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Abstract
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1. Introduction

This paper is concerned with constructing multi-bump type, nodal (sign-changing) solutions which have a pre-
scribed number of nodal domains for nonlinear time-independent Schrédinger equations of the form

—Au+V@u=f(x,u) ins, u=0 onos, Q)

which satisfyu(x) — 0 as|x| — oo, here2 is a smooth domain ifRY or the whole spac®&". This type of
equations arise from study of steady state and standing wave solutions of time-dependent nonlinear Schroédinge
equations. lix € C(RM, R) is a solution, each connected component of thaRdet «~1(0) is called a nodal do-
main ofu. The potential function is assumed to be periodic in the unbounded directiads Milti-bump type
solutions for nonlinear elliptic PDEs with a periodic potential was first obtained by Coti Zelati and Rabinowitz [11]
by using a gluing method which was used initially for Hamiltonian ODEs in [10,22] (see the survey monographs
of Rabinowitz [19-21] for more references therein). The gluing procedure is to use a variational argument to find a
family of ground state solutions which constitute the basic ‘one-bump’ solutions. These one-bump solutions need
to have a certain non-degeneracy property. Then further variational arguments are used to construct multi-bump so
lutions, i.e. solutions near sums of sufficiently separated translates of the basic solutions. In [11] the basic building
blocks, one-bump solutions, are allowed to be either positive and negative ground state solutions. Thus multi-bump
type nodal solutions potentially having many nodal domains are constructed. However, the question on the exact
number of nodal domains for these multi-bump solutions was left open. A related question is to provide estimates
on the number of nodal domains in terms of the minimax gluing procedure. To our knowledge this question has not
been addressed either except in [1] nodal solutions having exactly two nodal domains were claimed. In this paper
we shall partially address these questions. Another motivation for our study is that in recent years, nodal solutions
of nonlinear elliptic BVPs have received much attention (e.g. [2-5,7,12,13,15-17]) in which many multiplicity re-
sults of nodal solutions were given both for bounded domains and for entire space. However, without any symmetry
of subgroups ofd(N) for the equations and the domains and without assuming the nonlinearity being @dd in
it is only known that there are nodal solutions having exactly two nodal domains. There seem no examples giving
nodal solutions of more than two nodal domains, let alone giving a prescribed large number of nodal domains. We
shall give results in this paper that claim the existence of nodal solutions having an arbitrary prescribed number
of nodal domains. We shall build upon the ideas and approaches used by Coti Zelati—-Rabinowitz [11] and exploit
further finer estimates of the multi-bump type solutions so that their nodal property can be analyzed qualitatively.

If 2 is the entireRY, we rewrite Eq. (1) as

—Au+Vxu=f(x,u), inRV. 2)

Depending on whethe® is a cylindrical domain or the entif@" and on whethe¥ and f are periodic in alk
variables, we shall consider three different cases.

Case (i). Our first result is for Eq. (2). We make the following assumptiond/cand f:

(V1) Ve CRN,R), Vo=infgn V(x) > 0, is periodic inxy, ..., xy.
(f1) feCYRN x R,R) is periodicinxy, ..., xy.
(fZ) f(-x’ O) = O: fu(xs O)
(f3) There isC > 0 such that
| fule,w)| < C(1+ |u|P7?)

forall x e RV, u € R where 2< p < 2.
(f4) There isu > 2 such that

O< uF(x,u) :=u/f(x,t)dt<uf(x,u)
0
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forallx e RN, u e R\ {0}.
(fs) f(x,—u)=—f(x,u),li.e., fisoddinu.

The weak solutions of (2) correspond to critical points of

I () :=%/(|VM|Z+V(x)u2)dx—fF(x,u)dx,
RN RN

in E = WL2(RV). We shall use the following notations as in [10,1]={u € E | I () < b}, I, ={u € E| I (u) >
al, '=ueE|la<Iw<b},K=uecE|I'u)=0},K)={uecE|I'u)=0,Iu)=c}, K'=KnI°,
Kb=KnNIb.

