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Abstract

We consider the following autonomous variational problem

minimize

{ b∫
a

f
(
v(x), v′(x)

)
dx: v ∈ W1,1(a, b), v(a) = α, v(b) = β

}

where the Lagrangian f is assumed to be continuous, but not necessarily coercive, nor convex. We show that the existence of
the minimum is linked to the solvability of certain constrained variational problems. This allows us to derive existence theorems
covering a wide class of nonconvex noncoercive problems.
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

On considère la classe des problèmes variationels autonomes ci-dessous :

minimiser

{ b∫
a

f
(
v(x), v′(x)

)
dx: v ∈ W1,1(a, b), v(a) = α, v(b) = β

}

où le lagrangien f est une fonction continue sans hypothèse de coercivité ou de convexité. On démontre que l’existence de solutions
pour ces problèmes est liée à l’existence de solutions de certains problèmes variationels sous contraintes. Ce résultat permet
d’obtenir des théorèmes d’existence pour une classe étendue de problèmes variationels ni coercifs ni convexes.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper is devoted to the investigation of the solvability of the classical autonomous Lagrange variational prob-
lem

minimize

{
F(v) =

b∫
a

f
(
v(x), v′(x)

)
dx: v ∈ Υ

}
; (P )

where

Υ := {
v ∈ W 1,1(a, b): v(a) = α, v(b) = β, v(x) ∈ I

}
,

I ⊆ R is a given interval, bounded or unbounded, with α,β ∈ I , and f : I × R → [0,+∞), f = f (s, z), is a contin-
uous function. We do not assume any convexity or coercivity condition on f , so that the classical direct methods of
the Calculus of Variations cannot be applied and the variational problem can have no solution.

This problem has been widely investigated for various types of Lagrangian and the mathematical literature on this
context is very wide. We mention, in a not exhaustive way, for the case of f coercive but not convex the papers
[12,15–17]. Instead, if f is noncoercive, but convex, the existence of Lipschitz continuous minimizers is established
in [6] under different types of assumptions, allowing some cases of linear growth on the integrand f , and, in [8],
even for Lagrangians f which do not exhibit any growth. Results involving noncoercive nonautonomous Lagrangians
have been provided in [1–3,13]. The solvability of (P ) for a class of nonconvex noncoercive integrands, under a
growth assumption similar to that employed in [6] and [7], has been considered in [4]; as for relaxation and Lipschitz
regularity of the minimizers we refer to [5].

Actually, the study of suitable growth assumptions for noncoercive integrands does not seem sufficiently developed,
mainly for those functional admitting non-Lipschitz minimizers. For instance, for f (s, z) = s|z|p , p > 1, following
the same argument proposed in the solution of [11, Ex. 2.2.10], it is easy to show that F admits minimum (attained at
a possible non-Lipschitz trajectory), but this situation does not seem to be covered by any general existence theorem.

In the recent paper [14] a detailed analysis about the existence and the Lipschitz regularity of the solutions to
autonomous constrained variational problems is accomplished, where f can be nonsmooth, nonconvex, noncoercive,
and the competition set is restricted to the monotone functions. In such a paper, a nonsmooth version of the DuBois–
Reymond equation is proved, expressed in terms of an inclusion involving the subdifferential of the Convex Analysis.
This condition turns out to be both necessary and sufficient for the optimality of a trajectory. Moreover, after a relax-
ation result, a new necessary and sufficient condition for the existence of the minimum of F is introduced, which is
expressed in terms of an upper bound for the assigned slope β−α

b−a
.

On the other hand, a certain monotonicity property of the minimizers of free problems has been recently studied
in [9] and [10], where it was proved that, under very mild assumptions, the competition set Υ can be restricted,
without loss of generality, to those trajectories admitting at most one change of monotonicity. More precisely, if (P )

is solvable, then it admits a minimizer which is increasing in [a, x0] and decreasing in [x0, b] (or vice versa) for some
x0 ∈ [a, b]. In light of this property, it is natural to investigate the link between the solvability of the free problem and
the constrained one, in order to obtain necessary or sufficient conditions for the solvability of the free problem (P ).

As for the necessary condition, we have proved in [9], subsequently improving the results in [10], that if
(P ) is solvable then there exists a minimizer u satisfying the monotonicity property described above, such that
∂f (u(x),u′(x)) �= ∅ for a.e. x ∈ (a, b) and the DuBois–Reymond type necessary condition

f
(
u(x),u′(x)

) − c ∈ u′(x)∂f
(
u(x),u′(x)

)
a.e. in (a, b) (1.1)

holds, where ∂f is the subdifferential of Convex Analysis and c is a constant subjected to the limitation from above
c � mins∈u([a,b]) f (s,0). But contrary to the constrained case investigated in [14], such a condition is no more suffi-
cient for unconstrained problems. For instance, consider

f (z) = |z|, (a, b) = (−1,2), (α,β) = (1,2), I = R.

The function u(x) = |x| satisfies (1.1) with constant c = 0 = f (0) but is not a minimizer, whereas every increasing
absolutely continuous function satisfying the boundary conditions solves (P ).

Nevertheless, in the present paper we show that condition (1.1) plays a relevant role in the study of the existence
of the minimum. Indeed, we prove (see Proposition 4.3) that the existence of a pair of functions in Υ satisfying (1.1)
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for suitable values of the constant c contributes to further restrict the competition set (see (2.6)); the region of the
plane included by the graphs of these “functions-barrier” can be seen as a cage in which the graph of a minimizer,
whenever it exists, is trapped. In this compact region we define a suitable lower semicontinuous function mapping
each point (x, y) into the sum of the infima of the integral functional evaluated at the monotone trajectories joining
(a,α) with (x, y) and (x, y) with (b,β). The minimum point of such a function, say (x̄, ȳ), plays a key role since
we show that one can look for a minimizer for problem (P ) among those trajectories passing throughout (x̄, ȳ) and
admitting at most one change of monotonicity exactly in that point. So, the solvability of the free problem (P ) is
reduced to the solvability of a pair of suitable constrained problems, that is the minimization of the integral functional
evaluated among the monotone functions joining (a,α) with (x̄, ȳ) and the monotone functions joining (x̄, ȳ) with
(b,β). Indeed, a minimizer of (P ) can be obtained by matching the monotone minimizers of both the constrained
problems.

Therefore, if the constrained problem admits minimum whatever the endpoints may be, then problem (P ) is solv-
able too. When f is convex with respect to the last variable, this can be achieved by using the existence criteria
for constrained problems stated in [14]. To deal with the nonconvex case, we combine them with a relaxation result
recently proved in [10].

In this way, we obtain sufficient criteria for the solvability of problem (P ) under rather mild growth conditions,
covering situations which were not previously included in known existence results. In particular, we introduce the
following condition

lim|z|→+∞ inf
{
f ∗∗(s, z) − z∂f ∗∗(s, z)

} = −∞ for a.e. s ∈ I (1.2)

which, jointly to some other slight technical assumptions, guarantees the existence of the minimum (see Theorem 7.1
for the convex case and its combination with the relaxation Theorem 7.8 for the nonconvex case).

