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Abstract

This article deals with the optimal transfer of a satellite between Keplerian orbits using low propulsion and is based on prelim-
inary results of Epenoy et al. (1997) where the optimal trajectories of the energy minimization problem are approximated using
averaging techniques. The averaged Hamiltonian system is explicitly computed. It is related to a Riemannian problem whose dis-
tance is an approximation of the value function. The extremal curves are analyzed, proving that the system remains integrable in
the coplanar case. It is also checked that the metric associated with coplanar transfers towards a circular orbit is flat. Smoothness
of small Riemannian spheres ensures global optimality of the computed extremals.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Cet article concerne le problème du transfert d’un satellite entre orbites elliptiques dans le cadre de la poussée faible et se fonde
sur les résultats préliminaires d’Epenoy et al. (1997) où les trajectoires optimales du problème de minimisation de l’énergie sont
approchées par moyennation. On fait un calcul explicite du Hamiltonien moyenné et on prouve qu’il s’agit du Hamiltonien associé
à un problème Riemannien dont la distance approche la fonction valeur. On montre en analysant les extrémales que le système
moyenné reste intégrable dans le cas coplanaire, et on vérifie que la métrique associée est plate dans le cas de transferts coplanaires
vers des orbites circulaires. La régularité des sphères Riemanniennes de petit rayon garantit l’optimalité globale des extrémales
calculées.
© 2006 Elsevier Masson SAS. All rights reserved.

MSC: 49K15; 70Q05

Keywords: Orbit transfer; Energy minimization; Averaging; Riemannian approximation

* Corresponding author.
E-mail addresses: bernard.bonnard@u-bourgogne.fr (B. Bonnard), caillau@n7.fr (J.-B. Caillau).
0294-1449/$ – see front matter © 2006 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.anihpc.2006.03.013



396 B. Bonnard, J.-B. Caillau / Ann. I. H. Poincaré – AN 24 (2007) 395–411
1. Introduction

An important problem in astronautics is to transfer a satellite between elliptic orbits. Current research projects
concern orbital transfer with electro-ionic propulsion where the thrust is very low. If we assume the mass constant,
the Kepler equation describing the motion of the satellite can be normalized to

q̈ = − q

|q|3 + u,

where q = (q1, q2, q3) is the position of the satellite and u is the thrust, |u| � ε, ε being the normalized maximum
amplitude of the control. The thrust can be decomposed in a moving frame, the so-called radial-orthoradial frame. In
this frame, u = u1F1 +u2F2 +u3F3 with F1 = q/|q|, F2 = F3 ×F1, and F3 = q × q̇/|q × q̇|. The state of the system
is described by an angle, the true longitude l, and by five equinoctial elements corresponding to first integrals of the
unperturbed motion, for instance x = (P, e,h) where P is the semi-latus rectum of the osculating conic, e = (ex, ey)

the eccentricity vector, and h = (hx,hy) the inclination vector. We restrict the problem to the elliptic domain, that is
to the manifold X of elliptic trajectories of the Kepler equation,

X = {
P > 0, |e| < 1

}
.

The system is smooth on X × S1 and described by the following equations [7],

ẋ =
3∑

i=1

uiFi(l, x), l̇ = g0(l, x) + g1(l, x,u), (1.1)

where

F1 = P 1/2
(

sin l
∂

∂ex

− cos l
∂

∂ey

)
,

F2 = P 1/2
[

2P

W

∂

∂P
+

(
cos l + ex + cos l

W

)
∂

∂ex

+
(

sin l + ey + sin l

W

)
∂

∂ey

]
,

F3 = P 1/2

W

(
−Zey

∂

∂ex

+ Zex

∂

∂ey

+ C cos l

2

∂

∂hx

+ C sin l

2

∂

∂hy

)
,

with

W = 1 + ex cos l + ey sin l, Z = hx sin l − hy cos l, C = 1 + |h|2
and

g0 = W 2

P 3/2
, g1 = P 1/2 Z

W
u3.

An important subproblem is to transfer the satellite between coplanar orbits. The corresponding subsystem is deduced
by setting both the inclination h and the control u3 to zero.

In orbital transfer, the system must be steered from an initial position represented by (l0, x0) to a terminal orbit
defined by some xf , taking into account physical cost functions such as the transfer time tf , the energy

∫ tf
0 |u|2 dt , or

the consumption
∫ tf

0 |u|dt . The resulting criterions take the form

tf∫
0

F 0
ε (l, x, v)dt → min,

where v = u/ε is the renormalized control, |v| � 1. The analysis of the system is intricate and is achieved mainly
using numerical simulations: see [7] for the time optimal case, and [13] for the minimization of the consumption.
If we use low propulsion, we can observe on the numerical results that the evolution of the equinoctial parameters
are essentially given by the averaged behaviour of the extremal solutions. This observation was the starting point of
[10,12] where a preliminary analysis of the averaged energy minimization problem was performed (the constraint
|v| � 1 being relaxed since it is automatically fulfilled for a big enough fixed transfer time). Using symbolic machine
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computation, this led in the coplanar transfer case to an averaged system that can be mathematically evaluated by
means of standard integral calculus and is integrable by quadratures if the system is transferred towards a circular
orbit.