Due to the periodicity in the;, ..., xy directions the problem is invariant under translations inthe. ., xy
directions, i.e., bein@" -invariant. With the superlinear nonlinearif(x, ) we may define the mountain pass
valuec > 0.

c=inf sup I(g(t)
g€l t¢10,1) ( )

where
I'={geC(0,11,E) | g(0)=0,g(1) € 1°\ {0}}.

As in [10,11], we assume
(x) Thereisa > 0 such thatcct®/zZV is finite.

According to [11], the above assumptions guarantee the existence of positive and negative solutions to Eq. (2)
at the mountain-pass level. These solutions will be referred to as one-bump solutions..Letv, be one-bump
solutions such that their barycenters are sufficiently separated. Solutions of (2) that are E«ﬁg@ tpare called
k-bump solutions. We understand this reference also applies to Eq. (1).

Theorem 1.1. Assume(V1) and (f1)—(fs). Supposegx) holds. For multi-bump nodal solutions of E(R), the
number of nodal domains is bounded by the number of bumps. In particular, the two-bump nodal solutions have
exactly two nodal domains. Moreover, there are infinitely many, geometrically different, two-bump, nodal solutions
which have exactly two nodal domains.

Case (ii). Next we consider Eq. (1) on a cylinder domah= v x R and we writex = (x/, xy) with x’ =
(x1,...,xN_1), wherew is a bounded smooth domainRi¥ 1. We assume that

V1) VeC(£2,R), Vo:=infp V(x) > 0, is periodic inxy .
(f1) feCl(2 xR,R) is periodic inxy.

We understandfz)—(fs) are satisfied now fat € £2. The weak solutions of (1) correspond to critical points of

1(u) :=%/(|Vu|2+V(x)u2)dx—/F(x,u)dx,

2 2

inE= Hol(fz). Then we can still define the mountain pass value0. The problem now i€ invariant.

(+) There isa > 0 such thakCc™*/Z is finite.
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Theorem 1.2. Assum&Vy), (f1/), and (f2)—(f5). Supposéx’) holds. Then for any integeks> m > 2, Eq.(1) has
infinitely many, geometrically different;bump, nodal solutions irii,fccfj which have exactly: nodal domains.
More precisely, given any positive integéfs ko, ..., k, such that) "/, k; = k > 2, there are infinitely many,
geometrically differenti-bump, nodal solutions im,fffo‘j‘ which have exactly: nodal domainsD;,i =1,...,m,
such that«|p, is a k;-bump positive or negative solution.

Case (iii). Finally, we consider Eqg. (2) with differentdependence in different directions.

(V1) Ve CRN,R), Vo:=infgy V(x) > 0, is periodic inxy and radially symmetric ifixy, ..., xy_1).
(fr) feCYRY x R,R) is periodic inxy and radially symmetric iix1, ..., xy_1).

Then the problem is agai-invariant. Withx = (x/, xy) andx’ = (x1, ..., xy_1), we take

E = {u e WH2RN) | u(x/,xy) = u()x'l, xn), / V(ouldy < oo}

RN

i.e., functions inE are radially symmetric in the firgt — 1 variables. We can still define the mountain pass value
c in the space.

(+) There isa > 0 such thafCc*t%/Z is finite.

Theorem 1.3. AssumgV ), (f1») and (f2)—(fs). Supposé«”) holds. For any integek > 2, Eq.(2) has infinitely
many, geometrically different-bump, nodal solutions im,fc"f;‘ such that the numbers of their nodal domains are

bounded betweefk /2] + 1 and k. In particular, there are nodal solutions such that the numbers of their nodal
domains tend to infinity.

Remark 1.4. In the setting of Theorem 1.2, one can easily seeghatn be taken as more general smooth domain
than a standard cylinder domain 1Y, which needs to be periodic in thg; direction and whose projection on
RN-1is bounded. Furthermore, it follows from the proof that ttié — 1)-dimensional projection may also be
unbounded. In this case, we need to assume that there is a numlwérthatx’ e RV 1 | (x’, 1) € 2} is bounded

and impose additional assumptions Bnand f in RN~ direction, for exampley is coercive in the N — 1)

space. Finally, in the case the equation is autonomous, namely, indepengdenteofnay assume the domains are
periodic in thexy direction. By assuming an isolatedness condition of the critical points at the mountain pass level
like (+'), a similar result to Theorem 1.2 can be stated.