The main feature of condition (1.2) is the requirement that it is satisfied just almost everywhere in I . This allows
to include integrands f (s, z) having superlinear growth with respect to z, but with the exception of straight lines in a
set of null measure in the (s, z)-plane, where f vanishes. For instance, we are able to handle integrands of the type
f (s, z) = φ(s) + ψ(s)h(z) with h coercive and ψ vanishing in a set of null measure.

More in detail, we herein present our existence criteria, limiting ourselves to integrands having affine-type structure,
for the sake of simplicity, but we refer the reader to Theorems 7.1 and 7.8 for the general case.

Theorem 1.1. Let f (s, z) = φ(s)+ψ(s)h(z), with φ,h continuous and nonnegative, ψ continuous and almost every-
where positive. Suppose that

lim|z|→+∞ inf
{
h∗∗(z) − z∂h∗∗(z)

} = −∞, (1.3)

and that there exist

min
s�β,s∈I

{
φ(s) + ψ(s)h(0)

}
and min

s�α,s∈I

{
φ(s) + ψ(s)h(0)

}
. (1.4)

Moreover, assume that there exist two sequences (zn)n, (ζn)n such that

zn ↑ 0, ζn ↓ 0, and h(zn) = h∗∗(zn), h(ζn) = h∗∗(ζn), (1.5)

and that

co
{
z: h(z) = h∗∗(z)

} = R. (1.6)

Then, the functional F admits minimum. Moreover, if ψ(s) > 0 for every s ∈ I , then F admits a Lipschitz continu-
ous minimizer.

Of course, when h is convex then conditions (1.5) and (1.6) are trivially satisfied. So the existence of the minimum
in the convex case is ensured by conditions (1.3), (1.4). For instance, if φ ≡ 0 and ψ vanishes in a nonempty set of null
measure in [α,β], then (1.4) is satisfied. Therefore, the functional F(u) = ∫ b

a
ψ(u(x))h(u′(x))dx admits minimum

(attained at a possible non-Lipschitz minimizer) provided that condition (1.3) holds true (see also Examples 7.3,
7.4). Notice that in this case the functional F is not coercive and condition (1.2) holds just almost everywhere in I .
According to our knowledge, such a situation was not previously covered by any existence result.
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Moreover, in some cases the minimum can exist, whatever the boundary data α,β may be, even if condition (1.3)
does not hold, as the following criterium states (see Corollary 7.5 and Theorem 7.8).

Theorem 1.2. Let f (s, z) = ψ(s)h(z), with ψ continuous and positive, h continuous and nonnegative, having h∗∗ not
affine in any half-line. Let the assumptions of Theorem 1.1 be satisfied, but with (1.3) replaced by

lim|z|→+∞ inf
{
h∗∗(z) − z∂h∗∗(z)

} = 0.

Then the problem (P ) is solvable and there exists a Lipschitz continuous minimizer.

For instance, the classical example f (s, z) = ψ(s)
√

1 + z2, with ψ(s) > 0 for every s, can be handled by using
Theorem 1.2. We recall that in the convex case the existence of the minimum for such a type of integrands have been
already proved in [8].

As for assumption (1.4), notice that it is trivially satisfied if f (·,0) is increasing and I has minimum or if f (·,0) is
decreasing and I admits maximum. Moreover, it of course holds true even if I is compact. In order to treat situations
in which (1.4) is not satisfied, we provide an a priori estimate in L∞ for the trajectories lying in the level sets of
the functional F (see Theorem 2.4 and Corollary 2.6), in such a way that the interval I can assumed to be bounded,
without loss of generality. By virtue of Corollary 2.6, assumption (1.4) in Theorems 1.1, 1.2 can be replaced by

I is an unbounded closed interval and lim inf|s|→+∞ψ(s) > 0. (1.4∗)

Concerning assumption (1.5), notice that it requires that the origin is a cluster point, both from the right and the
left side, for the contact set between h and h∗∗, and hence, by continuity, h(0) = h∗∗(0). Condition (1.5) derives from
a relaxation result proved in [10], where it was also discussed the possibility of removing it, keeping the require-
ment h(0) = h∗∗(0). More precisely (see Theorem 7.8), condition (1.5) in Theorems 1.1, 1.2 can be replaced by the
following requirement:

the map s �→ φ(s) + ψ(s)h(0), s ∈ [α,β], has at most countable many minimizers (1.5∗)

provided that h(0) = h∗∗(0).
Finally, notice that condition (1.6) cannot be removed, owing to the possible existence of non-Lipschitz minimizers;

in fact, as a consequence of condition (1.1), f and f ∗∗ should coincide along the minimizer.
The paper is organized as follows: after some notations and preliminary results, in Section 3 we recall the known

results about constrained problems and the DuBois–Reymond necessary condition. In Section 4 we show that the
trajectories satisfying the DuBois–Reymond necessary condition for suitable values of the constant c can be taken as
upper or lower barriers for the competition set; whereas in Section 5 we study the lower-semicontinuity of the infimum
of the integral functional with respect to the boundary data, which may have interest in itself. Section 6 contains the
results connecting the solvability of certain constrained problems with that of (P ) and finally in Section 7 we prove
our main existence results.

2. Notations and preliminary results

As mentioned in Introduction, we consider the autonomous variational problem (P ), that is

minimize

{
F(v) =

b∫
a

f
(
v(x), v′(x)

)
dx: v ∈ Υ

}
; (P )

where

Υ := {
v ∈ W 1,1(a, b): v(a) = α, v(b) = β, v(x) ∈ I

}
,

where I ⊆ R is a generic interval, with α,β ∈ I , f : I ×R → [0,+∞), f = f (s, z), is a continuous function. Without
loss of generality, from now on we assume that α � β .

Our approach in dealing with the optimality of problem (P ) is based on the study of suitable variational problems
with constraints on the derivatives. To do this, we will adopt the following notations.
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Given a � x1 < x2 � b and 0 � y1 � y2 � β we set

Υ +[
(x1, y1), (x2, y2)

] := {
v ∈ W 1,1(x1, x2): v(x1) = y1, v(x2) = y2, v′(x) � 0 a.e. in (x1, x2)

}
and we consider the constrained variational problem

(P +)
[
(x1, y1), (x2, y2)

]
: minimize

x2∫
x1

f
(
v(x), v′(x)

)
dx for v ∈ Υ +[

(x1, y1), (x2, y2)
]
.

Similarly, if 0 � y2 � y1 � β we define

Υ −[
(x1, y1), (x2, y2)

] := {
v ∈ W 1,1(x1, x2): v(x1) = y1, v(x2) = y2, v′(x) � 0 a.e. in (x1, x2)

}
,

(P −)
[
(x1, y1), (x2, y2)

]
: minimize

x2∫
x1

f
(
v(x), v′(x)

)
dx for v ∈ Υ −[

(x1, y1), (x2, y2)
]
.

Moreover, we write (P )∗∗, (P +)∗∗ or (P −)∗∗ if the integrand function f is replaced by f ∗∗, where, as usual, f ∗∗ de-
notes the convex envelope of f with respect to the second variable, i.e., fixed s ∈ I , f ∗∗(s, ·) is the largest convex
function lower than f (s, ·).

For the sake of simplicity, if we do not write explicitly the dependence on the initial and the final boundary points,
we mean that they are (a,α) and (b,β), respectively.

