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Abstract

In this paper we deal with the viscous Burgers equation. We study the exact controllability properties of this equation with
general initial condition when the boundary control is acting at both endpoints of the interval. In a first result, we prove that the
global exact null controllability does not hold for small time. In a second one, we prove that the exact controllability result does
not hold even for large time.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Ce papier concerne l’équation de Burgers visqueuse. On étudie les propriétés de contrôlabilité exacte de cette équation quand
on contrôle les deux extrémités de l’intervalle. Dans un premier résultat, on démontre que la contrôlabilité globale à zéro n’est pas
vraie pour un temps petit. Enfin, dans un deuxième résultat on démontre que la contrôlabilité exacte n’est pas vraie pour un temps
long.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the following control system associated to the one-dimensional Burgers equation:{
yt − yxx + yyx = 0, (t, x) ∈ Q := (0, T ) × (0,1),

y(t,0) = v1(t), y(t,1) = v2(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0,1).

(1)

Here, T > 0 is a given final time and v1(t) and v2(t) are control functions which are acting over our system at both
endpoints of the segment (0,1). Furthermore, y0 is the initial condition which is supposed to be in H 1(0,1). In the
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sequel, we will suppose that our control functions v1 and v2 belong to the space H 3/4(0, T ) and they satisfy the
compatibility conditions

v1(0) = y0(0) and v2(0) = y0(1). (2)

Under these assumptions, it is classical to see that there exists a solution y of system (1) which belongs to the space
X := L2(0, T ;H 2(0,1)) ∩ H 1(0, T ;L2(0,1)) and a continuous function K0 > 0 such that

‖y‖X � K0
(‖y0‖H 1(0,1) + ‖v1‖H 3/4(0,T ) + ‖v2‖H 3/4(0,T )

)
(3)

(see, for instance, [11]).
In general, an exact controllability property for system (1) reads as follows: given y0 ∈ H 1(0,1) and y1 ∈ H 1(0,1),

do there exist controls v1 ∈ H 3/4(0, T ) and v2 ∈ H 3/4(0, T ) such that the corresponding solution of (1) satisfies
y(T , x) = y1(x) in (0,1)? When y1 ≡ 0, we will refer to this problem as the exact null controllability.

Let us now mention the previous works which one can find in the literature concerning the exact controllability for
the Burgers equation.

• We start talking about the non-viscous Burgers equation. As far as we know, only two works have been dedicated
to this issue.

In [10], the author describes the attainable set of the inviscid one-dimensional Burgers equation. In particular, he
proves that by means of a boundary control, the Burgers equation can be driven from the null initial condition to a
constant final state M in a time T � 1/M . The main tool the author uses is the so-called return method, which was
introduced in [5].

More general results are obtained in [1]. In this reference, the authors precisely describe the attainable set for
general scalar non-linear conservation laws with C2 strictly convex flux functions when starting from a null initial
data. In particular, they deduce that as long as the controllability time is lower than 1/M (M > 0 constant), we do not
have exact controllability to the state M .

• As long as the controllability of the viscous Burgers equation is concerned, very few works have been done too.
Most of the papers in the literature deal with the controlled Burgers equation with one control force, which can act
over our system at one endpoint or a small interior open set.

First, in [6], the author proves that for the solutions of the viscous Burgers equation with y(t,0) = 0 in (0, T ) and
initial data y0 ∈ L∞(0,1), there exists a constant C0 > 0 such that, for every T > 0 one has

y(t, x) � C0

1 − x
∀(t, x) ∈ (0, T ) × (0,1).

From this a priori estimate, the author deduces that the approximate controllability to some target states does not hold.
We recall now a result from [8], where the authors prove that we cannot reach an arbitrary target function in

arbitrary time with the help of one control force. Precisely, they deduced the following estimate: for each N > 5, there
exists a constant C1(N) > 0 such that

d

dt

b∫
0

(b − x)Ny4+(t, x)dx < C1b
N−5,

where b is the lower endpoint where the control function is supported (for instance, b = 1/2 if the control function
is acting in (1/2,1)). Here, y+(t, x) = max{y(t, x),0} is the positive part of y. From this a priori estimate, one can
deduce that we can not get close to some open set of target functions in L2(0,1).

