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A superprocess involving both branching and coalescing
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Abstract

We consider a superprocess with coalescing Brownian spatial motion. We first point out a dual relationship between two sys-
tems of coalescing Brownian motions. In consequence we can express the Laplace functionals for the superprocess in terms of
coalescing Brownian motions, which allows us to obtain some explicit results. We also point out several connections between such
a superprocess and the Arratia flow. A more general model is discussed at the end of this paper.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons un super-processus avec mouvement Brownien spatial coalescent. Nous soulignons d’abord une relation de
dualité entre deux systèmes de mouvements Browniens coalescents. Il en résulte une expression des fonctionnelles de Laplace pour
ces super-processus en termes de mouvements Browniens coalescents, ce qui nous permet d’obtenir certains résultats explicites.
Nous soulignons aussi plusieurs relations entre un tel super-processus et le flot d’Arratia. Un modèle plus général est discuté en
conclusion d’article.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we mainly consider the following branching–coalescing particle system which can be described
intuitively as follows. A collection of particles with masses execute coalescing Brownian motions. Meanwhile the
masses for these particles evolve according to independent Feller’s branching diffusions. Upon coalescing the two
particles involved merge together to one particle where the mass of the new particle is the sum of the masses of the
coalesced particles.

The above-mentioned particle system can be described using a measure-valued process Z. More precisely, the
support of Zt represents the locations of the particles at time t , and the measure Zt assigned to each point in its support
stands for the mass of the corresponding particle. This process Z, which we call the superprocess with coalescing
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Brownian spatial motion (SCSM), was first introduced in [5]. It arises as a scaling limit of another measure-valued
process, which was referred to in [4] as the superprocess with dependent spatial motion (SDSM). SDSM arises as a
high density limit of a critical branching particle system in which the motion of each particle is subjected to both an
independent Brownian motion and a common white noise applied to all the particles. More precisely, the movement
of the ith particle is governed by equation

dxi(t) = σ
(
xi(t)
)

dBi(t) +
∫
R

h
(
y − xi(t)

)
W(dy,dt),

where (Bi) is a collection of independent Brownian motions which is independent of the white noise W ; see [4].
A similar model was also studied in [14].

It was shown in Theorem 4.2 of [5] that, after appropriate time-space scaling, SDSM converges weakly to SCSM.
A functional dual for SCSM was given in Theorem 3.4 of [5]. In addition, using coalescing Brownian motions and
excursions for Feller’s branching diffusion, a construction of SCSM was found in [5], an idea that initially came
from [3]. In this paper we always denote such a SCSM as Z.

One of the most interesting problems in the study of a measure-valued process is to recover a certain duality relation
concerning the measure-valued process. Such a dual relationship often leads to the uniqueness of the measure-valued
process; see [12] for some classical examples on super Brownian motion and related processes. It is not hard to
show the existence of Z as a high density limit of the branching–coalescing particle systems. The main goal of this
paper is to propose a new way of characterizing the measure-valued process Z via duality, in which the self-duality for
coalescing Brownian motions plays a key role. To this end, we first point out a rather general duality on two coalescing
Brownian motions running in the opposite directions. With this duality we can express certain Laplace functionals for
Z in terms of systems of coalescing Brownian motions.

We could carry out some explicit computation thanks to the above-mentioned duality. In particular, we first show
that, starting with a possibly diffuse initial finite measure Z0, Zt collapses into a discrete measure with a finite support
as soon as t > 0. Then we can identify Zt interchangeably with a finite collection of spatially distributed particles
with masses. When there is such a particle at a fixed location, we obtain the Laplace transform of its mass. The total
number of particles in Zt decreases in t due to both branching and coalescing. When there is only one particle left at
time t , we can recover the joint distribution of its location and its mass. Eventually, all the particles will die out. We
further find the distribution of the location where the last particle disappears. Coincidentally, super Brownian motion
shares the same near extinction behavior.

Connections between superprocesses and stochastic flows have been noticed before. For instance, in [11] a super-
process was obtained from the empirical measure of a coalescing flow. Arratia flow serves as a fundamental example
of a coalescing flow. In this paper we point out several connections between Z and the Arratia flow. More precisely,
the support of Zt at a fixed time t > 0 can be identified with a Cox process whose intensity measure is determined by
the Arratia flow. A version of Zt can be constructed using the Arratia flow. The general Laplace functional for Z can
also be expressed in terms of the Arratia flow.

Replacing the Feller’s branching diffusion by the square of the Bessel process (BESQ) to incorporate immigration,
we introduce and discuss a more general model at the end of this paper. Since dimension is a parameter for BESQ
representing the immigration rate, in addition to the measure-valued process for the mass, in the modified model we
introduce another measure-valued process to describe the dimension. The simultaneous mass-dimension evolution of
such a model can also be characterized by coalescing Brownian motions.

The rest of this paper is arranged as follows. As a preliminary, we first state and prove a duality relation on coalesc-
ing Brownian motions in Section 2. In Section 3, we define the process Z as a weak limit of the empirical measures for
the branching–coalescing particle systems. Then we proceed to prove the duality between Z and coalescing Brownian
motions. The uniqueness of Z follows from such a duality immediately. We continue to study several properties of
this process in Section 4. We further discuss the connections between the Arratia flow and Z in Section 5. At the end
of this paper, we propose a more general model and establish its duality in Section 6.

2. Coalescing Brownian motions and their duality

An m-dimensional coalescing Brownian motion can be described as follows. Consider a system of m indexed par-
ticles with locations in R that evolves as follows. Each particle moves according to an independent standard Brownian
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motion on R until two particles are at the same location. At this moment a coalescence event occurs and the particle
of higher index starts to move together with the particle of lower index. We say the particle with higher index is at-
tached to the particle with lower index, which is still free. The particle system then continues its evolution in the same
fashion. Note that indices are not essential here, the collection of locations of the particles is Markovian in its own
right, but it will be convenient to think of the process as taking values in R

m rather than subsets of R with at most m

elements. For definiteness, throughout this section we will further assume that the particles are indexed in increasing
order of their initial positions: it is clear that the dynamics preserve this ordering. Call the resulting Markov process
X = (X1, . . . ,Xm).

Write 1{B}(·) for the indicator function of a set B . The distribution of X(t) is uniquely specified by knowing for
each choice of y1 < y2 < · · · < yn the joint probabilities of which “balls” X1(t),X2(t), . . . ,Xm(t) lie in which of the
“boxes” ]y1, y2], ]y2, y3], . . . , ]yn−1, yn]. That is, the distribution of X(t) is determined by the joint distribution of the
indicators

I→
ij (t,y) := 1

{
Xi(t) ∈ ]yj , yj+1]

}
for 1 � i � m, 1 � j � n − 1 and y = (y1, . . . , yn).

Suppose now that Y := (Y1, . . . , Yn) is another coalescing Brownian motion. The distribution of Y(t) is uniquely
specified by knowing for each choice of x1 < x2 < · · · < xn the distribution of the indicators

I←
ij (t,x) := 1

{
xi ∈ ]Yj (t), Yj+1(t)

]}
for 1 � i � m, 1 � j � n − 1 and x = (x1, . . . , xm).

The next “balls-in-boxes” duality is crucial in characterizing the distributions of the measure-valued processes
considered in this paper.

Theorem 2.1. Suppose in the notation above that X = (X1, . . . ,Xm) is an m-dimensional coalescing Brownian motion
and Y = (Y1, . . . , Yn) is an n-dimensional coalescing Brownian motion. Then for each t � 0 the joint distribution of
the m× (n− 1)-dimensional random array (I→

ij (t,Y(0))) coincides with that of the m× (n− 1)-dimensional random
array (I←

ij (t,X(0))).

