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Abstract

In this paper we establish some exact controllability results for systems of two parabolic equations of the Stokes kind. In a first
part, we prove the existence of insensitizing controls for the L2 norm of the solutions and the curl of solutions of linear Stokes
equations. Then, in the limit case where one can expect null controllability to hold for a system of two Stokes equations (namely,
when the coupling terms concern first and second order derivatives, respectively), we prove this result for some general couplings.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω ⊂ RN (N = 2 or 3) be a bounded simply-connected open set whose boundary ∂Ω is regular enough. Let
T > 0 and let ω ⊂ Ω be a (small) nonempty open subset which will usually be referred as control domain. We will
use the notation Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ).

On the other hand, we will design by C (resp. K) a generic positive constant which depends on Ω , ω and T

(resp. Ω and ω). Anyway, it will be made precise each time a constant appear.
Let us recall the definition of some usual spaces in the context of Stokes equations:

V = {
y ∈ H 1

0 (Ω)N : ∇ · y = 0 in Ω
}

and

H = {
y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω

}
.

The main objective of this paper is to establish some new controllability results for a system of two strongly coupled
Stokes equations.

• The two first main results of this paper concerns insensitizing controls. More precisely, we are interested in
insensitizing two different functionals associated to a state system, which is a linear Stokes equation with Dirichlet
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boundary conditions. Let us introduce an open set O ⊂ Ω such that O ∩ ω �= ∅, which is called the observatory (or
observation open set).

In order to precisely state our problem, we introduce the state system:{
yt − �y + ay + B · ∇y + ∇p = v1ω + f, ∇ · y = 0 in Q,

y = 0 on Σ,

y|t=0 = y0 + τ ŷ0 in Ω.

(1)

Here, v is the control, y0 ∈ L2(Ω)N and a ∈ R and B ∈ RN are constants. Furthermore, we suppose that ŷ0 is
unknown with ‖ŷ0‖L2(Ω)N = 1 and that τ is a small unknown real number. Then, the interpretation of system (1) is
that y is the velocity of the particles of an incompressible fluid, v is a localized source (where we have access to the
fluid) to be chosen, f is another source and the initial state of the fluid is partially unknown.

In general, our task is to insensitize a functional Jτ (which is called sentinel) by means of the control v. That is
to say, we have to find a control v such that the influence of the unknown data τ ŷ0 is not perceptible for Jτ (see (4)
below).

In the literature, the usual functional is given by the L2 norm of the state (see [15,1,3] or [16], for instance). Here,
we are not only interested in insensitizing the L2 norm of the state (solution of (1)) but also the L2 norm of its
curl(∇ × y). Thus, let us introduce the functionals

J1,τ (y) =
∫∫

O×(0,T )

|y|2 dx dt (2)

and

J2,τ (y) =
∫∫

O×(0,T )

|∇ × y|2 dx dt, (3)

where y is the solution of (1).
This kind of problems was first considered by J.-L. Lions in [15], where a lot of another interesting questions

concerning insensitizing controls are posed.
Our objective is to find a control vi such that the presence of the unknown data is imperceptible for Ji,τ , that is to

say, such that

∂Ji,τ

∂τ
(yi)

∣∣∣∣
τ=0

= 0 for all ŷ0 ∈ L2(Ω)N such that
∥∥ŷ0

∥∥
L2(Ω)N

= 1, (4)

for i = 1,2, where yi is the solution of (1) associated to vi . If this holds, we will say that the control vi insensitizes
the functional Ji,τ (i = 1,2).

Usually, insensitizing problems are formulated in an equivalent way as a controllability problem of a cascade
system (see, for instance, [14] for a rigorous deduction of this fact). Indeed, if we consider the adjoint state of (1) (or
apply Lagrange principle), one can see that condition (4) is equivalent to z|t=0 ≡ 0 in Ω , where z together with w

fulfills⎧⎪⎪⎨
⎪⎪⎩

wt − �w + aw + B · ∇w + ∇p0 = v1ω + f, ∇ · w = 0 in Q,

−zt − �z + az − B · ∇z + ∇q = w1O, ∇ · z = 0 in Q,

w = 0, z = 0 on Σ,

w|t=0 = y0, z|t=T = 0 in Ω

(5)

for i = 1 and⎧⎪⎪⎨
⎪⎪⎩

wt − �w + aw + B · ∇w + ∇p0 = v1ω + f, ∇ · w = 0 in Q,

−zt − �z + az − B · ∇z + ∇q = ∇ × (
(∇ × w)1O

)
, ∇ · z = 0 in Q,

w = 0, z = 0 on Σ,

w|t=0 = y0, z|t=T = 0 in Ω

(6)

for i = 2. Here, we have denoted w ≡ y|τ=0 and p0 ≡ p|τ=0.
As we said above, all known results around this subject concern parabolic systems of the heat kind. In [1], the

authors prove the existence of ε-insensitizing controls (i.e., such that |∂τ J1,τ (y)|τ=0| � ε) for solutions of a semilinear
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heat system with C1 and globally Lipschitz nonlinearities. In [3], the author proved the existence of insensitizing
controls for the same system. For an extension of this results to more general nonlinearities, see [2] and the references
therein. Recently, it has been proved in [10] the existence of insensitizing controls for the functional

J̃τ (y) =
∫∫

O×(0,T )

|∇y|2 dx dt

where y is the solution of a heat equation with potentials. Also in this reference, some controllability results for
systems of two parabolic equations were considered when a double coupling occurs (the solution of each equation
appears in the right-hand side of the other) by means of some combinations of derivatives; first order space derivatives
in one equation and second order space derivatives in the other one. See [10] for the details.

All along this paper we will suppose that ω ∩ O �= ∅. This is a condition that has always been imposed in the
literature as long as insensitizing controls are concerned. Recently, for the (simpler) situation where we look for a
ε-insensitizing control and the functional J1,τ , it has been demonstrated that condition ω ∩O �= ∅ is not necessary for
solutions of linear heat equations (see [4]).

The controllability result for system (5) is given in the following theorem:

Theorem 1. Let m > 3 be a real number and y0 ≡ 0. Then, there exists a constant C > 0 depending on Ω,ω,O, T , a

and B such that for any f ∈ L2(Q)N satisfying ‖eC/tmf ‖L2(Q)N < +∞, there exists a control v1 such that the
corresponding solution (w,p0, z, q) of (5) satisfies z|t=0 ≡ 0 in Ω .

Corollary 2. There exists insensitizing controls v1 of the functional J1,τ given by (2).

Next, we state the controllability result for system (6):

Theorem 3. Under the same assumptions of Theorem 1, there exists a control v2 such that the corresponding solution
(w,p0, z, q) of (6) satisfies z|t=0 ≡ 0 in Ω .

Corollary 4. There exists insensitizing controls v2 of the functional J2,τ given by (3).

Remark 1. The same results stated in Theorems 1 and 3 hold when a and B are functions which depends only on the
time variable t and are in L∞(0, T ). The proof of this fact is direct from that of Theorems 1 and 3.

The proofs of Theorems 1 and 3 will be given in Section 3 but separately, even if the method to solve both prob-
lems is similar in some sense. The reason is very simple; there is no reason to think that, once Theorem 1 has been
established, Theorem 3 also holds. Actually, the proof of Theorem 3 is much more intrinsic. We will try to make this
precise in the sequel.

Let us briefly explain the difficulties a controllability result for systems (5) and (6) possesses. For this, we introduce
the associated adjoint systems:⎧⎪⎨

⎪⎩
−ϕt − �ϕ + aϕ − B · ∇ϕ + ∇π = ψ1O, ∇ · ϕ = 0 in Q,

ψt − �ψ + aψ + B · ∇ψ + ∇h = 0, ∇ · ψ = 0 in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ|t=T = 0, ψ |t=0 = ψ0 in Ω

(7)

and ⎧⎪⎨
⎪⎩

−ϕt − �ϕ + aϕ − B · ∇ϕ + ∇π = ∇ × (
(∇ × ψ)1O

)
, ∇ · ϕ = 0 in Q,

ψt − �ψ + aψ + B · ∇ψ + ∇h = 0, ∇ · ψ = 0 in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ|t=T = 0, ψ |t=0 = ψ0 in Ω,

(8)

respectively.
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It is by now classical to prove that the null controllability results we want to prove for systems (5) and (6) are
equivalent to the following observability inequality:∫ ∫

Q

e−C0/tm |ϕ|2 dx dt � C

∫∫
ω×(0,T )

|ϕ|2 dx dt, (9)

for the solutions of (7) and (8), where m is some positive number and C and C0 are two positive constants depending
on Ω,ω,O, T , a and B but independent of ψ0 (see, for instance, [11] or [9]).

The main idea one usually follows in order to prove (9) is a combination of observability inequalities for ϕ and ψ

(as solutions of Stokes equations) and try to eliminate the local term (concentrated in ω × (0, T )) concerning ψ ,
resulting from the application of an observability inequality for ψ . Thus, one has to establish a local estimate of the
kind ∫∫

ω̃×(0,T )

|ψ |2 dx dt � C

∫∫
ω×(0,T )

|ϕ|2 dx dt, ω̃ ⊂ ω

for both the solutions of (7) and (8). When one tries to prove this inequality (using, of course, the equation satisfied
by ϕ), one finds that the pressure term π is always involved. Indeed, for instance in the simpler situation of system (7),
we find∫∫

ω̃×(0,T )

|ψ |2 dx dt =
∫∫

ω̃×(0,T )

ψ(−ϕt − �ϕ + aϕ − B · ∇ϕ + ∇π)dx dt,

provided that ω̃ ⊂ O. Hence, one of the terms we have to estimate is∫∫
ω̃×(0,T )

ψ∇π dx dt,

which can never be estimated just in terms of a local integral (in an open set which does not ‘touch’ the boundary)
of |ϕ|2.

This means that we have to avoid having a term like∫∫
ω̃×(0,T )

|ψ |2 dx dt

in the right-hand side of an observability inequality for ψ . This is exactly what we do. In fact, for the solutions of
system (7) (resp. (8)), we obtain an observability inequality of the following kind:∫ ∫

Q

e−C0/tm |ψ |2 dx dt � C

∫∫
B0×(0,T )

|∇ × ψ |2 dx dt

(resp. ∫ ∫
Q

e−C1/tm |ψ |2 dx dt � C

∫∫
B0×(0,T )

|∇ × �ψ |2 dx dt),

with B0 ⊂ ω ∩O. More comments about the obtention of these inequalities will be given in Section 3.
Once these estimates have been obtained, one can use the equations satisfied by ∇×ϕ (resp. ∇×�ϕ) in B0 ×(0, T )

(which do not contain any pressure term!) and so expect that the previous integrals are bounded just in terms of the
local L2 norm of ϕ.