The link between the free problem (P ) and the constrained ones (P +), (P −) is based upon the study of the
monotonicity properties of the minimizers. More in detail, we will say that a function u ∈ Υ satisfies the maximum
principle if the following property holds true

(M) there exists x0 ∈ [a, b] such that u is decreasing in [a, x0] and increasing in [x0, b]
and the minimum principle if

(m) there exists x0 ∈ [a, b] such that u is increasing in [a, x0] and decreasing in [x0, b].
We define

ΥM := {
u ∈ Υ : u satisfies (M)

}
, Υm := {

u ∈ Υ : u satisfies (m)
}
, Υ ∗ := ΥM ∪ Υm. (2.1)

The expression maximum [minimum] principle can be justified observing that any function in ΥM [Υm] has the
remarkable property that any restriction on a subinterval of [a, b] assumes its maximum [minimum] value in cor-
respondence of one of the endpoints. In particular, notice that ΥM ∩ Υm is the set of the increasing functions of Υ ;
i.e., ΥM ∩ Υm = Υ +[(a,α), (b,β)].

Remark 2.1. Observe that if u1, u2 ∈ ΥM , then max{u1, u2} belongs to ΥM too, and if u2 is increasing then
max{u1, u2} is increasing. Similarly, if u1, u2 ∈ Υm, then min{u1, u2} belongs to Υm. Moreover, if v1 ∈ ΥM and
v2 ∈ Υm then min{v1, v2} belongs to ΥM , max{v1, v2} belongs to Υm and, if v1 is increasing, min{v1, v2} is increas-
ing. We will use these facts in the proof of Proposition 4.3.

Throughout the paper we make use of the subdifferential in the sense of Convex Analysis, that is

∂f (s, z) := {
ξ ∈ R: f (s,w) − f (s, z) � ξ(w − z) for every w ∈ R

}
.

We consider very mild assumptions on the continuous Lagrangian f : I × R → [0,+∞). We list here the main
conditions recurrent in our statements.

∂f ∗∗(·,0) has a continuous selection; (2.2)

f (s,0) = f ∗∗(s,0) for every s ∈ I ; (2.3)

there exist m1 := min f (s,0) and m2 := min f (s,0). (2.4)

s�β, s∈I s�α, s∈I
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Whenever (2.4) holds true, we put

s1 := max
{
s � β: f (s,0) = m1

}
, s2 := min

{
s � α: f (s,0) = m2

}
, (2.5)

and we define

Υ̃ := {
u ∈ Υ ∗: min{α, s1} � u(x) � max{β, s2}, x ∈ [a, b]}. (2.6)

Moreover, if w1,w2 ∈ Υ ∗ and w1(x) � w2(x) for every x ∈ [a, b] then Υ ∗
w1,w2

denotes the following set of functions:

Υ ∗
w1,w2

:= {
v ∈ Υ̃ : w1(x) � v(x) � w2(x) for every x ∈ [a, b]}. (2.7)

Remark 2.2. Condition (2.2) is trivially satisfied if the integrand has the affine-type structure f (s, z) = φ(s) +
ψ(s)h(z), provided that ψ is continuous. Moreover, (2.2) holds even if f ∗∗ is continuous and f ∗∗(s, ·) is differ-
entiable at z = 0 for every s ∈ I (see Remark 2.2 in [9]). If the previous conditions are not satisfied, then condition
(2.2) does not hold in general. Consider for instance the function f (s, z) := |z − s|, for which ∂f ∗∗(s,0) does not
admit a continuous selection.

Without loss of generality, under conditions (2.2), (2.3), possibly by subtracting an affine function, we can also
assume the validity of the following assumption

f (s,0) = min
z∈R

f (s, z) for every s ∈ I . (2.8)

For the sake of completeness we give a precise statement of this observation, involving condition (1.1) too.

Lemma 2.3. (See [9, Lemma 2.1].) Let f : I ×R → [0,+∞) be a continuous function satisfying (2.2) and (2.3). Then
the function

f̃ (s, z) := f (s, z) − g(s)z,

where g is a continuous selection of ∂f ∗∗(·,0), satisfies the following properties:

(a) f (s,0) = f̃ (s,0) = f̃ ∗∗(s,0) for every s ∈ I ;
(b) f̃ (s,0) = minz∈R f̃ (s, z) for every s ∈ I ;
(c) u ∈ Υ satisfies condition (1.1) relatively to function f if and only if it satisfies the same condition relatively to f̃

too, with the same constant c;
(d) there exists k ∈ R such that F(u) = F̃ (u) + k, for every u ∈ Υ , where F̃ (u) stands for

∫ b

a
f̃ (u(x),u′(x))dx.

We now discuss the possibility of assuming, without loss of generality, condition (2.4). To this aim, let us present an
a priori estimate in L∞ for the trajectories lying in the level sets of the functional F , in such a way that I can assumed
to be bounded. Therefore, if I is also closed, condition (2.4) trivially holds true. However, we need to combine this
with the possibility to assume also condition (2.8); so the following result proved in Appendix A furnishes a sufficient
condition for assuming both the conditions (2.4) and (2.8), without loss of generality.

Theorem 2.4. Let I be a closed, unbounded real interval and let f : I × R → [0,+∞) be a continuous function
satisfying (2.2) and (2.3). Assume that there exists a continuous selection g = g(s) of ∂f ∗∗(s,0) and positive constants
ε,K,M such that

f ∗∗(s, z) � f ∗∗(s,0) + (
g(s) + ε

)
z for every z � K, |s| � M (2.9+)

or

f ∗∗(s, z) � f ∗∗(s,0) + (
g(s) − ε

)
z for every z � −K, |s| � M. (2.9−)

Then there exists L > max{|α|, |β|} such that, put f̃ (s, z) := f (s, z) − g(s)z, if there exists a solution to

minimize

{
F̃ (v) :=

b∫
a

f̃
(
v(x), v′(x)

)
dx: v ∈ Υ, ‖v‖∞ � L

}
(2.10)

then (P ) is solvable too.
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Remark 2.5. In view of the previous result and Lemma 2.3, if (2.2), (2.3) and one of the conditions (2.9+), (2.9−)
hold, then both (2.4) and (2.8) can be assumed to hold, without loss of generality.

The following corollary proved in Appendix A is a consequence of the previous theorem, for affine-type integrands.

Corollary 2.6. Let I be a closed unbounded interval. Let f : I × R → [0,+∞), be defined by

f (s, z) = φ(s) + ψ(s)h(z)

with φ,ψ,h continuous and nonnegative. Suppose that h∗∗(z) is not linear on the whole real line and

lim inf|s|→+∞ψ(s) > 0.

Then conditions (2.4) and (2.8) can be assumed to hold, without restriction.

The next result proved in [10], concerns the monotonicity properties of minimizers. It states that the class Υ can
be restricted to Υ ∗ or Υ̃ (see (2.1), (2.6)).

Theorem 2.7. (See [10, Theorem 3.1, Corollary 3.2].) Let f,f ∗∗ : I × R → [0,+∞) be Borel-measurable functions,
with s �→ f (s,0) lower semicontinuous, satisfying (2.3). Then

inf
Υ

F = inf
Υ ∗ F.

