j ) = Mi,j � mi,j by (4.12). Now, we have to define the sets X2

i ; in
order to make the sets disjoint, we subtract to X1

i the part now occupied by the sets X2
i,j : more precisely, we set

X
1,−
i := X1

i ∩
( ⋃

j∈N

X2
i,j

)
.

Notice that we do not need to subtract from X1
i the sets X2

m,j with m �= i, in view of (4.4). To complete the case

p = 1, we need to define suitable sets X
1,+
i – and apply the definition (4.15). Notice that if we can define a set

X
1,+
i ⊆ Ai with f 0(X

1,+
i ) = f 0(X

1,−
i ) not intersecting X1

i nor any of the X2
i,j , then all the properties (4.16)–(4.21)

are trivially satisfied. And this is possible if “there is enough space”, that is, if f 0(Ai) �
∑

j f 0(X2
i,j ) + mi : but this

means Mi � mi + ∑
j mi,j , that is true thanks to (4.12).

Now, we consider the induction in the general case: take n � 1 and assume by hypothesis that the sets X
l(I)
I for

1 � l(I ) � n + 1 and the sets X
p,±
I for 1 � l(I ) � p � n have been chosen in such a way that the properties (4.16)–

(4.21) hold for any 0 � p � n. Then, we need to define Xn+2
I for the sequences I of length l(I ) = n + 2 and X

n+1,±
I

for the sequences I of length l(I ) � n + 1 fulfilling the properties (4.16)–(4.21) with p = n + 1. First of all, for any
sequence I of length n+ 2 choose arbitrarily Xn+2

I ⊆ AI with mass f 0(Xn+2
I ) = mI . Then, to define the sets X

n+1,±
I

for the sequences I of length at most n + 1, we argue recursively backward: we start from the sequences of length
s = n + 1 and we go back to those of length s = 1.

Let us do that taking care only that (4.17), (4.20) and the property

X
n+1,+
I ∩

(
Xn+1

I ∪
⋃{

Xn+2
J : l(I ) < l(J ) � n + 2

}) = ∅ (4.22)

hold, and taking as definition for X
n+1,−
I the following

X
n+1,−
I := Xn+1

I ∩
⋃{

Xn+2
J : l(I ) < l(J ) � n + 2

}
. (4.23)

Notice that, since we start from the sequences of length s = n + 1 and we go back till s = 1, the definition above
makes sense: indeed, when one defines X

n+1,±
I he has already set Xn+2

J for l(J ) > l(I ).

Assume then that we have already defined X
n+1,±
J for any J with n + 1 � l(J ) > s and a given 1 � s � n + 1, in

such a way that (4.17), (4.20) and (4.22) hold with p = n + 1; so, take any sequence I of length l(I ) = s, use (4.23)
as definition for X

n+1,−
I , and consider the problem to define X

n+1,+
I fulfilling (4.17), (4.20) and (4.22). This would

mean to select a subset of AI of f 0-measure equal to f 0(X
n+1,−
I ) and non-intersecting Xn+1

I nor any of the Xn+2
J

with l(I ) < l(J ) � n + 2; this is clearly possible if (and only if) “there is enough space”, i.e., if

f 0
(
AI

∖(
Xn+1

I ∪
⋃{

Xn+2
J : l(I ) < l(J ) � n + 2

}))
� f 0(Xn+1,−

I

)
. (4.24)

Since by hypothesis we know the validity of (4.17) for l(J ) > l(I ) and by (4.4), AI ∩ Xn+2
J = ∅ for each J with

l(J ) > l(I ) and J �� I ; moreover we already have that f 0(Xn+2
J ) � mJ : indeed, this is true by construction if l(J ) =

n + 2, while otherwise it is true by (4.15) and (4.20), recalling that f 0(Xn+1
J ) = mJ because (4.18) is assumed by

induction in the case p = n. Therefore, keeping in mind the definition (4.23), we have that

f 0
(
AI

∖(
Xn+1

I ∪
⋃{

Xn+2
J : l(I ) < l(J ) � n + 2

}))
� MI −

(∑{
mJ : J � I, l(J ) � n + 2

} − f 0(Xn+1,−))
.
I
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Hence, the validity of the sufficient condition (4.24) is directly given by (4.12), and then our recursive construction
works (notice also that the different finite sequences of the same length do not interact with each other, since the
different sets AI with fixed length l(I ) are disjoint). Therefore, we have defined all the sets X

n+1,±
I with 1 � l(I ) �

n + 1 and the properties (4.17), (4.20) and (4.22) hold.
To finish the induction and then conclude this step, we have therefore only to check the validity of (4.16), (4.18),

(4.19) and (4.21). First, we notice that the property (4.18) is clear by (4.15), (4.20) and (4.22), while the property (4.19)
is given by (4.22) and (4.23).