Remark 1.5. The assumption thaf is odd inu is a technical condition but used in [11] in an essential way. In a
sequel to this paper [18] we will provide techniques to remove this condition. This requires modifications of the
gluing procedure of [11] by combining with invariant set method.

The paper is organized as follows. Section 2 contains a sketch of the original construction of multi-bump so-
lutions in the setting of Theorem 1.1 due to Coti Zelati-Rabinowitz [11], and some variants of it for the settings
of our Theorems 1.2 and 1.3. Section 3 is devoted to the proof of our main estimatesCablaseness of the
multi-bump solutions to the sum of the basic one bump solutions. In Section 4, using the results from Section 3 we
prove our main Theorems 1.1, 1.2, and 1.3.
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2. Multi-bump type nodal solutionsrevisited

In this sectionE denotes the Sobolev spa@ée-2(R"), and some times a subspace of it when the context is
clear.

We consider the case (i) (Theorem 1.1) first which was considered in [11] in detail by Coti Zelati—-Rabinowitz.
Without loss of generality we assume the periods in all directions are equal to 1.

Let j = (j1,..., jn) € ZN and the translations on tiR" will be defined by

Tju(x) =ux1+ ji,..., XN + jN)-

Following [11], one can prove that thereiis> 0 such that for alb € I\ {0}, ||v|| > v. Under §), it is proved
in [11] that the mountain pass valués a critical value. LetA = {+1, —1} andi = (g, ..., Ax) € AK. Then one
chooses a finite set C (c) which contains only positive solutions (see [11] for the details) to define for any fixed
integerk > 2,1 = (A1, ..., A) € AF,
V; € A},

wherej; € ZV fori =1, ..., k are fixed such thaith.‘:1 70|l > %"

k
M=M({1,..., jr, A, L) = { Z)\ifj,-vi
i=1

Theorem 2.1 [11]. Assumé&V1) and (f1)—(f5). Supposéx) holds. There iy > 0 such that for any < (0, rg)
N (M, . Lje, A, R)) N OCET2 /2N) £ 9

kc—a

for all but finitely many € N, whereN, (-) is ther-neighborhood int.

Next consider case (ii). In the setting of Theorem 1.1 which was sketched in [11] we state the following result.
Here the problem is onlg-invariant and we understande Z here and the translations are only in thexy
direction.

Theorem 2.2. Assum&Vy), (f), and (f2)—(f5). Supposéx’) holds. There igg > 0 such that for any € (0, rg)
Ny (M, - Lje, A, 2)) N (KEET /2) # 0

kc—a

for all but finitely many € N, whereN, (-) is ther-neighborhood inE = W&'Z(Q).

Though this result was not stated in [11], the multi-bump solutions without nodal information were stated there.
With the modifications for the case of Theorem 2.1 little needs to be added for getting Theorem 2.2.

Finally we consider the case of Theorem 1.3 corresponding to case (iii). We note again th€ spaeenploy
here is a subspace &F12(R") which contains functions radially symmetric with respect to the fidst— 1)
variables.

Theorem 2.3. Assum&V 1), (f1+), and (f2)—(f5). Supposéx”) holds. There igg > 0 such that for any € (0, rg)
N (M- Ljes A, 0)) 0T 2) £ 0

kc—a

for all but finitely manyi € N, whereN, (-) is ther-neighborhood int.

To establish this result we note that checking through the arguments in [11] for proving Theorem 2.1 all the
procedures used in [11] can be confined in the subspade our case by taking care of the symmetry in the
first (N — 1) variables. We omit the proofs here. Theorem 2.3 is also valid &nd f are radially symmetric in
X1, ..., X, and periodic inv, 1, ..., xy forsome 1< n < N.
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By using the arguments in Proposition 7.32 of [11], one can prove thagi{+1,...,+1) or (—1,..., 1),
and forr sufficiently small and sufficiently large, the solutions given in the above three theorems are nodal
(sign-changing) solutions.

Next we state a result which is one of the main ingredients in establishing more detailed nodal property of these
solutions.

