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Abstract

We consider the initial value problem ut = � logu, u(x,0) = u0(x) � 0 in R
2, corresponding to the Ricci flow, namely con-

formal evolution of the metric u(dx2
1 + dx2

2 ) by Ricci curvature. It is well known that the maximal solution u vanishes identically

after time T = 1
4π

∫
R2 u0. Assuming that u0 is radially symmetric and satisfies some additional constraints, we describe precisely

the Type II collapsing of u at time T : we show the existence of an inner region with exponentially fast collapsing and profile, up
to proper scaling, a soliton cigar solution, and the existence of an outer region of persistence of a logarithmic cusp. This is the
only Type II singularity which has been shown to exist, so far, in the Ricci Flow in any dimension. It recovers rigorously formal
asymptotics derived by J.R. King [J.R. King, Self-similar behavior for the equation of fast nonlinear diffusion, Philos. Trans. R.
Soc. London Ser. A 343 (1993) 337–375].
© 2006 Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the Cauchy problem{
ut = � logu, in R

2 × (0, T ),

u(x,0) = u0(x), x ∈ R
2,

(1.1)

for the logarithmic fast diffusion equation in R
2, with initial data u0 non-negative, integrable and T > 0.

It has been observed by S. Angenent and L. Wu [20,21] that Eq. (1.1) represents the evolution of the conformally
equivalent metric gij = udxi dxj under the Ricci Flow

∂gij

∂t
= −2Rij (1.2)

which evolves gij by its Ricci curvature. The equivalence follows easily from the observation that the conformal
metric gij = uIij has scalar curvature R = −(� logu)/u and in two dimensions Rij = 1

2Rgij .
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Eq. (1.1) arises also in physical applications, as a model for long Van-der-Wals interactions in thin films of a fluid
spreading on a solid surface, if certain nonlinear fourth order effects are neglected, see [6,3,4].

We consider solutions with finite total

A =
∫
R2

udx < ∞.

Since u goes to zero when |x| tends to infinity, the equation is not uniformly parabolic. It becomes singular when u is
close to zero. This results to many interesting phenomena, in particular solutions are not unique [8]. It is shown in [8]
that given an initial data u0 � 0 with finite area and a constant γ � 2, there exists a solution uγ of (1.1) with∫

R2

uλ(x, t)dx =
∫
R2

u0 dx − 2πγ t. (1.3)

The solution uγ exists up to the exact time T = Tγ , which is determined in terms of the initial area and γ by Tγ =
1

2πγ

∫
R

u0 dx. In addition, if u0 ∈ L1(R2) ∩ Lp(R2), for some p > 1, u0 �≡ 0 and it is radially symmetric, then uγ is
unique and characterized by the flux-condition

lim
r→+∞

rur(r, t)

u(r, t)
= −γ, as r → ∞ (1.4)

for all 0 < t < Tγ .
We restrict our attention to maximal solutions u of (1.1), corresponding to the value γ = 2 in (1.3), which vanish

at time

T = 1

4π

∫
R2

u0(x)dx. (1.5)

Before we proceed with statements of our main results, let us comment on the extinction behavior of the inter-
mediate solutions uγ of (1.1), corresponding to values γ > 2. This has been recently studied by S.Y. Hsu [17] (see
also [16]). Let uγ be the unique radially symmetric solution of (1.1) which satisfies (1.3) and (1.4). It has been shown
in [17] that there exist unique constants α > 0, β > −1/2, α = 2β +1, depending on γ , such that the rescaled function

v(y, τ ) = u(y/(T − t)β, t)

(T − t)α
, τ = − log(T − t)

will converge uniformly on compact subsets of R
2 to φλ,β(y), for some constant λ > 0, where φλ,β(y) = φλ,β(r),

r = |y| is radially symmetric and satisfies the ODE

1

r

(
rφ′

φ

)′
+ αφ + βrφ′ = 0, in (0,∞)

with

φ(0) = 1

λ
, φ′(0) = 0.

In the case where γ = 4 the above result simply gives the asymptotics

u(x, t) ≈ 8λ(T − t)

(λ + |x|2)2
, as t → T

corresponding to the geometric result of R. Hamilton [12] and B. Chow [5] that under the Ricci Flow, a two-
dimensional compact surface shrinks to a sphere. The extinction behavior of non-radial solutions of (1.1) satisfying
(1.3) with γ > 2 is still an open question. Let us also point out that the asymptotic behavior, as t → ∞, of maximal
solutions of (1.1) when the initial data u0 � 0, u0 ∈ L1

loc(R
2) has infinite area

∫
R2 u0(x)dx = ∞ and satisfies the

specific bounds
α

2
� u0(x) � α

2
, x ∈ R,
|x| + β1 |x| + β2
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for some α > 0, β1, β2 > 0, has been studied by S.Y. Hsu in [14,15], extending previous geometric results by L.F. Wu
[20,21].

The methods in [17] no longer apply for the maximal solution, which turns out to exhibit more delicate asymptotic
behavior. This is due to the fact that the blow up of the curvature R = −� logu/u at the vanishing time T of the
maximal solution is of Type II (Rmax(t)(T − t) → ∞, as t → T ) and not of the standard Type I (Rmax(t)(T − t) �
C < ∞, as t → T ) which is shown to happen in all the other cases. This Type II blow up behavior of the maximal
solution is proven, via geometric a priori estimates, by the first author and R. Hamilton in [9]. Note that this is the
only case of Type II singularity which has been shown to exist in the Ricci Flow, in any dimension.

J.R. King [18] has formally analyzed the extinction behavior of maximal solutions u of (1.1), as t → T , with
T = (1/4π)

∫
R2 u0(x)dx. His analysis, for compactly supported initial data, suggests the existence of two regions

of different behavior. In the outer region (T − t) ln r > T the “logarithmic cusp” exact solution 2t/|x|2 log2 |x| of
equation ut = � logu persists. However, in the inner region (T − t) ln r � T the solution vanishes exponentially fast
and approaches, after an appropriate change of variables, one of the soliton solutions U of equation Uτ = � logU on
−∞ < τ < ∞ given by U(x, τ) = 1/(λ|x|2 + e4λτ ), with τ = 1/(T − t) and λ a constant which depends on the initial
data u0.

Our goal in this paper is to establish rigorously that behavior, under a set of geometrically natural constraints on
the initial condition u0.

We assume in what follows that u0 = u0(|x|) is nonnegative, not identically zero, radially symmetric and bounded
with

T ≡ 1

4π

∫
R2

u0 dx < +∞ (1.6)

such that

u0(r) is strictly decreasing on r � r0, for some r0 � 1 (1.7)

and it satisfies the growth condition

u0(x) = 2μ

|x|2 log2 |x|
(
1 + o(1)

)
, as |x| → ∞ (1.8)

for some positive constant μ. Since locally bounded weak solutions of (1.1) are strictly positive and smooth, we may
assume without loss of generality that u0 is strictly positive and smooth. The initial asymptotic behavior (1.8) is in
fact natural, since it holds true for the maximal solution at any positive time prior to vanishing if the initial datum
has compact support or fast decay. Moreover, according to the results in [8] and [19] (1.8) implies that the maximal
solution u which extincts at time T also satisfies the asymptotic behavior

u(x, t) = 2(t + μ)

|x|2 log2 |x|
(
1 + o(1)

)
, as |x| → ∞, 0 � t < T , (1.9)

this bound of course deteriorates as t → T . Geometrically this corresponds to the condition that the conformal metric
is complete. The manifold can be visualized as a surface of revolution with an unbounded cusp with finite area closing
around its axis. Note that also condition (1.7) is not restrictive, because of the flux condition (1.4) which holds for any
maximal solution with γ = 2.

The scalar curvature Rcusp of the logarithmic cusp 2μ/|x|2 log2 |x|, satisfies the lower bound Rcusp � −1/μ. We
assume the geometric condition that the initial curvature R0 = −� logu0/u0 satisfies the lower bound

R0(x) � − 1

μ
on R. (1.10)

Our main results describe the asymptotic behavior of the maximal solution u of (1.1) near t = T as follows:
Theorem 1.1 describes the inner behavior essentially as

u(x, t) ≈ (T − t)2

2
2(T +μ)
(T −t)
λ|x| + e
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for some λ > 0, whenever |x| = O(e
T +μ
T −t ), while the outer behavior is given, according to Theorem 1.2, by

u(x, t) ≈ 2(t + μ)

|x|2 log2 |x|
for |x| � e

T +μ
T −t .