Theorem 2.1 can be seen from Theorem 8 of [15], which concerns a more elaborate duality on a system of Brownian
motions. In such a system, some Brownian motions run forwards in time, and the others run backwards in time. Those
Brownian motions running in the same direction coalesce whenever they meet, and those running in the opposite
direction reflect on each other. Theorem 8 of [15] shows that the order of coalescing and reflecting does not change
the joint distribution of the system. Other dualities on coalescing-reflecting Brownian systems can also be found
in [16].

In this paper we will give a direct proof of the “balls-in-boxes” duality. We first prove the counterpart of Theo-
rem 2.1 for continuous time simple coalescing random walks, which is interesting in its own right. Notice that X is
a coalescing Brownian motion if and only if Xi is a (FX

t )-Brownian motion for each 1 � i � m, and (Xj − Xi)/
√

2
is a (FX

t )-Brownian motion stopped at 0, where (FX
t ) denotes the filtration generated by X. Then Theorem 2.1 fol-

lows from a straight forward martingale argument proof for the convergence of the scaled random walk to Brownian
motion.

For discrete time simple coalescing random walks the “balls-in-boxes” duality is evident from Fig. 7 of [15]. But
the duality seems to be less apparent for continuous time simple coalescing random walks.

A p-simple random walk on Z is a continuous time simple random walk that makes jumps at unit rate, and when
it makes a jump from a certain site it jumps to the right neighbor with probability p and to the left neighbor with
probability 1 − p. An m-dimensional p-simple coalescing random walk is defined in the same way as the coalescing
Brownian motion at the beginning of this section. When p = 1/2 we just call this particle system a simple coalescing
random walk.

Some notation is useful to keep track of the interactions among the particles in the coalescing system. Let Pm

denote the set of interval partitions of the totality of indices Nm := {1, . . . ,m}. That is, an element π of Pm is a
collection π = {A1(π), . . . ,Ah(π)} of disjoint subsets of Nm such that

⋃
i Ai(π) = Nm and a < b for all a ∈ Ai ,

b ∈ Aj , i < j . The sets A1(π), . . . ,Ah(π) consisting of consecutive indices are the intervals of the partition π . The
integer h is the length of π and is denoted by l(π). Equivalently, we can think of Pm as a set of equivalence relations
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on Nm and write i ∼π j if i and j belong to the same interval of π ∈ Pm. Of course, if i ∼π j , then i ∼π k ∼π j for
all i � k � j .

Now we want to introduce the state space for the simple coalescing random walk. Given π ∈ Pm, define

αi(π) := minAi(π)

to be the left-hand end-point of the ith interval Ai(π). Put

Z
m
π := {(x1, . . . , xm) ∈ Z

m: x1 � · · · � xm and xi = xj if i ∼π j
}

and

Ẑ
m
π := {(x1, . . . , xm) ∈ Z

m: x1 � · · · � xm and xi = xj if and only if i ∼π j
}
.

Note that Z
m is the disjoint union of the sets Ẑ

m
π , π ∈ Pm.

Write X = (X1, . . . ,Xm) for the p-simple coalescing random walk. If X(t) ∈ Ẑ
m
π , then the free particles at time t

have indices α1(π), . . . , αl(π)(π) and the ith particle at time t is attached to the free particle with index

min{j : 1 � j � m, j ∼π i} = max
{
αk(π): αk(π) � i

}
.

In order to write down the generator for X, we require a final piece of notation. Let {ek
i : 1 � i � k} be the set of

coordinate vectors in Z
k ; that is, ek

i is the vector that has the ith coordinate 1 and all the other coordinates 0. For
π ∈Pm, define a map Kπ : Zm

π → Z
l(π) by

Kπ(x) = Kπ(x1, . . . , xm) := (xα1(π), . . . , xαl(π)(π)).

Notice that Kπ is a bijection between Z
m
π and {x ∈ Z

l(π): x1 � x2 � · · · � xl(π)}, and we write K−1
π for the inverse

of Kπ . For brevity, we will sometimes write xπ for Kπ(x).
Write B(Zm) for the collection of all bounded functions on Z

m. The generator G for X is the operator G :B(Zm) →
B(Zm) given by

Gf (x) := p

l(π)∑
i=1

f ◦ K−1
π

(
xπ + el(π)

i

)+ (1 − p)

l(π)∑
i=1

f ◦ K−1
π

(
xπ − el(π)

i

)− l(π)f ◦ K−1
π (xπ ),

f ∈ B
(
Z

m
)
, x ∈ Ẑ

m
π , π ∈ Pm.

This expression is well-defined, because if x ∈ Ẑ
m
π , then xπ , xπ + el(π)

i and xπ − el(π)
i are all in {x ∈ Z

l(π): x1 � x2 �
· · · � xl(π)}.

Note. From now on we will suppress the dependence on dimension and write el(π)
i as ei .

Write Z
′ := Z + 1/2 = {i + 1/2: i ∈ Z}. An n-dimensional q-simple coalescing random walk on Z

′n and its
generator H can be defined in the obvious way. Such a process, with q = 1 − p, will serve as the process dual to the
p-simple coalescing random walk on Z

m in the following way.
Fix x ∈ Z

m with x1 � · · · � xm and y ∈ Z
′n with y1 � · · · � yn. Put

I→
ij (t,y) := 1

{
Xi(t) ∈ ]yj , yj+1]

}
and

I←
ij (t,x) := 1

{
xi ∈ ]Yj (t), Yj+1(t)

]}
for 1 � i � m and 1 � j � n − 1.

Lemma 2.2. Suppose in the notation above that X = (X1, . . . ,Xm) is an m-dimensional Z
m-valued p-simple coa-

lescing random walk and Y = (Y1, . . . , Yn) is an n-dimensional Z
′n-valued (1 − p)-simple coalescing random walk.

Then for each t � 0 the joint distribution of the m × (n − 1)-dimensional random array (I→
ij (t,Y(0))) coincides with

that of the m × (n − 1)-dimensional random array (I←(t,X(0))).
ij
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Proof. For a bounded function g : {0,1}m(n−1) → R, a vector x ∈ Z
m with x1 � · · · � xm, and a vector y ∈ Z

′n with
y1 � · · · � yn, set

ḡ(x;y) := g
(
1
{]y1, y2]

}
(x1), . . . ,1

{]yn−1, yn]
}
(x1), . . . ,1

{]y1, y2]
}
(xm), . . . ,1

{]yn−1, yn]
}
(xm)
)
.

We may assume that X and Y are defined on the same probability space (Ω,F ,P). We need to show that

P
[
ḡ
(
X(t);Y(0)

)]= P
[
ḡ
(
X(0);Y(t)

)]
. (2.1)

For x ∈ Z
m, put ḡx(·) := ḡ(x; ·), and for y ∈ Z

′n, put ḡy(·) := ḡ(·;y). In order to establish (2.1), it suffices by a
standard argument (cf. Section 4.4 of [7]) to show that

G(ḡy)(x) = H(ḡx)(y) (2.2)

(recall that G and H are the generators of X and Y, respectively).
Fix x ∈ Ẑ

m
π and y ∈ Ẑ

′n
� for some π ∈Pm and � ∈ Pn. Put

I+ := {i: 1 � i � l(π), xαi(π) + 1/2 = yαj (�) for some 1 � j � l(�)
}

and

I− := {i: 1 � i � l(π), xαi(π) − 1/2 = yαj (�) for some 1 � j � l(�)
}
.

Similarly, put

J− := {j : 1 � j � l(�), yαj (�) − 1/2 = xαi(π) for some 1 � i � l(π)
}

and

J+ := {j : 1 � j � l(�), yαj (�) + 1/2 = xαi(π) for some 1 � i � l(π)
}
.

