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In our paper in Ann. I. H. Poincaré – PR 41 (2005) 1101–1123, there is a mistake in the proof of the key Proposi-
tion 4.10: the use of dominated convergence on page 1112, line 5 from the bottom, is not justified since the dominating
terms also vary when passing to the limit. Here is a correct proof that the error term R(d1,d2) of (4.11) tends to 0 when
d1 is arbitrary (fixed) and d2 → ∞. (See Fig. 5 on page 1111 for a quick understanding of the involved quantities.)

Proof of Proposition 4.10. Applying (3.1) to the projection π1 gives G1(x1, y1) = ∑
w2∈H(y2)

G(x, y1w2).
Let w2 ∈ H(y2), where H(y2) is the horocycle of y2 in Tr . We write v2 = v(w2) for the unique element in H(x2)

that satisfies v2 � w2. By Lemma 4.4, the random walk has to pass through some point of the form in {u1v2: u1 ∈
H(x1)} on the way from x to y1w2, and it also has to pass through some point in {c1u2: u2 ∈ Tr , h(u2) = −h(c1)}.
Therefore, the stopping time t = min{t1(c1), t2(v(w2))} is a.s. finite, and the random walk passes through Zt before
reaching y1w2. We obtain the decomposition (modified with respect to the old one)

G(x,y1w2) = Ex

(
G(Zt, y1w2)

)
= Ex

(
1[t2(v2)<t1(c1)]G(Zt2(v2), y1w2)

) + Ex

(
1[t1(c1)<t2(v2)]G(Zt1(c1), y1w2)

)
.

Now, if starting at x, we have t2(v2) < t1(c1), then Zt2(v2) = u1v2 for some random u1 ∈ H(x1) that must sat-
isfy u(u1, y1) = u1 and d(u1, y1) = d1, since c1 cannot lie on x1 u1. But we also have u(v2,w2) = u2 = 0 and
d(v2,w2) = d2. That is, the points u1v2 and y1w2 have the same relative position as the points x and y, and therefore
G(u1v2, y1w2) = G(x,y) by Lemma 4.3. We get

Ex

(
1[t2(v2)<t1(c1)]G(Zt2(v2), y1w2)

) = Prx
[
t2(v2) < t1(c1)

]
G(x,y).

Now, given v2 ∈ H(x2), there are precisely rd2 elements w2 ∈ H(y2) with v(w2) = v2. Combining all these observa-
tions,

G1(x1, y1) =
( ∑

v2∈H(x2)

Prx
[
t2(v2) < t1(c1)

])
rd2G(x,y) + R(d1,d2),
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where

R(d1,d2) =
∑

w2∈H(y2)

Ex

(
1[t1(c1)<t2(v(w2))]G(Zt1(c1), y1w2)

)
.

Let us first consider the error term.

R(d1,d2) = Ex

( ∑
w2∈H(y2)

1[t1(c1)<t2(v(w2))]G
(
c1Z

2
t1(c1)

, y1w2
))

� Ex

( ∑
w2∈H(y2): d(w2,Z

2
t1(c1)

)�d1+2d2

G
(
c1Z

2
t1(c1)

, y1w2
))

,

since t1(c1) < t2(v(w2)) implies that d(w2,Z
2
t1(c1)

) � d1 + 2d2 for the distance in Tr (look at Fig. 5!). Now observe
that by Lemma 4.3, for any k � 0, the sum∑

w2∈H(y2): d(w2,z2)�k

G(c1z2, y1w2)

depends only on d1 and k, and not on the specific choice of z2 ∈ Tr with h(z2) = −h(c1). Therefore, choosing one
such z2, we get

R(d1,d2) �
∑

w2∈H(y2): d(w2,z2)�d1+2d2

G(c1z2, y1w2).

Since d1 is fixed, we can (again by Lemma 4.3) consider y1 and c1 as fixed points in Tq and move x1 when d2 → ∞.
But then the last sum is a remainder of the series∑

w2∈H(y2)

G(c1z2, y1w2) = G1(c1, y1) < ∞.

Therefore R(d1,d2) → 0 for fixed d1, as d2 → ∞.
The rest of the proof remains unchanged. �
We remark here that a posteriori, R(d1,d2) → 0 uniformly in d1, as d2 → ∞. Indeed, when d1 is large then

R(d1,d2) � G1(c1, y1) is small by formula (3.5).