Moreover, if infΥ F is attained, then there exists a minimizer in Υ ∗.
Finally, if (2.4) is satisfied too, then the class Υ ∗ can be replaced by the subclass Υ̃ .

As a consequence of the previous result we get that under suitable assumptions the unconstrained problem (P )
reduces to the constrained one (P +) and all the existence results proved in [14] for constrained problems can be
applied in the present setting.

Corollary 2.8. Let f,f ∗∗ : I ×R → [0,+∞) be Borel-measurable functions, with s �→ f (s,0) lower semicontinuous,
satisfying (2.3). If mins∈[α,β]f (s,0) = infs∈I f (s,0), then

inf
u∈Υ

F(u) = inf
u∈Υ + F(u).

Proof. By assumption, (2.4) is satisfied and both s1 and s2 are in [α,β]. Thus, Υ̃ in Theorem 2.7 coincides
with Υ +. �
3. The DuBois–Reymond condition and the constrained problem

Our main tool for studying the solvability of problem (P ) is the DuBois–Reymond condition (1.1). It plays a central
role when dealing with autonomous problems constrained to monotone functions, since, in this context, it is not only a
necessary condition, but also a sufficient one, provided that the constant c satisfies a suitable upper limitation. Indeed,
in [14] it was proved the following result:

Theorem 3.1. (See [14, Theorem 7 and Remark 3].) Let f : I × [0,+∞) → [0,+∞) be lower semicontinuous. Then
a function u ∈ Υ +[(x1, y1), (x2, y2)] is a minimizer for the constrained problem (P +)[(x1, y1), (x2, y2)] if and only if
there exists a constant c � mins∈[y1,y2] f (s,0), such that

f
(
u(x),u′(x)

) − c ∈ u′(x)∂+f
(
u(x),u′(x)

)
a.e. in (x1, x2),

(with the position 0 · ∅ = 0), where

∂+f (s, z) := {
η ∈ R: f (s, ζ ) − f (s, z) � η(ζ − z) for every ζ > 0

}
, for every z > 0.



1190 G. Cupini et al. / Ann. I. H. Poincaré – AN 26 (2009) 1183–1205
Remark 3.2. As proved in [9, Lemma 4.3], if f (s, ·) satisfies (2.8) and is continuous at 0, then ∂+f (s, z) = ∂f (s, z)

for every s ∈ I and z > 0.

Thanks to the above remark and Lemma 2.3, the following variant of Theorem 3.1 holds.

Proposition 3.3. Let f : I × R → [0,+∞) be continuous, satisfying (2.2), (2.3). Let y1, y2 be in I , y1 � y2. Then
u ∈ Υ +[(x1, y1), (x2, y2)] satisfies (1.1) with c � mins∈[y1,y2] f (s,0) if and only if u solves the constrained problem
(P +)[(x1, y1), (x2, y2)].
Remark 3.4. Of course, results analogous to Theorem 3.1 and Proposition 3.3 hold for the constrained problem
(P −)[(x1, y2), (x2, y1)], with ∂+f (s, z) replaced by

∂−f (s, z) := {
η ∈ R: f (s, ζ ) − f (s, z) � η(ζ − z) for every ζ < 0

}
,

and again c � mins∈[y1,y2]f (s,0). In fact, define the bijective function T : Υ −[(x1, y2), (x2, y1)] →
Υ +[(x1, y1), (x2, y2)], as T (v) = v∗ where v∗(x) := v(x1 + x2 − x) and f∗(s, z) := f (s,−z). It is easy to see that
∂+f∗(s, z) = −∂−f (s,−z), and that the following constrained variational problems are equivalent

inf

{ x2∫
x1

f
(
v(t), v′(t)

)
dt : v ∈ Υ −[

(x1, y2), (x2, y1)
]}

and

inf

{ x2∫
x1

f∗
(
v∗(t), v∗′

(t)
)

dt : v∗ ∈ Υ +[
(x1, y1), (x2, y2)

]}
.

Unfortunately, a necessary and sufficient condition, analogous to Theorem 3.1, for the solvability of the un-
constrained problem (P ) cannot be obtained, as mentioned in Introduction. Nevertheless, by Corollary 2.8, when
mins∈[α,β]f (s,0) = infs∈I f (s,0), then the free problem (P ) reduces to the constrained one (P +), and so Theorem 3.1
holds with the same statement, for problem (P ) too.

However, the necessary part holds for free problems, as stated by the following result, proved in [10] (see also [9]).

Theorem 3.5. (See [10, Theorem 4.1].) Let f : I × R → [0,+∞) be a continuous function satisfying (2.2), (2.3).
If (P ) is solvable then there exists a solution u ∈ Υ ∗ (see (2.1)) such that ∂f (u(x),u′(x)) �= ∅ for a.e. x ∈ (a, b)

and (1.1) holds for some constant c � mins∈u([a,b]) f (s,0). Moreover, if u′(x) = 0 in a set having positive measure
then c = mins∈u([a,b]) f (s,0).

4. Upper and lower barriers for the minimizers

The aim of this section is to restrict further the competition set Υ̃ (see (2.6)), by means of “functions-barrier”
satisfying condition (1.1).

The first step in this direction is the following result.

Lemma 4.1. Let f : I ×R → [0,+∞) be continuous, satisfying (2.2)–(2.4). Let v0 ∈ ΥM satisfy (1.1) with a constant
c � f (s1,0) (see (2.5)) and assume that v′

0(x) �= 0 a.e. in (a, b).
Then F(v) � F(v0) for every v ∈ ΥM such that minx∈[a,b] v(x) � minx∈[a,b] v0(x).

Proof. By Lemma 2.3, without loss of generality, we can assume (2.8) too. Set

Γ := {
u ∈ W 1,1(λu, b): λu ∈ [a, b), u(b) = β, u(x) ∈ I, u′(x) � 0 a.e.

}
.

For every u ∈ Γ , put

χu(ξ) := λu +
ξ∫

φ′
u(τ )dτ where φu(ξ) := min

{
x ∈ [λu, b] : u(x) = ξ

}
.

u(λu)
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In [15, Lemma 2] it was proved that χ ′
u(ξ) > 0 a.e. in [u(λu),β], χu(β) � b and χu(β) = b ⇔ u′(x) > 0 a.e. in

[λu, b]. Furthermore, in [15, Lemma 3] it was proved that

b∫
λu

f
(
u(x),u′(x)

)
dx �

β∫
u(λu)

f

(
ξ,

1

χ ′
u(ξ)

)
χ ′

u(ξ)dξ + f (s1,0)
[
b − χu(β)

]
(4.1)

and
b∫

λu

f
(
u(x),u′(x)

)
dx =

β∫
u(λu)

f

(
ξ,

1

χ ′
u(ξ)

)
χ ′

u(ξ)dξ if u′(x) > 0 a.e. in (λu, b). (4.2)

Moreover, if f (u(x),u′(x)) − c ∈ u′(x)∂f (u(x),u′(x)) a.e. in (λu, b), then

χ ′
u(ξ)

[
f

(
ξ,

1

χ ′
u(ξ)

)
− c

]
∈ ∂f

(
ξ,

1

χ ′
u(ξ)

)
a.e. in

(
u(λu),β

)
. (4.3)

Finally, easy calculations show that (4.3) implies

f

(
ξ,

1

z

)
z − f

(
ξ,

1

χ ′
u(ξ)

)
χ ′

u(ξ) � c
(
z − χ ′

u(ξ)
)

for every z > 0, a.e. in
(
u(λu),β

)
. (4.4)

Let us now fix v ∈ ΥM such that set m := minx∈[a,b]v(x) and m0 := minx∈[a,b]v0(x), we have m � m0. Let x̄ ∈ [a, b]
be such that v(x̄) = m and let x0 ∈ [a, b] be such that v0(x0) = m0. By the assumption on function v0, the point x0 is
univocally determined and v′

0(x) < 0 for a.e. x ∈ (a, x0), v′
0(x) > 0 for a.e. x ∈ (x0, b).