For each i ∈ I+ there is a unique j ∈ J− such that xαi(π) + 1/2 = yαj (�) and vice versa. Fix such a pair (i, j), we
can verify that

ḡy ◦ K−1
π (xπ + ei ) = ḡx ◦ K−1

π (y� − ej )

by considering all the possible scenarios. In addition, it is easy to see for i′ 	∈ I+ that

ḡy ◦ K−1
π (xπ + ei′) = ḡy ◦ K−1

π (xπ )

and for j ′ /∈ J− that

ḡx ◦ K−1
� (y� − ej ′) = ḡx ◦ K−1

� (y� ).

Similarly, for any i ∈ I− there exists a unique j ∈ J+ such that xαi(π) − 1/2 = yαj (�) and vice versa. For such a
pair (i, j) we have

ḡy ◦ K−1
π (xπ − ei ) = ḡx ◦ K−1

π (y� + ej ).

Furthermore, we see for i′ /∈ I− that

ḡy ◦ K−1
π (xπ − ei′) = ḡy ◦ K−1

π (xπ )

and for j ′ /∈ J+ that

ḡx ◦ K−1
� (y� + ej ′) = ḡx ◦ K−1

� (y� ).

Lastly, note that

ḡy ◦ K−1
π (xπ ) = ḡ(x;y) = ḡx ◦ K−1

� (y� )

and so
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G(ḡy)(x) − H(ḡx)(y) = p
∑
i∈I+

(
ḡy ◦ K−1

π (xπ + ei ) − ḡy ◦ K−1
π (xπ )

)
+ (1 − p)

∑
i∈I−

(
ḡy ◦ K−1

π (xπ − ei ) − ḡy ◦ K−1
π (xπ )

)
− p
∑
j∈J−

(
ḡx ◦ K−1

� (y� − ei ) − ḡx ◦ K−1
� (y� )

)
− (1 − p)

∑
j∈J+

(
ḡx ◦ K−1

� (y� + ei ) − ḡx ◦ K−1
� (y� )

)
= 0,

as required. �
3. Existence and uniqueness

A construction of Z was given in [5] using Feller’s branching excursions. In this paper we adopt a weak conver-
gence approach, which is commonly used in the study of measure-valued processes.

Recall that a nonnegative valued process ξ is a Feller’s branching diffusion with initial value x � 0 if it is the
unique strong solution to the following stochastic differential equation

ξ(t) = x +
t∫

0

√
γ ξ(s)dB(s),

where γ is a positive constant and B is a one-dimensional Brownian motion. (ξ(t))t�0 is a martingale. Its one-
dimensional marginal can be characterized by its Laplace transform

P
[
exp
{−λξ(t)

}]= exp

{
− 2λx

2 + λγ t

}
; (3.1)

its extinction probability is then given by

P
{
ξ(t) = 0

}= exp

{
−2x

γ t

}
;

see Sections II.1 and II.5 of [12].
Observe that independent Feller’s branching diffusions are additive; i.e. if ξ and η are two independent Feller’s

branching diffusions (with the same parameter γ ), then ξ + η is also a Feller’s branching diffusion. This fact will be
used repeatedly in our discussions.

Write MF (R) for the space of finite measures on R equipped with the topology of weak convergence. For any
μ ∈ MF (R) and any real valued function f on R, put

〈μ,f 〉 =
∞∫

−∞
f (x)μ(dx).

Given Z0 ∈ MF (R), put z̄ := Z0(R). For any positive integer m, let (ξ
(m)
1 , . . . , ξ

(m)
m ) be a collection of m in-

dependent Feller’s branching diffusions each with initial value z̄/m. Choose (x1, . . . , xm) to be i.i.d. samples from
distribution Z0/z̄. Let (X

(m)
1 , . . . ,X

(m)
m ) be an m-dimensional coalescing Brownian motion starting at (x1, . . . , xm).

Moreover, we always assume that (ξ
(m)
i ) and (X

(m)
i ) are independent. Let δx denote the point mass at x ∈ R. Then

Z
(m)
t :=

m∑
i=1

ξ
(m)
i (t)δ

X
(m)
i (t)

defines a MF (R)-valued process. From now on we will suppress the dependence of m in both ξ
(m) and X

(m).
i i
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Recall that a collection of processes {Zα,α ∈ I } with sample paths in D(MF (R)) is C-relatively compact if it is
relatively compact and all its weak limits are a.s. continuous. The proof of the next lemma is standard; see, e.g. the
proofs for Lemma 3.2 of [18] and Proposition II.4.2 of [12].

Lemma 3.1. {Z(m)} is C-relatively compact.

Proof. We first check the compact containment condition. For any ε > 0 and T > 0, choose a compact set K0 ⊂ D(R)

such that P{X1 ∈ Kc
0} < ε2. Let K := {xt , xt−: x ∈ K0, t � T }. Then K is compact in R, and

P
{
X1(t) ∈ Kc,∃t � T

}
� P
{
X1 ∈ Kc

0

}
< ε2.

Define

IK := {1 � i � m: Xi(t) ∈ Kc, ∃t � T
}

and put

Nm := #IK =
m∑

i=1

1
{
Xi(t) ∈ Kc, ∃t � T

}
,

where #IK denotes the cardinality of the index set IK .
Conditioning on Nm, by the additivity for Feller’s branching diffusions, we see that

∑
i∈IK

ξi(t) is a Feller’s branch-
ing diffusion with initial value Nmz̄/m. Then by Doob’s maximal inequality,

P

{
sup

0�t�T

∑
i∈IK

ξi(t) > ε

∣∣∣∣Nm

}
� Nmz̄

mε
.

Therefore,

P

{
sup

0�t�T

Z
(m)
t

(
Kc
)
> ε
}

� P

{
sup

0�t�T

∑
i∈IK

ξi(t) > ε

}
� P[Nm]z̄

mε
� z̄ε.

For any f ∈ C2
b(R), we are going to show that {〈Z(m)

. , f 〉} is C-relatively compact in D(R). By Itô’s formula, we
have

〈
Z

(m)
t , f
〉= m∑

i=1

[
z̄

m
f (xi) +

t∫
0

f
(
Xi(s)
)

dξi(s) +
t∫

0

ξi(s)f
′(Xi(s)

)
dXi(s) + 1

2

t∫
0

ξi(s)f
′′(Xi(s)

)
ds

]
.

The additivity for ξi(t) gives that if

P

[
sup

0�s�t

m∑
i=1

ξi(s)

]
< ∞ and P

[
sup

0�s�t

m∑
i,j=1

ξi(s)ξj (s)

]
< ∞, t > 0,

then {∑m
i=1

∫ ·
0 ξi(s)f

′′(Xi(s))ds} is C-relatively compact following from Arzela–Ascoli theorem and Proposi-
tion VI.3.26 of [8].

Note that the quadratic variation〈
m∑

i=1

.∫
0

ξi(s)f
′(Xi(s)

)
dXi(s)

〉
t

=
m∑

i,j=1

t∫
0

ξi(s)ξj (s)f
′(Xi(s)

)
f ′(Xj(s)

)
d〈Xi,Xj 〉s ,

where

〈Xi,Xj 〉s = s − Tij ∧ s and Tij := inf
{
s � 0: Xi(s) = Xj(s)

}
.

By Arzela–Ascoli theorem again, {〈∑m
i=1

∫ .

0 ξi(s)f
′(Xi(s))dXi(s)〉.} is C-relatively compact. Theorem VI.4.13

and Proposition VI.3.26 of [8] then imply that the collection of martingales {∑m
i=1

∫ .

0 ξi(s)f
′(Xi(s))dXi(s)} is

C-relatively compact.
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Similarly, {∑m
i=1

∫ .