Theorem 2.4. In the above three theoremsyifs sufficiently small and sufficiently large, we may replace the
neighborhood irE with r-neighborhood ik whereX = C1(£2) in Theoren®.2andX = C1(R") in Theorem®.1
and2.3

Remark 2.5. Theorem 2.4 says the multi-bump solutions constructed in [11] are close to the sum of translates of
the one bump basic solutions not only in the Sobolev norm but also in the str6hgarm. This in some sense
resembles Brezis and Nirenberg’s remarks on minimizers [6] as well as the remarks by Chang on minimax critical
points [8,9] and suggests that the minimax procedure of Coti Zelati and Rabinowitz [11] can be pose@in the
topology where the multi-bump feature is more apparent.

The proof of this result is given in Section 3. Using it and some maximum principle arguments we prove
Theorems 1.1, 1.2 and 1.3 in Section 4.
3. Cl-estimates

In this section, we will prove Theorem 2.4. It suffices to prove the following lemma.

Lemma 3.1. Let/, — oo asn — oo andu, € K} such that
lim distg (u,, MUnj1, ... lnjk, A, 1)) =0.
n—>0oo
Then
lim disty (tn, M j1, - .- bnji, A, 2)) =0.
n—>0oo

Proof. We will only prove the result in the case Bf¥. The other case can be treated similarly. Sinds a finite
set, without loss of generality we may assume that as co

k
Up — Z)\iflnj,- v
i=1

for some{vy, ..., v} C A. Denote fom=1,2,..., w, =u, — Zle ATy, j;vi- Since

—AQiT,;;vi) + V)it jvi) = f(x, AT, j;vi)

—-0

and
—Aup +VXu, = f(x, uy),

w, satisfies

k

—Aw, + V@) wy = fx, u) = Y f him, o) =20 + 2P, ®3)
i=1
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where

k 1
(l) = f(x, up) — (x,Zk,-nnjivi> = fu< ZA Ty, j; Vi ~|—swn> ds - wy, 4)
i=1 0

i=1

and

k k
Z,(lz) = f(x, Z)”l'tln./i v,~> — Zf(x, AiTi, i Vi) ()
i=1

i=1
The rest of the proof will be divided into four steps.

Step 1: For any > 2, fRN |w,|" dx — 0 asn — co. With Vo =inf V(x) > 0, by (f») and(f3), for all x € RN
andu € R,

| fulx, w)| < —+C1|M|p 2, (6)

Here and in the sequet;; stands for positive constants independent @indx. For anya > 0, multiplying (3)
with |w,|*w, and integrating oveR", we have
/ (¥ (Jwnl*2w,) >+ V 0 lwa[*+2) dr < C2 / (125714 1252 1) [wa ] * T dx. @
RN RN
Since (4) and (6) imply

k
2 <1)|\—|wn|+cs<|un|f’ 24> il 2>|wn|,

i=1
it follows from (7) that

19 (1wl 2,) 2+ (V) = 22 ) o2 )
2

RN

p=2 k p=2 2—p+2
o 7* o 2% (a+2)2* 2F
SCa@)| ([ lual® )+ 0( [ il e |wa 277 dx
RV i=1 Rpw RN
2+ @+D(p=2) (@)@ —p+2)

2 (a+2)2* T (@+22F (a+2)2* (a+2)2F
|Z( >|2*+(a+1><p 2 dx |wy| 222 dx

Noting that{||u,||} is bounded an({l||zn - w¥)} has a bound independentmofor anyr > 2 and using Sobolev
inequality, we see that

2¥—p+2 (a+1D)(2*—p+2)

<a+2>2 2% (@4+2)2* 2*+ (@+22* (@+2)2*
( / [l dx) <C5(Ol)[( / == dx) +( / (w52 dx) } ®
RN RN

RN

Choosingx = a1 := 2* — p in (8) and using Sobolev inequality again, we have

2
(2*—p+2)2* 2% o 2 (@1+) (2" —p+2)
e tb@ i
(/lwnl 2 d") Ce(nwnn TP wy |l T 9)

RN
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while choosingy = «;, := 2(2*_—2”2)’" — 2in (8) yields for any positive integei,
2*—p+2

2
@ —p+22* 2F @ —pt2am~1z 7"
| Wy o dx < (7 | Wy an-t dx
RN

+2)m 1 (am+1)(2*—f+2>
@ —pt2)” 2" (m +2)2
(/w ) TR w0

Since|w,| — 0 asn — oo and(2* — p + 2)" /2™ — oo asm — oo, an iterative process based on (9) and (10)
shows that/,y |w,|” dx — 0 asn — oo for anyr > 2.