Remark 2. Is this result true when the coefficients a and B depend on the space variable? We observe here that, in
this situation, not even the following unique continuation property is known:

ϕ = 0 in ω × (0, T ) ⇒ ψ,ϕ ≡ 0 in Ω × (0, T ).
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• The second objective of this paper concerns the coupling of two Stokes systems. We will prove that we can drive
both velocity vector fields to zero at any time T > 0 when controlling just one of the two solutions. We will distinguish
two situations, according to the coupling terms.

On the one hand, we consider the following controllability system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt − �y + P1(x, t;D)y + ∇p = v1ω + P2(x, t;D)z in Q,

zt − �z + e0z − (E0 · ∇)z + ∇q = m0∇ × y in Q,

∇ · y = 0, ∇ · z = 0 in Q,

y = 0, z = 0 on Σ,

y|t=0 = y0, z|t=0 = z0 in Ω,

(10)

where y0, z0 ∈ H , e0,m0 ∈ R, E0 ∈ RN and Pj (x, t;D) are general partial differential operators of order j = 1,2
with Lipschitz coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
Pj (x, t;D)w

)
i
=

N∑
k=1

(
A

j
ik(x, t)wk − ∂k

(
B

j
k (x, t)wi

) − ∂i

(
B

j
k (x, t)wk

))

+ (j − 1)

N∑
k,l=1

(
∂kl

(
Mkl(x, t)wi

) + ∂ki

(
Mkl(x, t)wl

))
i = 1, . . . ,N, Aj ,M ∈ L∞(

0, T ;W 2,∞(Ω)N×N
)
, Bj ∈ L∞(

0, T ;W 2,∞(Ω)N
)
.

(11)

Observe that the last term (differential operator of order 2) just concerns the definition of P2(x, t;D).
On the other hand, we design by Q1(t, x;D) again a general partial differential operator of first order with coeffi-

cients in L∞(0, T ;W 3,∞(Ω)N) and we consider this other system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt − �y + P1(t, x;D)y + ∇p = v1ω + Q1(t, x;D)z in Q,

zt − �z + e1z − (E1 · ∇)z + ∇q = m1�y in Q,

∇ · y = 0, ∇ · z = 0 in Q,

y = 0, z = 0 on Σ,

y|t=0 = y0, z|t=0 = z0 in Ω,

(12)

where y0, z0 ∈ H and e1,m1 ∈ R and E1 ∈ RN .
As explained above, in both situations our objective is to find a control v such that

y|t=T = 0, z|t=T = 0 in Ω. (13)

As long as Stokes systems are concerned, the exact null controllability was established in [11] as a previous result
for proving the local exact controllability of the Navier–Stokes system. An improvement of this result was later
presented in [6]. On the other hand, we do not know any result concerning coupled Stokes systems.

The reason why we consider a coupling with first and second order derivative terms is explained with detail in
[10] in the context of the null controllability of systems of two heat equations. In fact, these are the greatest orders of
derivatives one can set in the coupling terms in order to control both variables with just one (N scalar) control force.
This fact was checked for the case of heat equations and so we will prove here that the same occurs for the Stokes
system.

Our precise results are the following:

Theorem 5. Let y0, z0 ∈ H and assume that the coefficients of the differential operators P1 and P2 satisfy

Aj ,M ∈ L∞(
0, T ;W 2,∞(Ω)N×N

)
, Bj ∈ L∞(

0, T ;W 2,∞(Ω)N
)
.

Then, there exists a control v ∈ L2(Q)N such that the solution (y,p, z, q) of system (10) satisfies (13).

Theorem 6. Let y0, z0 ∈ H and assume that the coefficients of P1 and P2 satisfy the hypotheses in Theorem 5 and the
coefficients of Q1 belong to L∞(0, T ;W 3,∞(Ω)N). Then, there exists a control v ∈ L2(Q)N such that the solution
(y,p, z, q) of system (12) satisfies (13).

Remark 3. The same results stated in Theorems 5 and 6 hold when ei,Ei and mi (i = 1,2) are functions of the time
variable belonging to the space L∞(0, T ).
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Remark 4. The same results stated in Theorems 5 and 6 hold when the coupling term ∇ × y is substituted by any first
order operator whose L2 norm constitutes a norm in H 1(Ω)N for the functions y ∈ V (case of Theorem 5) and when
�y is substituted by any second order operator whose L2 norm constitutes a norm of y in H 2(Ω)N for the functions
y ∈ H 2(Ω)N ∩ V (case of Theorem 6).

The proofs of Theorems 5 and 6 will again rely on suitable observability estimates for the adjoint systems associated
to (10) and (12). All the details of the proofs will be provided in Section 4.

This paper is organized as follows. In Section 2, we present some technical results, most of them known, which will
be constantly used in the proofs of Theorems 1, 3, 5 and 6. In Section 3, we provide the proof of Theorems 1 and 3.
Next, in Section 4, we prove Theorems 5 and 6 and we end with the proof of a technical result (stated in Section 2) in
Appendix A.

2. Some previous results

For the proof of the observability inequalities needed to establish the controllability results stated in the previous
Theorems, we will follow a classical approach, consisting of obtaining a suitable weighted-like estimate (so-called
Carleman estimate) for the associated adjoint systems. For a systematic use of this kind of estimates see, for instance,
[11] or [9].

In order to establish these Carleman inequalities, we need to define some weight functions:

α(x, t) = exp{ k(m+1)
m

λ‖η0‖∞} − exp{λ(k‖η0‖∞ + η0(x))}
tm(T − t)m

,

α∗(t) = max
x∈Ω

α(x, t) = α|∂Ω(x, t), ξ(x, t) = eλ(k‖η0‖∞+η0(x))

tm(T − t)m
,

ξ∗(t) = min
x∈Ω

ξ(x, t), α̂(t) = min
x∈Ω

α(x, t), ξ̂ (t) = max
x∈Ω

ξ(x, t),

(14)

where m > 3 and k > m are fixed. Here, η0 ∈ C2(Ω) satisfies∣∣∇η0
∣∣ � K > 0 in Ω \ ω0, η0 > 0 in Ω and η0 ≡ 0 on ∂Ω, (15)

with ∅ �= ω0 ⊂ ω ∩ O an open set. The proof of the existence of such a function η0 is given in [9]. Weights of the
kind (14) were first considered in [9]. In its present form, these weights have already been used in [7] in order to
obtain Carleman estimates for the three-dimensional micropolar fluid model and later in [10] for the controllability of
strongly coupled parabolic equations.

Accordingly, we define I0(s, λ; ·) as follows:

I0(s, λ, g) := sλ2
∫ ∫

Q

e−2sαξ |∇g|2 dx dt + s3λ4
∫ ∫

Q

e−2sαξ3|g|2 dx dt.

From this expression, we also introduce

I (s, λ;g) := s−1
∫ ∫

Q

e−2sαξ−1(|gt |2 + |�g|2)dx dt + I0(s, λ, g). (16)

Now, we state all technical results. The first one concerns the Laplace operator:

Lemma 1. Let γ (x) = exp{λη0(x)} for x ∈ Ω and let u ∈ H 1
0 (Ω). Then, there exists a positive constant K(Ω,ω0)

such that

τ 3λ4
∫
Ω

e2τγ γ 3|u|2 dx + τλ2
∫
Ω

e2τγ γ |∇u|2 dx � K

∫
ω0

e2τγ |�u|2 dx, (17)

for any λ, τ � K .
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The proof of this lemma can be readily deduced from the corresponding result for parabolic equations included
in [9].

The second estimate holds for energy solutions of heat equations with nonhomogeneous Neumann boundary con-
ditions:

Lemma 2. Let u0 ∈ L2(Ω), f1 ∈ L2(Q), f2 ∈ L2(Q)N and f3 ∈ L2(Σ). Then, there exists a constant K(Ω,ω0) > 0
such that the weak solution u of⎧⎪⎨

⎪⎩
ut − �u = f1 + ∇ · f2 in Q,
∂u

∂n
+ f2 · n = f3 on Σ,

u|t=0 = u0 in Ω

(18)

satisfies

I0(s, λ;u) � K

(
s3λ4

∫∫
ω0×(0,T )

e−2sαξ3|u|2 dx dt +
∫ ∫

Q

e−2sα|f1|2 dx dt

+ s2λ2
∫ ∫

Q

e−2sαξ2|f2|2 dx dt + sλ

∫ ∫
Σ

e−2sα∗
ξ∗|f3|2 dσ dt

)
(19)

for any λ � K and s � K(T 2m + T 2m−1).

Let us recall the definition of a weak solution: we say that u is a weak solution to (18) if it satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ L2
(
0, T ;H 1(Ω)

) ∩ C0
([0, T ];L2(Ω)

)
,

〈ut , v〉(H 1(Ω))′,H 1(Ω) +
∫
Ω

∇u · ∇v dx =
∫
Ω

f1(x, t)v dx

−
∫
Ω

f2(x, t) · ∇v dx +
∫

∂Ω

f3(x, t)v dσ a.e. in (0, T ),∀v ∈ H 1(Ω),

u(x,0) = u0(x) in Ω.

(20)

It is well known that, for f1 ∈ L2(Q),f2 ∈ L2(Q)N , f3 ∈ L2(Σ) and u0 ∈ L2(Ω), (18) possesses exactly one weak
solution u.

Lemma 2 was essentially proved in [5]. In fact, the inequality proved there concerns the same weight functions as
in (19) but with m = 1. Then, one can follow the steps of the proof in [5] (see Theorem 1 in that reference) and adapt
the arguments just taking into account that

∂tα := αt � KT ξ(m+1)/m and ∂ttα := αtt � CT 2ξ (m+2)/m, (21)

with K > 0 independent of s, λ and T .
The third estimate that we recall here concerns the solutions of Stokes systems.

Lemma 3. Let u0 ∈ V and f4 ∈ L2(Q)N . Then, there exists a constant C(Ω,ω0, T ) > 0 such that the solution
u ∈ L2(0, T ;H 2(Ω)N ∩ V ) ∩ L∞(0, T ;V ) of{

ut − �u + ∇p = f4, ∇ · u = 0 in Q,

u = 0 on Σ,

u|t=0 = u0 in Ω

satisfies

I (s, λ;u) � C

(
s16λ40

∫∫
ω0×(0,T )

e−8sα̂+6sα∗
(ξ̂ )16|u|2 dx dt + s15/2λ20

∫ ∫
Q

e−4sα̂+2sα∗
(ξ̂ )15/2|f4|2 dx dt

)
(22)

for any s, λ � C.
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In a similar form, this lemma was proved in [6]. In fact, the weight functions considered in [6] were the ones in
(14) but with m = 4. Again, one can follow the steps of the proof in [6] (Theorem 1) and, taking into account (21),
(22) is readily deduced.