0 f (Xi(s))dξi(s)} is also C-relatively compact. Moreover,

1

m

m∑
i=1

f (xi) → 〈Z0, f 〉 a.s.

{〈Z(m)· , f 〉} is thus C-relatively compact. Consequently, by Theorem II.4.1 of [12] we can conclude that {Z(m)· } is
C-relatively compact. �

Write Z for the weak limit of {Z(m)}. The Laplace functional of Z can be obtained from the duality in Theorem 2.1.
As a result, its uniqueness is settled.

In the sequel we always write (Y1, . . . , Y2n) for a coalescing Brownian motion starting at (y1, . . . , y2n) with
y1 � . . . � y2n. Given (ai) and t > 0, put

ht (·) :=
n∑

j=1

aj 1
{]

Y2j−1(t), Y2j (t)
]}

(·). (3.2)

Theorem 3.2.

(i) Any limit point Z of {Z(m)} in C(MF (R)) satisfies the following duality relation: given aj > 0, j = 1, . . . , n, for
any y1 � y2 � · · · � y2n and any t > 0, we have

P
[
exp
{−〈Zt ,h0〉

}]= P

[
exp

{
−
〈
Z0,

2ht

2 + γ tht

〉}]
. (3.3)

(ii) Any limit point Z of {Z(m)} in C(MF (R)) has the Markov property.
(iii) The family {Z(m)} has a unique limit point Z in C(MF (R)).

Proof. We might assume that (Yi) is independent of (ξi). First conditioning on (ξi(t)), by Theorem 2.1 we have

P

[
exp

{
−

m∑
i=1

n∑
j=1

ξi(t)aj 1
{]y2j−1, y2j ]

}(
Xi(t)
)}∣∣∣∣∣(ξi(t)

)]

= P

[
exp

{
−

m∑
i=1

n∑
j=1

ξi(t)aj 1
{]

Y2j−1(t), Y2j (t)
]}

(xi)

}∣∣∣∣∣(ξi(t)
)]

. (3.4)

Now take expectations on both sides of (3.4) and then condition on (xi) and (Yi(t)). Since ξ1(t), . . . , ξm(t) are
independent of each other, and they are independent of (xi) and (Yi(t)), it follows from (3.1) that

P
[
exp
{−〈Z(m)

t , h0
〉}]= P

[
P

[
exp

{
−

m∑
i=1

ξi(t)ht (xi)

}∣∣∣∣∣(xi),
(
Yi(t)
)]]

= P

[
m∏

i=1

exp

{
− 2z̄ht (xi)

m{2 + γ tht (xi)}
}]

= P

[
P

[〈
Z0

z̄
, exp

{
− 2z̄ht

m(2 + γ tht )

}〉m∣∣∣∣(Yi(t)
)]]

= P

[〈
Z0

z̄
, exp

{
− 2z̄ht

m(2 + γ tht )

}〉m]
. (3.5)

Let m → ∞ in (3.5). Then

lim
m→∞ P

[
exp
{−〈Z(m)

t , h0
〉}]= lim

m→∞ P

[(
1 −
〈
Z0,

2ht

m(2 + γ tht )

〉)m]
= P

[
exp

{
−
〈
Z0, exp

{
2ht

}〉}]
.

2 + γ tht
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Let Z be any limit point of {Z(m)}. To prove (3.3) it suffices to show that

P
[
exp
{−〈Zt ,h0〉

}]= lim
m→∞ P

[
exp
{−〈Z(m)

t , h0
〉}]

. (3.6)

To this end we can suppose that y1 < y2 < · · · < y2n. Then for small enough ε > 0, similar to (3.5) we have

P

[
exp

{
−

n∑
j=1

ajZ
(m)
t

(]y2j−1 + ε, y2j − ε])}]− P

[
exp

{
−

n∑
j=1

ajZ
(m)
t

(]y2j−1 − ε, y2j + ε])}]

� 1 − P

[
exp

{
−

n∑
j=1

ajZ
(m)
t

(]y2j−1 − ε, y2j−1 + ε] ∪ ]y2j − ε, y2j + ε])}]

= 1 − P

[〈
Z0

z̄
, exp

{
− 2z̄

∑n
j=1 aj 1{]Y ′

2j−1(t), Y
′′
2j−1(t)] ∪ ]Y ′

2j (t), Y
′′
2j (t)]}

m(2 + γ t
∑n

j=1 aj 1{]Y ′
2j−1(t), Y

′′
2j−1(t)] ∪ ]Y ′

2j (t), Y
′′
2j (t)]})

}〉m]

� 1 − P

{
2n⋂

j=1

{
Y ′

j (t) = Y ′′
j (t)
}}

, (3.7)

where (Y ′
1, Y

′′
1 , . . . , Y ′

2n,Y
′′
2n) is a coalescing Brownian motion starting at (y1 −ε, y1 +ε, . . . , y2n −ε, y2n +ε). Clearly,

the right-hand side of (3.7) converges (uniformly in m) to 0 as ε → 0+. Therefore, (3.6) follows readily.
By the Markov property for (Xi) and (ξi), and arguments similar to (3.5) and (3.6) we can show that, for any

0 � t1 < · · · < tk < t and any nonnegative bounded continuous functions (fi), we have

P

[
exp

{
−

k∑
i=1

〈Zti , fi〉 − 〈Zt ,h0〉
}]

= lim
m→∞ P

[
exp

{
−

k∑
i=1

〈
Z

(m)
ti

, fi

〉− 〈Z(m)
t , h0

〉}]

= lim
m→∞ P

[
exp

{
−

k∑
i=1

〈
Z

(m)
ti

, fi

〉}
P
[
exp
{−〈Z(m)

t , h0
〉}∣∣(ξi(s)

)
,
(
Xi(s)
)
, s � tk

]]

= lim
m→∞ P

[
exp

{
−

k∑
i=1

〈
Z

(m)
ti

, fi

〉}
exp

{
−
〈
Z

(m)
tk

,
2ht−tk

2 + γ (t − tk)ht−tk

〉}]

= P

[
exp

{
−

k∑
i=1

〈Zti , fi〉
}

exp

{
−
〈
Ztk ,

2ht−tk

2 + γ (t − tk)ht−tk

〉}]
.

The Markov property for Z follows readily.
Since all the limit points of {Z(m)} have identical marginal distribution because of (3.3), by the Markov property

they also have the same joint distribution. We thus establish the uniqueness for Z. See Theorem 4.4.2 of [7] and
Theorem 3.3 of [18] for similar proofs. �
Remark 3.3. The duality (3.2) also gives, for any 0 < s < t ,

P
[
exp
{−〈Zt−s , hs〉

}]= P
[
exp
{−〈Zs,ht−s〉

}]
.

The moments of Z can be obtained immediately from (3.3).

Proposition 3.4. Given aj > 0, j = 1, . . . , n, for any y1 � y2 � · · · � y2n and t > 0, we have

P
[〈Zt ,h0〉

]= P
[〈Z0, ht 〉

]
and

P
[〈Zt ,h0〉2]= P

[〈Z0, ht 〉2]+ γ tP
[〈Z0, ht 〉

]
.
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Martingale problem is often used to characterize a superprocess. Z is the solution to the martingale problem
(see [5]): for any ψ ∈ C2(R),

Mt(ψ) := 〈Zt ,ψ〉 − 〈Z0,ψ〉 − 1

2

t∫
0

〈Zs,ψ
′′〉ds, t � 0,

is a continuous martingale relative to (Ft )t�0 with quadratic variation process

〈
M(ψ)
〉
t
= γ

t∫
0

〈
Zs,ψ

2〉ds +
t∫

0

ds

∫
Δ

ψ ′(x)ψ ′(y)Zs(dx)Zs(dy),

where Δ = {(x, x): x ∈ R}.
But a remarkable feature of such a martingale problem is that its solution is not unique. For example, let ξ1 and

ξ2 be two independent branching diffusions each with initial value 1. Let B1 and B2 be two independent Brownian
motions. Assume that (ξ1, ξ2) and (B1,B2) are independent. Then Z′

t := ξ1(t)δB1(t) + ξ2(t)δB1(t) is another solution
to this martingale problem; also see [18] for a similar counter example.