To make these statements precise, we perform the following change of variables:

ū(x, τ ) = τ 2u(x, t), τ = 1

T − t
(1.11)

and

ũ(y, τ ) = α(τ)ū
(
α(τ)1/2y, τ

)
, (1.12)

with

α(τ) = [
ū(0, τ )

]−1 = [
(T − t)−2u(0, t)

]−1 (1.13)

so that ũ(0, τ ) = 1.
A direct computation shows that the rescaled solution ũ satisfies the equation

ũτ = � log ũ + α′(τ )

2α(τ)
∇(y · ũ) + 2ũ

τ
. (1.14)

Then, following result holds:

Theorem 1.1 (Inner behavior). Assume that the u0 is radially symmetric, positive, smooth and satisfies (1.6)–(1.8)
and (1.10). Then, for each sequence τk → ∞, there is a subsequence, τkl

→ ∞ such that α′(τkl
)/2α(τkl

) → 2λ, for
some constant λ � (T + μ)/2 and along which the rescaled solution ũ defined by (1.11)–(1.13) converges, uniformly
on compact subsets of R

2, to the solution Uλ(x) = (λ|y|2 + 1)−1 of the steady state equation

� logU + 2λ∇(y · U) = 0.

In addition

lim
τ→∞

logα(τ)

τ
= T + μ. (1.15)

To describe the vanishing behavior of u(r, t) in the outer region we first perform the cylindrical change of variables

v(s, t) = r2u(r, t), s = log r (1.16)

which transforms equation ut = � logu to the one-dimensional equation

vt = (logv)ss, −∞ < s < ∞. (1.17)

We then perform a further scaling setting

ṽ(ξ, τ ) = τ 2v(τξ, t), τ = 1

T − t
. (1.18)

A direct computation shows that ṽ satisfies the equation

τ ṽτ = 1

τ
(log ṽ)ξξ + ξ ṽξ + 2ṽ. (1.19)

The extinction behavior of u (or equivalently of v) in the outer region ξ � T + μ, is described in the following result.

Theorem 1.2 (Outer behavior). Assume that the initial data u0 is positive, radially symmetric, smooth and satisfies
(1.6)–(1.8) and (1.10). Then, the rescaled solution ṽ defined by (1.18) converges, as τ → ∞, to the steady state
solution V of Eq. (1.19) given by

V (ξ) =
{

2(T +μ)

ξ2 , ξ > ξμ,

0, ξ < ξ
(1.20)
μ
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with

ξμ = T + μ.

Moreover, the convergence is uniform on the interval (−∞, ξ−
μ ] and on compact subsets of [ξ+

μ ,+∞), for
−∞ < ξ−

μ < ξμ < ξ+
μ < +∞.

This work is devoted to the proof of the above theorems. We conjecture that the limit λ in Theorem 1.1 is unique,
along all subsequences and it is equal to (T + μ)/2. We also conjecture that the results in this work are true without
the assumption of radial symmetry. Condition (1.8) is necessary as it is evident from the above theorems that the
extinction behavior of u depends on the constant μ.

The proof of the above results relies on sharp estimates on the geometric width W and on the maximum curvature
Rmax of maximal solutions near their extinction time T derived in [9] by the first author and R. Hamilton. In particular,
it is found in [9] that the maximum curvature is proportional to 1/(T − t)2, which does not go along with the natural
scaling of the problem which would entail blow-up of order 1/(T − t). One says that the collapsing is of type II. It is
interesting to mention that construction of symmetric solutions to mean curvature flow exhibiting type II blow-up was
achieved by Angenent and Velazquez in [2], where distinct geometric inner and outer behaviors are found as well.
Rather than a general classification result like ours, their construction relies on carefully chosen, very special initial
data.

2. Preliminaries

In this section we will collect a few preliminary results which will be used throughout the rest of the paper. For the
convenience of the reader, we start with a brief description of the geometric estimates in [9] on which the proofs of
Theorems 1.1 and 1.2 rely upon.

2.1. Geometric estimates

In [9] the first author and R. Hamilton established upper and lower bounds on the geometric width W(t) of the
maximal solution u of (1.1), given in the rotational symmetric case by W(t) = maxr�0 2π |x|√u(x, t), and on the
maximum curvature Rmax(t) = maxx∈R2 R(x, t), with R = −(� logu)/u.

As we noted in the introduction the maximal solution u of (1.1) will exist only up to T = (1/4π)
∫

R2 u0(x)dx. The
estimates in [9] depend on the time to collapse T − t . However, they do not scale in the usual way.

Theorem 2.1. [9] There exist positive constants c and C for which

c(T − t) � W(t) � C(T − t) (2.1)

and

c

(T − t)2
� Rmax(t) � C

(T − t)2
(2.2)

for all 0 < t < T .

In the radially symmetric case (2.1) implies the pointwise bound

c(T − t) � max
r�0

r
√

u(r, t) � C(T − t) (2.3)

on the maximal solution u of (1.1), or the bound

c(T − t) � max
s∈R

√
v(s, t) � C(T − t) (2.4)

for the solution v = r2u(r, t), s = log r , of the one-dimensional equation (1.17).
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2.2. Eternal solutions

We will present now a classification result for radially symmetric solutions U of equation

∂U

∂t
= � logU, (x, t) ∈ R

2 × R. (2.5)

Since the solutions U are defined for −∞ < t < ∞ they are called eternal solutions to the Ricci flow. This classifi-
cation result will be crucial in Section 3, where we will show that rescaled solutions of Eq. (1.1) converge to eternal
solutions of Eq. (2.5).

We assume that the solution U of (2.5) is smooth, strictly positive, radially symmetric, with uniformly bounded
width, i.e.,

max
(x,t)∈R2×R

|x|2u(x, t) < ∞. (2.6)

In addition, we assume that the scalar curvature R = −� logU/U is nonnegative and satisfies

max
(x,t)∈R×[−∞,τ ]

R(x, t) < ∞, ∀τ ∈ R. (2.7)

Since U is strictly positive at all t < ∞, it follows that U(·, t) must have infinite area, i.e.,∫
R2

U(x, t)dx = ∞, ∀t ∈ R. (2.8)

Otherwise, if
∫

R2 U(x, t)dx < ∞, for some t < ∞, then by the results in [8] the solution U must vanish at time t +T ,
with T = 1/4π

∫
R2 U(x, t)dx, or before.

Theorem 2.2. Assume that U is a smooth, strictly positive, radially symmetric solution of Eq. (2.5) on R
2 × R which

satisfies conditions (2.6) and (2.7). Then, U is a gradient soliton of the Ricci flow of the form

U(x, τ) = 2

β(|x|2 + δe2βt )
(2.9)

for some δ > 0 and β > 0.

The above classification result has been recently shown by the first author and N. Sesum [7], without the assumption
of radial symmetry and under certain necessary geometric assumptions. For the completeness of this work and the
convenience of the reader we present here its simpler proof in the radially symmetric case.

Under the additional assumptions that the scalar curvature R is uniformly bounded on R
2 × R and assumes its

maximum at an interior point (x0, t0), with −∞ < t0 < ∞, i.e., R(x0, t0) = max(x,t)∈R×R2 R(x, t) < ∞, Theorem 2.2
follows from the result of R. Hamilton in [11], which also holds in the non-radial case. However, since in general
∂R/∂t � 0, without this rather restrictive assumption, Hamilton’s result does not apply.

Before we begin with the proof of Theorem 2.2, let us give a few remarks.

Remarks.

(i) The assumption (2.6) is necessary to rule out constant solutions, which appear as Type I blow up limits. We will
show in Section 3 that Type II blow up limits satisfy condition (2.6).