The fourth and last estimate we will need is a new Carleman inequality for the Stokes system which concerns the
energy solutions of Stokes systems:

Lemma 4. Let u0 ∈ H , f5 ∈ L2(Q)N and f6 ∈ L2(Q)N×N . Then, there exists a constant C(Ω,ω0, T ) > 0 such that
the weak solution u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)N) of{

ut − �u + ∇h = f5 + ∇ · f6, ∇ · u = 0 in Q,

u = 0 on Σ,

u|t=0 = u0 in Ω

(23)

satisfies

s3λ4
∫ ∫

Q

e−2sαξ3|u|2 dx dt + s2λ4
∫ ∫

Q

e−2sα∗
(ξ∗)2−1/m|∇u|2 dx dt

� C

(
s16λ40

∫∫
ω0×(0,T )

e−8sα̂+6sα∗
(ξ̂ )16|u|2 dx dt + s15/2λ20

∫ ∫
Q

e−4sα̂+2sα∗
(ξ̂ )15/2|f5|2 dx dt

+ s47/4λ30
∫ ∫

Q

e−6sα̂+4sα∗
(ξ̂ )47/4|f6|2 dx dt

)
(24)

for any s, λ � C.

We will prove this lemma in Appendix A, at the end of this paper.

3. Insensitizing controls for the Stokes system

In this section, we will prove the existence of insensitizing controls for the functionals J1,τ and J2,τ (given by (2)
and (3), respectively) associated to the Stokes system (1). As we saw in the introduction, we can restrict ourselves to
prove Theorems 1 and 3 respectively.

Accordingly, we concentrate in the corresponding adjoint systems⎧⎪⎨
⎪⎩

−ϕt − �ϕ + aϕ − B · ∇ϕ + ∇π = ψ1O, ∇ · ϕ = 0 in Q,

ψt − �ψ + aψ + B · ∇ψ + ∇h = 0, ∇ · ψ = 0 in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ|t=T = 0, ψ |t=0 = ψ0 in Ω

(25)

and ⎧⎪⎨
⎪⎩

−ϕt − �ϕ + aϕ − B · ∇ϕ + ∇π = ∇ × (
(∇ × ψ)1O

)
, ∇ · ϕ = 0 in Q,

ψt − �ψ + aψ + B · ∇ψ + ∇h = 0, ∇ · ψ = 0 in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ|t=T = 0, ψ |t=0 = ψ0 in Ω,

(26)

where ψ0 ∈ L2(Ω)N . As explained in the introduction, in the framework of controllability it is classical to see that
the null controllability property for system (5) (resp. (6)) is equivalent to the following observability inequality for the
solutions of (25) (resp. (26)):∫ ∫

Q

e−C2/tm |ϕ|2 dx dt � C

∫∫
ω×(0,T )

|ϕ|2 dx dt, (27)

for certain positive constants C2, C and some positive m independent of ψ0.
With this notation, we can prove the following result:
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Proposition 1. There exists a positive constant C which depends on Ω , ω and T such that

Ĩ (s, λ;ψ) + s2λ4
∫ ∫

Q

(
se−3sαξ3|ϕ|2 + e−3sα∗

(ξ∗)2−1/m|∇ϕ|2)dx dt � CE(s,λ;ϕ) (28)

for any s, λ � C, where Ĩ (s, λ;ψ) = I0(s, λ;∇ × ψ) and

E(s,λ;ϕ) = s15λ16
∫∫

ω×(0,T )

e−sαξ15|ϕ|2 dx dt

for the solutions of system (25) and Ĩ (s, λ;ψ) = I0(s, λ;∇ × �ψ) and

E(s,λ;ϕ) = s6+1/mλ4
∫∫

ω×(0,T )

e−4sα̂+2sα∗
(ξ̂ )6+1/m|ϕ|2 dx dt

for the solutions of (26).

Remark 5. From the Carleman inequality (28), one can readily deduce the observability inequality (27). Indeed, it suf-
fices to combine an energy type estimate for both e−1/tmϕ and e−1/tmψ . As a consequence, the proofs of Theorems 1
and 3 are achieved.

In the next two paragraphs, we will prove Proposition 1, distinguishing if we deal with system (25) or (26). In both
situations, the proof of (28) is divided in two steps. The first and more important one deal with the equation satisfied
by ψ (which is independent of ϕ). In the second one, we combine estimates for both equations.

3.1. Case of system (25)

3.1.1. New Carleman Estimate for ψ

In this paragraph, we deal with the problem{
ψt − �ψ + aψ + B · ∇ψ + ∇h = 0, ∇ · ψ = 0 in Q,

ψ = 0 on Σ,

ψ |t=0 = ψ0 in Ω.

(29)

Recall that a ∈ R and B ∈ RN are constants. One may also suppose that a,B depend on the time variable (see
Remark 1 for more details).

For this system, we prove the following estimate:

Lemma 5. There exists a positive constant K depending on Ω and ω0 such that

I0(s, λ;∇ × ψ) � Ks3λ4
∫∫

ω0×(0,T )

e−2sαξ3|∇ × ψ |2 dx dt, (30)

for any λ � K and s � K(T 2m + T m).

Remark 6. Observe that, in particular, we deduce from this inequality the following well-known unique continuation
property:

∇ × ψ = 0 in ω0 × (0, T ) ⇒ ψ ≡ 0 in Ω × (0, T ). (31)

As far as we know, it is new the fact that (31) can be quantified in terms of an inequality like (30) for the solutions
of (29). On the other hand, we do not know if (31) holds when a and B are not constant with respect to the space
variable.
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Proof of Lemma 5. We first look at the equation satisfied by ∇ × ψ :

(∇ × ψ)t − �(∇ × ψ) + a(∇ × ψ) + B · ∇(∇ × ψ) = 0 in Q.

Observe that no boundary conditions are prescribed for ∇ × ψ . At this point, we can apply Lemma 2 and deduce the
existence of a constant K = K(Ω,ω0) > 0 such that

I0(s, λ;∇ × ψ) � K

(
s3λ4

∫∫
ω0×(0,T )

e−2sαξ3|∇ × ψ |2 dx dt + sλ

∫ ∫
Σ

e−2sα∗
ξ∗

∣∣∣∣∂(∇ × ψ)

∂n

∣∣∣∣
2)

dx dt, (32)

for any λ � K and s � K(T 2m + T 2m−1). Recall that e−2sα∗ = minx∈Ω e−2sα (see (14)).
The next step will be to eliminate the last term in the right-hand side of (32). In order to do this, we introduce the

function (ψ∗, h∗) := (η(t)ψ,η(t)h), where

η(t) = s(1/2)−(1/m)λ2e−sα∗(t)(ξ∗)(1/2)−(1/m)(t) (33)

is a function of t ∈ (0, T ). In view of (29), (ψ∗, h∗) fulfills the following Stokes system:{
ψ∗

t − �ψ∗ + aψ∗ + B · ∇ψ∗ + ∇h∗ = ηtψ, ∇ · ψ∗ = 0 in Q,

ψ∗ = 0 on Σ,

ψ∗|t=0 = 0 in Ω.

(34)

Thanks to the terms appearing in the left-hand side of (32), we are going to deduce that ψ∗ is a very regular function.
In fact, we have that ηtψ ∈ L2(0, T ;H 1

0 (Ω)), since ηt∇ × ψ ∈ L2(Ω) (recall that ψ is a divergence-free function)
and

‖ηt∇ × ψ‖L2(Q)N � KT s(3/2)−(1/m)λ2
∥∥e−sα∗

(ξ∗)3/2∇ × ψ
∥∥

L2(Q)N

� Ks3/2λ2
∥∥e−sα∗

(ξ∗)3/2∇ × ψ
∥∥

L2(Q)N
,

for s � C(T m + T 2m). The square of this last quantity is bounded by the left-hand side of (32), by definition of
I0(s, λ; ·) (see (16)).

Using Lemma 6 below, we deduce that the solution of (34) satisfies ψ∗ ∈ L2(0, T ; (H 3 ∩ H 1
0 )(Ω)) and

‖ψ∗‖2
L2(0,T ;H 3(Ω))

= s1−2/mλ4

T∫
0

e−2sα∗
(ξ∗)1−2/m‖ψ‖2

H 3(Ω)
dt � KI0(s, λ;∇ × ψ). (35)

Taking this into account, by a simple integration by parts we deduce that

s2−1/mλ4

T∫
0

e−2sα∗
(ξ∗)2−1/m‖ψ‖2

H 2(Ω)N
dt � KI0(s, λ;∇ × ψ). (36)

From (35) and (36), we obtain in particular that

s(3/2)−3/(2m)λ4

T∫
0

e−2sα∗
(ξ∗)(3/2)−3/(2m)

∥∥∥∥∂(∇ × ψ)

∂n

∥∥∥∥
2

L2(∂Ω)N
dt � KI0(s, λ;∇ × ψ).

Since m > 3, this justifies that the last term in the right-hand side of (32) is absorbed by the left-hand side. As a
conclusion, we obtain the desired inequality (30). �
Lemma 6. Let a ∈ R and B ∈ RN be constant and let f ∈ L2(0, T ;V ). Then, the unique solution (u,p) of the Stokes
system⎧⎪⎨

⎪⎩
ut − �u + au + B · ∇u + ∇p = f in Q,

∇ · u = 0 in Q,

u = 0 on Σ,
(37)
u|t=0 = 0 in Ω
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satisfies u ∈ L2(0, T ;H 3(Ω)N ∩ V ) ∩ H 1(0, T ;V ) and there exists a constant C > 0 such that

‖u‖L2(0,T ;H 3(Ω)N ) + ‖u‖H 1(0,T ;H 1(Ω)N ) � C‖f ‖L2(0,T ;H 1(Ω)N ). (38)

Let us give a sketch of the proof of this lemma. First, we recall that we already have (u,p) ∈ L2(0, T ;H 2(Ω)N)×
L2(0, T ;H 1(Ω)) and the estimate

‖u‖L2(0,T ;H 2(Ω)N ) + ‖u‖H 1(0,T ;L2(Ω)N ) + ‖p‖L2(0,T ;H 1(Ω)) � C‖f ‖L2(0,T ;L2(Ω)N ). (39)

Let us first suppose that f ∈ C∞([0, T ];V ). Then, if we prove the estimate (38) in this situation, the general case
follows from a density argument. In order to simplify the notations, let us denote

A(u,p) = −�u + au + B · ∇u + ∇p.