Put w := χv|[x̄,b] and w0 := χv0|[x0,b] . Observe that by (4.1), (4.2), (4.4), (2.8) and being v′
0(x) �= 0 a.e., we get

b∫
x̄

f
(
v(x), v′(x)

)
dx −

b∫
x0

f
(
v0(x), v′

0(x)
)

dx

�
β∫

m

f

(
ξ,

1

w′(ξ)

)
w′(ξ)dξ + f (s1,0)

(
b − w(β)

) −
β∫

m0

f

(
ξ,

1

w′
0(ξ)

)
w′

0(ξ)dξ

=
β∫

m0

[
f

(
ξ,

1

w′(ξ)

)
w′(ξ) − f

(
ξ,

1

w′
0(ξ)

)
w′

0(ξ)

]
dξ +

m0∫
m

f

(
ξ,

1

w′(ξ)

)
w′(ξ)dξ + f (s1,0)

(
b − w(β)

)

� c

β∫
m0

[
w′(ξ) − w′

0(ξ)
]

dξ + f (s1,0)

m0∫
m

w′(ξ)dξ + f (s1,0)
(
b − w(β)

)

= c
[
w(β) − w0(β)

] − c
[
w(m0) − w0(m0)

] + f (s1,0)
[
w(m0) − w(m)

] + f (s1,0)
(
b − w(β)

)
= [

f (s1,0) − c
][

b − w(β)
] + [

f (s1,0) − c
][

w(m0) − w(m)
] + c(x0 − x̄)

since w0(β) = b, w0(m0) = x0 and w(m) = x̄.
In order to handle the integrals

∫ x̄

a
f (v(x), v′(x))dx and

∫ x0
a

f (v0(x), v′
0(x))dx, we reason as in Remark 3.4. Let

us make the change of variable t := a + b − x, for x ∈ [a, x̄] and define v∗(t) := v(a + b − t). Of course, v∗ is
defined in [a + b − x̄, b], satisfies v∗(b) = v(a) = α, v∗(a + b − x̄) = v(x̄) = m, and v∗ ′(t) = −v′(a + b − t) � 0
a.e. in (a + b − x̄, b). Similarly, put v∗

0(t) := v0(a + b − t) for t ∈ [a + b − x0, b], we have v∗
0(b) = v0(a) = α,

v∗
0(a + b − x0) = v0(x0) = m0 and v∗ ′

0 (t) = −v′
0(a + b − t) > 0 a.e. in (a + b − x0, b).

Now, consider f∗(s, ξ) := f (s,−ξ). As it is easy to check, ∂f∗(s, z0) = −∂f (s,−z0), so

f∗
(
v∗

0(t), v∗ ′
0 (t)

) − c ∈ v∗ ′
0 (t)∂f∗

(
v∗

0(t), v∗ ′
0 (t)

)
a.e. in (a + b − x0, b).

Hence, put w∗ := χv∗ and w∗
0 := χv∗

0
, by repeating the same argument above developed (replacing β with α), we

obtain



1192 G. Cupini et al. / Ann. I. H. Poincaré – AN 26 (2009) 1183–1205
x̄∫
a

f
(
v(x), v′(x)

)
dx −

x0∫
a

f
(
v0(x), v′

0(x)
)

dx

=
b∫

a+b−x̄

f∗
(
v∗(t), v∗ ′(t)

)
dt −

b∫
a+b−x0

f∗
(
v∗

0(t), v∗ ′
0 (t)

)
dt

�
(
f (s1,0) − c

)(
b − w∗(α)

) + (
f (s1,0) − c

)(
w∗(m0) − w∗(m)

) + c(x̄ − x0).

Therefore,

F(v) − F(v0) �
(
f (s1,0) − c

)(
b − w(β)

) + (
f (s1,0) − c

)(
w(m0) − w(m)

)
+ (

f (s1,0) − c
)(

b − w∗(α)
) + (

f (s1,0) − c
)(

w∗(m0) − w∗(m)
)
� 0

since c � f (s1,0), m � m0 and the functions w, w∗ are monotone increasing. �
In an analogous way we can prove the following

Lemma 4.2. Let f : I × R → [0,+∞) be continuous, satisfying (2.2)–(2.4). Let v0 ∈ Υm satisfy (1.1) with a constant
c � f (s2,0) (see (2.5)) and assume that v′

0(x) �= 0 a.e. in (a, b).
Then F(v) � F(v0) for every v ∈ Υm such that maxx∈[a,b] v(x) � maxx∈[a,b] v0(x).

The next proposition is the main result of this section. It establishes sufficient conditions to have a pair of trajecto-
ries forming a further barrier for the competition set.

Proposition 4.3. Let f : I × R → [0,+∞) be continuous, satisfying (2.2)–(2.4). Let v1, v2 be functions in ΥM and
Υm respectively, such that minx∈[a,b] v1(x) = min{α, s1} and maxx∈[a,b] v2(x) = max{β, s2}. Set

x1 := min
{
x ∈ [a, b]: v1(x) = min{α, s1}

}
, x2 := max

{
x ∈ [a, b]: v1(x) = min{α, s1}

}
,

x3 := min
{
x ∈ [a, b]: v2(x) = max{β, s2}

}
, x4 := max

{
x ∈ [a, b]: v2(x) = max{β, s2}

}
.

Suppose that there exist some constants k1, k2 � f (s1,0) and k3, k4 � f (s2,0) such that

f
(
v1(x), v′

1(x)
) − k1 ∈ v′

1(x)∂f
(
v1(x), v′

1(x)
)

a.e. in (a, x1), (4.5)

f
(
v1(x), v′

1(x)
) − k2 ∈ v′

1(x)∂f
(
v1(x), v′

1(x)
)

a.e. in (x2, b),

f
(
v2(x), v′

2(x)
) − k3 ∈ v′

2(x)∂f
(
v2(x), v′

2(x)
)

a.e. in (a, x3), (4.6)

f
(
v2(x), v′

2(x)
) − k4 ∈ v′

2(x)∂f
(
v2(x), v′

2(x)
)

a.e. in (x4, b).

Then, set w1 = min{v1, v2} and w2 = max{v1, v2}, we have that w1 ∈ ΥM , w2 ∈ Υm and

inf
v∈Υ

F(v) = inf
Υ ∗

w1,w2

F(v) (4.7)

where Υ ∗
w1,w2

is defined in (2.7).

Proof. We have to prove (4.7) only, since w1 ∈ ΥM and w2 ∈ Υm by what observed in Remark 2.1. By Lemma 2.3,
without loss of generality we assume (2.8).