Step 2: Forany > 2, [qv |z,(11)|’ dx — 0 asn — oo. Indeed, by (4) andfs),

|21 < Ca(lwal + [wal” ).
Thus the result in step 1 |mpI|es thAgy |z(l)|’ dx — O for anyr > 2.
Step 3: Forany > 2,fRN |zn |’ dx — 0 asn — oo. Foranye > 0, chooseR > O suchthatforall € {1, ..., k},

/ lv;i|" dx <e. (11)
RM\Bg(0)

EnlargingR if necessary, we can also assume fhatv)| < 1 foralli € {1, ..., k} andx € RN \ Bg(0). Thus for
x € G(R, n) =RV \Uj_; Br(u i),

ivi| <k.

Since| f (x, u)| < Colu| for |u| < k, from (5) we see that

k k r
/ |Z512)|rdx: / f(x, Z)»,'l’lnjiv,) —Zf(x, AiTL, j; Vi) dx
G(R.n) G(R.n) i=1 i=1
k
<Cioy_ / |77, j;vil" dx. 12)
=1G(R. n)
Combining (11) and (12) yields
12821 dx < Cyze. (13)

G(R,n)

ChooseNy such that ifn > Ng thenl,|j; — j| > 2R for anyi # m. On each balBg((, j,,) withm € {1, ..., k}
andn > Ng, we have from (5) again

k
/ 1z@) dx <2 / f(x, inr,,lj[vi> — £, ATy jy V)
B jm) Br(njm) i=1

+2 / ‘Z e, ATy, jivi)

Br(ujm) 7

r

r

dx
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r

1 r
/fu (‘x’ )\mTlnjm U + 8 Z }"itlnji Ui) ds

<2 / Z)Li‘tlnjivi dx
Bg(njm) ' 0 i#m i#m
.
+2 / ‘Zf(x,xiqn,,v,») dx.
BR(ln.irrz) i#m

Since foru in a bounded intervalf,, (x, «) is bounded andlf (x, u)| < C12|u|, it follows that

f 122" dX<C132 f lvi|” dx.

Br(n jm) M B Uy Gim— )

Then the fact thaBg (I, (j,, — ji)) N Br(0) =¥ and (11) imply that

Z / 1zP|" dx < Cyae. (14)

=1k Uy jm)

That [y 121" dx — 0 asn — oo follows from (13) and (14).
Step 4: We complete the proof here. By the regularity theory of elliptic equations [14], for @R/,

lwallwa.2x gy oy < Crs(llwnl 12w sy + 1257 128 oy + 1207 1225 (y(e1))
< Cas(llwnll 2w gy + 120 12w @vy + 128211 L2 &)
By Sobolev inequality,
||wn||cl(31(x)) Ciellwn llwz.2v gy (x))-
Thus, sincer € RY is arbitrary,
lwallcrgyy < Crz(llwall p2v gy + llz§ )“LZN(RN) + 122 ||L2N(RN))
Then the results from steps 1-3 imply
n"_)moo lwnllcirry =0,

finishing the proof. O

We remark that the proof above does not use the conditighlding odd.

4. Proofsof the main results

In the following we referk as the number of bumps of the solutions constructed in Section 2. The following
lemma is true in all three cases we consider.

Lemma 4.1. If r is small enough andlis large enough then, for the solutiongiven in Sectior?, the number of
nodal domains is bounded above by the number of bumps of the solutions.