Uniqueness of the solution to a martingale problem is often established by finding an appropriate dual process via
the method of martingale duality; see Section 1.6 of [6] for an introduction of such an approach. Notice that the duality
(3.3) is not a consequence of the martingale duality corresponding to the above mentioned martingale problem. Not
surprisingly, it cannot guarantee the uniqueness of the solution.

4. Some properties

Our first result in this section is a straight forward consequence of Theorem 3.2.

Proposition 4.1. For any y1 � y2 � · · · � y2n and t > 0, we have

P

[
exp

{
−λ

n∑
j=1

Zt

(]y2j−1, y2j ]
)}]= P

[
exp

{
− 2λ

2 + λγ t

n∑
j=1

Z0
(]

Y2j−1(t), Y2j (t)
])}]

, λ > 0. (4.1)

Proof. Observe that the function
∑n

j=1 1{]Y2j−1(t), Y2j (t)]}(·) takes values either 0 or 1, then (4.1) follows readily
from (3.3). �

Proposition 4.1 allows us to carry out some explicit computation on Z. We are going to first study the probability
that Zt does not charge on an arbitrary finite interval.

Throughout this section, for any x, y, a and b, we write

x̃ := x − y√
2

, ỹ := x + y√
2

, ã := a + b√
2

and b̃ := b − a√
2

. (4.2)

Proposition 4.2. Given a < b and t > 0, we have

P
{
Zt

(]a, b])= 0
}= 1

2πt

∞∫
−∞

dx

∞∫
0

dy exp

{
−2Z0(]x̃, ỹ])

tγ
− (x − ã)2

2t

}

×
(

exp

{
− (y − b̃)2

2t

}
− exp

{
− (y + b̃)2

2t

})
+ 2√

2πt

∞∫
b̃

dx exp

{
−x2

2t

}
. (4.3)

Proof. Letting λ → ∞ in (4.1) we have
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P
{
Zt

(]a, b])= 0
}= P

[
exp

{
− 2

γ t
Z0
(]

Y1(t), Y2(t)
])}]

= P

[
exp

{
− 2

γ t
Z0
(]

Y1(t), Y2(t)
])};Y1(t) 	= Y2(t)

]
+ P
{
Y1(t) = Y2(t)

}
,

where (Y1, Y2) is a coalescing Brownian motion starting at (a, b).
To find the distribution of (Y1, Y2), one could rotate the coordinate system anti-clockwise by π/4. Under the

new coordinate system (Y1, Y2) becomes a process (Y ′
1, Y

′
2) such that Y ′

1 is a Brownian motion starting at ã, Y ′
2 is

a Brownian motion starting at b̃ and stopped at 0, and Y ′
1 and Y ′

2 are independent. Since Y1 = (Y ′
1 − Y ′

2)/
√

2, Y2 =
(Y ′

1 + Y ′
2)/

√
2 and Y1(t) = Y2(t) iff Y ′

2(t) = 0, then (4.3) just follows from the reflection principle for Brownian
motion. �

Write St for the support of Zt . Intuitively, starting with particles with total initial mass Z0(R), as soon as t > 0 the
particles near −∞ and ∞ will die out due to branching. Zt is then expected to be supported by a finite set because of
coalescence. The next two results concern the cardinality of St .

Proposition 4.3. Given a < b and t > 0, we have

P
[
#St ∩ ]a, b]]= b − a√

πt
− 1√

2πt2

b∫
a

dz

∞∫
−∞

dx

∞∫
0

dy y exp

{
−2Z0(]x̃, ỹ])

tγ
− (x − √

2z)2 + y2

2t

}
. (4.4)

Proof. It is easy to see from (4.3) that for any z ∈ R,

P
{
Zt(dz) 	= 0

}= dz√
πt

− dz√
2πt2

∞∫
−∞

dx

∞∫
0

dy y exp

{
−2Z0(]x̃, ỹ])

tγ
− (x − √

2z)2 + y2

2t

}
. (4.5)

Then (4.4) is obtained by taking integrals on both sides of (4.5) from a to b. �
Proposition 4.4. With probability 1, #St < ∞, ∀t > 0.

Proof. Given s > 0, we first claim that P[#Ss] < ∞ if Z0 has a bounded support. Suppose that Z0(]−b, b]) = 1 for
some b > 0. Then by (4.5),

P[#Ss] =
∞∫

−∞
P
{
Zs(dz) 	= 0

}

= 1√
2πs2

∞∫
−∞

dz

∞∫
−∞

dx

∞∫
0

dy y

(
1 − exp

{
−2Z0(]x̃, ỹ])

sγ

})
exp

{
− (x − √

2z)2 + y2

2s

}

= 1√
2πss

∞∫
−∞

dx

∞∫
0

dy y

(
1 − exp

{
−2Z0(]x̃, ỹ])

sγ

})
exp

{
−y2

2s

}

� 1√
2πss

∞∫
0

dy

y+√
2b∫

−y−√
2b

dx y exp

{
−y2

2s

}
< ∞.

Our claim is proved.
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Now given any integer j , let ηj (s) be the Feller’s branching diffusion with initial value ηj (0) := Z0(]j, j + 1]).
Since

∞∑
j=−∞

P
{
ηj (s) 	= 0

}= ∞∑
j=−∞

(
1 − exp

{
−2ηj (0)

γ s

})
�

∞∑
j=−∞

2ηj (0)

γ s
= 2z̄

γ s
,

by Borel–Cantelli lemma we have that, with probability 1, ηj (s) 	= 0 for only finitely many values of j .
Therefore, for any t > 0, with probability 1, Zt/2 must have a bounded support. The Markov property for Z,

together with the claim from the first part of the proof, implies that #St < ∞ a.s.
Finally, by the Markov property for Z we conclude that P{#St < ∞, ∀t > 0} = 1. �
By Proposition 4.4, as soon as t > 0, St becomes a finite set. For any z ∈ St , we associate it with a particle located

at z with mass Zt({z}). We can thus identify Zt interchangeably with a collection of spatially distributed particles with
masses. As time goes on, the total number of particles decreases either because two “alive” particles coalesce into one
particle, or because each particle disappears due to its branching.

Since #St < ∞, a small neighborhood of z contains at most one particle in Zt . When there is such a particle, we
want to find the distribution of its mass. Formally, we are looking for an expression of

P
[
exp
{−λZt

({z})};Zt

({z})> 0
]
.

Until the end of this section we put

qt (·) := 1
{]

Y1(t), Y2(t)
]}

(·), t � 0,

for the coalescing Brownian motion (Y1, Y2) starting at (a, b).

Proposition 4.5. For any z ∈ R and t > 0, we have

P
[
exp
{−λZt(dz)

};Zt(dz) > 0
]= dz√

2πt2

∞∫
−∞

dx

∞∫
0

dy y

(
exp

{
−2λZ0(]x̃, ỹ])

2 + λγ t

}
− exp

{
−2Z0(]x̃, ỹ])

tγ

})

× exp

{
− (x − √

2z)2 + y2

2t

}
. (4.6)

Proof. We fix (ξi(t)) first. Apply Theorem 2.1 to random variable

exp

{
−λ

m∑
i=1

ξi(t)q0
(
Xi(t)
)}

1

{
m∑

i=1

ξi(t)q0
(
Xi(t)
)
> 0

}
.