The aim of this article is to present the computations in the general case and to regard averaging as a means of
approximating optimal control problems by sub-Riemannian ones. Such problems have the interesting property that
L2 or L1 minimization and final time minimization share the same extremals. In the orbit transfer case, the problem
we obtain is even Riemannian, in dimension three for coplanar trajectories, five otherwise, for additional control
directions associated with Lie brackets of the original vector fields are generated when averaging with respect to
the fast variable l. Another contribution is to prove that the coplanar Kepler equation remains integrable when it is
perturbed by small controls and averaged. Analyzing the Riemannian metric associated with the problem, we even
show that it is almost flat, in the sense that the metric is actually flat for the two-dimensional subsystem of transfers
towards circular orbits, and that it is a deformation of the three-dimensional Euclidean metric otherwise. Besides, we
also point out the effect of the geometry of the elliptic domain on existence of geodesics and completeness of the
metric, and illustrate how it is responsible for the loss of compactness of large enough Riemannian spheres.

The organization of the article is the following. In Section 2, we introduce the category of optimal control problems
analyzed further, and define the associated Riemannian structure. In Section 3, the averaged Hamiltonian is explicitly
computed in the non-coplanar case, as well as the induced Riemannian metric. In Section 4, we prove that the system
is integrable by quadratures in the coplanar case and compute flat coordinates for transfers towards circular orbits.
In the concluding Section 5, we evaluate numerically Riemannian spheres for a coplanar transfer, allowing us to get
global optimality results. We also discuss the merits of this study in the framework of continuation methods.

2. Energy minimization for affine control systems

Let X be an n-dimensional smooth manifold. An affine control system is a system of the form

ẋ = F0(x) +
m∑

i=1

uiFi(x),

where the drift, F0, and F1, . . . ,Fm are smooth vector fields. The set of admissible controls is the set of bounded
measurable mappings valued in a prescribed subset U of Rm. Let (x,u) be a pair solution of the differential equation
on [0, tf ], then the energy is the integral

∫ tf
0 |u|2 dt , |u| = (u2

1 +· · ·+u2
m)1/2 being the Euclidean norm. The associated

minimization problem is called the energy minimization problem.

2.1. Unconstrained extremals of the problem with drift

According to the maximum principle [16], optimal trajectories are extremal curves, solution of

ẋ = ∂H

∂p
(x,p,u), ṗ = −∂H

∂x
(x,p,u),

and if U is equal to Rm (or to an open subset of Rm), we deduce from the maximization condition that ∂H/∂u is zero
where

H(x,p,u) = p0
m∑

i=1

u2
i +

〈
p,F0 +

m∑
i=1

uiFi

〉
.

The nonpositive constant p0 can be normalized either to 0, in the so-called abnormal or exceptional case, or to −1/2
in the normal case. If we define the Poincaré coordinates Pi = 〈p,Fi〉, i = 0, . . . ,m, we get from the maximization
condition that ui = Pi in the normal case. Plugging this into H defines the true Hamiltonian function, still denoted H ,
whose integral curves are the normal extremals:

H(x,p) = P0 + 1

2

m∑
i=1

P 2
i .
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2.2. Sub-Riemannian problems

Consider the previous minimization problem with F0 = 0, that is for the symmetric system

ẋ =
m∑

i=1

uiFi,

the final time tf being fixed. Let D be the distribution spanned by the vector fields F1, . . . ,Fm, and assume that its rank
is constant and equal to m at each point. Then, according to Maupertuis principle, the energy minimization problem
is equivalent to the minimization of the length,

∫ tf
0 |u|dt , among curves tangent to the distribution. The underlying

geometry is called sub-Riemannian (SR). It is a generalization of Riemannian geometry for which m is equal to n.
Geometrically, the SR problem amounts to defining a metric on D , the vector fields F1, . . . ,Fm forming an or-

thonormal frame. Using our system representation, our gauge group is made of diffeomorphisms, x = ϕ(y), and
feedbacks, v = O(x)u, where O(x) is an orthogonal matrix preserving the control magnitude. Locally, we can rep-
resent the SR metric on the kernel of an appropriate vectorial one-form by g = ∑m

i,j=1 gij (x)dxi dxj and the gauge
group acts by changes of coordinates only.

According to the previous subsection, the normal extremals are integral solutions of the Hamiltonian H =
(1/2)(P 2

1 + · · · + P 2
m). Thus, parameterizing the extremal curves by arclength amounts to a restriction to the level

set H = 1/2. Let z be the pair (x,p) and let z(t, z0) be the normal extremal at time t contained in H = 1/2 and
starting from z0. If we fix x0, the exponential mapping is the map

expx0
: (t,p0) �→ x(t, x0,p0).

If X is connected and if the Lie algebra generated by the distribution is of full rank, then, under mild assumptions,
for each pair (x0, xf ) there exists an optimal curve joining x0 to xf and the length of such a curve is the SR distance
between these points. We note S(x0, r) the SR sphere with center x0 and positive radius r . A conjugate point along
a normal extremal is defined as follows. Let tc be a positive time such that the exponential is not immersive for
some p0. Then tc is a conjugate time on the extremal starting from (x0,p0), and its image x(tc) is a conjugate point.
The conjugate locus C(x0) is the set of first conjugate points when all the normal extremals starting from x0 are
considered. The point where the extremal ceases to be minimizing is called the cut point, and such points form the cut
locus L(x0).

2.3. Averaging for energy minimization

According to the introduction, the elliptic transfer is modelled by a system on X × S1, see (1.1):

ẋ =
m∑

i=1

uiFi(l, x), l̇ = g0(l, x) + g1(l, x,u).