Proof. LetinfV(x) > Vo > 0. Then there i$ > 0 such that fotz| <6, | f(x, )| < Volt|/2. SinceA is finite there
is Ro > 0 such thaw(x) < §/2k for all v € A and|x| > Rp. In cases (i) and (iii), we have |g;§ ©v(x)=>ag>0

for all v € A and for someaig > 0. Let F; = Ulzl Bgry(lji). Supposet € N.(M(lj1, ..., Ljk, A, X)) N Kckete pe

kc—a
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a k-bump solution given in Section 2. By Theorem 2.4y ifs small enough andlis large enough then for any
i €{1,... k}eitheru|p, qj) > 0 0Orulpy @) <0, and maxu|re| <8 whereF = RN\ F. Thenu|g, hask nodal
domains. We claim any pointin F for whichu(x) # 0 has to be connected jn € RM: u(x) # 0} to some nodal
domains of«| . If this is not the casey| zc has a nodal domaif which is not connected ifx € RV: u(x) # 0} to
any of the nodal domains af z,, thereforeD itself becomes a nodal domain®of Sincex decays to 0 at infinity
has a maximum or a minimum iR, for example, a maximum at. But sinceu(xg) < 8, | f (xo0, u(x0))| < %u(xo),
andAu(xp) < 0, we get a contradiction with the equation.

In case (i), we hav% (x)#200nag2 and|g—3(x)| has a positive lower bound aBg, ) N 352 for anyv € A,
wherev is the outer unit normal t6£2. Again by Theorem 2.4, if is small enough antlis large enough then for
anyi € {1,...,k} eitherM|BRO([ji)ﬂQ >0 Or“|BRO(lji)m <0,and ma*MlF;mgI < 8. The rest is the same.O

Theorem 1.1 follows from Lemma 4.1 right away.

Proof of Theorem 1.2. Letk > m > 2 andky, ko, ..., k, be fixed positive integers such that’ ; k, = k. In
this case the problem i&-invariant. Denoteo = 0 andi, = > ;_; ks for n € {1,...,m}. We may assume in
Theorem 2.2,j1 < jo» < --- < jx and we takeh = (A1, ..., Ax) € A¥ such that the firsk; components are-1,
the nextk, components are-1, and keep taking alternating signs farin this way. That isj; = (—1)"*1 for
iefi,-1+1,...,iy}andn € {1, ..., m}. We claim that with these choices the solutions given in Theorem 2.2 for
sufficiently smallr and sufficiently largé have exactlyn nodal domaingy, ..., D,, with u|p, being a positive
(negative, respj;-bump solution for odd (even, resp.). First, thereds- 0 such that f (x, 1)| < @ for |¢] < 6.
Then there isRp > 0 such thab (x) < é/2k forall v € A and forx € 2 \ w x [—Rp, Ro]. Foranyv € A, v(x) >0
for x € w x [—Ro, Ro] andg—g(x) <0 forx € 322 N (RY1 x [—Ro, Ro]). By Theorem 2.4, if is small enough
and! is large enough thefu(x)| < § for x € 2\ (w x Ule[—Ro + 1j;, Ro + 1ji]) and (—=1)"*1u(x) > 0 for
X €w X [—Ro + lj;, Ro + 1j;] and fori € {i,_1 + 1,...,i,} andn € {1,...,m}. Thusu has at leastn nodal
domains. To see that has exactlyn nodal domains, it suffices to prove that1)"1u(x) > 0 for x €  x
[—Ro + lji,_,+1, Ro+ 1j;,] for all n € {1, ..., m} and that any nodal domain af contains one of the: sets
o x [—Ro+1ji,_,+1, Ro+ 1ji, 1. And it is in turn sufficient to prove that there is no nodal domaim @bntained
completely in2 \ (v x Uf.‘zl[—Ro +1j;, Ro+1j;]). Arguing indirectly, we assume th&* is a nodal domain of
which is contained completely if? \ (o x Uf.‘zl[—Ro+lji, Ro+1j;]) and assume|+ > 0. Assume| o+ attains
its maximum atc*. Sinceu|o+ < §, we have—Au(x*) > 0, V(x*)u(x*) > Vou(x™), and f (x*, u(x*)) < %u(x*),
but this is a contradiction with the equation

Proof of Theorem 1.3. Let k > 2 be fixed. In this case the problem agairZisnvariant, we may assume in
Theorem 2.3/ < jo < --- < jr and we take. = (A1, ..., ¢) € AK such that,; takes alternating-1 and—1 with