Then condition on (Y1(t), Y2(t)) and take an expectation with respect to (ξi(t)). Similar to the proofs for Theorem 3.2
and for Proposition 4.1 we have that

P

[
exp

{
−λ

m∑
i=1

ξi(t)q0
(
Xi(t)
)}; m∑

i=1

ξi(t)q0
(
Xi(t)
)
> 0

]

= P

[
exp

{
−λ

m∑
i=1

ξi(t)qt (xi)

}
;

m∑
i=1

ξi(t)qt (xi) > 0

]

= P

[
exp

{
−λ

m∑
i=1

ξi(t)qt (xi)

}]
− P

[
m∑

i=1

ξi(t)qt (xi) = 0

]

= P

[
exp

{
−2λ〈Z(m)

0 , qt 〉
2 + λγ t

}]
− P

[
exp

{
−2〈Z(m)

0 , qt 〉
γ t

}]
. (4.7)

Recall that x̃, ỹ, ã and b̃ have been defined in (4.2). Therefore,
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P
[
exp
{−λZt

(]a, b])};Zt

(]a, b])> 0
]

= P

[
exp

{
−2λ〈Z0, qt 〉

2 + λγ t

}]
− P

[
exp

{
−2〈Z0, qt 〉

γ t

}]

= 1

2πt

∞∫
−∞

dx

∞∫
0

dy

(
exp

{
−2λZ0(]x̃, ỹ])

2 + λγ t

}
− exp

{
−2Z0(]x̃, ỹ])

tγ

})

× exp

{
− (x − ã)2

2t

}(
exp

{
− (y − b̃)2

2t

}
− exp

{
− (y + b̃)2

2t

})
. (4.8)

So, (4.6) is obtained by letting b → a+. �
At a fixed time t > 0, with a positive probability there can be only one particle (with a positive mass) left. When

this happens, we are interested in the joint distribution of the mass and the location of that particle. More precisely,
we want to find an expression for

P
[
exp
{−λZt(R)

};Zt(R) 	= 0, St ⊂ dz
]
.

Proposition 4.6. For any z ∈ R and t > 0, we have

P
[
exp
{−λZt(R)

};Zt(R) 	= 0, St ⊂ dz
]

= dz√
2πt2

∞∫
−∞

dx

∞∫
0

dy y exp

{
−2λZ0(]x̃, ỹ])

2 + λγ t
− 2Z0(]x̃, ỹ]c)

γ t
− (x − √

2z)2 + y2

2t

}

− dz√
πt

exp

{
− 2z̄

γ t

}
. (4.9)

Proof. For xi := Xi(0) we put

B :=
{

m∑
i=1

ξi(t)1
{]

Y1(t), Y2(t)
]c}

(xi) = 0

}
=
{

m∑
i=1

ξi(t)
(
1 − qt (xi)

)= 0

}
.

It follows from Theorem 2.1 that

P

[
exp

{
−λ

m∑
i=1

ξi(t)

}
;

m∑
i=1

ξi(t)1
{]a, b]}(Xi(t)

)
> 0,

m∑
i=1

ξi(t)1
{]a, b]c}(Xi(t)

)= 0

]

= P

[
exp

{
−λ

m∑
i=1

ξi(t)

}
;

m∑
i=1

ξi(t)qt (xi) > 0,B

]

= P

[
exp

{
−λ

m∑
i=1

ξi(t)qt (xi)

}
;

m∑
i=1

ξi(t)qt (xi) > 0,B

]

= P

[
exp

{
−λ

m∑
i=1

ξi(t)qt (xi)

}
;B
]

− P

[
m∑

i=1

ξi(t)qt (xi) = 0;B
]

= P

[
exp

{
−2λz̄

∑m
i=1 qt (xi)

m(2 + λγ t)

}
exp

{
−2z̄
∑m

i=1(1 − qt (xi))

mγ t

}]
− P

{
m∑

i=1

ξi(t) = 0

}
, (4.10)

where in obtaining the last equation we have used the fact that, given (Y1(t), Y2(t)) and (xi), random variable
exp{−λ

∑m
i=1 ξi(t)qt (xi)} and event {∑m

i=1 ξi(t)(1 − qt (xi)) = 0} are independent.
Now letting m → ∞ in (4.10) we have
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P
[
exp
{−λZt(R)

};Zt(R) 	= 0, St ⊂ (a, b)
]

= P

[
exp

{
−2λ〈Z0, qt 〉

2 + λγ t
− 2〈Z0,1 − qt 〉

γ t

}]
− exp

{
− 2z̄

γ t

}

= 1

2πt

∞∫
−∞

dx

∞∫
0

dy exp

{
−2λZ0(]x̃, ỹ])

2 + λγ t
− 2Z0(]x̃, ỹ]c)

γ t

}
exp

{
− (x − ã)2

2t

}

×
(

exp

{
− (y − b̃)2

2t

}
− exp

{
− (y + b̃)2

2t

})

+ 2z̄√
2πt

exp

{
− 2

γ t

} ∞∫
b̃

dx exp

{
−x2

2t

}
− exp

{
− 2z̄

γ t

}
. (4.11)

Finally, (4.9) is obtained by letting b → a+ in (4.11). �
Remark 4.7. Let λ = 0 in (4.11). We then obtain a result on the range of St .

The total number of particles in Z will decrease one by one. Put

τ := inf{s � 0: #Ss = 1}.
Then τ < ∞ is the first time when there is exactly one particle left. The distribution of τ is given in the following
proposition.

Proposition 4.8.

P{τ � t} =
∞∫

−∞
dz

(
1√

2πt2

∞∫
−∞

dx

∞∫
0

dy y exp

{
−2Z0(]x̃, ỹ]c)

γ t
− (x − √

2z)2 + y2

2t

}

− 1√
πt

exp

{
− 2z̄

γ t

})
+ exp

{
− 2z̄

γ t

}
. (4.12)

Proof. Observe that

P{τ � t} =
∞∫

−∞
P
{
Zt(R) 	= 0, St ⊂ dz

}+ P
{
Zt(R) = 0

}
,

then (4.12) follows from Propositions 4.6 and 4.1. �
Let

T := inf
{
t � 0: Zt(R) = 0

}
.

T is the time when all the particles disappear. Its distribution can be easily found from Proposition 4.1.

P{T � t} = P
{
Zt(R) = 0

}= exp

{
− 2z̄

γ t

}
.

Note that super Brownian motion has the same extinction time distribution.
Let F denote the location of the last particle immediately before extinction, i.e. {F } = ST −. We could recover the

explicit distribution for F .

Proposition 4.9. F has the same distribution as XT , where X is a Brownian motion with initial distribution Z0/z̄,
and X and T are independent.
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Proof. We first assume that

Z0 =
m∑

i=1

ciδxi
, ci > 0, i = 1, . . . ,m.

Then by Theorem 3.2,

Zt =
m∑

i=1

ξi(t)δXi(t), t � 0,

where (ξi) is a collection of independent Feller’s branching diffusions with initial values (ci), (Xi) is a coalescing
Brownian motion starting at (xi), and (ξi) and (Xi) are independent.

Write

Ti := inf
{
t � 0: ξi(t) = 0

}
, i = 1, . . . ,m.

Then

T = max
1�i�m

Ti.

Therefore,

F =
m∑

i=1

Xi(Ti−)1{T = Ti} =
m∑

i=1

Xi(T )1{T = Ti}.

Our first observation is that

P{Ti � t} = P
{
ξi(t) = 0

}= exp

{
−2ci

γ t

}
.