For such a system, we assume that g0 and g1 are smooth, g0 positive and g1 linear in the control. We set as before
u = εv, |v| � 1, and consider the energy minimization problem

tf∫
0

|u|2 dt = ε2

tf∫
0

|v|2 dt → min

for a fixed positive final time tf . Since l̇ is positive, we can reparameterize the trajectories by l,

dx

dl
= ε

g0(l, x) + εg1(l, x, v)

m∑
i=1

viFi(l, x),

and the cost function becomes

ε2

lf∫
|v|2 dl

g0(l, x) + εg1(l, x, v)
.

l0
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In order to perform the analytic computation, we first relax the problem by dropping the bound on the control,
|v| � 1. Indeed, the underlying idea is that, for a given positive ε, the constraint will be automatically fulfilled for a
big enough final time. Practically, we also replace the problem with fixed time by fixed cumulated longitude.

By virtue of the maximum principle, optimal trajectories are extremals, that is integral curves of the following
Hamiltonian:

Hε(l, x,p, v) = ε

g0 + εg1

(
p0ε|v|2 +

m∑
i=1

viPi

)
,

where p0 is nonpositive and Pi = 〈p,Fi〉, i = 1, . . . ,m. In the normal case, p0 is negative and normalized not to
−1/2 but to −1/(2ε) for obvious homogeneity reasons. As a result, up to first order in ε, we have the approximation
below:

Hε(l, x,p, v) = ε

g0

(
1 − ε

g1

g0
+ · · ·

)(
−1

2
|v|2 +

m∑
i=1

viPi

)

= ε

g0

(
−1

2
|v|2 +

m∑
i=1

viPi

)
+ o(ε).

Neglecting the o(ε) term, the maximized first order approximation in the normal case is the true Hamiltonian

H(l, x,p) = 1

2g0

m∑
i=1

P 2
i ,

where the multiplicative factor ε has been omitted for the sake of simplicity. We observe that, since g0 is positive,
H can be written as a sum of m squares, H = (1/2)

∑m
i=1(Pi/g

1/2
0 )2.

Lemma 1. The function H is a nonnegative quadratic form in p with constant rank m denoted w(l, x).

Since H is 2π -periodic with respect to l, it makes sense to compute its average.

Definition 2. The averaged Hamiltonian is

H(x,p) = 1

2π

2π∫
0

H(l, x,p)dl.

The following lemma is crucial.

Lemma 3. The averaged Hamiltonian also defines a nonnegative quadratic form in p denoted w(x). Moreover,

Kerw(x) =
⋂
l∈S1

Kerw(l, x).

Proof. We fix x and p. By construction, H(l, x,p) is nonnegative for every l in S1, hence H(x,p) is also nonnegative,
as well as the form w(x). Clearly, if p is in

⋂
l∈S1 Kerw(l, x), then H(x,p) = 0. Conversely, if H(x,p) = 0, then

2π∫
0

H(l, x,p)dl = 0.

Since H(l, x,p) is nonnegative, it has to be zero for each l. This proves the result. �
According to this lemma, the rank of w(x) is not less than m, and we can only expect it to increase. The geometric

interpretation is clear: the extremal control is a dynamic feedback of the form u(l, x,p), periodic with respect to l, the
so-called fast variable. The oscillations due to this coordinate generate new control directions, namely Lie brackets of
the original vector fields. This leads to the following concept.
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2.4. Sub-Riemannian structure of the averaged problem

Definition 4. The averaged system is said to be regular if the rank of w(x) is constant.

In this case, there exists an orthogonal matrix R(x) such that, if P = R(x)p then w(x) is written as a sum of
squares, (1/2)

∑k
i=1 λi(x)P 2

i , where λ1, . . . , λk are the nonnegative eigenvalues of the symmetric matrix S(x) such
that w(x) = (1/2) tpS(x)p. Hence, we can write

w(x) = 1

2

k∑
i=1

(
λ

1/2
i Pi

)2 = 1

2

k∑
i=1

〈p,Fi〉2,

where the Fi ’s are smooth vector fields on X.

Proposition 5. If the averaged system is regular of rank k, the averaged Hamiltonian H can be written as a sum of
squares, (1/2)

∑k
i=1 P 2

i , Pi = 〈p,Fi〉, and is the Hamiltonian of the SR problem

ẋ =
k∑

i=1

uiFi(x),

tf∫
0

k∑
i=1

u2
i dt → min

with k not less than m. If k is equal to n, then H is the Hamiltonian of a Riemannian problem.

3. Application to orbital transfer with low thrust

We use the representation of the introduction: the state is described by the equinoctial elements (P, e,h) and the
control is decomposed in the radial-orthoradial frame (this choice is justified further). We start with the averaging of
the coplanar transfer.

3.1. Averaged system for coplanar transfers

Applying the process previously discussed, we obtain the Hamiltonian H = (1/2)(P 2
1 + P 2

2 ) with

P1 = P 5/4

W
(pex sin l − pey cos l),

P2 = P 5/4

W

[
pP

2P

W
+ pex

(
cos l + ex + cos l

W

)
+ pey

(
sin l + ey + sin l

W

)]
.

As before, W = 1 + ex cos l + ey sin l, and the computation of the averaged has the complexity of integrating terms
of the form Q(cos l, sin l)/Wk where Q is a polynomial and k is an integer between two and four. Since

2π∫
0

Q(cos l, sin l)

Wk
dl =

∫
S1

Q(z/2 + 1/(2z), z/(2i) − 1/(2iz))

Wk

dz

iz
,

such integrals are evaluated by means of the integrand residues. Writing e = ex + iey , we have W = (ēz2 +2z+e)/(2z)

and, for e not zero, there are two distinct poles,

z = −1 ± (1 − |e|2)1/2

ē
.

The product of these poles is the unit complex e/ē, so that only one of them belongs to the open unit disk, namely
z = [−1 + (1 − |e|2)1/2]/ē. In contrast, when using the tangential-normal frame as in [10], W is replaced by W(1 +
2ex cos l + 2ey sin l + |e|2) and two poles among four are to be taken into account.