Let us multiply the equation in (37) by A(ut ,pt ) ∈ L2(Q), integrate in Ω and integrate by parts. This yields∫
Ω

|∇ut |2 dx + 1

2

d

dt

∫
Ω

|Au|2 dx = −
∫
Ω

(aut + B · ∇ut ) · ut dx +
∫
Ω

∇ut · ∇f dx +
∫
Ω

(aut + B · ∇ut ) · f dx.

Here, we have used that f and ut are elements of H . From this identity, using Young’s inequality and thanks to (39),
we have that u ∈ H 1(0, T ;V ) and

‖u‖H 1(0,T ;H 1(Ω)N ) � C‖f ‖L2(0,T ;H 1(Ω)N ). (40)

Now, regarding system (37) as a stationary Stokes system with right-hand side in V (see, for instance, [17]), one
deduces u ∈ L2(0, T ;H 3(Ω)N) and (38).

3.1.2. Carleman estimate for ϕ and conclusion
First, assuming ψ is given, we look at ϕ as the solution of{−ϕt − �ϕ + aϕ − B · ∇ϕ + ∇π = ψ1O, ∇ · ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ|t=T = 0 in Ω.

Here, we apply the Carleman estimate for the Stokes system proved in [6], which was presented in Lemma 3 above:

L(s,λ;ϕ) � C

(
s16λ40

∫∫
ω0×(0,T )

e−12sα̂+9sα∗
(ξ̂ )16|ϕ|2 dx dt

+ s15/2λ20
∫∫

O×(0,T )

e−6sα̂+3sα∗
(ξ̂ )15/2|ψ |2 dx dt

)
(41)

for s, λ � C, where L(s,λ; ·) is given by

L(s,λ;g) := s−1
∫ ∫

Q

e−3sαξ−1(|gt |2 + |�g|2)dx dt + sλ2
∫ ∫

Q

e−3sαξ |∇g|2 dx dt

+ s3λ4
∫ ∫

Q

e−3sαξ3|g|2 dx dt.

Observe that we have applied this result for smaller exponentials, that is to say, for e−3sα instead of e−2sα .
Then, we easily see that the last integral in the right-hand side of (41) is bounded by I0(s, λ;∇ × ψ), as long as λ

is large enough. In fact, if we denote α̂(t) = minx∈Ω α(x, t) and ξ̂ (t) = maxx∈Ω ξ(x, t) (see (14)), we have

s15/2λ20
∫∫

O×(0,T )

e−6sα̂+3sα∗
(ξ̂ )20|ψ |2 dx dt � s15/2λ20

∫ ∫
Q

e−6sα̂+3sα∗
(ξ̂ )20|∇ × ψ |2 dx dt

� Cs3λ4
∫ ∫

e−2sαξ3|∇ × ψ |2 dx dt,
Q
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for a suitable choice of λ � C.
Combining this with (30) and (41), we obtain

L(s,λ;ϕ) + I0(s, λ;∇ × ψ)

� C

(
s16λ40

∫∫
ω0×(0,T )

e−12sα̂+9sα∗
(ξ̂ )16|ϕ|2 dx dt + s3λ4

∫∫
ω0×(0,T )

ξ3e−2sα|∇ × ψ |2 dx dt

)
, (42)

for any s, λ � C. Now, since ω0 ⊂ O, from the equation satisfied by ϕ, we find

∇ × ψ = −(∇ × ϕ)t − �(∇ × ϕ) + a∇ × ϕ − B · ∇(∇ × ϕ) in ω0 × (0, T ).

Then, we plug this into the last integral in (42) and we obtain:

s3λ4
∫∫

ω0×(0,T )

e−2sαξ3|∇ × ψ |2 dx dt

= s3λ4
∫∫

ω0×(0,T )

e−2sαξ3(∇ × ψ)
(−(∇ × ϕ)t − �(∇ × ϕ)

)
dx dt

+ s3λ4
∫∫

ω0×(0,T )

e−2sαξ3(∇ × ψ)
(
a∇ × ϕ − B · ∇(∇ × ϕ)

)
dx dt.

We define a positive function θ ∈ C2
c (ω) such that θ ≡ 1 in ω0. Then, the task turns to estimate

s3λ4
∫∫

ω×(0,T )

θe−2sαξ3(∇ × ψ)
(−(∇ × ϕ)t − �(∇ × ϕ)

)
dx dt

+ s3λ4
∫∫

ω×(0,T )

θe−2sαξ3(∇ × ψ)
(
a∇ × ϕ − B · ∇(∇ × ϕ)

)
dx dt.

After several integration by parts (getting all derivatives out of ϕ) with respect to both space and time, we get:

s3λ4
∫∫

ω×(0,T )

θe−2sαξ3|∇ × ψ |2 dx dt = s3λ4
∫∫

ω×(0,T )

θ
(
e−2sαξ3)

t
(∇ × ψ)(∇ × ϕ)dx dt

− s3λ4
∫∫

ω×(0,T )

�
(
θe−2sαξ3)(∇ × ψ)(∇ × ϕ)dx dt

− 2s3λ4
∫∫

ω×(0,T )

∇(
θe−2sαξ3) · ∇(∇ × ψ)(∇ × ϕ)dx dt

+ s3λ4
∫∫

ω×(0,T )

B · ∇(
θe−2sαξ3)(∇ × ψ)(∇ × ϕ)dx dt.

Here, we have used the equation satisfied by ψ (see (29)) and the fact that θ has compact support in ω. As we have
already pointed out, we have the following estimates for the weight functions:(

e−2sαξ3)
t
� KT se−2sα(ξ)4+1/m, and �

(
e−2sαξ3) � Ks2λ2 e−2sαξ5,

for s � KT 2m. With this, we obtain

s3λ4
∫∫

e−2sαξ3|∇ × ψ |2 dx dt � εI0(s, λ;∇ × ψ) + Cs7λ8
∫∫

e−2sαξ7|∇ × ϕ|2 dx dt. (43)
ω0×(0,T ) ω×(0,T )
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Similar computations lead to

s7λ8
∫∫

ω×(0,T )

e−2sαξ7|∇ × ϕ|2 dx dt � εs−1
∫ ∫

Q

e−3sαξ−1|�ϕ|2 dx dt + s15λ16
∫∫

ω×(0,T )

e−sαξ15|ϕ|2 dx dt

which, combined with (42) and (43), gives the desired inequality (28).

3.2. Case of system (26)

As we have already mentioned at the beginning of this section, the strategy we follow in order to prove estimate
(28) in this situation is similar to the previous one, so we will skip repeated arguments.

Precisely, the most important part of the proof concerns a new Carleman inequality for ψ , solution of the Stokes
system (29). The inequality we have to prove for this system is much more intrinsic that the one stated in Lemma 5
(see (30)). We present it in the following lemma:

Lemma 7. There exists a positive constant K depending on Ω and ω0 such that

Ĩj (s, λ;ψ) + I0(s, λ;∇ × �ψ) � Ks3λ4
∫∫

ω0×(0,T )

e−2sαξ3|∇ × �ψ |2 dx dt, (44)

for any λ � K and s � K(T 2m + T m), where

Ĩj (s, λ;ψ) = s(6−j)+(3−j)/mλ4

T∫
0

e−2sα∗
(ξ∗)(6−j)+(3−j)/m‖ψ‖2

Hj (Ω)N
, j � 3.

Analogously to the previous paragraph, the same comment corresponding to Remark 6 holds here.

Proof of Lemma 7. Again, we can find a complete heat equation satisfied by ∇ × �ψ :

(∇ × �ψ)t − �(∇ × �ψ) + a(∇ × �ψ) + B · ∇(∇ × �ψ) = 0 in Q.

Then, we apply Lemma 2 to ∇ ×�ψ as solution of the previous heat equation and so there exists K = K(Ω,ω0) > 0
such that

I0(s, λ;∇ × �ψ) � K

(
s3λ4

∫∫
ω0×(0,T )

e−2sαξ3|∇ × �ψ |2 dx dt + sλ

∫ ∫
Σ

e−2sα∗
ξ∗

∣∣∣∣∂(∇ × �ψ)

∂n

∣∣∣∣
2)

dx dt, (45)

for any λ � K and s � K(T 2m + T 2m−1).
We observe that the lower order term appearing in I0(s, λ;∇ × �ψ) and so in the left-hand side of (45) is

s3λ4
∫ ∫

Q

e−2sαξ3|∇ × �ψ |2 dx dt � s3λ4
∫ ∫

Q

e−2sα∗
(ξ∗)3|∇ × �ψ |2 dx dt.

Regularity Result: The norm ‖∇ × �ψ‖L2(Q)N constitutes a norm of ψ in L2(0, T ;H 3(Ω)N) and there exists a
positive constant K = K(Ω) such that

‖ψ‖L2(0,T ;H 3(Ω)N ) � K‖∇ × �ψ‖L2(Q)N . (46)

This is a fact that, in general, is not true for the set of functions ψ having null trace, but the fact that ψ solves a Stokes
problem will help us to establish this property.

First, introducing the stream function ζ associated to the velocity vector field ψ (∇ × ζ = ψ and ζ ×n = 0 on ∂Ω ,
since Ω is a simply-connected set), we realize that on the one hand

−
∫ ∫

ζ · (∇ × �ψ)dx dt = −
∫ ∫

(∇ × ζ ) · �ψ dx dt =
∫ ∫

|∇ψ |2 dx dt (47)
Q Q Q
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and, on the other hand

−
∫ ∫

Q

ζ · (∇ × �ψ)dx dt � ε

∫ ∫
Q

|ζ |2 dx dt + K(ε)

∫ ∫
Q

|∇ × �ψ |2 dx dt. (48)

Using the continuous dependence of ζ with respect to ψ , we deduce from a combination of (47) and (48) that∫ ∫
Q

|∇ψ |2 dx dt � K

∫ ∫
Q

|∇ × �ψ |2 dx dt. (49)

Since �ψ = −∇ × (∇ × ψ) (recall that ∇ · ψ = 0), using this last inequality, we also have∫ ∫
Q

|�ψ |2 dx dt � K

∫ ∫
Q

|∇ × �ψ |2 dx dt. (50)

Taking into account (49) and (50), we realize that, since

∇ × ψt = ∇ × �ψ − a∇ × ψ − B · ∇ × ∇ψ,

∇ · ψt = 0 and ψt |∂Ω = 0, we have ψt ∈ L2(0, T ;H 1(Ω)N) and

‖ψt‖2
L2(0,T ;H 1(Ω)N )

� K

∫ ∫
Q

|∇ × �ψ |2 dx dt. (51)

Finally, we see ψ(t) as a solution of the following stationary Stokes problem:{−�ψ + aψ + B · ∇ψ + ∇h = −ψt, ∇ · ψ = 0 in Ω,

ψ = 0 on ∂Ω.
(52)

Since ψt(t) ∈ H 1(Ω)N (almost everywhere t ∈ (0, T )), the solution of (52) verifies ψ(t) ∈ H 3(Ω)N ∩ H 1
0 (Ω)N and

‖ψ(t)‖H 3(Ω)N � K‖ψt(t)‖H 1(Ω)N a.e. t ∈ (0, T ).