Put c :=∑m
i=1 ci . Then P{T = Ti} = ci/c, and F = Xi(T ) with probability ci/c. Our second observation is that

conditional on {T = Ti}, the distribution for T is the same as its unconditional distribution. So, F has the same
distribution as the random variable obtained by running a Brownian motion X with initial distribution P{X(0) =
xi} = ci/c, i = 1, . . . ,m, and stopping it independently at time T . As a result, F has the desired distribution.

By conditioning on Zε and letting ε → 0+, the conclusion in the proposition also follows for any general initial
measure Z0. �
Remark 4.10. This near extinction behavior is the same as that for super Brownian motion (see Theorem 1 of [17]),
which appears to be coincidental.

5. Connections with the Arratia flow

Arratia flow is a stochastic flow which describes the evolution of a continuous family of coalescing Brownian
motions on R. We refer to [1] for a detailed account and [2] for a survey on stochastic flows. We also refer to [10] for
more recent work on stochastic flows. By definition, the Arratia flow is a collection {φ(s, t, x): 0 � s � t, x ∈ R} of
real-valued random variables such that

• the random map (s, t, x) �→ φ(s, t, x) is jointly measurable,
• for each s and x, the map t �→ φ(s, t, x), t � s, is continuous,
• for each s and t with s � t , the map x �→ φ(s, t, x) is non-decreasing and right-continuous,
• for s � t � u, φ(t, u, ·) ◦ φ(s, t, ·) = φ(s,u, ·),
• for u > 0, (s, t, x) �→ φ(s + u, t + u,x) has the same distribution as φ,
• for x1 < · · · < xm the process (φ(0, t, x1), . . . , φ(0, t, xm))t�0 has the same distribution as a coalescing Brownian

motion starting at (x1, . . . , xm).
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Fix t > 0, it is known that {φ(0, t, x): x ∈ R}, the image of R under the map φ(0, t, ·), is a discrete set (see
Theorem 12 of Chapter Three in [1]). In this section, let · · · < x−1(t) < x0(t) < x1(t) < · · · be a sequence of random
variables such that{

φ(0, t, x): x ∈ R
}= {xi(t): i = . . . ,−1,0,1, . . .

}
. (5.1)

Since Brownian motion has continuous sample paths, the Arratia flow is order-preserving; i.e. φ(0, t, x1) � · · · �
φ(0, t, xm) whenever x1 � · · · � xm. Set

Πi(t) := sup
{
x: φ(0, t, x) = xi(t)

}
.

Write φ−1(0, t, x) for the pre-image of x under map φ(0, t, ·) Then (Πi(t)) determines a partition on R such that
φ−1(0, t, xi(t)) = [Πi−1(t),Πi(t)[.

The Arratia flow is closely associated to the process Z studied in the previous sections. We first want to show that
the Laplace functional of Zt for a continuous test function can be expressed in terms of (xi(t)) and (Πi(t)).

Proposition 5.1. Given any nonnegative bounded continuous function f , we have for t > 0,

P
[
exp
{−〈Zt ,f 〉}]= P

[
exp

{
−
〈
Z0,

2h
f
t

2 + γ th
f
t

〉}]
, (5.2)

where h
f
t (·) :=∑∞

i=−∞ f (Πi(t))1{]xi(t), xi+1(t)]}(·).

Proof. For yj = j/2n, Theorem 3.2 yields

P

[
exp

{
−

n2n∑
j=−n2n

f (yj )Zt

(]yj−1, yj ]
)}]

= P

[
exp

{
−
〈
Z0,

2
∑n2n

j=−n2n f (yj )1{]φ(0, t, yj−1),φ(0, t, yj )]}
2 + γ t

∑n2n

j=−n2n f (yj )1{]φ(0, t, yj−1),φ(0, t, yj )]}
〉}]

. (5.3)

Observe that φ(0, t, yj−1) 	= φ(0, t, yj ) if and only if yj−1 < Πk(t) � yj for some k. Letting n → ∞ in (5.3), (5.2)
follows from the continuity for f and the finiteness for Z0. �

We then consider the support St for Zt . Since St is a discrete set, we can identify it with a measure-valued process
by placing a unit mass on each point of St . For any y1 � y2 � · · · � y2n, by Proposition 4.1,

P

{
Zt

(
n⋃

j=1

]y2j−1, y2j ]
)

= 0

}
= P

[
exp

{
− 2

γ t
Z0

(
n⋃

j=1

]
Y2j−1(t), Y2j (t)

])}]
. (5.4)

We thus get the following characterization of the avoidance function for St .

P

{
St ∩

n⋃
j=1

]y2j−1, y2j ] = ∅
}

= P

[
exp

{
− 2

γ t
Z0

(
n⋃

j=1

]
Y2j−1(t), Y2j (t)

])}]
. (5.5)

Consequently the distribution of St is uniquely determined by (5.5); see Theorem 3.3 of [9].
(5.5) suggests a connection between St and the Arratia flow. Let It (dy) be a random measure on R such that

It

(
n⋃

j=1

]y2j−1, y2j ]
)

= 2

γ t

n∑
j=1

Z0
( ]

φ(0, t, y2j−1),φ(0, t, y2j )
])

, y1 � y2 � · · · � y2n.



X. Zhou / Ann. I. H. Poincaré – PR 43 (2007) 599–618 615
Proposition 5.2. Given t > 0, St can be identified with a Cox process with finite random intensity measure It .

(5.4) also leads to a result on the occupation time for Z. For any Borel set B in R,

t∫
0

ds P
{
Zs(B) = 0

}= t∫
0

ds P
[
exp
{−Is(B)

}]
.

A particle representation for Zt is available by using the image of the Arratia flow as a skeleton. Given (xi(t)) as
in (5.1), let (ηi(t))

∞
i=−∞ be independent nonnegative random variables such that

P
[
exp
{−ληi(t)

}∣∣(xi(t)
)]= exp

{
−2λZ0(φ

−1(0, t, xi(t)))

2 + λγ t

}
.

Proposition 5.3. Given t > 0, we have

Zt
D=

∞∑
i=−∞

ηi(t)δxi (t). (5.6)

Proof. Define

Z
(m)
t :=

m2m∑
i=−m2m

η
(m)
i (t)δφ(0,t,i/2m),

where (η
(m)
i )m2m

i=−m2m is a sequence of independent Feller’s branching diffusions with initial values(
Z0

([
i − 1

2m
,

i

2m

[))m2m

i=−m2m

,

and in addition, (η
(m)
i ) is independent of {xi(t)}.

For any aj � 0, j = 1, . . . , n, and y1 � · · · � y2n, by the same argument as in the proof for Theorem 3.2, we have

lim
m→∞ P

[
exp
{−〈Z(m)

t , h0
〉}]= lim

m→∞ P

[
m2m∏

i=−m2m

exp

{
−2Z0([(i − 1)/2m, i/2m[)ht (i/2m)

2 + γ tht (i/2m)

}]

= lim
m→∞ P

[
exp

{
−

m2m∑
i=−m2m

2Z0([(i − 1)/2m, i/2m[)ht (i/2m)

2 + γ tht (i/2m)

}]

= P

[
exp

{
−
〈
Z0,

2ht

2 + γ tht

〉}]
= P
[
exp
{−〈Zt ,h0〉

}]
.

Therefore,

Z
(m)
t

D−→ Zt .

Further, by the definition of (xi(t)) and the additive property for Feller’s branching diffusions we obtain that

Z
(m)
t =

∞∑
i=−∞

∑
Πi−1�j/2m<Πi

η
(m)
j (t)δxi (t)

D−→
∞∑

i=−∞
ηi(t)δxi (t).