(ii) Any eternal solution of Eq. (2.5) which satisfies condition (2.6) has R > 0. This is an immediate consequence of
the Aronson–Bénilan inequality, which in the case of a solution on R

2 × [τ, t) states as ut � u/(t − τ). Letting,
τ → −∞, we obtain for a solution U of (2.5), the time derivative bound Ut � 0, which is equivalent to R � 0.
Since, R evolves by Rt = �gR + R2 the strong maximum principle guarantees that R > 0 or R ≡ 0 at all times.
Solutions with R ≡ 0 (flat) violate condition (2.6). Hence, R > 0 at all (x, t) ∈ R

2 × R.
(iii) The proof of Theorem 2.2 relies heavily on the Harnack inequality satisfied by the curvature R, shown by

R. Hamilton [12,13]. In the case of eternal solutions U of (2.5) with bounded curvature it states as

∂ logR � |Dg logR|2 (2.10)

∂t
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where DgR denotes the gradient with respect to the metric g = U(dx2
1 + dx2

2). Equivalently, this gives the in-
equality

∂R

∂t
� |DR|2

RU
. (2.11)

Assuming that U is radially symmetric solution of Eq. (2.5), we perform the cylindrical change of coordinates

V (s, t) = r2U(r, t), s = log r (2.12)

and notice once more that V satisfies the one-dimensional equation

∂V

∂t
= (logV )ss, (s, t) ∈ R × R. (2.13)

In addition the curvature R is given, in terms of V , by

R = − (logV )ss

V

so that the condition R > 0 implies that the function logV is concave. We will state in the next lemma several
properties of the function V which will be used in the proof of Theorem 2.2.

Lemma 2.3. The solution V of (2.13) enjoys the following properties:

(i) max(s,t)∈R2 V (s, t) < ∞.

(ii) The limit lims→+∞(logV (s, t))s = 0, for all t .
(iii) The limit C∞(t) := lims→+∞ V (s, t) > 0, for all t .
(iv) The limit lims→+∞(logV (s, t))ss = 0, for all t .

Proof. The fact that V (·, t) is bounded is a direct consequence of the width bound (2.6). The rest of the properties
are easy consequences of the inequality (logV )ss � 0, the L∞ bound on V and the infinite area condition (2.8). Let
us prove (ii). Since (logV )ss � 0 either lims→+∞(logV (s, t))s = a or it is −∞. The number a cannot be positive,
otherwise V wouldn’t be bounded. If a < 0 or a = −∞ then for s � 1, logV (s, t) � −μs, for some μ > 0 which
would imply that U(r, t) � 1/r2+μ, therefore integrable contradicting (2.8). Hence lims→+∞(logV (s, t))s = 0, as
desired.

Since (logV )s is decreasing in s, (ii) implies that (logV )s > 0 for all s. Hence, the bound on V implies that the
limit C∞(t) = lims→+∞ V (s, t) exist and it is strictly positive. Note that C∞(t) is the circumference at infinity of R

2

with respect to the metric ds2 = U(dx2
1 + dx2

2).
Since, C∞(t) > 0, the last property lims→+∞(logV (s, t))ss = 0 is equivalent to limr→∞ R(r, t) = 0 and will be

shown separately in the following lemma. �
Lemma 2.4. Under the assumptions of Theorem 2.2 we have

lim
r→∞R(r, t) = 0, ∀t.

Proof. We first observe that

lim
k→∞ inf

{
R(r, t): 2k � r � 2k+1} = 0, ∀t ∈ R. (2.14)

Indeed, since R = −(logV )ss/V and V is bounded from below away from zero near +∞, the latter is equivalent to

lim
k→∞ inf

{∣∣(logV )ss
∣∣: k � s � k + 1

} = 0

which readily follows from the fact that (logV )ss is negative and integrable.
To show that actually limr→∞ R(r, t) = 0, we use the Harnack inequality (2.10). Let (x1, t1), (x2, t2) be any two

points in R
2 × R, with t2 > t1. Integrating (2.11) along the path x(t) = x1 + t−t1

t2−t1
x2, also using the bound (2.6), we

find the more standard in PDE Harnack inequality

R(x2, t2) � R(x1, t1)e
−C(

|x2−x1|2
|x1|2(t2−t1)

)
(2.15)
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which in particular implies that

lim
k→∞ sup

{
R(r, t): 2k � r � 2k+1} � C lim

k→∞ inf
{
R(r, t + 1): 2k � r � 2k+1}

therefore, combined with (2.14), showing that limr→∞ R(r, t) = 0, as desired. �
Combining the above with classical derivative estimates for linear strictly parabolic equations, gives the following.

Lemma 2.5. Under the assumptions of Theorem 2.2 we have

lim
r→∞ rRr(r, t) = 0, ∀t ∈ R.

Proof. For any ρ > 1 we set R̃(r, t) = R(ρr, t) and we compute from the evolution equation Rt = U−1�R + R2

of R, that

R̃t = (
ρ2U

)−1
�R̃ + R̃2.

Fix τ ∈ R and consider the cylinder Q = {(r, t): 1/2 � r � 4, τ − 1 � t � τ }. Lemma 2.3 implies that 0 < c(τ) �
ρ2u(r, t) � C(τ), on Q, hence R̃ satisfies a uniformly parabolic equation in Q. Classical derivative estimates then
imply that∣∣(R̃)r (r, t)

∣∣ � C‖R̃‖L∞(Q)

for all 1 � r � 2, τ − 1/2 � t � τ , showing in particular that

ρ
∣∣Rr(r, τ )

∣∣ � C‖R‖L∞(Qρ)

for all ρ � r � 2ρ, where Qρ = {(r, t): ρ/2 � r � 4ρ, τ − 1 � t � τ }. The proof now follows from Lemma 2.4. �
Proof of Theorem 2.2. Most of the computations below are known in the case that U(dx2

1 + dx2
2) defines a metric on

a compact surface, see for instance [5]. However, in the non-compact case we deal with, exact account of the boundary
terms at infinity should be made.

We begin by integrating the Harnack Inequality Rt � |DR|2/RU with respect to the measure dμ = U dx. Since
the measure dμ has infinite area, we will integrate over a fixed ball Bρ . At the end of the proof we will let ρ → ∞.
Using also that Rt = U−1�R + R2 we find∫

Bρ

�R dx +
∫
Bρ

R2U dx �
∫
Bρ

|DR|2
R

dx

and by Green’s Theorem we conclude∫
Bρ

|DR|2
R

dx −
∫
Bρ

R2U dx �
∫

∂Bρ

∂R

∂ν
dσ. (2.16)

Following Chow [5], we consider the vector X = ∇R + R∇f , where f = − logU is the potential function (defined
up to a constant) of the scalar curvature, since it satisfies �gf = R, with �gf = U−1�f denoting the Laplacian with
respect to the conformal metric g = U(dx2

1 + dx2
2). As it was observed in [5], X ≡ 0 on Ricci solitons, i.e., Ricci

solitons are gradient solitons in the direction of ∇gf . A direct computation shows∫
Bρ

|X|2
R

dx =
∫
Bρ

|DR|2
R

dx + 2
∫
Bρ

∇R · ∇f dx +
∫
Bρ

R|Df |2 dx.

Integration by parts implies∫
B

∇R · ∇f dx = −
∫
B

R�f dx +
∫

∂B

R
∂f

∂n
dσ = −

∫
B

R2U dx +
∫

∂B

R
∂f

∂n
dσ
ρ ρ ρ ρ ρ
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since �f = RU . Hence∫
Bρ

|X|2
R

dx =
∫
Bρ

|DR|2
R

dx − 2
∫
Bρ

R2U dx +
∫
Bρ

R|Df |2 dx + 2
∫

∂Bρ

R
∂f

∂n
dσ. (2.17)

Combining (2.16) and (2.17) we find that∫
Bρ

|X|2
R

dx � −
(∫

Bρ

R2U dx −
∫
Bρ

R|Df |2 dx

)
+ Iρ = −M + Iρ (2.18)

where

Iρ =
∫

∂Bρ

∂R

∂n
dσ + 2

∫
∂Bρ

R
∂f

∂n
dσ.

Lemmas 2.3–2.5 readily imply that

lim
ρ→∞ Iρ = 0. (2.19)

As in [5], we will show next that M � 0 and indeed a complete square which vanishes exactly on Ricci solitons.
To this end, we define the matrix

Mij = Dijf + Dif Djf − 1

2

(|Df |2 + Ru
)
Iij

with Iij denoting the identity matrix. A direct computation shows that Mij = ∇i∇j f − 1
2�gfgij , with ∇i denoting

covariant derivatives. It is well known that the Ricci solitons are characterized by the condition Mij = 0 (see in [12]).

Claim.

M :=
∫
Bρ

R2U dx −
∫
Bρ

R|Df |2 dx = 2
∫
Bρ

|Mij |2 1

U
dx + Jρ (2.20)

where

lim
ρ→∞Jρ = 0.