Next, in [7], the authors prove that the global null controllability does not hold with one control force. Precisely,
for any initial condition y0 ∈ L2(0,1) with ‖y0‖L2(0,1) = r > 0, it is proved that there exists a time T (r) > 0 such that
for any control function, the corresponding solution satisfies∣∣y(t, ·)∣∣ � C2 > 0 ∀t ∈ (

0, T (r)
)

in any open interval I ⊂ (0,1),

for some C2(r) > 0. Furthermore, this time T (r) is proved to be sharp in the sense that there exists a constant C3 > 0
independent of r such that, if T > C3T (r), then there exists a control function such that the corresponding solution
satisfies y(T , x) = 0 in (0,1). The main tool used in this work is the comparison principle.

For the Burgers equation with two boundary controls it was shown in [8], that any steady state solution is reachable
for a sufficiently large time.
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Finally, in the recent paper [4], the author proved that with the help of two control forces, we can drive the solution
of the Burgers equation with null initial condition to large constant states. More precisely, for any time T > 0, it is
shown the existence of a constant C4 > 0 such that for any C ∈ R satisfying |C| � C4, there exist two controls v1(t)

and v2(t) such that the associated solution to (1) with y0 ≡ 0 satisfies y(T , ·) = C in (0,1). The idea of the proof of
this result is based on the Hopf–Cole transformation, which leads to a controllability problem for the heat equation.

Before presenting our main results, let us remark that despite the Burgers equation is viewed like a one-dimensional
model for the Navier–Stokes system, its controllability properties are certainly different, since the Navier–Stokes
system with control distributed over the whole boundary is globally approximately controllable. As a proof of this,
see for instance [3].

In the present paper, we have two main objectives. One concerning the exact null controllability for small time and
the other one concerning the exact controllability for any time T > 0. Both results are of negative nature.

As long as the first one is concerned, we prove that there exists a final time T and an initial condition y0 such that
the solution of (1) is far away from zero. That is to say, the global null controllability for the Burgers equation with
two control forces does not hold. The precise result is given in the following theorem:

Theorem 1. There exists T > 0 and y0 ∈ H 1(0,1) such that, for any control functions v1 ∈ H 3/4(0, T ) and
v2 ∈ H 3/4(0, T ) satisfying the compatibility conditions (2), the associated solution y ∈ X to (1) satisfies∥∥y(T , ·)∥∥

H 1(0,1)
� C5 > 0, (4)

for some positive constant C5(T , y0).

The second main result is a negative exact controllability result:

Theorem 2. For any T > 0, there exists an initial condition y0 ∈ H 1(0,1) and a target function y1 ∈ H 1(0,1) such
that, for any v1 ∈ H 3/4(0, T ) and v2 ∈ H 3/4(0, T ) satisfying (2), the associated solution y ∈ X to (1) satisfies∥∥y(T , ·) − y1(·)

∥∥
H 1(0,1)

� C6 > 0, (5)

for some positive constant C6(T , y0, y1).

Remark 1. We recall that all global controllability properties obtained up to now for the Navier–Stokes system come
essentially from the same property for the Euler equation (see [9]). As we pointed out above, the global controllability
for the non-viscous Burgers equation does not hold. From this point of view, one could expect to have the results
stated in Theorems 1 and 2.

In order to prove these results, we first show the equivalence of the controllability problem for the Burgers equa-
tion (1) and some controllability problem for a one-dimensional linear heat equation with positive boundary controls.
This is carried out in several steps, by applying Hopf–Cole type transformations.

Then, our controllability results for the Burgers equation (stated in Theorems 1 and 2 above) will be deduced from
both results for the corresponding heat equation.

As a consequence of these two theorems, one can easily deduce the following corollaries:

Corollary 3. Let us consider the following control system associated to a semilinear parabolic equation:⎧⎪⎨⎪⎩
wt − wxx + 1

2
|wx |2 = v̂1(t) in Q,

w(t,0) = 0, w(t,1) = v̂2(t) in (0, T ),

w(0, x) = w0(x) in (0,1),

(6)

with v̂1 ∈ L2(0, T ) and v̂2 ∈ H 1(0, T ). Then, the exact controllability of system (6) with H 2-data does not hold. That
is to say, for any T > 0, there exist w0 ∈ H 2(0,1) and w1 ∈ H 2(0,1) satisfying w0(0) = w1(0) = 0 such that∥∥w(T , ·) − w1(·)

∥∥
2 � C7,
H (0,1)
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for some C7(T ,w0,w1) > 0. Furthermore, the exact null controllability does not hold either. That is to say, there
exists a time T > 0 and an initial condition w0 ∈ H 2(0,1) satisfying w0(0) = 0 such that∥∥w(T , ·)∥∥

H 2(0,1)
� C8

for some C8(T ,w0) > 0.