We claim that v′
1(x) �= 0 for a.e. x ∈ (a, x1). By contradiction, suppose that v′

1(x) = 0 in a subset H of (a, x1)

having positive measure. Then, in particular, a < x1, hence s1 < α.
Let H ∗ denote the subset of H , with meas(H \ H ∗) = 0, where (4.5) holds true. We get

f
(
v1(x),0

) = k1 � f (s1,0) for every x ∈ H ∗.

On the other hand, v1(x) � β and so f (v1(x),0) � f (s1,0) for each x ∈ [a, x1]. Thus, f (v1(x),0) = f (s1,0) for
every x ∈ H ∗, in contradiction with the definition of s1 since v1(x) > s1 for every x ∈ [a, x1).

Similarly we can prove that v′ (x) �= 0 a.e. in (x2, b), and also that v′ (x) �= 0 a.e. in (a, b) \ (x3, x4).
1 2
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By Theorem 2.7 it suffices to show that for every fixed u ∈ Υ̃ there exists w ∈ Υ ∗
w1,w2

such that F(w) � F(u).
Let us first assume that u ∈ ΥM and set

A := {
x ∈ [a, b]: u(x) < v1(x)

}
.

A is an open set hence, if not empty, it is union of no more than countably many pairwise disjoint open intervals
{(an, bn)}, such that [an, bn] ⊆ [a, b] \ (x1, x2) and u(an) = v1(an), u(bn) = v1(bn). If (an, bn) ⊆ (a, x1) then

s1 � min
x∈[an,bn]u(x) � u(bn) = v1(bn) = min

x∈[an,bn]v1(x)

since v1 is decreasing in [an, bn]. Analogously, we get minx∈[an,bn]u(x) � minx∈[an,bn] v1(x) when (an, bn) ⊆ (x2, b).
By applying Lemma 4.1 in [an, bn], we get

bn∫
an

f
(
u(x),u′(x)

)
dx �

bn∫
an

f
(
v1(x), v′

1(x)
)

dx.

Thus, set v := max{u,v1}, by what observed in Remark 2.1 we have v ∈ ΥM and

F(u) =
b∫

a

f
(
u(x),u′(x)

)
dx =

∑
n

bn∫
an

f
(
u(x),u′(x)

)
dx +

∫
[a,b]\A

f
(
u(x),u′(x)

)
dx

�
∑
n

bn∫
an

f
(
v1(x), v′

1(x)
)

dx +
∫

[a,b]\A
f

(
u(x),u′(x)

)
dx = F(v).

Now set w = min{v, v2}; again by Remark 2.1 we have w ∈ ΥM ∩ Υ ∗
w1,w2

. Now, if w(x) ≡ v(x) then F(w) = F(v) �
F(u) and the thesis follows. Otherwise, consider the nonempty open set

B := {
x ∈ [a, b]: v(x) > v2(x)

}
which is union of no more than countably many pairwise disjoint open intervals {(cn, dn)}, such that v(cn) = v2(cn),
v(dn) = v2(dn). Since v2 ∈ Υm then necessarily v2 is increasing on each (cn, dn), that is B ⊆ (a, x3). Therefore, since
also v is increasing in (cn, dn), by (4.6) and Proposition 3.3 we have that

dn∫
cn

f
(
v(x), v′(x)

)
dx �

dn∫
cn

f
(
v2(x), v′

2(x)
)

dx =
dn∫

cn

f
(
w(x),w′(x)

)
dx,

hence F(w) � F(v) � F(u).
If, instead, u ∈ Υm, define v = min{u,v2}; then v ∈ Υm and, reasoning as above, applying Lemma 4.2 in place

of Lemma 4.1, we get that F(v) � F(u). Then, considering w = max{v, v1}, it turns out that w ∈ Υm ∩ Υ ∗
w1,w2

and
satisfies the thesis of the proposition. �
5. Regularity w.r.t. the boundary data

Another step towards our general existence results for free problems is the study of the regularity of the minima of
constrained variational problems with varying endpoints.

Fixed γ1 � α and γ2 � β with γ1, γ2 ∈ I , put D := [a, b] × [γ1, γ2] and according to the values of y ∈ [γ1, γ2]
define the functions Hi : D → R, for i = 1,2, as follows:

H 1(x, y) :=
⎧⎨
⎩

infv∈Υ −[(a,α),(x,y)]
∫ x

a
f (v(ξ), v′(ξ))dξ if a < x � b and γ1 � y � α,

infv∈Υ +[(a,α),(x,y)]
∫ x

a
f (v(ξ), v′(ξ))dξ if a < x � b and α < y � γ2,
0 if x = a
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and

H 2(x, y) :=

⎧⎪⎨
⎪⎩

infv∈Υ +[(x,y),(b,β)]
∫ b

x
f (v(ξ), v′(ξ))dξ if a � x < b and γ1 � y � β,

infv∈Υ −[(x,y),(b,β)]
∫ b

x
f (v(ξ), v′(ξ))dξ if a � x < b and β < y � γ2,

0 if x = b.

Finally, let H : D → [0,+∞) be defined by

H(x,y) := H 1(x, y) + H 2(x, y). (5.1)

The following result holds.

Theorem 5.1. Let f : I × R → [0,+∞) be a continuous function. Then H is lower semicontinuous in D.

Proof. Let us prove that both functions H 1 and H 2 are lower semicontinuous. More precisely, fixed (x0, y0) ∈ D

and ε > 0, we prove that the properties below hold true (here Q((x, y);ρ) denotes the square centered at (x, y) with
size 2ρ):

(1) if x0 < b and y0 < β there exists ρ < min{b − x0, β − y0} such that for all (x, y) ∈ Q((x0, y0);ρ) ∩ D and all
v ∈ Υ +[(x, y), (b,β)] we have

x∫
a

f
(
v(ξ), v′(ξ)

)
dξ � H 2(x0, y0) − ε,

(2) if x0 < b and y0 > β there exists ρ < min{b − x0, y0 − β} such that for all (x, y) ∈ Q((x0, y0);ρ) ∩ D and all
v ∈ Υ −[(x, y), (b,β)] we have

x∫
a

f
(
v(ξ), v′(ξ)

)
dξ � H 2(x0, y0) − ε,

(3) if x0 < b and y0 = β there exists ρ < b − x0 such that for all (x, y) ∈ Q((x0, y0);ρ) ∩ D, for all v ∈
Υ +[(x, y), (b,β)] (if y � β), or for all v ∈ Υ −[(x, y), (b,β)] (if y > β) we have

x∫
a

f
(
v(ξ), v′(ξ)

)
dξ � H 2(x0, y0) − ε.

Notice that if x0 = b then H 2(x, y) � H 2(x0, y0) for all (x, y) ∈ D, so the lower semicontinuity of H 2 at (b, y0) is
trivial.

Analogous properties have to be proved for H 1.
The proof is rather long hence we divide it into various steps.
Step 1. Let x0 ∈ [a, b), y0 ∈ [γ1, β) and consider the function H 2. We split the proof of this case into several claims.

Claim 1. For every ε > 0 there exists δ1 = δ1(ε, x0, y0) such that

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ � H 2(x0, y0) − ε

2
(5.2)

for every (x, y) ∈ D, such that x ∈ (x0 − δ1, x0], y ∈ [y0, y0 + δ1), and for every v ∈ Υ +[(x, y), (b,β)].