An inspection of the Hamiltonian shows that the following averages are required, for which we give the results:
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1/W 2 = δ3,

cos l/W 3 = −(3/2)exδ
5, sin l/W 3 = −(3/2)eyδ

5,

cos2 l/W 3 = (1/2)
(
δ3 + 3e2

xδ
5
)
, sin2 l/W 3 = (1/2)

(
δ3 + 3e2

yδ
5
)
,

cos l sin l/W 3 = (3/2)exeyδ
5,

1/W 4 = (1/2)
(
2 + 3|e|2)δ7,

cos l/W 4 = −(1/2)ex

(
4 + |e|2)δ7, sin l/W 4 = −(1/2)ey

(
4 + |e|2)δ7,

cos2 l/W 4 = (1/2)
(
δ5 + 5e2

xδ
7
)
, sin2 l/W 4 = (1/2)

(
δ5 + 5e2

yδ
7
)
,

cos l sin l/W 4 = (5/2)exeyδ
7,

with δ = 1/(1 − |e|2)1/2. Substituting these expressions, we obtain the averaged Hamiltonian

H(x,p) = P 5/2

4(1 − |e|2)5/2

[
4p2

P P 2(−3 + 5
(
1 − |e|2)−1) + p2

ex

(
5
(
1 − |e|2) + e2

y

) + p2
ey

(
5
(
1 − |e|2) + e2

x

)
− 20pP pex P ex − 20pP pey P ey − 2pex pey exey

]
.

3.2. Change of coordinates

At this point, we take advantage of the computation in [10] and make the following change of variables:

P = 1 − ρ2

n2/3
, ex = ρ cos θ, ey = ρ sin θ,

where n is the so-called mean movement [17]. This amounts to the Mathieu transformation x = ϕ(y) and p =
q(∂ϕ/∂y)−1, where q is the new adjoint state variable. The next proposition summarizes the computation.

Proposition 6. In coordinates (n,ρ, θ), the averaged Hamiltonian is

H = 1

4n5/3

[
18n2p2

n + 5
(
1 − ρ2)p2

ρ + (
5 − 4ρ2)p2

θ

ρ2

]
, (3.1)

and ρ = 0 corresponds to a circular orbit for which the change of variables is singular.

In particular, H is the Hamiltonian of a Riemannian problem in R3 defined by

ds2 = 1

9n1/3
dn2 + 2n5/3

5(1 − ρ2)
dρ2 + 2n5/3

5 − 4ρ2
ρ2 dθ2,

and (n,ρ, θ) are orthogonal coordinates.
Up to a scalar, this result was obtained by symbolic computation in [10]. However, the complexity of the computa-

tion prevented the authors from tackling the general non-coplanar transfer problem.

3.3. Averaged system for non-coplanar transfers

The complete Hamiltonian is H = (1/2)(P 2
1 + P 2

2 + P 2
3 ) with

P3 = P 5/4

W

(
−Zpex ey + Zpey ex + C

2
phx cos l + C

2
phy sin l

)

and P1, P2 unchanged. As previously, we use (n,ρ, θ) as coordinates, and we make a polar representation of h,
hx = σ cosΩ , hy = σ sinΩ . The angle Ω is the so-called longitude of the ascending node [17]. We get
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H = 1

4n5/3

[
18n2p2

n + 5
(
1 − ρ2)p2

ρ + (
5 − 4ρ2)p2

θ

ρ2

]
+ 1

4n5/3

(σ 2 + 1)2

4

1 + 4ρ2

1 − ρ2

(
cosωpσ + sinω

pθΩ

σ

)2

+ 1

4n5/3

(σ 2 + 1)2

4

(
− sinωpσ + cosω

pθΩ

σ

)2

,

where ω = θ − Ω is the angle of the pericenter, and where

pθΩ = 2σ 2

σ 2 + 1
pθ + pΩ.

This decomposition shows that H is the sum of five squares, (1/2)
∑5

i=1 P 2
i , where the Pi = 〈p,Fi〉 are five indepen-

dent linear forms in p.

Theorem 7. The averaged Hamiltonian of the non-coplanar transfer is associated with a five-dimensional Riemannian
problem.

More precisely, our computation asserts that H = H 1 + H 2 where H 1 is the averaged Hamiltonian (3.1) related to
the coplanar transfer and where

H 2 = 1

8n5/3

(σ 2 + 1)2

2

[
1 + 4ρ2

1 − ρ2

(
cosωpσ + sinω

pθΩ

σ

)2

+
(

− sinωpσ + cosω
pθΩ

σ

)2]

comes from the averaged action of the vector field orthogonal to the osculating plane. We begin by studying this last
term alone.

In this case, n and ρ are constant and we can absorb the effect of 1/(8n5/3). We set K = [(1 + 4ρ2)/(1 − ρ2)]1/2

for ρ in ]0,1[ (note that K > 1), the singular case ρ = 0 being excluded. Replacing the coordinate θ by ω = θ − Ω ,
we have H 2 = (1/2)(P 2

4 + P 2
5 ) where x = (σ,ω,Ω), and where P4 and P5 are the Hamiltonian lifts of the vector

fields

F4 = K
(
σ 2 + 1

)[
cosω

∂

∂σ
+ sinω

σ

(
σ 2 − 1

σ 2 + 1

∂

∂ω
+ ∂

∂Ω

)]
and

F5 = (
σ 2 + 1

)[− sinω
∂

∂σ
+ cosω

σ

(
σ 2 − 1

σ 2 + 1

∂

∂ω
+ ∂

∂Ω

)]
.