Corollary 4. Let us consider the following bilinear-control system associated to a heat equation:⎧⎪⎨⎪⎩
zt − zxx = v̂3(t) − 1

2
z in Q,

z(t,0) = 0, z(t,1) = v̂4(t) in (0, T ),

z(0, x) = z0(x) in (0,1),

(7)

with v̂3 ∈ L2(0, T ) and v̂4 ∈ H 1(0, T ). Then, equivalently as in the previous corollary, the exact controllability ( for
large time) and the exact null controllability (for small time) of system (7) with H 2-data do not hold.

The paper is organized as follows. In a first section, we reduce the control system (1) to another one concerning the
heat equation. Finally, in the second section we prove both Theorems 1 and 2.

2. Reduction to a heat controllability problem

In this section, we prove that the exact controllability properties for the Burgers equation are equivalent to some
others for the heat system. All through this section, we consider T > 0 a fixed final time.

Let us start remembering the control system associated to the Burgers equation we are working with:{
yt − yxx + yyx = 0 in Q = (0, T ) × (0,1),

y(t,0) = v1(t), y(t,1) = v2(t) in (0, T ),

y(0, x) = y0(x) in (0,1).

(8)

Next, we formulate the exact controllability problem we are interested in:

For any y0 ∈ H 1(0,1) and any y1 ∈ H 1(0,1), there exist controls

v1, v2 ∈ H 3/4(0, T ) satisfying (2) such that the solution

of (8) satisfies y(T , x) = y1(x) in (0,1). (9)

In a first lemma, we prove that this controllability problem is equivalent to a controllability problem for a semilinear
parabolic equation with time-dependent controls, one acting in the right-hand side of our equation and the other one
acting at x = 1. Let us thus consider the following control system:⎧⎪⎨⎪⎩

wt − wxx + 1

2
|wx |2 = v3(t) in Q,

w(t,0) = 0, w(t,1) = v4(t) in (0, T ),

w(0, x) = w0(x) in (0,1).

(10)

We have:

Lemma 1. There exists a solution of problem (9) if and only if there exists a solution to the following controllability
problem:

For any w0,w1 ∈ H 2(0,1) with w0(0) = w1(0) = 0, there exist

controls v3 ∈ L2(0, T ) and v4 ∈ H 1(0, T ) and a solution

w ∈ X1 of (10) such that w(T ,x) = w1(x) in (0,1). (11)

Here, we have denoted X1 = L2(0, T ;H 3(0,1)) ∩ H 1(0, T ;H 1(0,1)).
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Proof. Let us first suppose that we have a solution to problem (9). Then, we denote

w(t, x) =
x∫

0

y(t, s)ds ∀(t, x) ∈ Q.

Then, it is very easy to check that this function w = w(t, x) solves the controllability problem (11) with

w0(x) =
x∫

0

y0(s)dx ∈ H 2(0,1), w1(x) =
x∫

0

y1(s)ds ∈ H 2(0,1)

and

v3(t) = v2
1(t)

2
− yx(t,0), v4(t) =

1∫
0

y(t, s)ds ∀t ∈ (0, T ).

From (3) and v1 ∈ H 3/4(0, T ), we obtain in particular that v3 ∈ L2(0, T ) and v4 ∈ H 1(0, T ).
On the other hand, suppose that there exists a solution w to (11). In this situation, we have that w ∈ X1 and there

exists a continuous function K1 > 0 such that

‖w‖X1 � K1
(‖w0‖H 2(0,1) + ‖v3‖L2(0,T ) + ‖v4‖H 1(0,T )

)
. (12)

Then, the function

y(t, x) = wx(t, x) ∈ X

solves problem (9) with

y0(x) = w0,x(x) ∈ H 1(0,1), y1(x) = w1,x(x) ∈ H 1(0,1)

and

v1(t) = wx(t,0), v2(t) = wx(t,1) ∀t ∈ (0, T ).

From (12), v1, v2 ∈ H 3/4(0, T ). The proof of Lemma 1 is completed. �
The next step is to prove that the previous controllability result is equivalent to a controllability problem for a linear

heat equation with two time-dependent controls, one of bilinear nature (multiplying the state function) and the other
one acting at x = 1. Let us thus consider the following control system:⎧⎪⎨⎪⎩

zt − zxx + v5(t)

2
z = 0 in Q,

z(t,0) = 1, z(t,1) = v6(t) in (0, T ),

z(0, x) = z0(x) in (0,1).