To prove the claim we first observe that since �f = RU∫
Bρ

R2U =
∫
Bρ

(�f )2

U
dx =

∫
Bρ

Diif Djjf
1

U
dx.

Integrating by parts and using again that �f = RU , we find∫
Bρ

Diif Djjf
1

U
dx = −

∫
Bρ

Djiif Djf
1

U
dx +

∫
Bρ

�f Djf
DjU

U2
dx +

∫
∂Bρ

R
∂f

∂n
dσ.

Integrating by parts once more we find∫
Bρ

Djiif Djf
1

U
dx = −

∫
Bρ

|Dijf |2 1

U
dx +

∫
Bρ

Dijf Djf
DiU

U2
dx + 1

2

∫
∂Bρ

∂(|Df |2)
∂n

1

U
dσ

since ∫
∂B

Dijf Djf ni

1

U
dσ = 1

2

∫
∂B

∂(|Df |2)
∂n

1

U
dσ.
ρ ρ
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Combining the above and using that Df = −U−1DU and �f = RU we conclude∫
Bρ

R2U dx =
∫
Bρ

|Dijf |2 1

U
dx +

∫
Bρ

Dijf Dif Djf
1

U
dx −

∫
Bρ

R|Df |2 dx + J 1
ρ (2.21)

where

J 1
ρ =

∫
∂Bρ

R
∂f

∂n
dσ − 1

2

∫
∂Bρ

∂(|Df |2)
∂n

1

U
dσ.

Hence

M =
∫
Bρ

|Dijf |2 1

U
dx +

∫
Bρ

Dijf Dif Djf
1

U
dx − 2

∫
Bρ

R|Df |2 dx + J 1
ρ . (2.22)

We will now integrate |Mij |2. A direct computation and �f = RU imply∫
Bρ

|Mij |2 1

U
dx =

∫
Bρ

|Dijf |2 1

U
dx + 2

∫
Bρ

Dijf Dif Djf
1

U
dx −

∫
Bρ

R|Df |2 dx

+ 1

2

∫
Bρ

|Df |4 1

U
dx − 1

2

∫
Bρ

R2U dx. (2.23)

Combining (2.22) and (2.23) we then find

M − 2
∫
Bρ

|Mij |2 1

U
dx = −

∫
Bρ

|Dijf |2 1

U
dx − 3

∫
Bρ

Dijf Dif Djf
1

U
dx −

∫
Bρ

|Df |4 1

U
dx +

∫
Bρ

R2U dx + J 1
ρ .

Using (2.21) we then conclude that

M − 2
∫
Bρ

|Mij |2 1

U
dx = −2

∫
Bρ

Dijf Dif Djf
1

U
dx −

∫
Bρ

|Df |4 1

U
dx −

∫
Bρ

R|Df |2 dx + J 2
ρ (2.24)

where

J 2
ρ =

∫
∂Bρ

R
∂f

∂n
dσ −

∫
∂Bρ

∂(|Df |2)
∂n

1

U
dσ.

We next observe that

2
∫
Bρ

Dijf Dif Djf
1

U
dx =

∫
Bρ

Di

(|Df |2)Dif
1

U

and integrate by parts using once more that �f = RU and that Dif = −U−1Dif , to find

2
∫
Bρ

Dijf Dif Djf
1

U
dx = −

∫
Bρ

R|Df |2 dx −
∫
Bρ

|Df |4 1

U
dx + J 3

ρ

where

J 3
ρ = lim

ρ→∞

∫
∂Bρ

|Df |2 ∂f

∂n
dσ.

Combining the above we conclude that

M − 2
∫
B

|Mij |2 1

U
dx = Jρ
ρ
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with

Jρ =
∫

∂Bρ

R
∂f

∂n
dσ −

∫
∂Bρ

(
∂(|Df |2)

∂n
+ |Df |2 ∂f

∂n

)
1

U
dσ.

We will now show that limρ→∞ Jρ = 0. Clearly the first term tends to zero, because r|Df (r, t)| = |2 − (logV (s, t))s |
is bounded by Lemma 2.3 and R(r, t) → 0, as r → ∞, by Lemma 2.4.

It remains to show that

lim
r→∞

(
∂(|Df |2)

∂r
+ |Df |2 ∂f

∂r

)
r

U
= 0.

To this end, we observe that since f = − logU and V (s, t) = r2U(r, t), with s = log r(
∂(|Df |2)

∂r
+ |Df |2 ∂f

∂r

)
r

U
= ∂

∂r

( |Df |2
r2U

)
= ∂

∂s

( [2 − (logV )s]2

V

)
and

∂

∂s

( [2 − (logV )s]2

V

)
= −[

2 − (logV )s
] (logV )ss

V
+ [

2 − (logV )s
]2 (logV )s

V
.

Since both R = −(logV )ss/V and (logV )s tend to zero, as s → ∞, our claim follows.
We will now conclude the proof of the theorem. From (2.18) and (2.20) it follows that∫

Bρ

|X|2
R

dx + 2
∫
Bρ

|Mij |2 1

U
dx � Iρ + Jρ

where both

lim
ρ→∞ Iρ + Jρ = 0.

This immediately gives that X ≡ 0 and Mij ≡ 0 for all t showing that U is a gradient soliton. It has been shown
by L.F. Wu [21] that there are only two types of gradient solitons on R

2 the standard flat metric (R ≡ 0) which is
stationary and the cigar solitons (2.5). This, in the radial symmetric case can be directly shown by integrating the
equality Mij = 0. The flat solitons violate condition (2.6). Hence, U must be of the form (2.9), finishing the proof of
the theorem. �
2.3. Monotonicity of solutions

We will show next that radially symmetric solutions of Eq. (1.1) with initial data satisfying conditions (1.7) and
(1.8) become radially decreasing near their vanishing time, as stated in the next lemma, which will be used in the next
section.

Lemma 2.6. Assume that u is a radially symmetric maximal solution of Eq. (1.1) with initial data u0 positive satisfying
conditions (1.7) and (1.8). Then, there exists a number τ0 < T such that u(·, t) is radially decreasing for τ0 � t < T .

Proof. Because u0 > 0 is strictly decreasing for r � r0, there exists a number δ0 with the property: for all δ � δ0 there
is exactly one r such that u0(r) = δ. It then follows that for any number δ � δ0 the number J (δ, t) of intersections
between u(·, t) and the constant solution S(r, t) = δ satisfies J (δ, t) � 1 (see in [1]). Since u(·, t) → 0 uniformly as
t → T , there exists a time t such that u(·, t) < δ0. Define

τ0 = inf
{
t ∈ (0, T ): u(r, t) � δ0, ∀r > 0

}
.

Clearly, we can choose δ0 sufficiently small so that τ0 > 0. Then, for t < τ0, J (δ0, t) = 1. Assume that rδ0(t) satisfies
u(rδ0(t), t) = δ0. Since, u(r, t) → 0 as r → ∞, it then follows that u(r, t) > δ0 for r < rδ0(t) and u(r, t) < δ0 for
r > rδ (t), for all t < τ0. It follows that rδ (τ0) = 0 and by the strong maximum principle ur(0, τ0) < 0. We claim
0 0
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that u(·, τ0) is strictly decreasing. If not then, there exists δ < δ0 such that the constant solution S(r, t) = δ intersects
the graph of u(·, τ0) at least twice, contradicting our choice of δ0. Hence, ur(r, τ0) � 0, for all r > 0, and actually by
the strong maximum principle ur(·, τ0) < 0, for all r . This inequality is preserved, by the maximum principle for all
τ0 � t < T , finishing the proof of the lemma. �
3. Inner region convergence

This section is devoted to the proof of the inner region convergence, Theorem 1.1 stated in the introduction. We
assume, throughout this section, that u is a smooth, radially symmetric maximal solution of (1.1) with initial data
satisfying (1.6)–(1.8) and (1.10). Because of Lemma 2.6 we may also assume, without loss of generality, that u is
radially decreasing.

We begin by introducing the appropriate scaling.