Hence, H 2 is induced by the SR problem

ẋ = u1F4(x) + u2F5(x),

tf∫
0

(|u1|2 + |u2|2
)

dt → min.

The vectors F4, F5 and [F4,F5] readily form a frame, and D = Span{F4,F5} is a two-dimensional contact distribu-
tion. The induced geometry is well studied [6], and we have the proposition hereafter.

Proposition 8. The averaged Hamiltonian H 2 corresponds to the SR problem in dimension three defined by the contact
distribution(

σ 2 + 1
)

dω − (
σ 2 − 1

)
dΩ = 0.

The metric is

g = 1

(σ 2 + 1)2

(
cos2 ω

K2
+ sin2 ω

)
dσ 2 + σ 2

(σ 2 − 1)2

(
sin2 ω

K2
+ cos2 ω

)
dω2

− 2σ cosω sinω

(σ 2 + 1)(σ 2 − 1)

(
1 − 1

K2

)
dσ dω.

In the sequel, we focus on the analysis of the extremal curves of the coplanar system.
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4. Integrability of the averaged coplanar system

4.1. Geometric preliminaries

If we restrict our study to coplanar transfers, the variables (n,ρ, θ) form an orthogonal set of coordinates for the
averaged Hamiltonian (3.1) that we shall renormalize to its half as in [10],

H = 1

8n5/3

[
18n2p2

n + 5
(
1 − ρ2)p2

ρ + (
5 − 4ρ2)p2

θ

ρ2

]
. (4.1)

The singularity of these coordinates at ρ = 0 comes from the polar transformation centered on circular orbits. In the
coplanar case, Ω is zero and θ is equal to ω, the angle of the pericenter. We observe that, since the Hamiltonian does
not depend on θ , the coordinate is cyclic in order that its dual variable pθ is a first integral of the averaged motion.
If we restrict further the system to the four-dimensional symplectic space {θ = pθ = 0}, H = [1/(8n5/3)][18n2p2

n +
5(1 − ρ2)p2

ρ] is analytic and associated with a planar Riemannian metric. Geometrically, the condition pθ = 0 is the
transversality condition for a transfer towards a circular orbit for which the angle of the pericenter is unprescribed.
This is the case for the important problem of steering the system to a geostationary orbit.

In (4.1), the Hamiltonian is the half sum of three squares that are Hamiltonian lifts of the following vector fields:

F1 = 3√
2
n1/6 ∂

∂n
,

F2 =
√

5

2

(1 − ρ2)1/2

n5/6

∂

∂ρ
,

F3 = 1

2

(5 − 4ρ2)1/2

ρ

∂

∂θ
,

where n is positive and ρ belongs to [0,1[, ρ being zero for circular orbits and equal to one for parabolic orbits.
These vector fields are analytic for ρ positive and the system ẋ = ∑3

i=1 uiFi(x) is controllable by virtue of Chow’s
theorem. As a result, two points close enough in the elliptic domain can be joined by an extremal minimizing curve of
the associated Riemannian problem,

∫ tf
0

∑3
i=1 |ui |2 → min. Therefore, contrary to what is observed in lunar theory,

there are no first integrals depending only upon state variables.
The Hamiltonian system is (for the sake of clarity, we use the time t instead of the cumulated longitude l to

parameterize the extremals)

ṅ = 9

2
n1/3pn, (4.2)

ρ̇ = 5

4

(1 − ρ2)

n5/3
pρ, (4.3)

θ̇ = 1

4

(5 − 4ρ2)

ρ2n5/3
pθ , (4.4)

ṗn = −3

4

p2
n

n2/3
+ 25

24

(1 − ρ2)

n8/3
p2

ρ + 5

24

(5 − 4ρ2)

ρ2n8/3
p2

θ , (4.5)

ṗρ = 5

4

(ρp2
ρ + p2

θ /ρ
3)

n5/3
, (4.6)

ṗθ = 0. (4.7)

4.2. Normal coordinates

We first normalize our coordinates.

Theorem 9. The metric

g = 2
1/3

dn2 + 4n5/3

2
dρ2 + 4n5/3

2
ρ2 dθ2 (4.8)
9n 5(1 − ρ ) 5 − 4ρ
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is isomorphic to g = dr2 + r2(dϕ2 + G(ϕ)dθ2) in the elliptic domain.

Proof. The main step is to normalize the two-dimensional metric g = 2 dn2/(9n1/3) + 4n5/3 dρ2/[5(1 − ρ2)] associ-
ated with transfer towards circular orbits. We set

r = 23/2

5
n5/6, ϕ = 1

c
arc sinρ (4.9)

with c = √
2/5, in order that g takes the so-called polar form, g = dr2 + r2 dϕ2. The transformation (4.9) is well

defined for n > 0 and ϕ in ]−ϕc,ϕc[, ϕc = π/(2c). Letting

G(ϕ) = 25

2

sin2(cϕ)

1 + 4 cos2(cϕ)

gives the desired expression. �
This normal form makes the analysis of transfers towards circular orbits straightforward.

4.3. Coplanar transfers to circular orbits

We first restrict the elliptic domain to θ = 0 but relax it into

X0 = {
n > 0, ρ ∈ ]−1,1[}.