(13)

Analogously than for system (10), we have that for any z0 ∈ H 2(0,1) with z0(0) = 1, v5 ∈ L2(0, T ) and v6 ∈ H 1(0, T )

with v6(0) = z0(1), the solution z belongs to X1 and there exists a continuous function K2 > 0 such that

‖z‖X1 � K2
(‖z0‖H 2(0,1) + ‖v5‖L2(0,T ) + ‖v6‖H 1(0,T )

)
. (14)

Precisely, we have:

Lemma 2. There exists a solution to the problem (11) if and only if there exists a solution to the following controlla-
bility problem:

For any z0, z1 ∈ H 2(0,1) with z0(x), z1(x) > 0 in (0,1) and

z0(0) = z1(0) = 1, there exist two controls v5 ∈ L2(0, T ) and

a strictly positive function v6 ∈ H 1(0, T ) in [0, T ] such that

the solution of (13) z ∈ X1 satisfies z(T , x) = z1(x) in (0,1). (15)
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Proof. Let us first suppose that we have a solution w ∈ X1 to the controllability problem (11). Then, we set z(t, x) =
e−w(t,x)/2 for (t, x) ∈ Q which satisfies z ∈ X1 and solves problem (15) with

z0(x) = exp
{−w0(x)/2

}
, z1(x) = exp

{−w1(x)/2
} ∀x ∈ (0,1)

and

v5(t) = v3(t), v6(t) = exp
{−v4(t)/2

} ∀t ∈ (0, T ).

Now, let us consider z = z(t, x) a solution of problem (15). We define the function

w(t, x) = −2 ln z(t, x) ∀(t, x) ∈ Q.

Observe that this is a good definition since z(t, x) > 0 in Q. This can readily be checked in a classical way by just
proving that the negative part of the function z is identically zero. Again, immediate computations tell us that w fulfills
the controllability problem (11) with

w0(x) = −2 ln z0(x), w(T , x) = −2 ln z1(x) ∀x ∈ (0,1)

and

v3(t) = v5(t), v4(t) = − lnv6(t) ∀t ∈ (0, T ).

The proof of Lemma 2 is complete. �
In the last step, we will prove that the previous exact controllability problem is equivalent to an exact controllability

problem for the heat equation with positive controls acting at both ends x = 0 and x = 1. Let us, thus, introduce the
following control system:{

ht − hxx = 0 in Q,

h(t,0) = v7(t), h(t,1) = v8(t) in (0, T ),

h(0, x) = h0(x) in (0,1).

(16)

For the solution of this heat equation with initial data h0 ∈ H 2(0,1) and v7, v8 ∈ H 1(0, T ) with v7(0) = h0(0) and
v8(0) = h0(1), we have again that h ∈ X1 and there exists a continuous function K3 such that

‖h‖X1 � K3
(‖h0‖H 2(0,1) + ‖v7‖L2(0,T ) + ‖v8‖H 1(0,T )

)
. (17)

We have:

Lemma 3. There exists a solution to the exact controllability problem (15) if and only if there exists a solution to the
following one:

For any h0, h1 ∈ H 2(0,1) with h0(x), h1(x) > 0 in (0,1) and

h0(0) = h1(0) = 1, there exists a constant K > 0 and two controls

v7(t), v8(t) ∈ H 1(0, T ) which are strictly positive in [0, T ] such that

the solution of (16) satisfies h(T , x) = Kh1(x) in (0,1). (18)

Proof. We start by assuming that there exists a solution to the controllability problem (15). Then, we define

h(t, x) = exp

{ t∫
0

v5(s)

2
ds

}
z(t, x) ∀(t, x) ∈ Q.

Then, it is very easy to check that h solves problem (18) with

h0(x) = z0(x), h1(x) = z1(x) ∀x ∈ (0,1)

v7(t) = exp

{ t∫
v5(s)

2
ds

}
, v8(t) = exp

{ t∫
v5(s)

2
ds

}
v6(t) ∀t ∈ (0, T )
0 0
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and

K = exp

{ T∫
0

v5(s)

2
ds

}
.