3.1. Scaling and convergence

We introduce a new scaling on the solution u. We first set

ū(x, τ ) = τ 2u(x, t), τ = 1

T − t
, τ ∈

(
1

T
,∞

)
. (3.1)

Then ū satisfies the equation

ūτ = � log ū + 2ū

τ
, on 1/T � τ < ∞. (3.2)

Notice that under this transformation, R := −� log ū/ū satisfies the estimate

Rmax(τ ) � C (3.3)

for some constant C < ∞. This is a direct consequence of Theorem 2.1, since Rmax(τ ) = (T − t)2Rmax(t).
For an increasing sequence τk → ∞ we set

ūk(y, τ ) = αkū
(
α

1/2
k y, τ + τk

)
, (y, τ ) ∈ R

2 ×
(

−τk + 1

T
,∞

)
(3.4)

where

αk = [
ū(0, τk)

]−1

so that ūk(0,0) = 1, for all k. Then, ūk satisfies the equation

ūτ = � log ū + 2ū

τ + τk

. (3.5)

Let

Rk := −� log ūk

ūk

.

Then, by (3.3), we have

max
y∈R2

Rk(y, τ ) � C, −τk + 1

T
< τ < +∞. (3.6)

We will also derive a global bound from bellow on Rk . The Aronson–Benilán inequality ut � u/t , on 0 � t < T gives
the bound R(x, t) � −1/t on 0 � t < T . In particular, R(x, t) � −C on T/2 � t < T , which in the new time variable
τ = 1/(T − t) implies the bound

R(x, τ) � − C
,

2
< τ < ∞.
τ 2 T
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Hence

Rk(y, τ ) � − C

(τ + τk)2
, −τk + 2

T
< τ < +∞.

Combining the above inequalities we get

− C

(τ + τk)2
� Rk(y, τ ) � C, ∀(y, τ ) ∈ R

2 ×
(

−τk + 2

T
,+∞

)
. (3.7)

Also, the width bound (2.3), implies the bound

max
y∈R2

|y|2ūk(y, τ ) � C, ∀(y, τ ) ∈ R
2 ×

(
−τk + 2

T
,+∞

)
. (3.8)

Based on the above estimates we will now show the following convergence result.

Lemma 3.1. For each sequence τk → ∞, there exists a subsequence τkl
of τk , for which the rescaled solution ūτkl

defined by (3.4) converges, uniformly on compact subsets of R
2 ×R, to an eternal solution U of equation Uτ = � logU

on R
2 × R with uniformly bounded curvature and uniformly bounded width. Moreover, the convergence is in C∞(K),

for any K ⊂ R
2 × R compact.

Proof. Since ūk(0,0) = 1 with ūk(·,0) � 1 (because each uk(·, t) is radially decreasing) one may use standard ar-
guments to show that ūk is uniformly bounded from above and below away from zero on any compact subset of
R

2 × R. Hence, by the classical regularity theory the sequence {ūk} is equicontinuous on compact subsets of R
2 × R.

It follows, that there exists a subsequence τkl
of τk such that ūkl

→ U on compact subsets of R
2 × R, where U is an

eternal solution of equation

Uτ = � logU, on R
2 × R (3.9)

with infinite area
∫

R2 U(y, τ) = ∞ (since
∫

R2 ūk(y, τ )dy = 2(τ + τk)). In addition the classical regularity theory of
quasilinear parabolic equations implies that {ukl

} can be chosen so that ukl
→ U in C∞(K), for any compact set

K ⊂ R
2 × (−∞,∞).

It then follows that Rkl
→ R̃ := −(� logU)/U . Taking the limit kl → ∞ on both sides of (3.7) we obtain the

bounds

0 � R̃ � C, on R
2 × (−∞,∞). (3.10)

Finally, to show that U has uniformly bounded width, we take the limit kl → ∞ in (3.8). �
A direct consequence of Lemma 3.1 and Theorem 2.2 is the following convergence result.

Theorem 3.2. For each sequence τk → ∞, there exists a subsequence τkl
of τk and a number λ > 0 for which the

rescaled solution ūτkl
defined by (3.4) converges, uniformly on compact subsets of R

2 × R to the soliton solution Uλ

of the Ricci Flow given by

U(y, τ) = 1

λ|y|2 + e4λτ
. (3.11)

Moreover, the convergence is in C∞(K), for any K ⊂ R
2 × R, compact.

Proof. From Lemma 3.1, ūτkl
→ U , where U is an eternal solution of Eq. (2.5), which satisfies the bounds (2.6) and

(2.7). Applying Theorem 2.2 shows that the limiting solution U is a soliton of the form U(y, τ) = 2/β(|x|2 + δe2βt ),
with β > 0, δ > 0, which under the condition U(0,0) = 1 takes the form (3.11), with λ > 0. �
Remark. The proof of Theorem 3.2 did not utilize the lower bound Rmax(t) � c(T − t)−2 > 0 proven in Theorem 2.1,
which in particular shows that the blow up is of Type II. The Type II blow up is implicitly implied by the upper bound
on the width (2.3).
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3.2. Further behavior

We will now use the geometric properties of the rescaled solutions and their limit, to further analyze their vanishing
behavior.

We begin by observing that rescaling back in the original (x, t) variables, Theorem 3.2 gives the following asymp-
totic behavior of the maximal solution u of (1.1).

Lemma 3.3. Assuming that along a sequence tk → T , the sequence ūk defined by (3.4) with τk = (T − tk)
−1 converges

to the soliton solution Uλ, on compact subsets of R
2 × R, then along the sequence tk the solution u(x, t) of (1.1)

satisfies the asymptotics

u(x, tk) ≈ (T − tk)
2

λ|x|2 + αk

, on |x| � α
1/2
k M (3.12)

for all M > 0. In addition, the curvature R(0, tk) = −� logu(0, tk)/u(0, tk) satisfies

lim
tk→T

(T − tk)
2R(0, tk) = 4λ. (3.13)

Proof. From Lemma 3.1 we have

αkūk

(
α

1/2
k y, τ + τk

) ≈ 1

λ|y|2 + e4λτ

for |y| � M , |τ | � M2, i.e., in terms of the variable x

ū(x, τ + τk) ≈ α−1
k

λα−1
k |x|2 + e4λ(τ)

≈ 1

λ|x|2 + αke4λτ

for |x| � α
1/2
k M , |τ − τk| � M2. In particular, when τ = 0 this gives

ū(x, τk) ≈ 1

λ|x|2 + αk

for |x| � α
1/2
k M , which in terms of the original variables gives

u(x, tk) ≈ (T − tk)
2

λ|x|2 + αk

for |x| � α
1/2
k M , as desired. Since �Rk(0, τ ) converges to the curvature of the cigar Uλ at the origin (its maximum

curvature) and this is equal to 4λ, the limit (3.13) follows by simply observing that (T − tk)
2R(0, tk) = Rk(0,0). �

The following lemma provides a sharp bound from below on the maximum curvature 4λ of the limiting solitons.

Lemma 3.4. Under the assumptions of Theorem 1.1 the constant λ in each limiting solution (3.11) satisfies

λ � T + μ

2
.

Proof. We are going to use the estimate proven in Section 2 of [9]. There it is shown that if at time t the solution u

of (1.1) satisfies the scalar curvature bound R(t) � −2k(t), then the width W(t) of the metric u(t)(dx2
1 + dx2

2) (cf. in
Section 2.1 for the definition) satisfies the bound

W(t) �
√

k(t)A(t) = 4π
√

k(t) (T − t).

Here A(t) = 4π(T − t) denotes the area of the plane with respect to the conformal metric u(t)(dx2
1 + dx2

2). Observing
that for radially symmetric u the width W(t) = maxr�0 2πr

√
u(r, t) we conclude the pointwise estimate

r
√

u(r, t) � 2
√

k(t) (T − t), r � 0, 0 < t < T (3.14)
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when R(x, t) = −� logu/u � −2k(t), for all x.
Observe next that the initial curvature lower bound (1.10) implies the bound

R(x, t) � − 1

t + μ
.

This easily follows by the maximum principle, since −1/(t + μ) is an exact solution of the scalar equation Rt =
�gR + R2. Hence, we can take k(t) = 1/2(t + μ) in (3.14) and conclude the bound

r
√

u(r, t) � 2(T − t)√
2(t + μ)

, r � 0, 0 < t < T . (3.15)

Assume now that {tk} is a sequence tk → T . Using (3.12) in (3.15) we find

r(T − tk)√
λr2 + αk

� 2(T − tk)√
2(tk + μ)

, r � Mα
1/2
k

where M is any positive constant. Hence, when r = Mα
1/2
k we obtain the estimate

Mα
1/2
k√

λM2αk + αk

� 2√
2(tk + μ)

or
1√

λ + 1/M2
� 2√

2(tk + μ)
.