For the proof of this, see for instance, [13] or [17]. Now, from the fact that we actually have ψt ∈ L2(0, T ;H 1(Ω)N)

and estimate (51) holds, we deduce that ψ ∈ L2(0, T ;H 3(Ω)N ∩ H 1
0 (Ω)N) and that (46) holds. The proof of the

technical result is achieved.
Of course, if we consider the function η0(t) = s3/2λ2e−sα∗(t)(ξ∗)3/2(t) (which only depends on the time variable),

the same analysis made above yields

‖η0ψ‖2
L2(0,T ;H 3(Ω)N )

� K‖η0∇ × �ψ‖2
L2(Q)N

� KI0(s, λ;∇ × �ψ) (53)

and so we can add the term ‖η0ψ‖2
L2(0,T ;H 3(Ω)N )

to the left-hand side of (45).

Next, we consider the couple (ψ∗, h∗) = (η(t)ψ,η(t)h) where η was defined in (33). Consequently, (ψ∗, h∗) fulfill
system (34). Observe that the weight function appearing in the right-hand side in the equation of (34) satisfies

|ηt | � Kη0 in (0, T ),

for s � K(T m + T 2m), with K = K(Ω) > 0 independent of T , s and λ. Then, (53) yields ηtψ ∈ L2(0, T ;H 3(Ω)N ∩
H 1

0 (Ω)N) with the same estimate as in (53) and so ψ∗ ∈ L2(0, T ;H 5(Ω)N ∩ H 1
0 (Ω)N) (one can follows the lines of

the proof of Lemma 6 below) and

‖ψ∗‖2
L2(0,T ;H 5(Ω)N )

= λ4

T∫
0

e−2sα∗
(sξ∗)1−2/m

∥∥ψ(t)
∥∥2

H 5(Ω)N
dt � KI0(s, λ;∇ × �ψ). (54)

A simple interpolation argument, yields

s2−1/mλ4

T∫
e−2sα∗

(ξ∗)2−1/m
∥∥ψ(t)

∥∥2
H 4(Ω)N

dt � KI0(s, λ;∇ × �ψ). (55)
0
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From these two last inequalities, we get

s(3/2)−3/(2m)λ4

T∫
0

e−2sα∗
(ξ∗)(3/2)−3/(2m)

∥∥∥∥∂(∇ × �ψ)(t)

∂n

∥∥∥∥
2

L2(∂Ω)N
dt � KI0(s, λ;∇ × �ψ).

Again, since m > 3, we can absorb the second term in the right-hand side of (45) and so we deduce (44).
The extra terms appearing in the left-hand side of (44) can be obtained successively applying classical regularity

results for the Stokes system. Precisely, if

s(3−j/2)+(3−j)/(2m)λ2e−sα∗
(ξ∗)(3−j/2)+(3−j)/(2m)ψ := ψj ∈ L2(0, T ;Hj(Ω)N

)
,

then

s(2−j/2)+(2−j)/(2m)λ2e−sα∗
(ξ∗)(2−j/2)+(2−j)/(2m)ψ := ψj+2 ∈ L2(0, T ;Hj+2(Ω)N

)
and there exists a constant K = K(Ω) > 0 such that

‖ψj+2‖L2(0,T ;Hj+2(Ω)N ) � K‖ψj‖L2(0,T ;Hj (Ω)N ),

for s � K(T 2m + T m).
In order to conclude inequality (28) in this situation, we deal with the system fulfilled by ϕ:⎧⎨

⎩
−ϕt − �ϕ + aϕ − B · ∇ϕ + ∇π = ∇ × (

(∇ × ψ)1O
)
, ∇ · ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ|t=T = 0 in Ω.

Here, we apply the Carleman estimate presented in Lemma 4 (and proved in the appendix):

s3λ4
∫ ∫

Q

e−3sαξ3|ϕ|2 dx dt + s2λ4
∫ ∫

Q

e−3sα∗
(ξ∗)2−1/m|∇ϕ|2 dx dt

� C

(
s16λ40

∫∫
ω0×(0,T )

e−12sα̂+9sα∗
(ξ̂ )16|ϕ|2 dx dt + s47/4λ30

∫∫
O×(0,T )

e−9sα̂+6sα∗
(ξ̂ )47/4|∇ × ψ |2 dx dt

)
, (56)

for s, λ � C. We have to mention the fact that in Lemma 4 we did not consider terms of order 0 and 1 in the Stokes
operator, but obviously, the same result holds when lower order terms appear. Again, we remark here that we have
applied the result in Lemma 4 for smaller exponentials e−3sα instead of e−2sα .

Analogously as we proved in the previous paragraph, one can see that the last term in the right-hand side of (56) is
bounded by I0(s, λ;∇ × �ψ), as long as λ is large enough. Combining this with (44) and (56), we obtain

s2λ4
∫ ∫

Q

(
se−3sαξ3|ϕ|2 + e−3sα∗

(ξ∗)2−1/m|∇ϕ|2)dx dt + I0(s, λ;∇ × �ψ)

� C

(
s16λ40

∫∫
ω0×(0,T )

e−12sα̂+9sα∗
(ξ̂ )16|ϕ|2 dx dt + s3λ4

∫∫
ω0×(0,T )

ξ3e−2sα|∇ × �ψ |2 dx dt

)
, (57)

for any s, λ � C.
The last step is to eliminate the last term in (57). For this, it suffices to estimate

s3λ4
∫∫

ω0×(0,T )

(ξ̂ )3e−2sα̂|∇ × �ψ |2 dx dt.

Using the fact that ω0 ⊂ O and the equation satisfied by ϕ, we find that

∇ × �ψ = −(∇ × ϕ)t − ∇ × �ϕ + a∇ × ϕ − B · ∇(∇ × ϕ) in ω0 × (0, T )

and so the integral term equals:∫∫
η1(t)(∇ × �ψ)

(−(∇ × ϕ)t − �(∇ × ϕ) + a∇ × ϕ − B · ∇(∇ × ϕ)
)

dx dt (58)
ω0×(0,T )
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with η1(t) = s3λ4e−2sα̂(t)(ξ̂ )3(t), t ∈ (0, T ).
We consider again the function θ ∈ C2

c (ω) such that θ ≡ 1 in ω0. We have∫∫
ω×(0,T )

θη1(t)(∇ × �ψ)
(−(∇ × ϕ)t − �(∇ × ϕ) + a∇ × ϕ − B · ∇(∇ × ϕ)

)
dx dt

= −
∫∫

ω×(0,T )

η1,t∇ × (θ∇ × �ψ) · ϕ dx dt −
∫∫

ω×(0,T )

η1∇ × (
�θ∇ × �ψ + 2∇θ · ∇(∇ × �ψ)

) · ϕ dx dt

+
∫∫

ω×(0,T )

η1∇ × (
(B · ∇θ)∇ × �ψ

) · ϕ dx dt.

Since |(e−2sα̂(ξ∗)3)t | � Kse−2sα̂ ξ̂4+1/m, thanks to (44), we deduce∫∫
ω0×(0,T )

η1|∇ × �ψ |2 dx dt � ε
(
Ĩ4(s, λ;ψ) + Ĩ5(s, λ;ψ)

) + s6+1/mλ4
∫∫

ω×(0,T )

e−4sα̂+2sα∗
(ξ̂ )6+1/m|ϕ|2 dx dt.

The proof of Proposition 1 is finished.

4. Null controllability of coupled Stokes systems

Analogously as we did in the previous section, in order to prove the controllability results stated in Theorems 5
and 6, we will state the associated adjoint problems and we will prove suitable observability estimates.

In fact, by a formal integration by parts, we obtain both adjoint systems associated to (10) and (12)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ϕt − �ϕ + P ∗
1 (x, t;D)ϕ + ∇π = m0∇ × ψ in Q,

−ψt − �ψ + e0ψ + (E0 · ∇)ψ + ∇h = P ∗
2 (x, t;D)ϕ in Q,

∇ · ϕ = 0, ∇ · ψ = 0 in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ|t=T = ϕ0, ψ |t=T = ψ0 in Ω

(59)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ϕt − �ϕ + P ∗
1 (t, x;D)ϕ + ∇π = m1�ψ in Q,

−ψt − �ψ + e1ψ + (E1 · ∇)ψ + ∇h = Q∗
1(t, x;D)ϕ in Q,

∇ · ϕ = 0, ∇ · ψ = 0 in Q,

ϕ = 0, ψ = 0 on Σ,

ϕ|t=T = ϕ0, ψ |t=T = ψ0 in Ω,

(60)

respectively, with ϕ0,ψ0 ∈ H . Here, P ∗
j (x, t;D) (resp. Q∗

1(t, x;D)) is the formal adjoint operator of Pj (x, t;D)

(j = 1,2) (resp. Q1(t, x;D)) defined in (11):

(
P ∗

j (x, t;D)w
)
i
=

N∑
k=1

(
A

j
ik(x, t)wk + B

j
k (x, t)(∂kwi + ∂iwk)

) + (j − 1)

N∑
k,l=1

Mkl(x, t)(∂klwi + ∂kiwl).

For these two systems, we shall prove the existence of a positive constant C = C(Ω,ω,T ) such that

‖ϕ|t=0‖2
L2(Ω)N

+ ‖ψ |t=0‖2
L2(Ω)N

� C

∫∫
ω×(0,T )

|ϕ|2 dx dt (61)

for all ϕ0,ψ0 ∈ H . Then, it is readily seen that if (61) is satisfied, both systems (10) and (12) are null controllable and
so Theorems 5 and 6 hold.

Remark 7. Let us observe that the same proofs of Theorems 1 and 3 cannot be developed here. In fact, in those
situations when no term concerning ϕ appeared in the equation satisfied by ψ , we deduced Carleman inequalities
for the Stokes equation of ϕ with right-hand sides having weight functions ‘smaller’ than the ones appearing in the
left-hand side of the inequality of ψ . Obviously, this would not drive to the desired result in the present situation.
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4.1. Carleman inequality for system (59)

Proposition 2. Let ϕ0ψ0 ∈ H . Then, there exists a positive constant K = K(Ω,ω) such that

Ī (s, λ;ϕ) +
∫∫
Q

e−2sα
(
s2λ3ξ2|�ψ |2 + λ|∇�ψ |2)dx dt

� Ks15+12/mλ16
∫∫

ω×(0,T )

e−10sα+8sα∗
ξ15+12/m|ϕ|2 dx dt, (62)

for any λ � K and any s � K(T m + T 2m), where Ī (s, λ;ϕ) is defined in (66).