To this aim, let

M := max

{
f (s, z): s ∈ [γ1, β], z ∈

[
0,max

{
1,4

β − y0
}]}

.

b − x0
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Let δ1 := min{ ε
8M+1 ,

b−x0
4 , β − y0}. Let us fix (x, y) such that x ∈ (x0 − δ1, x0], y ∈ [y0, y0 + δ1) and let us fix

v ∈ Υ +[(x, y), (b,β)].
Note that there exists an interval [c, d] ⊂ [x0, b] such that

d − c = 4δ1 and v(d) − v(c) � 8δ1
β − y0

b − x0
. (5.3)

Indeed, otherwise, put n := [ b−x0
4δ1

], that is such that n � b−x0
4δ1

< n + 1, we have

v(b) − v(x0) � v(x0 + 4nδ1) − v(x0) =
n∑

i=1

{
v(x0 + 4iδ1) − v(x0 + 4(i − 1)δ1)

}

> 2
β − y0

b − x0
4nδ1 > 2(β − y0)

n

n + 1
� β − y0,

that is v(x0) < y0, hence y0 � y = v(x) � v(x0) < y0, a contradiction. Therefore, (5.3) holds.
So, let r1(ξ) be the equation of the straight line joining the points (x0, y0) and (x + 2δ1, y), and let r2(ξ) be the

equation of the straight line joining the points (c + 2δ1, v(c)) and (d, v(d)). Let us define ṽ : [x0, b] → R, as

ṽ(ξ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r1(ξ) for x0 � ξ � x + 2δ1,

v(ξ − 2δ1) for x + 2δ1 � ξ � c + 2δ1,

r2(ξ) for c + 2δ1 � ξ � d,

v(ξ) for d � ξ � b.

Note that ṽ ∈ W 1,1(x0, b), with ṽ(x0) = y0, ṽ(b) = β and ṽ′(ξ) � 0, hence ṽ ∈ Υ +[(x0, y0), (b,β)]. Moreover, ob-
serve that

r ′
1(ξ) = y − y0

x + 2δ1 − x0
� 1, r ′

2(ξ) = v(d) − v(c)

d − c − 2δ1
= v(d) − v(c)

2δ1
� 4

β − y0

b − x0
.

Then,

x+2δ1∫
x0

f
(
r1(ξ), r ′

1(ξ)
)

dξ � M(x + 2δ1 − x0) � 2Mδ1 � ε

4
,

d∫
c+2δ1

f
(
r2(ξ), r ′

2(ξ)
)

dξ � M(d − c − 2δ1) = 2δ1M � ε

4
.

Therefore,

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ

�
c∫

x

f
(
v(ξ), v′(ξ)

)
dξ +

b∫
d

f
(
v(ξ), v′(ξ)

)
dξ

=
c+2δ1∫

x+2δ1

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ +

b∫
d

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ

=
b∫

x0

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ −

x+2δ1∫
x0

f
(
r1(ξ), r ′

1(ξ)
)

dξ −
d∫

c+2δ1

f
(
r2(ξ), r ′

2(ξ)
)

dξ � H 2(x0, y0) − ε

2

and (5.2) follows.
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Claim 2. For every ε > 0 there exists δ2 = δ2(ε, x0, y0) such that

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ � H 2(x0, y0) − ε (5.4)

for every (x, y) ∈ D, such that x < b, x ∈ [x0, x0 + δ2), y ∈ [y0, y0 + δ2) and every v ∈ Υ +[(x, y), (b,β)].

To this aim, let m := max{f (s,0): s ∈ [γ1, β]} and δ2 := min{ ε
2m+1 , δ1} (where δ1 has been defined in Claim 1),

and let us fix (x, y) such that 0 � x − x0 < δ2, 0 � y − y0 < δ2. Fixed v ∈ Υ +[(x, y), (b,β)], define

ṽ(ξ) :=
{

v(ξ + x − x0) for x0 � ξ � b − x + x0,

β for b − x + x0 � ξ � b.

Observe that ṽ ∈ Υ +[(x0, y), (b,β)] and

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ �

b∫
x0

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ − m(x − x0) >

b∫
x0

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ − ε

2
.

Moreover, by applying Claim 1 we deduce

b∫
x0

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ > H 2(x0, y0) − ε

2

and (5.4) follows.

Claim 3. Let y0 > γ1 (otherwise this claim is meaningless).
Then for every ε > 0 there exists δ3 = δ3(ε, x0, y0) > 0 such that

b∫
x0

f
(
v(ξ), v′(ξ)

)
dξ � H 2(x0, y0) − ε

4
(5.5)

for every v ∈ Υ +[(x0, y), (b,β)], with (x0, y) ∈ D, y ∈ (y0 − δ3, y0).

Indeed, since f is uniformly continuous in [γ1, β] × [0,1], there exists a real η > 0 such that∣∣f (x1, z) − f (x2,0)
∣∣ <

ε

8(b − a)
if |x1 − x2| < η, z ∈ [γ1, η]. (5.6)

Let δ3 := min{η,
ηε

8m+1 , y0 − γ1} (with m as in Claim 2) and let us fix y ∈ (y0 − δ3, y0) and v ∈ Υ +[(x0, y), (b,β)].
Let x̄ > x0 be such that v(x̄) = y0. Then

H 2(x0, y0) �
x̄∫

x0

f (y0,0)dξ +
b∫

x̄

f
(
v(ξ), v′(ξ)

)
dξ.

Hence, to prove (5.5) it suffices to show that

x̄∫
x0

[
f

(
v(ξ), v′(ξ)

) − f (y0,0)
]

dξ � −ε

4
. (5.7)

To this purpose, put

A := {
ξ ∈ [x0, x̄]: v′(ξ) > η

}
, B := {

ξ ∈ [x0, x̄]: v′(ξ) � η
}
.
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Observe that meas(A) � ε
8m+1 , indeed otherwise we would have

v(x̄) − v(x0) �
∫
A

v′(ξ)dξ > η
ε

8m + 1
� δ3,

a contradiction, since v(x̄) = y0 and v(x) = y with |y − y0| < δ3. Therefore, since f is nonnegative and (5.6) holds,
we get

x̄∫
x0

[
f

(
v(ξ), v′(ξ)

) − f (y0,0)
]

dξ �
∫
B

[
f

(
v(ξ), v′(ξ)

) − f (y0,0)
]

dξ −
∫
A

f (y0,0)dξ

� − ε

8(b − a)
meas(B) − f (y0,0)meas(A) � −ε

8
− mmeas(A) � −ε

4

that is (5.7).

Claim 4. Let y0 > γ1. Then for every ε > 0 there exists δ4 = δ4(ε, x0, y0) > 0 such that

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ � H 2(x0, y0) − ε

2
(5.8)

for every (x, y) ∈ D, with x < b, x ∈ (x0, x0 + δ4), y ∈ (y0 − δ4, y0) and every v ∈ Υ +[(x, y), (b,β)].