Letting tk → T and taking squares on both sides, we obtain

1

λ + 1/M2
� 2

T + μ
.

Since M > 0 is an arbitrary number, we finally conclude λ � (T + μ)/2, as desired. �
We will next provide a bound on the behavior of α(τ) = τ 2ū(0, τ ), as τ → ∞. In particular, we will prove (1.15).

Notice that since∥∥u(·, t)∥∥
L∞(R2)

= (T − t)2α(τ)−1, τ = 1/(T − t)

this bound shows the vanishing behavior of ‖u(·, t)‖L∞(R2), as t → T . We begin by a simple consequence of
Lemma 3.4.

Lemma 3.5. Under the assumptions of Theorem 3.2 we have

lim inf
τ→∞

α′(τ )

α(τ)
� 4λμ (3.16)

with λμ = (T + μ)/2.

Proof. We argue by contradiction. If (3.16) does not hold, then there exists a sequence τk → ∞ for which

lim
k→∞

α′(τk)

α(τk)
< 4λμ. (3.17)

Next notice that by the definition of α(τ) we have[
logα(τ)

]
τ

= −[
log ū(0, τ )

]
τ

= −� log ū

ū
− 2

τ
= R(0, τ ) − 2

τ
. (3.18)

Now, because of Theorem 3.2, may assume without loss of generality that, as τk → ∞, we have ūk(y, τ ) → 1/(λ|y|2 +
e4λτ ), with ūk given by (3.4) and for some constant λ which according to Lemma 3.4 satisfies the inequality λ � λμ.
But then

lim
k→∞R(0, τk) = 4λ � 4λμ

which in combination with (3.18) contradicts (3.17), finishing the proof of the lemma. �
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Corollary 3.6. Under the hypotheses of Theorem 3.2, we have

α(τ) � e4λμτ+o(τ ), as τ → ∞ (3.19)

with λμ = (T + μ)/2.

Proof. By the previous lemma we have[
logα(τ)

]
τ

� 4λμ + o(1), as τ → ∞
which implies that

logα(τ) � 4λμτ + o(τ ), as τ → ∞
showing the corollary. �

We will now show (1.15) as stated in the next proposition. This bound will be crucial in establishing the outer
region behavior of u.

Proposition 3.7. Under the hypotheses of Theorem 1.1, we have

lim
τ→∞

logα(τ)

τ
= 4λμ (3.20)

with λμ = (T + μ)/2.

Proof. We argue by contradiction. If (3.20) does not hold, then by Corollary 3.6 there exists a sequence τk → ∞ for
which

lim
k→∞

logα(τk)

τk

= 4λ̄ > 4λμ.

Because of Theorem 3.2, we may assume that for the same sequence τk , we have

αkū
(
α

1/2
k y, τk

) → 1

λ|y|2 + 1
, |y| � 1, |τ | � 1

for some number λ > λμ, with

αk = α(τk) = e4λ̄τk+o(τk).

This implies the asymptotics

ū(x, τk) ≈ 1

λ|x|2 + e4λ̄τk

, |x| � e2λ̄τk−o(τk). (3.21)

We next perform the change of variables (1.16)–(1.18), namely v(s, t) = r2u(r, t), s = log r , and ṽ(ξ, τ ) =
τ 2v(τξ, t), τ = 1/(T − t). As we noted in the Introduction, the rescaled solution ṽ satisfies Eq. (1.19). An important
for our purposes observation, is that the new scaling makes the area of ṽ to be constant in time, since

∞∫
−∞

ṽ(ξ, τ )dξ =
∞∫

−∞
τ 2v(τξ, t)dξ = τ

∞∫
−∞

v(x, t)dx = 2. (3.22)

Here we have used
∞∫

−∞
v(s, t)ds = 1

2π

∫
R2

u(x, t)dx = 2(T − t).

Claim. ṽ(ξ, τk) → 0, uniformly on (−∞, ξ̄ ], for any ξ̄ < 2λ̄.
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Indeed, expressing (3.21) in terms of ṽ gives

ṽ(ξ, τk) ≈ e2τkξ

λe2τkξ + e4λ̄τk

, ξ < 2λ̄

which immediately implies the claim.
To finish the proof of the proposition, assuming that λ̄ > λμ, we choose ξ̄ such that 2λμ < ξ̄ < 2λ̄ so that

ṽ(ξ, τk) → 0, uniformly on (−∞, ξ̄ ]. We will show that this violates the area condition

∞∫
−∞

ṽ(ξ, τ )dτ = 2.

We first observe that there exists constants s0 and s̄, independent of t , such that

v(s, t) � 2(t + μ)

(s + s̄)2
, s � s0.

This readily follows from initial condition (1.8) and the maximum principle, since 2(t + μ)/(s + s̄)2 is an exact
solution of Eq. (1.17). This, in terms of ṽ, gives the bound

ṽ(ξ, τ ) � 2(T + μ − 1/τ)

(ξ + τ−1s̄)2
.

Also

2 =
∞∫

−∞
ṽ(ξ, τ )dξ =

ξ̄∫
−∞

ṽ(ξ, τ )dξ +
∞∫

ξ̄

ṽ(ξ, τ )dξ.

Since

ξ̄∫
−∞

ṽ(ξ, τk)dξ → 0

we conclude that

2 � lim
k→∞

∞∫
ξ̄

2(T + μ − 1/τk)

ξ2 + τ−1
k s̄

= 2(T + μ)

ξ̄
.

This implies the bound

ξ̄ � (T + μ) = 2λμ

violating our choice of ξ̄ to be larger than 2λμ, therefore finishing the proof of the proposition. �
We have actually shown the following result, which will be used in the next section.

Corollary 3.8. Under the assumptions of Lemma 3.1 the rescaled solution ṽ defined by (1.18) satisfies

lim
τ→∞ ṽ(ξ, τ ) = 0, uniformly on (−∞, ξ−

μ ]

for all ξ−
μ < ξμ, with

ξμ = 2λμ = T + μ.
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3.3. Proof of Theorem 1.1

We finish this section with the proof of Theorem 1.1 which will easily follow from the results in Sections 3.1
and 3.2. Fixing a sequence τk → ∞, we first observe that because of the curvature bound (2.2), α′(τk)/2α(τk) is
bounded from above and hence, passing to a subsequence, still denoted by τk , we have

α′(τk)

α(τk)
→ 4λ (3.23)

for some constant λ < ∞, which according to Lemma 3.5, it satisfies λ � λμ = (T + μ)/2.
For the same sequence τk , we have ũ(y, τk) = ūk(y,0), with ūk defined as in (3.4). Since, by Theorem 3.2,

ūk → Uλ̄, for some λ̄ � λμ, we conclude that ũ(y, τk) → Uλ̄(y,0) = 1/(λ̄|y|2 +1). To finish the proof of the theorem,
we observe that λ̄ = λ, by (3.23), since

lim
k→∞

α′(τk)

α(τk)
= − lim

k→∞
� log ūk(0,0)

ūk(0,0)
= −� logUλ̄(0,0)

Uλ̄(0,0)
= 4λ̄. �

4. Outer region asymptotic behavior

We assume, throughout this section, that u is a positive, smooth, radially symmetric solution of (1.1) and we
consider as in Introduction the solution v(s, t) = r2u(r, t), s = log r , of the one-dimensional equation (1.17). We next
set

v̄(s, τ ) = τ 2v(s, t), τ = 1

T − t
(4.1)

and

ṽ(ξ, τ ) = v̄(τ ξ, τ ). (4.2)

The function ṽ satisfies the equation

τ ṽτ = 1

τ
(log ṽ)ξξ + ξ ṽξ + 2ṽ. (4.3)

As we computed in (3.22), under the above scaling the area of ṽ remains constant, in particular
∞∫

−∞
ṽ(ξ, τ )dξ = 2, ∀τ. (4.4)

We shall show that, ṽ(·, τ ) converges, as τ → ∞, to a steady state of Eq. (4.3), namely to a solution of the linear
first order equation

ξVξ + 2V = 0. (4.5)

The area condition (4.4) shall imply that
∞∫

−∞
V (ξ)dξ = 2. (4.6)

Positive solutions of Eq. (4.5) are of the form

V (ξ) = η

ξ2
(4.7)

where η > 0 is any constant. These solutions become singular at ξ = 0 and in particular are non-integrable at ξ = 0,
so that they do not satisfy the area condition (4.6). However, it follows from Corollary 3.8 that V must vanish in
the interior region ξ < ξμ, with ξμ = T + μ. We will show that although ṽ(ξ, τ ) → 0, as τ → ∞ on (−∞, ξμ),
ṽ(ξ, τ ) � c > 0, for ξ > ξμ and that actually ṽ(ξ, τ ) → 2(T + μ)/ξ2, on (ξμ,∞), as stated in Theorem 1.2.