From the fact that (59) is well posed in the space L2(0, T ;V ) ∩ L∞(0, T ;H), we deduce in a classical way that
the Carleman inequality (62) suffices to prove (61) and so also to prove Theorem 5.

Proof of Proposition 2. We start by considering the heat equation satisfied by �ϕ:

−(�ϕ)t − �(�ϕ) = ∇ × (∇ × (
P ∗

1 (x, t;D)ϕ
)) + m0∇ × �ψ, (t, x) ∈ (0, T ) × Ω.

For the solution of this equation we apply the Carleman inequality presented in Lemma 2 and we obtain the existence
of a constant K(Ω,ω) > 0 such that

I0(s, λ;�ϕ) � K

(
s2λ2

∫ ∫
Q

e−2sαξ2
∣∣∇ × (

P ∗
1 (x, t;D)ϕ

)∣∣2
dx dt + sλ

∫ ∫
Σ

e−2sα∗
ξ∗

∣∣∣∣∂�ϕ

∂n

∣∣∣∣
2

dσ dt

+ sλ

∫ ∫
Σ

e−2sα∗
ξ∗∣∣(n × ∇×)

(
P ∗

1 (x, t;D)ϕ
)∣∣2 dσ dt + s3λ4

∫∫
ω0×(0,T )

e−2sαξ3|�ϕ|2 dx dt

+
∫ ∫

Q

e−2sα|∇ × �ψ |2 dx dt

)
, (63)

for any λ � K and s � K(T 2m−1 + T 2m).
Next, since ϕ|∂Ω = 0, we can apply Lemma 1 to ϕ(t) and we deduce that there exists K(Ω,ω) > 0 such that

τ 6λ8
∫
Ω

e2τγ γ 6
∣∣ϕ(t)

∣∣2 dx + τ 4λ6
∫
Ω

e2τγ γ 4
∣∣∇ϕ(t)

∣∣2 dx

� K

(
τ 6λ8

∫
ω0

e2τγ γ 6
∣∣ϕ(t)

∣∣2 dx + τ 3λ4
∫
Ω

e2τγ γ 3
∣∣�ϕ(t)

∣∣2 dx

)

for any λ, τ � K . Then, if we multiply this inequality by

exp

{
−2s

exp{ k(m+1)
m

λ‖η0‖∞}
tm(T − t)m

}
,

we choose

τ = s
exp{λk‖η0‖∞}

tm(T − t)m

and we integrate in (0, T ), we obtain

s6λ8
∫ ∫

Q

e−2sαξ6|ϕ|2 dx dt + s4λ6
∫ ∫

Q

e−2sαξ4|∇ϕ|2 dx dt

� K

(
s6λ8

∫∫
e−2sαξ6|ϕ|2 dx dt + s3λ4

∫ ∫
e−2sαξ3|�ϕ|2 dx dt

)
(64)
ω0×(0,T ) Q
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for any λ � K and any s � KT 2m. Then, if we combine this with (63), we can absorb the first term in the right-hand
side of (63) (see (11)) and we obtain

Ī (s, λ;ϕ) � K

(
sλ

∫ ∫
Σ

e−2sα∗
ξ∗

(∣∣∣∣∂�ϕ

∂n

∣∣∣∣
2

+ ∣∣(n × ∇×)
(
P ∗

1 (x, t;D)ϕ
)∣∣2

)
dσ dt

+
∫ ∫

Q

e−2sα|∇ × �ψ |2 dx dt + s3λ4
∫∫

ω0×(0,T )

e−2sαξ3(s3λ4ξ3|ϕ|2 + |�ϕ|2)dx dt

)
(65)

for λ � K and s � C(T 2m−1 + T 2m), where

Ī (s, λ;ϕ) = s6λ8
∫ ∫

Q

e−2sαξ6|ϕ|2 dx dt + s4λ6
∫ ∫

Q

e−2sαξ4|∇ϕ|2 dx dt + I0(s, λ;�ϕ). (66)

We come back now to the equation of ψ . Applying again the operator −∇ × (∇ × ·), we have:

−(�ψ)t − �(�ψ) + e0�ψ + (E0 · ∇)�ψ = −∇ × (∇ × (
P ∗

2 (x, t;D)ϕ
))

in Ω × (0, T ).

Applying thus Lemma 2 to �ψ , we obtain

λ

∫ ∫
Q

e−2sα
(
s2λ2ξ2|�ψ |2 + |∇�ψ |2)dx dt

� K

(∫ ∫
Σ

e−2sα∗
∣∣∣∣∂�ψ

∂n

∣∣∣∣
2

dσ dt +
∫ ∫

Σ

e−2sα∗ ∣∣(n × ∇×)
(
P ∗

2 (x, t;D)ϕ
)∣∣2 dσ dt

+ sλ

∫ ∫
Q

e−2sαξ
∣∣∇ × (

P ∗
2 (x, t;D)ϕ

)∣∣2 dx dt + s2λ3
∫∫

ω0×(0,T )

e−2sαξ2|�ψ |2 dx dt

)
,

for any λ � K , s � K(T 2m−1 + T 2m). Taking into account (11) and combining this with (65), we get

Ī (s, λ;ϕ) +
∫ ∫

Q

e−2sα
(
s2λ3ξ2|�ψ |2 + λ|∇�ψ |2)dx dt

� K

(∫ ∫
Σ

e−2sα∗
∣∣∣∣∂�ψ

∂n

∣∣∣∣
2

dσ dt + sλ

∫ ∫
Σ

e−2sα∗
ξ∗∣∣(n × ∇×)

(
P ∗

1 (x, t;D)ϕ
)∣∣2 dσ dt

+ sλ

∫ ∫
Σ

e−2sα∗
ξ∗

∣∣∣∣∂�ϕ

∂n

∣∣∣∣
2

dσ dt +
∫ ∫

Σ

e−2sα∗ ∣∣(n × ∇×)
(
P ∗

2 (x, t;D)ϕ
)∣∣2 dσ dt

+ s2λ3
∫∫

ω0×(0,T )

e−2sαξ2(s4λ5ξ4|ϕ|2 + sλξ |�ϕ|2 + |�ψ |2)dx dt

)
, (67)

for any λ � K , s � K(T 2m−1 + T 2m).
In order to estimate the boundary terms, we first regard the equation satisfied by the functions

(ϕ̂, π̂ , ψ̂, q̂) = λ1/2e−sα∗
(ξ∗)−1/m(ϕ,π,ψ,q). (68)

That of ϕ̂ has a right-hand side given by

f̂1 = −λ1/2(e−sα∗
(ξ∗)−1/m

)
t
ϕ + m0λ

1/2e−sα∗
(ξ∗)−1/m∇ × ψ ∈ L2(0, T ;H 2(Ω)N

)
with

‖f̂1‖2
L2(0,T ;H 2(Ω)N )

� K

(
I0(s, λ;�ϕ) + λ

∫
e−2sα∗ |∇ × �ψ |2 dx dt

)
,

Q
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so the same estimate holds for ‖ϕ̂‖2
L2(0,T ;H 4(Ω)N )

. Then, the right-hand side of the equation of ψ̂ satisfies

f̂2 = −λ1/2(e−sα∗
(ξ∗)−1/m

)
t
ψ + λ1/2e−sα∗

P ∗
2 (t, x;D)ϕ ∈ L2(0, T ;H 2(Ω)N

)
and

‖f̂2‖2
L2(0,T ;H 2(Ω)N )

� K

(
s2λ3

∫ ∫
Q

e−2sα∗
(ξ∗)2|�ψ |2 dx dt

+ λ

∫
Q

e−2sα∗ |∇ × �ψ |2 dx dt + I0(s, λ;�ϕ)

)
. (69)

Consequently, ψ̂ ∈ L2(0, T ;H 4(Ω)N) and ‖ψ̂‖2
L2(0,T ;H 4(Ω)N )

is estimated in the same way as in (69). Then, the same
estimate also holds for

sλ2

T∫
0

e−2sα∗
(ξ∗)1−1/m

∥∥ψ(t)
∥∥2

H 3(Ω)N
dt (70)

and for

s1/2λ3/2

T∫
0

e−2sα∗
(ξ∗)(1/2)−(3/2m)

∥∥∥∥∂�ψ

∂n

∥∥∥∥
2

L2(∂Ω)N
dt.

In order to estimate the other boundary term, we define

(ϕ̄, π̄) = s1/2λe−sα∗
(ξ∗)(1/2)−(1/m)(ϕ,π) (71)

and we see that its right-hand side is

f̂3 = −s1/2λ
(
e−sα∗

(ξ∗)(1/2)−(1/m)
)
t
ϕ + m0s

1/2λe−sα∗
(ξ∗)(1/2)−(1/m)∇ × ψ ∈ L2(0, T ;H 2(Ω)N

)
.

Moreover, this function satisfies

‖f̂3‖2
L2(0,T ;H 2(Ω)N )

� K

(
I0(s, λ;�ϕ) + sλ2

T∫
0

e−2sα∗
(ξ∗)1−2/m

∥∥ψ(t)
∥∥2

H 3(Ω)N
dt

)
.

Once more, this estimate holds for ‖ϕ̄‖2
L2(0,T ;H 4(Ω)N )

and also for

s3/2λ5/2

T∫
0

e−2sα∗
(ξ∗)(3/2)−(3/2m)

(∥∥∥∥∂�ϕ

∂n

∥∥∥∥
2

L2(∂Ω)

+ ∥∥(n × ∇×)
(
P ∗

2 (x, t;D)ϕ
)∥∥2

L2(∂Ω)

)
dt.