Putting these together gives (5.6). �
This interplay is remarkable. On one hand, Z can be constructed using the Arratia flow; on the other hand, Z tells

us how an initial measure Z0 is transported over time under both the Arratia flow and the branching.
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6. A more general model

As Steven Evans pointed out to me that the proof of Theorem 3.2 only uses the branching property of the Feller’s
diffusion. This suggests that we can replace the Feller’s branching diffusion by the square of the Bessel processes
(BESQ) to incorporate immigration. We are going to carry it out in this section.

For x � 0 and δ � 0 the square of δ-dimensional Bessel process starting at x, denoted by BESQδ(x), is a non-
negative valued process ξ which solves the following stochastic differential equation

ξt = x +
t∫

0

√
γ ξs dBs + δt,

where B is a one-dimensional Brownian motion.
Applying Itô’s formula we obtain the following partial differential equation for V (λ, t) := P[exp{−λξt }],

∂V

∂t
+ γ λ2

2

∂V

∂λ
+ δλV = 0, V (λ,0) = exp{−λx}.

Then we can recover the Laplace transform for ξt as

P
[
exp{−λξt }

]= ( 2

2 + λγ t

)2δ/γ

exp

{
− 2λx

2 + λγ t

}
. (6.1)

Notice that the Feller’s branching diffusion is just BESQ0. We refer to Chapter XI of [13] for a more detailed intro-
duction on the Bessel processes.

It is easy to see from (6.1) that BESQδ(x) is additive in both δ and x; i.e. if {ξi, i = 1, . . . ,m} is a collection of

independent processes such that each ξi is BESQδi (xi). Then
∑m

i=1 ξi is BESQ
∑m

i=1 δi (
∑m

i=1 xi).
Now we are going to modify the process Z defined in Section 3 by letting the masses of the particles be governed

by BESQs. Since the dimension is an additional parameter for BESQ, we need to introduce another measure-valued
process Δ to describe the evolution of the dimension.

As in Section 3, we first consider two systems of interacting particles. Given Z0 ∈ MF (R), write z̄ := Z0(R) and
Z̄0 := Z0/z̄. For any m, choose x1, . . . , xm to be i.i.d. random variables with common distribution Z̄0. Given Δ0 ∈
MF (R), write δ̄ := Δ0(R) and Δ̄ := Δ0/δ̄. Let x′

1, . . . , x
′
m be i.i.d. random variables with common distribution Δ̄. Let

(X1, . . . ,Xm,X′
1, . . . ,X

′
m) be a 2m-dimensional coalescing Brownian motion starting at (x1, . . . , xm, x′

1, . . . , x
′
m).

Let (ξ1, . . . , ξm) and (δ1, . . . , δm) be two collections of m independent processes such that ξi is BESQ0(z̄/m) and
δi is BESQδ̄/m(0). We further assume that (xi) and (x′

i ) are independent, and (X1, . . . ,Xm,X′
1, . . . ,X

′
m), (ξi) and

(δi) are all independent.
Now we are ready to define the two MF (R)-valued processes

Z
(m)
t :=

m∑
i=1

ξi(t)δXi(t) +
m∑

i=1

δi(t)δX′
i (t)

and

Δ
(m)
t :=

m∑
i=1

δ̄

m
δX′

i (t)
.

Similar to Lemma 3.1 we can show that both {Z(m)} and {Δ(m)} are C-relatively compact in D(MF (R)). They
have unique weak limits by Theorem 6.1, which we will prove shortly.

Let Z and Δ be the weak limits for {Z(m)} and {Δ(m)}. Intuitively, {(Z0(B),Δ0(B)): B ∈ B(R)} describes the
initial mass-dimension distribution on R, and {(Zt (B),Δt (B)): B ∈ B(R), 0 � t < ∞} describes the simultaneous
mass-dimension evolution for such a model, which we call a supersquare of Bessel process with spatial coalescing
Brownian motion.
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As before, write (Y1, . . . , Y2n) for a 2n-dimensional coalescing Brownian motion starting at (y1, . . . , y2n) with
y1 � · · · � y2n. For any nonnegative constants aj , bj , j = 1, . . . , n, and t > 0, let ht be defined as in (3.2) and let

h′
t (·) :=

n∑
j=1

bj 1
{]

Y2j−1(t), Y2j (t)
]}

(·).

The next result determines the joint distribution for (Zt (B),Δt (B)),B ∈ B(R).

Theorem 6.1. For any aj � 0, bj � 0, j = 1, . . . , n, and any y1 � · · · � y2n, we have

P
[
exp
{−〈Zt ,h0〉 − 〈Δt,h

′
0〉
}]= P

[
exp

{
−
〈
Z0,

2ht

2 + γ tht

〉
−
〈
Δ0,

2

γ
ln

(
1 + γ tht

2

)
+ h′

t

〉}]
. (6.2)

Proof. We might assume that (Yi) is independent of (ξi) and (δi). To prove (6.2), again, we first fix (δi) and (ξi). It
follows from Theorem 2.1 that

P
[
exp
{−〈Z(m)

t , h0
〉− 〈Δ(m)

t , h′
0

〉}]= P

[
exp

{
−

m∑
i=1

ξi(t)h0
(
Xi(t)
)− m∑

i=1

δi(t)h0
(
X′

i (t)
)− m∑

i=1

δ̄h′
0(X

′
i (t))

m

}]

= P

[
exp

{
−

m∑
i=1

ξi(t)ht (xi) −
m∑

i=1

δi(t)ht (x
′
i ) −

m∑
i=1

δ̄h′
t (x

′
i )

m

}]
. (6.3)

We then fix (xi) and (x′
i ), and take expectations with respect to (ξi) and (δi). By (6.1) the right-hand side of (6.3) is

equal to

P

[
m∏

i=1

(
2

2 + γ tht (x
′
i )

)2δ̄/(γm)

exp

{
− 2z̄ht (xi)

m(2 + γ tht (xi))
− δ̄h′

t (x
′
i )

m

}]

= P

[〈
Z̄0, exp

{
− 2z̄ht

m(2 + γ tht )

}〉m〈
Δ̄0,

(
1 + γ tht

2

)−2δ̄/(γm)

exp

{
− δ̄h′

t

m

}〉m]
, (6.4)

where we condition on (Yi) to obtain the equality.
Let m → ∞ in (6.4). We finally have

P
[
exp
{−〈Zt ,h0〉 − 〈Δt,h

′
0〉
}]

= lim
m→∞ P

[
exp
{−〈Z(m)

t , h0
〉− 〈Δ(m)

t , h′
0

〉}]
= lim

m→∞ P

[〈
Z̄0,1 − 2z̄ht

m(2 + γ tht )

〉m〈
Δ̄0,

(
1 − 2δ̄

γm
ln

(
1 + γ tht

2

))(
1 − δ̄h′

t

m

)〉m]
= lim

m→∞ P

[〈
Z̄0,1 − 2z̄ht

m(2 + γ tht )

〉m〈
Δ̄0,

(
1 − 2δ̄

γm
ln

(
1 + γ tht

2

)
− δ̄h′

t

m

)〉m]
= P

[
exp

{
−
〈
Z̄0,

2z̄ht

2 + γ tht

〉}
exp

{〈
Δ̄0,

2δ̄

γ
ln

(
1 + γ tht

2

)
+ δ̄h′

t

〉}]
= P

[
exp

{
−
〈
Z0,

2ht

2 + γ tht

〉
−
〈
Δ0,

2

γ
ln

(
1 + γ tht

2

)
+ h′

t

〉}]
. �

Remark 6.2. Notice that Δ is just the process Z in Theorem 3.2 with γ = 0.

The generalized model considered in this section will not die out if μ > 0. Many of the properties in Section 3 and
Section 4 can be discussed in a similar fashion. But we leave the details to interested readers.
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