In polar coordinates (4.9), the two-dimensional elliptic subdomain is X0 = {r > 0, ϕ ∈ ]−ϕc,ϕc[}, and the relaxation
allows to go through the previous singularity, ρ = 0. The metric is reduced to the polar form g = dr2 + r2 dϕ2 that we
can clearly rewrite g = r2[(dr/r)2 +dϕ2]. Defining u = ln r , the metric becomes g = e2u(du2 +dϕ2). It belongs to the
category of Liouville metrics [3] of the form λ(u,ϕ)(du2 +dϕ2), λ(u,ϕ) = f (u)+g(ϕ). Such metrics are known to be
integrable. Actually, in these coordinates, orthonormal vector fields are defined by F1 = λ−1/2 ∂/∂u, F2 = λ−1/2 ∂/∂ϕ,
and the Hamiltonian is H = [1/(2λ)](p2

u + p2
ϕ) with λ = e2u. Consequently, ϕ is a cyclic coordinate so pϕ is a first

integral equal to 〈p,F 〉 with F = ∂/∂ϕ, and integrability holds thanks to Liouville theorem. By Noether theorem, the
metric is invariant under the action of F and the Lie derivative LF g is zero. These computations are summarized as
follows.

Lemma 10. The metric g is a Liouville metric with a linear first integral and the geodesic flow can be integrated using
elementary functions.

More precisely, using the polar form of the metric, we set x = r sinϕ, z = r cosϕ, and write g as the flat metric in
dimension two with zero Gauss curvature:

g = dx2 + dz2. (4.10)

Proposition 11. The geodesics of the averaged coplanar transfer towards circular orbits are straight lines in suitable
coordinates, namely

x = 23/2

5
n5/6 sin

(
1

c
arc sinρ

)
and z = 23/2

5
n5/6 cos

(
1

c
arc sinρ

)

with c = √
2/5.

4.4. Coplanar transfers to general orbits

The integrability properties of the extremal flow restricted to {θ = pθ = 0} was already obtained in [10] thanks
to symbolic computation in the original geometric coordinates, n and ρ. We shall also make the integration in these
variables and extend it further to the full system. The integration is a consequence of the previous decomposition of the
metric into a polar part g1 = dr2 + r2 dϕ2, and a second metric g2 = dϕ2 + G(ϕ)dθ2 where θ is a cyclic coordinate.
We need a preliminary result.



B. Bonnard, J.-B. Caillau / Ann. I. H. Poincaré – AN 24 (2007) 395–411 405
Lemma 12. The coordinate v = n5/3 is a degree two polynomial of time,

v = 25

4
C0 t2 + v̇(0)t + v(0).

Proof. We first note that (d/dt)(npn) = ṅpn +nṗn = (5/3)H , and the Hamiltonian is constant along extremal curves,
H = C0. Since v = n5/3, (4.2) implies that v̇ = (15/2)npn. Then v̈ = (25/2)C0, whence the conclusion. �

This computation allows us to integrate the two-dimensional subsystem on {θ = pθ = 0}, even without taking
advantage of the flat coordinates (4.10). Indeed, a first integral linear in p is obtained by noting that

dρ

dpρ

= 1 − ρ2

ρpρ

·

Hence, separating the variables leads to

pρ

(
1 − ρ2)1/2 = C1, (4.11)

associated with the isometry defined by (1 − ρ2)1/2∂/∂ρ. To compute ρ, we proceed as follows. We know that v is a
polynomial of degree two, v = (25/4)C0 t2 + v̇(0)t + v(0), whose discriminant is Δ = −(125/8)[1 − ρ2(0)]p2

ρ(0). It
is negative if pρ(0) is not zero, the integration for pρ(0) = 0 being straightforward. In the former case we have

|Δ|1/2 =
(

5

2

)3/2(
1 − ρ2(0)

)1/2∣∣pρ(0)
∣∣ > 0

and dρ/(1 − ρ2) = (5/4)C1 dt/v. Introducing w = arcsinρ we get

[w]t0 =
√

2

5
signpρ(0)[arctanT ]t0

with T = (2at + b)/|Δ|1/2, a = (25/4)C0 and b = v̇(0). This gives the parameterization of the geodesics of the
two-dimensional Riemannian problem underlying the transfer towards circular orbits.

In order to integrate the full system, we observe that once v has been computed, we can integrate using a repara-
meterization. Indeed, let us introduce

H ′ = 5
(
1 − ρ2)p2

ρ + (
5 − 4ρ2)p2

θ

ρ2
·

The induced Hamiltonian system in the symplectic space (ρ, θ,pρ,pθ ) will be integrated thanks to the change of time
dT = dt/(8n5/3). It is associated with the extremal flows of the metric g2 = dϕ2 + G(ϕ)dθ2 that is still Liouville, but
with nonzero Gaussian curvature:

− 1

G1/2

d2G1/2

dϕ2

= 0.

Though the integration is easily performed putting the metric in standard form, g2 = G(ϕ)[(dϕ/G1/2(ϕ))2 + dθ2], we
shall use another method coming from mechanics. Since θ is cyclic, pθ is constant, pθ = C2, and H ′ is a Hamiltonian
function of the two symplectic variables (ρ,pρ) depending upon the parameter C2. The associated planar system is
completely integrable and θ can be computed by quadratures. More precisely, we have:

H ′ = 5
(
1 − ρ2)p2

ρ + 5 − 4ρ2

ρ2
C2

2 = C2
3 .

Using pρ = ρ̇/10(1 − ρ2), we obtain

dρ

dT
= ±2

√
5

(1 − ρ2)1/2

ρ

[(
C2

3 + 4C2
2

)
ρ2 − 5C2

2

]1/2
.

Letting w = 1 − ρ2, we eventually get (dw/dT )2 = R, where R is the degree two polynomial R = 80w[(C2
3 − C2

2) −
(C2 + 4C2)w]. Whence the last result of the section.
3 2
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Theorem 13. The averaged coplanar system is completely integrable by quadratures and the value function solution
of the Hamilton–Jacobi equation for the minimization of the energy can be computed.