Again, since m > 3, we can absorb the three boundary integrals in the right-hand side of (67) concerning ϕ and the
one concerning ψ and we obtain:

Ī (s, λ;ϕ) +
∫ ∫

Q

e−2sα
(
s2λ3ξ2|�ψ |2 + λ|∇�ψ |2)dx dt

� K

(
s2λ3

∫∫
ω×(0,T )

e−2sαξ2(s4λ5ξ4|ϕ|2 + sλξ |�ϕ|2 + |�ψ |2)dx dt

)
, (72)

for any λ � K , s � K(T 2m−1 + T 2m).
Let us finally estimate the (local) terms concerning �ϕ and �ψ . Let θ ∈ C2

0(ω) with θ = 1 in ω0. As long as the
first one is concerned, we have
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∫∫
ω×(0,T )

θ2e−2sαξ3(�ϕ)(�ϕ)dx dt

= −
∫∫

ω×(0,T )

θ2e−2sαξ3∇ϕ · ∇�ϕ dx dt −
∫∫

ω×(0,T )

∇(
θ2e−2sαξ3) · ∇ϕ(�ϕ)dx dt

� ε

(
s−2λ−2

∫∫
ω×(0,T )

e−2sαξ |∇�ϕ|2 dx dt +
∫∫

ω×(0,T )

e−2sαξ3|�ϕ|2 dx dt

)

+ Ks2λ2
∫∫

ω×(0,T )

θ2e−2sαξ5|∇ϕ|2 dx dt

and ∫∫
ω×(0,T )

θ2e−2sαξ5|∇ϕ|2 dx dt

= −
∫∫

ω×(0,T )

θ2e−2sαξ5�ϕϕ dx dt + 1

2

∫∫
ω×(0,T )

�
(
θ2e−2sαξ5)|ϕ|2 dx dt

� εs−2λ−2
∫∫

ω×(0,T )

e−2sαξ3|�ϕ|2 dx dt + s2λ2
∫∫

ω×(0,T )

e−2sαξ7|ϕ|2 dx dt.

Thus, we deduce from (72) that

Ī (s, λ;ϕ) +
∫ ∫

Q

e−2sα
(
s2λ3ξ2|�ψ |2 + λ|∇�ψ |2)dx dt

� K

(
s2λ3

∫∫
ω×(0,T )

e−2sαξ2(s5λ5ξ5|ϕ|2 + |�ψ |2)dx dt

)
, (73)

for any λ � K , s � K(T 2m−1 + T 2m).
In order to estimate the second one, we observe that

m0�ψ = (∇ × ϕ)t + �(∇ × ϕ) − ∇ × (
P ∗

1 (t, x;D)ϕ
)

in Ω × (0, T ).

Then, ∫∫
ω×(0,T )

θ2e−2sαξ2(�ψ)
(
(∇ × ϕ)t + �(∇ × ϕ) − ∇ × (

P ∗
1 (t, x;D)ϕ

))
dx dt

� ε

(
s−1−1/mλ−1

∫∫
ω×(0,T )

e−2sα∗
(ξ∗)1−1/m

(|∇ × ψt |2 + |∇ × �ψ |2)dx dt +
∫∫

ω×(0,T )

e−2sαξ2|�ψ |2 dx dt

)

+ Ks3+3/mλ3
∫∫

ω×(0,T )

θ2e−4sα+2sα∗
ξ5+3/m

(|∇ϕ|2 + |D2ϕ|2)dx dt.

We first realize that the first three terms are already bounded like in (73) (see (70)), since

∇ × ψt = −∇ × �ψ + e0∇ × ψ + (E0 · ∇)(∇ × ψ) − ∇ × (
P ∗

2 (t, x;D)ϕ
)

in Ω × (0, T ).

Finally, the two terms concerning ϕ are estimated exactly in the same way as we did above for the local integrals
of (72). This yields
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s5+3/mλ6
∫∫

ω×(0,T )

θ2e−4sα+2sα∗
ξ5+3/m

(|∇ϕ|2 + ∣∣D2ϕ
∣∣2)dx dt

� Ks15+12/mλ16
∫∫

ω×(0,T )

e−10sα+8sα∗
ξ15+12/m|ϕ|2 dx dt

+ ε

(
sλ2

∫∫
ω×(0,T )

e−2sαξ |∇�ϕ|2 dx dt + s3λ4
∫∫

ω×(0,T )

e−2sαξ3|�ϕ|2 dx dt

)
.

If we combine this with (73), we get the estimate (62). �
4.2. Carleman inequality for system (60)

Proposition 3. Let ϕ0ψ0 ∈ H . Then, there exists a positive constant K = K(Ω,ω) such that

Ī (s, λ;ϕ) +
∫ ∫

Q

e−2sα
(
s2λ3ξ2|∇ × �ψ |2 + λ

∣∣�2ψ
∣∣2)dx dt

� Ks15+12/mλ18
∫∫

ω×(0,T )

e−10sα+8sα∗
ξ15+12/m|ϕ|2 dx dt, (74)

for any λ � K and any s � K(T 2m−1 + T 2m), where Ī (s, λ;ϕ) was defined in (66).

Proof of Proposition 3. Since most of the arguments are the same as in the proof of Proposition 2, we will just
provide a sketch of the proof. In this situation, the equation satisfied by �ϕ is

−(�ϕ)t − �(�ϕ) = ∇ × (∇ × (
P ∗

1 (x, t;D)ϕ
)) + m1�

2ψ (t, x) in (0, T ) × Ω.

We apply again Lemma 2 and we get

I0(s, λ;�ϕ) � K

(
s2λ2

∫ ∫
Q

e−2sαξ2
∣∣∇ × (

P ∗
1 (x, t;D)ϕ

)∣∣2 dx dt

+ sλ

∫ ∫
Σ

e−2sα∗
ξ∗

(∣∣∣∣∂�ϕ

∂n

∣∣∣∣
2

+ ∣∣(n × ∇×)
(
P ∗

1 (x, t;D)ϕ
)∣∣2

)
dσ dt

+
∫ ∫

Q

e−2sα
∣∣�2ψ

∣∣2 dx dt + s3λ4
∫∫

ω0×(0,T )

e−2sαξ3|�ϕ|2 dx dt

)
, (75)

for any λ � K and s � K(T 2m−1 + T 2m). Since estimate (64) also holds now (ϕ|∂Ω = 0), the first term in the right-
hand side is absorbed and we analogously obtain

Ī (s, λ;ϕ) � K

(
sλ

∫ ∫
Σ

e−2sα∗
ξ∗

(∣∣∣∣∂�ϕ

∂n

∣∣∣∣
2

+ ∣∣(n × ∇×)
(
P ∗

1 (x, t;D)ϕ
)∣∣2

)
dσ dt

+
∫ ∫

Q

e−2sα
∣∣�2ψ

∣∣2 dx dt + s3λ4
∫∫

ω0×(0,T )

e−2sαξ3(s3λ4ξ3|ϕ|2 + |�ϕ|2)dx dt

)
(76)

for λ � K and s � C(T 2m−1 + T 2m), where Ī (s, λ;ϕ) was defined in (66).
We are now interested in the equation satisfied by ∇ × �ψ :

−(∇ × �ψ)t − �(∇ × �ψ) + e1∇ × �ψ + (E0 · ∇)(∇ × �ψ) = ∇ × (
�

(
Q∗

1(x, t;D)ϕ
))

in Ω × (0, T ). Applying Lemma 2 to ∇ × �ψ , we deduce
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λ

∫ ∫
Q

e−2sα
(
s2λ2ξ2|∇ × �ψ |2 + ∣∣∇(∇ × �ψ)

∣∣2)dx dt

� K

(∫ ∫
Σ

e−2sα∗
(∣∣∣∣∂∇ × �ψ

∂n

∣∣∣∣
2

+ ∣∣n × (
�

(
Q∗

1(x, t;D)ϕ
))∣∣2

)
dσ dt

+ sλ

∫ ∫
Q

e−2sαξ
∣∣�(

Q∗
1(x, t;D)ϕ

)∣∣2 dx dt + s2λ3
∫∫

ω0×(0,T )

e−2sαξ2|∇ × �ψ |2 dx dt

)
,

for any λ � K , s � K(T 2m−1 +T 2m). Since the coefficients of Q∗
1(t, x;D) are in L∞(0, T ;W 2,∞(Ω)N), we combine

the previous inequality with (76) and we get

Ī (s, λ;ϕ) +
∫ ∫

Q

e−2sα
(
s2λ3ξ2|∇ × �ψ |2 + λ

∣∣∇(∇ × �ψ)
∣∣2)dx dt

� K

(∫ ∫
Σ

e−2sα∗
∣∣∣∣∂∇ × �ψ

∂n

∣∣∣∣
2

dσ dt + sλ

∫ ∫
Σ

e−2sα∗
ξ∗

∣∣∣∣∂�ϕ

∂n

∣∣∣∣
2

dσ dt

+
∫ ∫

Σ

e−2sα∗(
sλξ∗∣∣(n × ∇×)

(
P ∗

1 (x, t;D)ϕ
)∣∣2 + ∣∣n × (

�
(
Q∗

1(x, t;D)ϕ
))∣∣2)dσ dt

+ s2λ3
∫∫

ω0×(0,T )

e−2sαξ2(s4λ5ξ4|ϕ|2 + sλξ |�ϕ|2 + |∇ × �ψ |2)dx dt

)
, (77)

for any λ � K , s � K(T 2m−1 + T 2m).
Next, we realize that sλ3/2e−sα∗

ξ∗ϕ ∈ L2(0, T ;H 2(Ω)N) and∥∥sλ3/2e−sα∗
ξ∗ϕ

∥∥2
L2(0,T ;H 2(Ω)N )

� KĪ(s, λ;ϕ),

for s � CT 2m. Taking this into account, exactly the same analysis developed between (46) and (53) can be done here
and we deduce that∥∥sλ3/2e−sα∗

ξ∗ψ
∥∥2

L2(0,T ;H 3(Ω)N )
� K

(
Ī (s, λ;ϕ) + ∥∥sλ3/2e−sα∗

ξ∗∇ × �ψ
∥∥2

L2(Q)N

)
. (78)

At this point, we can carry out the same estimates for the functions (ϕ̂, ψ̂) defined in (68) and (ϕ̄, π̄) defined in (71)
with the only difference that we have a one degree improvement (in the space variable) in the Sobolev space where ψ̂

is bounded. That’s the reason why we need the coefficients of the operator Q∗
1 to be in L∞(0, T ;W 3,∞(Ω)N). This

yields

s1/2λ3/2

T∫
0

e−2sα∗
(ξ∗)(1/2)−(3/2m)

∥∥∥∥∂(∇ × �ψ)

∂n

∥∥∥∥
2

L2(∂Ω)N
dt

+ s3/2λ5/2

T∫
0

e−2sα∗
(ξ∗)(3/2)−(3/2m)

∥∥∥∥∂(�ϕ)

∂n

∥∥∥∥
2

L2(∂Ω)N
dt dt

+ s3/2λ5/2
∫ ∫

Σ

e−2sα∗
(ξ∗)(3/2)−(3/2m)

∣∣(n × ∇×)
(
P ∗

1 (x, t;D)ϕ
)∣∣2 dσ dt

+ s3/2λ5/2

T∫
0

e−2sα∗
(ξ∗)(3/2)−(3/2m)

∥∥n × (
�

(
Q∗

1(x, t;D)ϕ
))∥∥2

L2(∂Ω)N
dt

� K
(
Ī (s, λ;ϕ) + ∥∥sλ3/2e−sα∗

ξ∗∇ × �ψ
∥∥2

2 N

)
.