The rest of the section is devoted to the proof of Theorem 1.2. We begin by showing the following properties of
the rescaled solution ṽ.
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Lemma 4.1. The rescaled solution ṽ given by (4.1)–(4.2) has the following properties:

(i) ṽ(ξ, τ ) � C, ∀ξ ∈ R, for a constant C independent of τ .
(ii) Let ξμ = T + μ. Then, for any ξ−

μ < ξμ, ṽ(·, τ ) → 0, as τ → ∞, uniformly on (−∞, ξ−
μ ].

(iii) Let ξ(τ ) = (logα(τ))/2τ , with α(τ) as in (1.12), i.e., α(τ) = [τ 2u(0, t)]−1. Then, there is a constant η > 0,
independent of τ , such that

ṽ(ξ, τ ) � η

ξ2
, on ξ � ξ(τ ), τ � 1

T
.

In addition

ξ(τ ) = ξμ + o(1), as τ → ∞. (4.8)

(iv) ṽ(ξ, τ ) also satisfies the upper bound

ṽ(ξ, τ ) � C

ξ2
, on ξ > 0, τ � 1

T

for some constant C > 0.

Proof. (i) The estimate of ṽ � C is a direct consequence of the width estimate (2.4).
(ii) This is shown in Corollary 3.8.
(iii)

Claim. There is a constant η > 0 for which ṽ(ξ(τ ), τ ) � η, for all 1/T � τ < ∞.

To show the claim, we argue by contradiction. If it is not correct, then there exists a sequence τk → ∞ for which
ṽ(ξ(τk), τk) → 0. Because of the interior convergence Theorem 3.2, we may assume, without loss of generality, that
for the same sequence τk the rescaled solution ū(x, τ ) = τ 2u(x, t), τ = 1/(T − t), defined by (3.1) satisfies the
asymptotics ū(x, τk) ≈ 1/(λ|x|2 + αk(τk)), when |x| � √

αk(τk). In particular for |x| = √
α(τk) we then have

ū
(√

α(τk), τk

) ≈ α(τk)
−1

λ + 1

and hence using that ξ(τk) = (logα(τk))/2τk and the transformations (4.1)–(4.2), we conclude that

ṽ
(
ξ(τk), τk

) = e2ξ(τk)τk ū
(
eξ(τk)τk , τk

) ≈ 1

1 + λ

contradicting our assumption that ṽ(ξ(τk), τk) → 0, therefore proving the claim.

Let us observe next that (4.8) readily follows from Proposition 3.7. Hence, it remains to show ṽ � η/ξ2, on
[ξ(τ ),∞), 1/T � τ < ∞. To this end, we will compare ṽ with the subsolution Vη(ξ) = η/ξ2 of Eq. (4.3). According
to our claim above, there exists a constant η > 0, so that

Vη

(
ξ(τ )

) = η

ξ(τ)2
� ṽ

(
ξ(τ ), τ

)
.

Moreover, since the initial data u0 is strictly positive, radially decreasing and satisfies the growth condition (1.8), we
can make

ṽ0

(
ξ,

1

T

)
>

η

ξ2
, on ξ � ξ

(
1

T

)
by choosing η sufficiently small. Hence we can apply the comparison principle on the set {(ξ, τ ): ξ � ξ(τ ),1/T <

τ < ∞}, to conclude that ṽ(ξ, τ ) � η/ξ2, for ξ � ξ(τ ). Since the set {(ξ, τ ): ξ � ξ(τ ),1/T < τ < ∞} is not a
cylinder, to justify the application of the maximum principle, we set w = ṽ − Vη , so that w satisfies the differential
inequality

wτ � 1 (
A(ξ, τ )w

)
ξξ

+ 1
(ξwξ + 2w), on ξ � ξ(τ )
τ 2 τ
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with

A(ξ, τ ) =

⎧⎪⎪⎨⎪⎪⎩
log ṽ − logVη

ṽ − Vη

, ṽ �= Vη,

1

Vη

ṽ = Vη.

We next set w̄(ξ, τ ) = w(ξ + ξ(τ ), τ ) and we compute that w̄ satisfies

wτ � 1

τ 2

(
A

(
ξ + ξ(τ ), τ

)
w

)
ξξ

+ 1

τ

((
ξ + ξ(τ )

)
wξ + 2w

) + ξ ′(τ )wξ

on ξ � 0. We may choose η sufficiently small so that w > 0 on ξ = 0, τ � 1/T , and on ξ � 0, τ = 1/T and also
as ξ → ∞. It follows then by the maximum principle that w � 0 on {(ξ, τ ): ξ � 0, 1/T � τ < ∞}, implying that
ṽ � Vη on the same set, as desired.

(iv) Since u0 satisfies (1.8), there exists a constant A such that u0(r) � 2A/r2 log2 r , on r > 1. Then, for all time
0 < t < T , we will have u(r, t) � 2(t + A)/r2 log2 r , on r > 1, which readily implies the desired bound on ṽ, with
C = 2(A + T ). �

We will next show a first order derivative bound for the rescaled solution ṽ. We begin by observing that the
Aronson–Bénilan inequality ut � u/t implies the bounds

(log ṽ(ξ, τ ))ξξ

ṽ(ξ, τ )
� C, on ξ ∈ R, τ � 2

T
.

Since, also ṽ � C by our width estimate, we conclude that ω = log ṽ satisfies the bound

ωξξ (ξ, τ ) � C, on ξ ∈ R, τ � 2

T
.

This bound combined with the previous lemma gives the following.

Lemma 4.2. For any K ⊂ (ξμ,∞) compact, there exists a constant C for which∣∣ωξ (ξ, τ )
∣∣ � C, ∀ξ ∈ K, τ � 2

T
.

Proof. It is enough to prove the lemma for K = [a, b] a compact interval, with a > ξμ. Fix a τ � 2/T and observe
first that from the previous lemma, the bound |ω| � M , holds on [a, b + 1].

Let ξ0 ∈ K . The bound |ω| � M on [ξ0, ξ0 + 1] implies that there exists a ξ̃ ∈ (ξ0, ξ0 + 1) for which ωξ (ξ̃ , τ ) �
−2M . Hence the upper bound ωξξ � C readily implies the lower bound ωξ (ξ0, τ ) � −2M − C. For the upper bound,
let ξ ′

0 = ξ0 − α with α = (a − ξμ)/2, so that still |ω(ξ ′
0, τ )| � M , for a possibly larger constant M . Then, there

exists a ξ̃ ∈ (ξ ′
0, ξ0) for which ωξ (ξ̃ , τ ) � 2M/α. Hence the upper bound ωξξ � C readily implies the upper bound

ωξ (ξ0, τ ) � 2M/α + C. �
We will next use Bernstein type estimates for singularly perturbed first-order equations to show a second derivative

bound for ṽ. Before we do so, we introduce a new time variable

s = log τ = − log(T − t), s � − logT .

To simplify the notation we still call ṽ(ξ, s) the solution ṽ in the new time scale. Then, it is easy to compute that
ṽ(ξ, s) satisfies the equation

ṽs = e−s(log ṽ)ξξ + ξ ṽξ + 2ṽ. (4.9)

Lemma 4.3. For any compact sub-interval K ⊂ (ξμ,∞), there exists a constant C = C(K) < ∞, for which∣∣ṽξξ (ξ, s)
∣∣ � C(K)es/2, ∀ξ ∈ K, s � − log

T

2
. (4.10)
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Proof. We will show that in spite of the singularity of Eq. (4.9) as s → ∞, the classical Bernstein technique for
establishing derivative estimates for solutions of quasilinear parabolic equations can be applied in this case. This has
already been observed in other similar instances, cf. in [10] and the references therein. We will only give an outline of
the estimate, referring to [10], Section 5.11, for further details.