Remark 14. The normal form of the metric and the integrability properties of the geodesic flows are important
regarding optimality issues. Indeed, the conjugate and cut loci can be analytically computed and the geometric form
reveals two curvatures: the zero curvature of the metric g1, and the curvature of the metric g2.

5. Computation of the Riemannian spheres and concluding remarks

5.1. Riemannian spheres associated with coplanar transfers to circular orbits

On the two-dimensional elliptic subdomain X0, the metric is real analytic and the distance (as well as the energy
value function) inherits the standard properties of analytic Riemannian metrics. On balls of small enough radius, it is
a continuous subanalytic function, and cut points are either conjugate points or points where two minimizing extremal
curves intersect. Moreover, the cut locus is the set of singularities of the sphere and is subanalytic. Here, since the
metric is the standard Euclidean one, the cut and conjugate loci are empty, but the geometry of the domain is related
to the existence of geodesics and the completeness of the metric. Using flat coordinates, the following is obvious.

Proposition 15. Given two points of the two-dimensional elliptic subdomain, existence of an energy minimizing tra-
jectory between these points holds if and only if the segment line joining them is included in the domain.

The restrictions on existence arise from the fact that X0 is not geodesically convex, that is not convex in flat
coordinates (x, y) because ϕc > π/2 (see Fig. 1). To some extent, this non-convexity is related to the singularity
ρ = 0 since convexity is regained by removing the relaxation in the definition of X0 and prescribing ρ (resp. ϕ) to
[0,1[ (resp. [0, ϕc[). As illustrated by Fig. 1 (left), there are geodesics originating from a given point towards arbitrary
targets if and only if X0 is starshaped with respect to this point.

The geometry of the domain also has the consequence hereafter.

Proposition 16. The metric is not complete and big enough spheres are not compact.

The result is clear since contacts within finite time occur with the boundary, either with the origin or with {ϕ =
±ϕc}, that is either with {n = 0} (trajectories going to infinity) or {ρ = ±1} (parabolic trajectories). The kind of the
first contact, which is responsible for the loss of compactness of the associated sphere, depends on the initial point.
See Fig. 1 (right) for a classification. For a fixed point in X0, the incompleteness of geodesics—depending on the
target—is illustrated by Fig. 2. Such geodesics as well as the corresponding spheres are presented Fig. 3 in (n,ρ), that
(n, ex) coordinates (for θ = 0, ex is indeed equal to ρ when relaxed to ]−1,1[).

Fig. 1. Existence and completeness of geodesics. On the left, for points in Xa
0 there are geodesics towards any target since X0 is starshaped with

respect to such points. Conversely, for points in Xb
0 (resp. Xb′

0 ), existence of geodesics is lost for targets such that ϕ � ϕ0 − π (resp. ϕ � ϕ0 + π ).
On the right, contacts with ∂X0 are classified according to contact with {n = 0} for initial points in Xc

0, or contact with {ρ = 1} (resp. ρ = −1) for

initial points in Xd
0 (resp. Xd ′

0 ).
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Fig. 2. Existence and completeness of geodesics. Given (x0, z0) in the two-dimensional elliptic subdomain, targets are classified into three cate-

gories. First, those in Xe
0(x0, z0): geodesics exist and are complete. Second, those in X

f
0 (x0, z0) for which geodesics exist but are not complete

because of contact with the boundary. Finally, those in X
g
0 (x0, z0) such that there are no geodesics at all (on the right).

Fig. 3. Geodesics in (n, ex) coordinates of the two-dimensional subsystem related to transfer towards circular orbits starting from
(n0, ρ0) = (1,7.5e − 1). Dots indicate equi-criterion points, that is points on the same Riemannian spheres in {ey = 0} for tf between 2e − 1
and 2. We implicitly use the fact that because we stay on the same energy level, the radius of the Riemannian sphere is given by the final time. The
given initial conditions are classified according to Fig. 1 and belong to Xb

0 ∩ Xd
0 : there are no geodesics towards ex too close to −1 (case of Fig. 2

(right)) and the loss of compactness of the sixth sphere is due to a contact with {ρ = 1}.

5.2. Riemannian spheres associated with arbitrary coplanar transfers

The three-dimensional case is more complex. In addition to the previous existence and completeness issues, the
metric is not flat anymore and, because of the curvature, we can expect cut and conjugate points for large enough
spheres. We shall restrict here to spheres of small radii and connect the metric to the three-dimensional Euclidean
metric (in spherical coordinates) using the following homotopy:

gλ = dr2 + r2
[

dϕ2 + sin2(cλϕ)

2
dθ2

]
,

1 + 4λ cos (cλϕ)
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Fig. 4. Spheres in Cartesian coordinates (x, y, z) of the three-dimensional metric gλ for λ between 0 and 1. The spheres are truncated in accordance
with the domain definition, ϕ ∈ ]−π/(2cλ),π/(2cλ)[. As before, the initial point is (n0, ρ0, θ0) = (1,7.5e − 1,0) and the final time is equal to 1.

where cλ = (1 − λ)c0 + λc1 for c0 = 1, c1 = √
2/5, λ in [0,1], and where we have slightly renormalized the met-

ric (4.8) changing θ into (5/
√

2)θ so as to get g = dr2 + r2(dϕ2 +L(ϕ)dθ2), with L(ϕ) = sin2(cϕ)/[1+4 cos2(cϕ)].
The resulting continuous deformation of S2 is presented Fig. 4 in coordinates x = r sinϕ cos θ , y = r sinϕ sin θ ,
z = r cosϕ, as well as projections of the sphere for λ = 1 in Fig. 5. The absence of conjugate point is checked using
the cotcot1 algorithm presented in [5], and smoothness of small spheres ensures global optimality. Fig. 6 exhibits
geodesics in dimension three together with two imbricated spheres in equinoctial coordinates for comparison with
Fig. 1.