L (Q)
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Observe that the powers of s, λ and ξ∗ in the boundary integral of (n × ∇×)(P ∗
1 (x, t;D)ϕ) are clearly not optimal,

but this will suffice for our purposes, so we do not worry about its optimality.
This justifies that the four boundary integrals in (77) are absorbed. This provides

Ī (s, λ;ϕ) +
∫ ∫

Q

e−2sα
(
s2λ3ξ2|∇ × �ψ |2 + λ|∇ × ∇�ψ |2)dx dt

� K

(
s2λ3

∫∫
ω0×(0,T )

e−2sαξ2(s4λ5ξ4|ϕ|2 + sλξ |�ϕ|2 + |∇ × �ψ |2)dx dt

)
, (79)

for any λ � K , s � K(T 2m−1 + T 2m).
Then, one can develop exactly the same computations as in the previous paragraph and deduce the desired esti-

mate (74). We do not include this local estimate here since we think it is evident from the one proved above. �
Appendix A. Proof of Lemma 4

We will develop here the duality method introduced in [12] in the context of the heat equation. The same argument
has already been used in the context of the heat equation with nonhomogeneous Robin boundary conditions in [5] and
in the context of the heat equation with right-hand sides belonging to L2(0, T ;H−2(Ω))∩H−1(0, T ;L2(Ω)), which
only permits to talk about solutions in L2(Q); this is explained with detail in [8].

First, we view u as a solution by transposition of (23). This means that u is the unique function in L2(Q)N

satisfying∫ ∫
Q

u · f dx dt =
∫ ∫

Q

f5 · zdx dt −
∫ ∫

Q

f6 : ∇zdx dt +
∫
Ω

u0z|t=0 dx ∀f ∈ L2(Q)N, (80)

where we have denoted by z ∈ L2(0, T ;H 2(Ω)N ∩V )∩H 1(0, T ;L2(Ω)N), together with q , the (strong) solution of
the following problem:{−zt − �z + ∇q = f, ∇ · z = 0 in Q,

z = 0 on Σ,

z|t=T = 0 in Ω.

Let us first get an estimate of the lower order term in the left-hand side of (24), i.e.

s3λ4
∫ ∫

Q

e−2sαξ3|u|2 dx dt. (81)

In order to do this, let us consider the following constrained extremal problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Minimize
1

2
I ∗(s, λ; z, v)

subject to v ∈ L2(Q)N and⎧⎨
⎩

−zt − �z + ∇q = s3λ4e−2sαξ3u + v1ω0, ∇ · z = 0 in Q,

z = 0 on Σ,

z|t=0 = 0, z|t=T = 0 in Ω,

(82)

where

I ∗(s, λ; z, v) =
(

s−15/2λ−20
∫ ∫

Q

e4sα̂−2sα∗
(ξ̂ )−15/2|z|2 dx dt + s−16λ−40

∫∫
ω0×(0,T )

e8sα̂−6sα∗
(ξ̂ )−16|v|2 dx dt

)
.

Here, s and λ are chosen like in Lemma 3.
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By virtue of Lagrange’s principle, there exist p, p0 and q0 such that the following optimality system is satisfied:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s15/2λ20L∗(e−4sα̂+2sα∗
(ξ̂ )15/2

(
L(p,p0), q0

))
+ s16λ40e−8sα̂+6sα∗

(ξ̂ )16p1ω0 = s3λ4e−2sαξ3u in Q,

∇ · p = 0, ∇ ·L(p,p0) = 0 in Q,

p = 0, L(p,p0) = 0 on Σ,

e−4sα̂+2sα∗
(ξ̂ )15/2

(
L(p,p0)|t=0,L(p,p0)|t=T

) = (0,0) in Ω.

(83)

Here, L(a1, a2) = ∂ta1 −�a1 +∇a2 is the Stokes operator and L∗(a1, a2) = −∂ta1 −�a1 +∇a2 is its formal adjoint.
If p (together with some (p0, q0)) is a solution to (83) (in an appropriate sense), then

v̂ = −s16λ40e−8sα̂+6sα∗
(ξ̂ )16p1ω0 and ẑ = s15/2λ20e−4sα̂+2sα∗

(ξ̂ )15/2L(p,p0) (84)

solve (82).
Let us show that (83) has a unique weak solution. In order to do this, we shall rewrite this problem as a Lax–

Milgram variational equation. Let us introduce the space

Z0 = {
(z, z0) ∈ C2(Q) × C1(Q): z = 0 on Σ and ∇ · z = 0 in Ω

}
and the norm ‖ · ‖Z , with∥∥(w,w0)

∥∥2
Z

= s15/2λ20
∫ ∫

Q

e−4sα̂+2sα∗
(ξ̂ )15/2

∣∣L(w,w0)
∣∣2 dx dt + s16λ40

∫∫
ω0×(0,T )

e−8sα̂+6sα∗
(ξ̂ )16|w|2 dx dt

for all (w,w0) ∈ Z0. Due to Lemma 3, ‖ · ‖Z is indeed a norm in Z0. Let Z be the completion of Z0 for the norm
‖ · ‖Z . Then Z is a Hilbert space for the scalar product (·, ·)Z , with

(
(p1,p1,0), (p2,p2,0)

)
Z

= s15/2λ20
∫ ∫

Q

e−4sα̂+2sα∗
(ξ̂ )15/2(L(p1,p1,0)

)(
L(p2,p2,0)

)
dx dt

+ s16λ40
∫∫

ω0×(0,T )

e−8sα̂+6sα∗
(ξ̂ )16p1p2 dx dt.

With this notation, system (83) is equivalent to find a function p ∈ Z such that(
(p,p0), (p̃, p̃0)

)
Z

= �(p̃, p̃0) ∀(p̃, p̃0) ∈ Z, (85)

where

�(p̃, p̃0) = s3λ4
∫ ∫

Q

e−2sαξ3up̃ dx dt ∀(p̃, p̃0) ∈ Z.

By virtue of Lemma 3, one can easily check that � ∈ Z′. Consequently, one can apply Lax–Milgram lemma and
deduce that there exists a unique solution to (83).

Let us now take

f = s3λ4e−2sαξ3u + v̂1ω

in (80). This gives

s3λ4
∫ ∫

Q

e−2sαξ3|u|2 dx dt =
∫ ∫

Q

f5 · ẑdx dt −
∫ ∫

Q

f6 : ∇ ẑ dx dt −
∫∫

ω0×(0,T )

uv̂ dx dt (86)

(recall that v̂ and ẑ are given by (84)).
Let us multiply the equation in (83) by p and integrate in Q, which gives∥∥(p,p0)

∥∥2
Z

� ‖�‖Z′
∥∥(p,p0)

∥∥
Z
.

Consequently,
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∥∥(p,p0)
∥∥2

Z
= s−15/2λ−20

∫ ∫
Q

e4sα̂−2sα∗
(ξ̂ )−15/2|ẑ|2 dx dt + s−16λ−40

∫∫
ω0×(0,T )

e8sα̂−6sα∗
(ξ̂ )−16|v̂|2 dx dt

� Cs3λ4
∫ ∫

Q

e−2sαξ3|u|2 dx dt, (87)

for λ, s � C = C(Ω,ω,T ) > 0, since

‖�‖Z′ � s3/2λ2
(∫ ∫

Q

e−2sαξ3|u|2 dx dt

)1/2

.

Now, we multiply the equation satisfied by ẑ by s−47/4λ−30e6sα̂−4sα∗
(ξ̂ )−47/4ẑ and we integrate in Q. After integration

by parts, we obtain:

s−47/4λ−30
∫ ∫

Q

e6sα̂−4sα∗
(ξ̂ )−47/4|∇ ẑ|2 dx dt

= −1

2
s−47/4λ−30

∫ ∫
Q

∂

∂t

(
e6sα̂−4sα∗

(ξ̂ )−47/4)|ẑ|2 dx dt + s−35/4λ−26
∫ ∫

Q

e−2sα+6sα̂−4sα∗
(ξ̂ )−47/4ξ3uẑdx dt

+ s−47/4λ−30
∫∫

ω0×(0,T )

e6sα̂−4sα∗
(ξ̂ )−47/4v̂ẑ dx dt. (88)

Using Hölder’s inequality in the last two terms and taking into account that e2sα̂ = minx∈Ω e2sα , we obtain

s−47/4λ−30
∫ ∫

Q

e6sα̂−4sα∗
(ξ̂ )−47/4|∇ ẑ|2 dx dt

� C

(
s−15/2λ−20

∫ ∫
Q

e4sα̂−2sα∗
(ξ̂ )−15/2|ẑ|2 dx dt + s3λ4

∫ ∫
Q

e−2sαξ3|u|2 dx dt

+ s−16λ−40
∫∫

ω0×(0,T )

e8sα̂−6sα∗
(ξ̂ )−16|v̂|2 dx dt

)
,

where we have taken s � C. This, together with (87), provides

s−15/2λ−20
∫ ∫

Q

e4sα̂−2sα∗
(ξ̂ )−15/2|ẑ|2 dx dt + s−47/4λ−30

∫ ∫
Q

e6sα̂−4sα∗
(ξ̂ )−47/4|∇ ẑ|2 dx dt

+ s−16λ−40
∫∫

ω0×(0,T )

e8sα̂−6sα∗
(ξ̂ )−16|v̂|2 dx dt � Cs3λ4

∫ ∫
Q

e−2sαξ3|u|2 dx dt. (89)

A combination of this inequality with (86) yields the estimate of the zero order term (81) in terms of the right-hand
side of (24).

Let us now show that the first order term ∇u can also be bounded in the same way. To this end, we multiply the
equation of u by

s2λ4e−2sα∗
(ξ∗)2−1/mu

and we obtain
1

2
s2λ4

∫ ∫
Q

e−2sα∗
(ξ∗)2−1/m ∂

∂t
|u|2 dx dt + s2λ4

∫ ∫
Q

e−2sα∗
(ξ∗)2−1/m|∇u|2 dx dt

= s2λ4
∫ ∫

e−2sα∗
(ξ∗)2−1/mf5 · udx dt − s2λ4

∫ ∫
e−2sα∗

(ξ∗)2−1/mf6 : ∇udx dt.
Q Q
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Finally, integrating by parts with respect to t in the first integral and using that(
e−2sα∗

(ξ∗)2−1/m
)
t
� Cse−2sα∗

(ξ∗)3, s � C,

we conclude that the first order term is also bounded by the right-hand side of (24).
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