Concerning (4.16), if I �= J and l(I ) = l(J ) then the disjointness of Xn+2
I and Xn+2

J is immediate by (4.17)
and (4.4); otherwise, we can assume l(I ) < l(J ) and then the disjointness follows immediately by the definition (4.23)
and the property (4.22).

Finally, concerning (4.21), rewrite (4.23) as

X
n+1,−
I = Xn+1

I ∩
( ⋃

l(J )=n+2

Xn+2
J ∪

⋃
l(I )<l(J )<n+2

Xn+2
J

)
; (4.25)

then recall by (4.15) that, whenever l(J ) < n + 2, one has Xn+2
J = Xn+1

J ∪ X
n+1,+
J \Xn+1,−

J ; on the other hand, each

X
n+1,−
J is contained in⋃

l(J )=n+2

Xn+2
J ∪

⋃
l(J )<l(K)<n+2

X
n+1,+
K ,

and then (4.25) can be rewritten as

X
n+1,−
I = Xn+1

I ∩
( ⋃

l(J )=n+2

Xn+2
J ∪

⋃
l(I )<l(J )<n+2

Xn+1
J ∪

⋃
l(I )<l(J )<n+2

X
n+1,+
J

)
.

Since (4.16) is already known for p = n, it is Xn+1
I ∩ Xn+1

J = ∅ for I �= J , then we can also write

X
n+1,−
I = Xn+1

I ∩
( ⋃

l(J )=n+2

Xn+2
J ∪

⋃
l(I )<l(J )<n+2

X
n+1,+
J

)
.

Moreover, the intersection between Xn+1
I and each X

n+1,−
J with l(I ) < l(J ) < n + 2 is empty since Xn+1

I does not

intersect Xn+1
J which contains X

n+1,−
J . Then we can further change (4.25) writing

X
n+1,−
I = Xn+1

I ∩
( ⋃

l(J )=n+2

Xn+2
J ∪

⋃
l(I )<l(J )<n+2

X
n+1,+
J

∖ ⋃
l(I )<l(J )<n+2

X
n+1,−
J

)
= Xn+1

I ∩ (A ∪ B\C) = Xn+1
I ∩ D.

We conclude noticing that A and B are disjoint sets by the property (4.22), while C is contained in A ∪ B by (4.23),
thus f 0(D) = f 0(A) + f 0(B) − f 0(C). Finally, f 0(B) = f 0(C) thanks to (4.20) and since both B and C are union
of disjoint sets by construction; keeping in mind (4.18), we have

f 0(Xn+1,−
I

)
� f 0(D) = f 0(A) =

∑
l(J )=n+2

mJ ,

thus the validity of (4.21) holds and this step is concluded.
Step IV. Conclusion.
In this last step we show how the sets XI defined in the second step can be used to get the thesis. First of all we

write γI := γ (AI × BI ), so that by (4.14) and (4.6) it is γ = ∑
I γI ; then we define the measure

γ̃I := f 0 XI � π2γI .

This definition makes sense since ‖π2γI‖Y = ‖γI‖X×Y = mI = f 0(XI ), therefore γ̃I is a transport plan between
f 0 XI and π2γI ; on the other hand, γI is a transport plan between π1γI and π2γI . Keeping in mind that ‖γ̃I‖ =
‖γI‖ = mI , that both the measures are concentrated in AI × BI , and (4.2), one immediately gets∣∣C(γ̃I ) − C(γI )

∣∣ � mIε. (4.26)
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We apply now Theorem A to the marginals of γ̃I , obtaining a transport map tI from f 0 XI to π2γI having cost
C(tI ) � C(γ̃I ). Since the different sets XI are essentially disjoint w.r.t. f 0, we can glue the maps tI to get a map t ;
recalling now (4.13) to make sure that ∪XI is of full f 0-measure, it follows that t is a transport map from f 0 to∑

I π2γI = π2
∑

I γI = π2γ = f 1, thus a transport map for the original problem. By (4.26), the linearity of the cost
and (4.13) again, we derive

C(t) =
∑
I

C(tI ) �
∑
I

C(γ̃I ) �
∑
I

C(γI ) + mIε = C(γ ) + ε‖γ ‖:

such a transport map is what we needed to find, so the proof is complete. �
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