

Ann. I. H. Poincaré - PR 42 (2006) 773-774

www.elsevier.com/locate/anihpb

Erratum

Erratum to: "Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs" [Ann. I. H. Poincaré – PR 41 (2005) 1101–1123] [★]

Sara Brofferio a, Wolfgang Woess b,*

^a Laboratoire de Mathématiques, Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France ^b Institut für Mathematische Strukturtheorie, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria

Available online 29 September 2006

In our paper in Ann. I. H. Poincaré – PR 41 (2005) 1101–1123, there is a mistake in the proof of the key Proposition 4.10: the use of dominated convergence on page 1112, line 5 from the bottom, is not justified since the dominating terms also vary when passing to the limit. Here is a correct proof that the error term $R(\mathfrak{d}_1, \mathfrak{d}_2)$ of (4.11) tends to 0 when \mathfrak{d}_1 is arbitrary (fixed) and $\mathfrak{d}_2 \to \infty$. (See Fig. 5 on page 1111 for a quick understanding of the involved quantities.)

Proof of Proposition 4.10. Applying (3.1) to the projection π_1 gives $G_1(x_1, y_1) = \sum_{w_2 \in H(y_2)} G(x, y_1 w_2)$.

Let $w_2 \in H(y_2)$, where $H(y_2)$ is the horocycle of y_2 in \mathbb{T}_r . We write $v_2 = v(w_2)$ for the unique element in $H(x_2)$ that satisfies $v_2 \preceq w_2$. By Lemma 4.4, the random walk has to pass through some point of the form in $\{u_1v_2: u_1 \in H(x_1)\}$ on the way from x to y_1w_2 , and it also has to pass through some point in $\{c_1u_2: u_2 \in \mathbb{T}_r, \ \mathfrak{h}(u_2) = -\mathfrak{h}(c_1)\}$. Therefore, the stopping time $\mathbf{t} = \min\{\mathbf{t}_1(c_1), \mathbf{t}_2(v(w_2))\}$ is a.s. finite, and the random walk passes through $Z_{\mathbf{t}}$ before reaching y_1w_2 . We obtain the decomposition (modified with respect to the old one)

$$\begin{split} G(x, y_1 w_2) &= \mathsf{E}_x \big(G(Z_{\mathbf{t}}, y_1 w_2) \big) \\ &= \mathsf{E}_x \big(\mathbf{1}_{[\mathbf{t}_2(v_2) < \mathbf{t}_1(c_1)]} G(Z_{\mathbf{t}_2(v_2)}, y_1 w_2) \big) + \mathsf{E}_x \big(\mathbf{1}_{[\mathbf{t}_1(c_1) < \mathbf{t}_2(v_2)]} G(Z_{\mathbf{t}_1(c_1)}, y_1 w_2) \big). \end{split}$$

Now, if starting at x, we have $\mathbf{t}_2(v_2) < \mathbf{t}_1(c_1)$, then $Z_{\mathbf{t}_2(v_2)} = u_1v_2$ for some random $u_1 \in H(x_1)$ that must satisfy $\mathfrak{u}(u_1, y_1) = \mathfrak{u}_1$ and $\mathfrak{d}(u_1, y_1) = \mathfrak{d}_1$, since c_1 cannot lie on $\overline{x_1u_1}$. But we also have $\mathfrak{u}(v_2, w_2) = \mathfrak{u}_2 = 0$ and $\mathfrak{d}(v_2, w_2) = \mathfrak{d}_2$. That is, the points u_1v_2 and y_1w_2 have the same relative position as the points x and y, and therefore $G(u_1v_2, y_1w_2) = G(x, y)$ by Lemma 4.3. We get

$$\mathsf{E}_x \big(\mathbf{1}_{[\mathbf{t}_2(v_2) < \mathbf{t}_1(c_1)]} G(Z_{\mathbf{t}_2(v_2)}, y_1 w_2) \big) = \mathsf{Pr}_x \big[\mathbf{t}_2(v_2) < \mathbf{t}_1(c_1) \big] G(x, y).$$

Now, given $v_2 \in H(x_2)$, there are precisely $r^{\mathfrak{d}_2}$ elements $w_2 \in H(y_2)$ with $v(w_2) = v_2$. Combining all these observations,

$$G_1(x_1, y_1) = \left(\sum_{v_2 \in H(x_2)} \Pr_x \left[\mathbf{t}_2(v_2) < \mathbf{t}_1(c_1) \right] \right) r^{\mathfrak{d}_2} G(x, y) + R(\mathfrak{d}_1, \mathfrak{d}_2),$$

E-mail address: woess@weyl.math.tu-graz.ac.at (W. Woess).