5.3. Approximation results

According to standard results in averaging for ordinary differential equations [11,14] and optimal control [9,15],
the averaged system provides approximations of the true solutions. Indeed, the system is approximated by

1 The code is freely available at www.n7.fr/apo/cotcot so as to reproduce figures presented in the paper.
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Fig. 5. Standard projections of the sphere in Cartesian coordinates (x, y, z) for λ = 1, same initial point and radius as in Fig. 4. The two-dimensional
flat metric in {y = 0} is observed in the xz-projection.

dx

dl
= ε

3∑
i=1

uiFi(l, x) and
dc

dl
= ε2

g0(l, x)

3∑
i=1

u2
i ,

where c is the cost variable. We replace the cost c by εc and parameterize the trajectories by the slow variable l̃ = εl to
absorb ε. By virtue of the maximum principle, the extremals are integral curves of the Hamiltonian and the averaged
system describes the evolution of the first term in the asymptotic expansion of the extremals in the two variables l

and l̃ [15]: x(l̃, l) = x0(l̃) + εx1(l̃, l) + · · ·, p(l̃, l) = p0(l̃) + εp1(l̃, l) + · · ·. The extremal control is also developed as
u(l̃, l) = u0(l̃, l) + εu1(l̃, l) + · · ·. Herebefore, each function is periodic in l, and z0 = (x0,p0) is an extremal of the
averaged Hamiltonian. The first order approximation u0 of the control is obtained by dynamic feedback as a function
of x0 and p0 and depends not only on l̃ but also on the fast variable l. From a classical result [2], the difference
z − z0 is uniformly of order o(ε) for a length l of order 1/ε. The cost is then an approximation of the true cost up to
order o(ε2).

Approximating an energy minimization problem by a Riemannian one reveals practically important features. Since
scaling the final fixed time lf → lf /ε readily results in a reverse scaling on the optimal control, u → εu, whatever
the bound ε, it is thus possible to satisfy the constraint |u| � ε by increasing the final time. Moreover, the product
lf × ε remains constant. Now, from the analysis of the previous paragraph, the same is also asymptotically true on
the non-averaged energy minimization problem. Hence, an appropriate increase in lf provides energy minimizing
curves of the original problem such that the condition on the bound of the control is fulfilled, and lf × ε tends to a
constant as ε tends to zero. The same is valid for the original time of the real system too, since l and t are related by
dl/dt = g0(l, x)+o(ε). Finally, we assume that such energy minimizing curves are good approximations of minimum
time ones by analogy with the Riemannian case where both problems share the same extremals. This is the starting
point of the continuation approach discussed in next paragraph.

Remark 17. The previous arguments allow us to justify the asymptotic relation t̄f × ε → constant as ε → 0 that is
used in practice to initialize the search for the minimum time t̄f of the controlled Kepler equation [7]. This is an
important step towards the answer to the conjecture in [8].
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Fig. 6. Geodesics and spheres in dimension three and equinoctial coordinates (n, ex, ey), same initial condition as before. On the left, some
geodesics up to tf = 2. As previously, dots indicate points on the same spheres. The two-dimensional trajectories are observed in the plane
{ey = 0} (compare with Fig. 3). On the right, two imbricated spheres for tf = 1 and 2, respectively. The smaller one is compact and the same as in
Fig. 5, but in different coordinates.

5.4. Averaging and continuation

The earliest motivation for averaging in orbit transfer is to solve the problem numerically, using a shooting method.
Given an initial point (l0, x0) as well as a terminal orbit xf , if tf denotes the transfer time, the shooting mapping is
defined on {plf = 0} by

S(p0, tf ) = x(tf , l0, x0,p0) − xf , (5.1)

where x(t, l0, x0,p0) is the state component at time t of the extremal curve for initial conditions (l0, x0,p0), that is
the image of p0 by the appropriate exponential mapping. As Eq. (5.1) is nonlinear, it is crucial to have a good initial
guess not only of tf , but also of p0.

The physical problems are the minimization of the time and the minimization of the consumption,
∫ tf

0 |u|dt . The
thrust is bounded according to |u| � ε, and each shooting problem can be analyzed using continuation methods [1],
which are mainly continuation on the thrust bound ε, or continuation on the cost, for instance by considering an
homotopy connecting the energy problem to the consumption one:

tf∫
0

[
(1 − λ)|u|2 + λ|u|]dt = (1 − λ)‖u‖2

L2 + λ‖u‖L1 .

For each problem, we can replace for low thrust the Hamiltonian system by its averaged, and this amounts to an
additional homotopy from the averaged to the initial problem. In this framework, the study allows to initialize the
computation of the adjoint vector by the adjoint vector of the energy minimization averaged system. Furthermore, in
the case of coplanar transfers, the system is integrable and the adjoint state can even be computed analytically.

Regarding the geometric analysis of the extremal flow, the role of the averaged system is clear. We define a Hamil-
tonian system close to the original one that keeps the properties of the system and has additional rigidity. For instance,
a discrete symmetry group can be observed on time-minimizing extremals of the real system, see numerical exper-
iments in [4]. By averaging, we add new symmetries that can be used to analyze the extremal curves. According to
Noether theorem, these additional symmetries are obtained from symmetries of the Hamiltonian. Besides, the simpler
averaged system can be much more easily used than the initial one to evaluate the cut locus or to compute periodic
geodesics. This will be the objective of further studies to conclude the geometric analysis of the orbit transfer.
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