Assume now that there exists a solution h of problem (18) for some constant K > 0. Then, the function

z(t, x) = 1

v7(t)
h(t, x) ∀(t, x) ∈ Q

solves problem (15) with

z0(x) = 1

v7(0)
h0(x), z1(x) = K

v7(T )
h1(x) ∀x ∈ (0,1)

and

v5(t) = 2
v7,t (t)

v7(t)
, v6(t) = v8(t)

v7(t)
∀t ∈ (0, T ).

The proof of this lemma is finished. �
Remark 2. Equivalently to the exact controllability problem stated in (9), one can formulate the null controllability
problem taking y1 ≡ 0 and so the null controllability property

For any y0 ∈ H 1(0,1), there exist controls v1, v2 ∈ H 3/4(0, T ) satisfying

(2) and such that the solution of (8) satisfies y(T , x) = 0 in (0,1) (19)

is equivalent (in the sense of the previous lemmas) to

For any h0 ∈ H 2(0,1) with h0(x) > 0 in (0,1) and h0(0) = 1, there

exists a constant K > 0 and controls 0 < v7(t), v8(t) ∈ H 1(0, T ) such

that the solution h ∈ X1 of (16) satisfies h(T , x) = K in (0,1). (20)

3. Proofs of main results

In this section, we will prove both Theorems 1 and 2.
We first state a technical result which expresses the local results for solutions of heat equations:

Lemma 4. Let 0 < ξ0 < ξ1 < ξ2 < 1. Then, for each θ > 0 there exists a time T ∗ = T ∗(θ) > 0 such that the solution
of the backwards heat equation⎧⎨⎩

−Ut − Uxx = 0, (t, x) ∈ (0, T ∗) × (0,1),

U(t,0) = U(t,1) = 0, t ∈ (0, T ∗),
U(T ∗, x) = δξ0 − θδξ1 + δξ2, x ∈ (0,1)

(21)

satisfies

Ux(t,0) > 0 and Ux(t,1) < 0 ∀t ∈ (0, T ∗).

In the previous lemma, we have denoted by δx the Dirac mass distribution at point x.
A much more intrinsic result is the one given in the following lemma which was proved in [2]:

Lemma 5. Let T > 0 and 0 < ξ0 < ξ1 < ξ2 < 1. Then, there exists θ > 0 such that the solution of the backwards heat
equation⎧⎨⎩

−Ut − Uxx = 0, (t, x) ∈ Q,

U(t,0) = U(t,1) = 0, t ∈ (0, T ),

U(T , x) = δ − θδ + δ , x ∈ (0,1)

(22)

ξ0 ξ1 ξ2
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satisfies

Ux(t,0) > 0 and Ux(t,1) < 0 ∀t ∈ (0, T ).

3.1. No null controllability result

In this paragraph, we provide the proof of Theorem 1. We first recall that from the computations made in the
previous section, our control system is reduced to{

ht − hxx = 0, (t, x) ∈ Q,

h(t,0) = ṽ1(t), h(t,1) = ṽ2(t), t ∈ (0, T ),

h(t, x) = h0(x), x ∈ (0,1),

(23)

where

h0(x) = exp

{ x∫
0

y0(s)

2
ds

}
∀x ∈ (0,1)

and condition y(T , x) = 0 in (0,1) now reads h(T , x) = K in (0,1).
More precisely, we have proved (see Lemmas 1–3) that the null controllability property for system (1) is equivalent

to the existence of a positive constant K and positive controls ṽ1, ṽ2 ∈ H 1(0, T ) such that the solution h ∈ X1 of (23)
satisfies h(T , x) = K in (0,1).

Proof of Theorem 1. We prove Theorem 1 by contradiction. Thus, suppose that for any T > 0 and any h0 ∈ H 2(0,1)

with h0 > 0 and h0(0) = 1, there exists a constant K > 0 and two controls 0 < ṽ1 ∈ H 1(0, T ) and 0 < ṽ2(t) ∈
H 1(0, T ) such that the solution of (23) satisfies

h(T , x) = K in (0,1).

Then, let us consider the function U given by Lemma 4 for some θ � 2, which is thus defined up to a time t = T ∗.
Multiplying the equation of h by U and integrating in (0, T ∗) × (0,1), we obtain

−
T ∗∫
0

(
Ux(t,0)ṽ1(t) − Ux(t,1)ṽ2(t)

)
dt + K(2 − θ) −

1∫
0

U(0, x)h0(x)dx = 0 (24)

for any h0 ∈ H 2(0,1). From the facts that the normal derivative of U is negative and θ � 2, the two first terms in the
previous identity are non-positive.