A1 = +1, that is,A; = +1 for i odd andx; = —1 for i even. By Lemma 4.1, a solutiangiven in Theorem 2.3
has at most nodal domains. We argue in the following thahas at Ieas[g] + 1 nodal domains. Again, there
iS Rp > 0 such that forr small and! large and for someqg > O, u(x) > ag for x € Bg,(lj;) wheni is odd,
u(x) < —ag for x € Bgy(lj;) wheni is even, and any point in RV for which u(x) # 0 has to be connected in
{x € RV: u(x) # 0} to one of the balls3g, (Lj;). Herelj; is understood af), ..., 0, Lj;). A useful observation here

is that if 1< i <n <k and Bg,(lj;) and Bg,(lj,) are subsets of one nodal domain in whicls positive, then
Bpr,(lj,) with i < p <n and Bgy(lj,) with ¢ <i or g > n cannot be subsets of one nodal domain in whidh
negative. This is a consequence of the fact thet radially symmetric in the firstN — 1) variables. Similarly, if
1<i <n <k andBg,(lj;) and Bg,(lj,) are subsets of one nodal domain in whicls negative, theBz, ()

with i < p < n and Bg,(lj,) with g < i or g > n cannot be subsets of one nodal domain in whids positive.
Now, we use an induction procedure to prove the result. With our selected configurations of positive and negative
bumps, we may identify the bump &, (};) to the integet so that positive bumps correspond to odd numbers
and negative bumps correspond to even numbers. With this identification, two integer$l, ..., k} are said
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to be connected to each other if and onlyBig, (/j;) and Bg,(lj,) are subsets of one nodal domain:ofThen

the number of nodal domains ofis the number of connected components of one of the graphs formed by the
integers{1, 2, ..., k} under the following rules: (a) odd numbers can only be connected to odd numbers, and even
numbers can only be connected to even numbers; (b) if two odd numteevgith i < n are connected to each
other then any even number inside the intef¥at] cannot be connected to any even number outside that interval,
(c) switch the roles of odd numbers and even numbers in (b). To get the result, it is sufficient to prcp@ﬂh&t

is a lower bound of the numbers of connected components of the graphs formed fromk} by the above rules.

This is obvious fork = 1, 2, 3 by a direct inspection. Assume the claim is true for some positive integed
consider the graph formed from the $&t. .., k + 1}. If k + 1 is not connected to the proceeding numbers.1 k

then by the induction assumption the number of connected components of the graph is[éﬂ ledst- 1 which

is not less tharﬁkizl] + 1. If k + 1 is connected to somge {1, ..., k} then any integer in the s¢j + 1, ..., k}
which is connected to an integer less thyamust be in the component containifigandk + 1. Therefore, when
the number of connected components containing integers in tHé&,set, j} is considered, one may regard the
set{j,...,k+1} as one integef and ignore the integers+ 1, ..., k + 1 and by using the induction assumption,
we know there are at IeaB%] + 1 connected components containing integerglin. ., j}. This means there are

at Ieast[%] connected components which do not contain any integefg,in., k + 1}. Also, when the number

of connected components containing integersjint 1, ...,k 4+ 1} is considered, one may ignore the integers
{1,...,j} since any integer ifil, ..., j} connected to an integer { + 1, ..., k + 1} must be connected to+ 1.

By the induction assumption again there are at Ie{é\%_—j] + 1 connected components which contain integers
in{j +1,...,k+ 1}, or equivalently, which contain integers {n, ..., k + 1}. The total number of connected
components is the sum of the number of connected components which do not contain any intggers,ib+ 1}

and the number of connected components which contain integéfs.in, k + 1}. Therefore, the total number of
connected components of the graph formeddy. ., k+ 1} is at Ieas[%] + ["%" ]+ 1. Sincek + 1 is connected

to j, k+1andj must be either both even numbers or both odd numbers. In eithek gake- j is an even number,
which implies[%] + [%] = ["izl]. This finishes the induction process. Going back to the original problem we

find thatu has at Ieas[t%] + 1 nodal domains. O
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