Before we proceed with the proof, let us observe that since K ⊂ (ξμ,∞), Lemmas 4.1 and 4.2 imply the bounds

0 < c � ṽ−1(ξ, s) � C < ∞ and
∣∣ṽξ (ξ, s)

∣∣ � C (4.11)

for all ξ ∈ K , s � − logT , for some constants c,C depending on K .
We will use the maximum principle to bound ṽξξ , as in the classical Bernstein estimates for the porous medium

equation. We first differentiate Eq. (4.9) with respect to ξ to find that w = ṽξ satisfies the equation

ws = e−s

{
1

ṽ
wξξ − 3

ṽ2
wwξ + 2

ṽ3
w3

}
+ ξwξ + 3w.

We next set w = φ(θ), for a function φ > 0 to be determined in the sequel, and use the equation for w to find that θ

satisfies the equation

θs = e−s

{
1

ṽ
θξξ + φ′′

ṽφ′ θ
2
ξ − 3φ

ṽ2
θξ + 2φ3

ṽ3φ′

}
+ ξθξ + 3φ

φ′ .

Differentiating once more with respect to ξ we find the following evolution equation for z = θξ

zs = e−s

{
1

ṽ
zξξ +

[
2φ′′z
ṽφ′ − 3φ

ṽ2
− φ

ṽ2

]
zξ + 1

ṽ

(
φ′′

φ′

)′
z3 +

[
− φφ′′

ṽ2φ′ − 3φ′

ṽ2

]
z2

+ 2

ṽ3

(
φ3

φ′

)′
z − 6φ4

ṽ4φ′

}
+ ξzξ +

[(
3φ

φ′

)′
+ 1

]
z.

Finally, we set Z = z2 and find that Z satisfies the equation

Zs = e−s

{
1

ṽ
Zξξ − 1

2ṽ

Z2
ξ

Z
+

[
2φ′′z
ṽφ′ − 3φ

ṽ2
− φ

ṽ2

]
Zξ + 2

ṽ

(
φ′′

φ′

)
Z′2 +

[
−2φφ′′

ṽ2φ′ − 6φ′

ṽ2

]
Z

3
2

+ 4

ṽ3

(
φ3

φ′

)′
Z − 12φ4

ṽ4φ′ Z
1
2

}
+ ξZξ +

[(
6φ

φ′

)′
+ 2

]
Z. (4.12)

Notice that we can bound the coefficients of the above equation from the constants c and C in (4.11) and the function φ.
Let us now choose φ in the form

φ(θ) = θ(θ + 1)

so that(
φ′′

φ′

)′
= − 4

(2θ + 1)2
� −c1

and (
6φ

φ′

)′
� C1

for fixed constants c1 and C1 depending only on the bounds of |ṽξ | in (4.11). We can then assume that at the maximum
point of Z, where also Zξξ � 0 and Zξ = 0, the highest order powers of Z dominate in (4.12) so that we have

Zs � −c2e−sZ2 + C2Z.

We conclude that Z is bounded by constants, depending only on the bounds in (4.11), unless

−c2e−sZ2 + C2Z � 0

i.e., unless

Z �
√

C2c2
−1 es/2
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which readily implies the desired bound on ṽξξ . To make the above proof completely rigorous one needs to localize
the above argument by setting Z = χ2(ξ)z2, where χ is an appropriate cut off function. However, this introduces only
harmless terms and does not change the argument. We refer the reader to the proof Section 5.11, Step 3 of [10] for the
details. �

Combining the previous two lemmas gives the following.

Corollary 4.4. For any compact K ⊂ (ξμ,∞), there exists a constant C = C(K) such that∣∣ṽξ (ξ, s)
∣∣ � C,

∣∣ṽs(ξ, s)
∣∣ � C ∀ξ ∈ K,s � − logT/2. (4.13)

For an increasing sequence of times sk → ∞, we let

ṽk(ξ, s) = ṽ(ξ, s + sk), −sk − logT < s < ∞.

Then each ṽk satisfies the equation

(ṽk)s = e−(s+sk)(log ṽk)ξξ + ξ(ṽk)ξ + 2ṽk (4.14)

and the area condition
∞∫

−∞
ṽk(ξ, s)dξ = 2. (4.15)

Lemma 4.5. Passing to a subsequence, ṽk(ξ, s) converges uniformly on compact subsets of (ξμ,∞) × (−∞,∞) to a
solution V of the equation

Vs = ξVξ + 2V, (ξ, s) ∈ (ξμ,∞) × (−∞,+∞) (4.16)

with
∞∫

ξμ

V (ξ, s)dξ = 2. (4.17)

Proof. Let K ⊂ (ξμ,∞) × (−∞,∞) compact. Then according to the previous lemma, the sequence ṽk is equicon-
tinuous on K , hence passing to a subsequence it converges to a function V , which satisfies the bounds∣∣Vξ (ξ, s)

∣∣ � C,
∣∣Vs(ξ, s)

∣∣ � C, ∀ξ ∈ K,s � − logT/2. (4.18)

In addition, the estimate (4.10) readily implies that V is a solution of the first order equation (4.16).
On the other hand, Lemma 4.1 implies that ṽk(·, s) → 0, uniformly on (−∞, ξ−

μ ], for any ξ−
μ < ξμ, s ∈ R. In

addition ṽk � C uniformly in space and time, by our width estimate (2.4). Hence, we can pass to the limit in (4.15) to
conclude that V satisfies the area condition (4.17). �
Lemma 4.6. Assume that V is a positive, locally Lipschitz, solution of the equation

Vs = ξVξ + 2V, on (ξμ,∞) × (−∞,∞) (4.19)

with
∞∫

ξμ

V (ξ, s)dξ = 2, ∀s ∈ (−∞,∞). (4.20)

Then,

V (ξ, s) = 2ξμ

ξ2
, ξ � ξμ

with ξμ = T + μ.
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Proof. The basic idea is that the fixed area condition (4.20) completely determines V . This is better understood by
setting

W(ζ, s) =
∞∫

ζ

V (ξ, s)dξ, ζ � ξμ

and observing that W satisfies the equation

Ws = (ζW)ζ , on [ξμ,∞) × (−∞,∞)

with

W(ξμ, s) = 2, −∞ < s < ∞
and

W(ζ, s) → 0, as ζ → ∞,−∞ < s < ∞.

We will show that W is completely determined by its boundary values at ζ = ξμ. Indeed, integrating along character-
istics we easily find that W satisfies

d

ds

[
e−sW

(
e−sζ, s

)] = 0.

Hence, for any ζ � ξμ and s, s̄ we have

e−sW
(
e−sζ, s

) = e−s̄W
(
e−s̄ ζ, s̄

)
or equivalently

es̄−sW
(
es̄−sζ, s

) = W(ζ, s̄).

Fixing a point P = (ζ̄ , s̄), there exists a unique characteristic line passing through P , which intersects the boundary
ζ = ξμ at the point (ξμ, s0) with s0 = s̄ + log(ζ̄ /ξμ). Hence

W(ζ, s) = 2es−s0 = 2ξμ

ζ
, ∀ζ � ξμ, ∀s ∈ R.

Differentiating with respect to ζ we then obtain that V = 2ξμ/ξ2, as desired. �
As an immediate consequence of the previous two lemmas we obtain the following.

Corollary 4.7. The sequence {ṽk(ξ, s)} converges uniformly on compact subsets of (ξμ,∞)×(−∞,∞) to the function
Vμ(ξ) = 2(T + μ)/ξ2.

The proof of Theorem 1.2, stated in the Introduction, is an immediate consequence of Lemma 4.1, part (ii), and
Corollary 4.7.

Proof of Theorem 1.2. Let ξ−
μ < ξμ = T + μ. By Lemma 4.1, part (ii), ṽ(·, τ ) converges to zero, as τ → ∞, uni-

formly on (−∞, ξ−
μ ]. On the other hand, for ξ+

μ > ξμ, Corollary 4.7 implies that ṽ(ξ, s) converges to Vμ(ξ) = 2ξμ/ξ2,
as s → ∞ uniformly on compact sets of [ξ+

μ ,∞). Changing back to the τ = es variable we readily conclude that
ṽ(ξ, τ ) → 2ξμ/ξ2, as τ → ∞, uniformly on compact sets of [ξ+

μ ,∞), finishing the proof of the theorem. �
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