[☆] Supported by European Commission, Marie Curie Fellowship HPMF-CT-2002-02137 and partially by FWF (Austrian Science Fund) project P15577

DOI of original article: 10.1016/j.anihpb.2004.12.004.

Corresponding author.

where

$$R(\mathfrak{d}_1,\mathfrak{d}_2) = \sum_{w_2 \in H(y_2)} \mathsf{E}_x \big(\mathbf{1}_{[\mathbf{t}_1(c_1) < \mathbf{t}_2(v(w_2))]} G(Z_{\mathbf{t}_1(c_1)}, y_1 w_2) \big).$$

Let us first consider the error term.

$$R(\mathfrak{d}_{1},\mathfrak{d}_{2}) = \mathsf{E}_{x} \left(\sum_{w_{2} \in H(y_{2})} \mathbf{1}_{[\mathbf{t}_{1}(c_{1}) < \mathbf{t}_{2}(v(w_{2}))]} G(c_{1} Z_{\mathbf{t}_{1}(c_{1})}^{2}, y_{1} w_{2}) \right)$$

$$\leqslant \mathsf{E}_{x} \left(\sum_{w_{2} \in H(y_{2}): d(w_{2}, Z_{\mathbf{t}_{1}(c_{1})}^{2}) \geqslant \mathfrak{d}_{1} + 2\mathfrak{d}_{2}} G(c_{1} Z_{\mathbf{t}_{1}(c_{1})}^{2}, y_{1} w_{2}) \right),$$

since $\mathbf{t}_1(c_1) < \mathbf{t}_2(v(w_2))$ implies that $d(w_2, Z_{\mathbf{t}_1(c_1)}^2) \ge \mathfrak{d}_1 + 2\mathfrak{d}_2$ for the distance in \mathbb{T}_r (look at Fig. 5!). Now observe that by Lemma 4.3, for any $k \ge 0$, the sum

$$\sum_{w_2 \in H(y_2): \ d(w_2, z_2) \geqslant k} G(c_1 z_2, y_1 w_2)$$

depends only on \mathfrak{d}_1 and k, and not on the specific choice of $z_2 \in \mathbb{T}_r$ with $\mathfrak{h}(z_2) = -\mathfrak{h}(c_1)$. Therefore, choosing one such z_2 , we get

$$R(\mathfrak{d}_1,\mathfrak{d}_2) \leqslant \sum_{w_2 \in H(y_2): \ d(w_2,z_2) \geqslant \mathfrak{d}_1 + 2\mathfrak{d}_2} G(c_1z_2,y_1w_2).$$

Since \mathfrak{d}_1 is fixed, we can (again by Lemma 4.3) consider y_1 and c_1 as fixed points in \mathbb{T}_q and move x_1 when $\mathfrak{d}_2 \to \infty$. But then the last sum is a remainder of the series

$$\sum_{w_2 \in H(y_2)} G(c_1 z_2, y_1 w_2) = G_1(c_1, y_1) < \infty.$$

Therefore $R(\mathfrak{d}_1,\mathfrak{d}_2) \to 0$ for fixed \mathfrak{d}_1 , as $\mathfrak{d}_2 \to \infty$.

The rest of the proof remains unchanged. \Box

We remark here that *a posteriori*, $R(\mathfrak{d}_1, \mathfrak{d}_2) \to 0$ uniformly in \mathfrak{d}_1 , as $\mathfrak{d}_2 \to \infty$. Indeed, when \mathfrak{d}_1 is large then $R(\mathfrak{d}_1, \mathfrak{d}_2) \leqslant G_1(c_1, y_1)$ is small by formula (3.5).