Now, since the normal derivative of U is negative and U satisfies homogeneous Dirichlet boundary conditions,
there exists δ > 0 such that

U(0, x) � δx ∀x ∈ (0, δ) and U(0, x) � δ(1 − x) ∀x ∈ (1 − δ,1).

Then, we can choose an initial condition h0 with h0(0) = 1 such that

−
1∫

0

U(0, x)h0(x)dx < 0.

Indeed, on the one hand, from a priori estimates for system (21), we obtain the existence of a positive constant
C∗ = C∗(T ∗, θ) such that∥∥U(0, ·)∥∥

L2(0,1)
� C∗.

On the other hand, if we choose h0 = h0(x) ∈ (0,1) for all x ∈ (0,1) such that

h0(x) = 4C∗

δ3
∀x ∈

(
δ

4
,

3δ

4

)
∪

(
1 − 3δ

4
,1 − δ

4

)
,

we have (recall that h0 > 0)
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−
1∫

0

U(0, x)h0(x)dx � −
3δ/4∫

δ/4

(
4C∗

δ3

)
U(0, x)dx −

1−δ/4∫
1−3δ/4

(
4C∗

δ3

)
U(0, x)dx −

1−δ∫
δ

U(0, x)h0(x)dx

� −
(

C∗

2
+ C∗

2

)
+ (1 − 2δ)C∗ = −2δC∗ < 0.

This is obviously a contradiction when combined with identity (24). �
3.2. No exact controllability result

In this paragraph, we prove Theorem 2. Going back again to the previous section, we consider the following control
system:{

ht − hxx = 0, (t, x) ∈ (0, T ) × (0,1),

h(t,0) = ṽ1(t), h(t,1) = ṽ2(t), t ∈ (0, T ),

h(t, x) = h0(x), x ∈ (0,1)

(25)

where now the condition y(T , x) = y1(x) in (0,1) reads

h(T , x) = Kh1(x) := K exp

{
−

x∫
0

y1(s)

2
ds

}
in (0,1).

Proof of Theorem 2. Again, we prove Theorem 2 by contradiction. Thus, we assume the existence of a final time
T > 0 such that for any 0 < h0 ∈ H 2(0,1) and any 0 < h1 ∈ H 2(0,1) with h0(0) = h1(0) = 1, there exists a constant
K > 0 and two controls 0 < ṽ1(t) ∈ H 1(0,1) and 0 < ṽ2(t) ∈ H 1(0, T ) such that

h(T , x) = Kh1(x) in (0,1).

Let U be the function given by Lemma 5. Analogously as we did in the previous paragraph, by a simple integration
by parts we get

−
T∫

0

(
Ux(t,0)ṽ1(t) − Ux(t,1)ṽ2(t)

)
dt −

1∫
0

U(0, x)h0(x)dx + K

1∫
0

(
h1(ξ0) − θh1(ξ1) + h1(ξ2)

)
dx = 0 (26)

for any 0 < h0 ∈ H 2(0,1) and any 0 < h1 ∈ H 2(0,1). Recall that U is now the solution of system (22). Again, we
have that the first term of identity (26) is non-positive.

Using the same construction as in the previous paragraph, one can choose 0 < h0 ∈ H 2(0,1) with h0(0) = 1 such
that

−
1∫

0

U(0, x)h0(x)dx < 0. (27)

That is to say, on the one hand from a priori estimates for the heat equation, we obtain∥∥U(0, ·)∥∥
L2(0,1)

� Ĉ

for some Ĉ > 0. On the other hand, we choose h0 = h0(x) ∈ (0,1) ∀x ∈ (0,1) with the following property:

h0(x) = 4C∗

δ3
∀x ∈

(
δ

4
,

3δ

4

)
∪

(
1 − 3δ

4
,1 − δ

4

)
.

Then, using the fact that

U(0, x) � δx ∀x ∈ (0, δ) and U(0, x) � δ(1 − x) ∀x ∈ (1 − δ,1)
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and splitting the integral in (27) into three terms, we get

−
1∫

0

U(0, x)h0(x)dx � −2δĈ < 0.

Finally, we take a function 0 < h1(x) ∈ H 2(0,1) such that

h1(ξ0) − θh1(ξ1) + h1(ξ2) < 0.

For instance, one can take a function h1 whose value in ξ1 is 3/θ , while h1(ξ0) = h1(ξ2) = 1.
This is a contradiction with identity (26). The proof of Theorem 2 is complete. �
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