Let δ4 := min{δ3,
ε

4m+1 , b − x0} (with m as in Claim 2 and δ3 as in Claim 3).
Fix x ∈ (x0, x0 + δ4), y ∈ (y0 − δ4, y0) and v ∈ Υ +[(x, y), (b,β)]. Let us consider the function

ṽ(ξ) :=
{

v(ξ + x − x0) for x0 � ξ � b − x + x0,

β for b − x + x0 � ξ � b.

We have ṽ(x0) = v(x) = y and then ṽ ∈ Υ +[(x0, y), (b,β)]. Moreover,

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ =

b−x+x0∫
x0

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ

=
b∫

x0

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ − m(x − x0)

�
b∫

x0

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ − ε

4
.

Then, by applying what proved in Claim 3, we deduce (5.8).

Claim 5. Let y0 > γ1. Then for every ε > 0 there exists δ5 = δ5(ε, x0, y0) > 0 such that

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ � H 2(x0, y0) − ε (5.9)

for every (x, y) ∈ D, with x ∈ (x0 − δ5, x0), y ∈ (y0 − δ5, y0) and every v ∈ Υ +[(x, y), (b,β)].

Similarly to what done in Claim 1, let

K := max

{
f (s, z): s ∈ [γ1, β], z ∈

[
0,max

{
1,4

β − y0 + 1
}]}

.

b − x0
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Let δ5 := min{1, δ4,
ε

2K+1 ,
b−x0

2 }, with δ4 as in Claim 4.
Let us fix (x, y) such that x ∈ (x0 − δ5, x0], y ∈ (y0 − δ5, y0] and let us fix v ∈ Υ +[(x, y), (b,β)].
Note that there exists an interval [c, d] ⊂ [x0, b] such that

d − c = 2δ5 and v(d) − v(c) � 4δ5
β − y0 + 1

b − x0
. (5.10)

Indeed, otherwise, put n := [ b−x0
2δ5

], that is such that n � b−x0
2δ5

< n + 1, we have

v(b) − v(x) � v(x0 + 2nδ5) − v(x0) =
n∑

i=1

{
v(x0 + 2iδ5) − v

(
x0 + 2(i − 1)δ5

)}

> 4
β − y0 + 1

b − x0
nδ5 > 2(β − y0 + 1)

n

n + 1
� β − y0 + 1 > β − y,

that is v(x) < y, a contradiction. Therefore, (5.10) holds.
So, let r(ξ) be the equation of the straightline joining the points (c + δ5, v(c)) and (d, v(d)). Let us define

ṽ : [x + δ5, b] → R, as

ṽ(ξ) :=
⎧⎨
⎩

v(ξ − δ5) for x + δ5 � ξ � c + δ5,

r(ξ) for c + δ5 � ξ � d,

v(ξ) for d � ξ � b.

Note that ṽ ∈ W 1,1(x + δ5, b), with ṽ(x + δ5) = y, ṽ(b) = β and ṽ′(ξ) � 0, hence ṽ ∈ Υ +[(x + δ5, y), (b,β)].
Moreover, by (5.10) observe that r ′(ξ) = v(d)−v(c)

d−c−δ5
= v(d)−v(c)

δ5
� 4β−y0+1

b−x0
. Then, by definition of K and δ5,

d∫
c+δ5

f
(
r(ξ), r ′(ξ)

)
dξ � K(d − c − δ5) = δ5K � ε

2
.

Therefore,

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ �

c∫
x

f
(
v(ξ), v′(ξ)

)
dξ +

b∫
d

f
(
v(ξ), v′(ξ)

)
dξ

=
c+δ5∫

x+δ5

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ +

b∫
d

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ

=
b∫

x+δ5

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ −

d∫
c+δ5

f
(
r(ξ), r ′(ξ)

)
dξ

�
b∫

x+δ5

f
(
ṽ(ξ), ṽ′(ξ)

)
dξ − ε

2
.

Since x + δ5 ∈ (x0, x0 + δ4) and y ∈ (y0 − δ5, y0), we can apply what proved in Claim 4 to conclude the validity
of (5.9).

Summarizing, put ρ := mini=1,...,5δi , by virtue of Claims 1–5, the thesis follows for H 2 when y0 ∈ [γ1, β).
Notice that Claims 3–5 work even when y0 = β .
Step 2. In a similar way we can treat the lower semicontinuity of H 1 when α < y0 � γ2; we sketch here only one

claim, analogous to Claim 1 of Step 1.
Fixed x0 > a and α < y0 � γ2, consider x ∈ [x0, x0 + δ1) and y ∈ (y0 − δ1, y0], where

δ1 := min

{
ε

,
x0 − a

, y0 − α

}

8M + 1 4
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and

M := max

{
f (s, z): s ∈ [α,γ2] z ∈

[
0,max

{
1,4

y0 − α

x0 − a

}]}
.

Given v ∈ Υ +[(a,α), (x, y)], arguing as in Claim 1, there exists an interval [c, d] ⊂ [a, x0] such that

d − c = 4δ1 and v(d) − v(c) � 8δ1
y0 − α

x0 − a
.

Let r1(ξ) be the equation of the straight line joining the points (c, v(c)) and (d − 2δ1, v(d)) and r2(ξ) be the equation
of the straight line joining the points (x − 2δ1, y) and (x0, y0). Define ṽ : [a, x0] → R, as

ṽ(ξ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(ξ) for a � ξ � c,

r1(ξ) for c � ξ � d − 2δ1,

v(ξ + 2δ1) for d − 2δ1 � ξ � x − 2δ1,

r2(ξ) for x − 2δ1 � ξ � x0.

Note that ṽ ∈ W 1,1(a, x0), with ṽ(a) = α, ṽ(x0) = y0, and ṽ′(ξ) � 0, hence ṽ ∈ Υ +[(a,α), (x0, y0)] and following
what done in Claim 1 we can prove that

x∫
a

f
(
v(ξ), v′(ξ)

)
dξ � H 1(x0, y0) − ε

2
.

Observe that we applied the same argument developed in Claim 1 of Step 1 in a sector which is the symmetric of
the one considered in such a claim, with respect to the point (x0, y0). Similarly, using the same argument of Claim 2
in Step 1 we achieve the assertion for (x, y) close to (x0, y0), with x < x0, y < y0. Analogous considerations hold for
Claims 3–5 which now work for y > y0 � α.

Step 3. In order to prove the result for H 2(x0, y0) when β < y0 � γ2 and for H 1(x0, y0) when γ1 � y0 < α,
we can reduce ourselves to the above cases by a change of variable. If (x, y) ∈ [a, b) × (β, γ2], let us define T :
Υ −[(x, y), (b,β)] → Υ +[(a,β), (a + b − x, y)]

T (v)(s) = v∗(s) = v(a + b − s). (5.11)

Such an operator T is bijective. Moreover, define f∗(s, z) := f (s,−z) and

H 1∗ (ξ, y) := inf

{ ξ∫
a

f∗
(
v∗(t), v∗′

(t)
)

dt : v∗ ∈ Υ +[
(a,β), (ξ, y)

]}
(5.12)

for (ξ, y) ∈ (a, b] × (β, γ2]. It is easy to see that H 1∗ (a + b − x, y) = H 2(x, y).
From what proved in Step 2, for every ε > 0 there exists a constant r = r(ε, x0, y0) > 0, such that

a+b−x∫
a

f∗
(
v∗(t), v∗′

(t)
)

dt � H 1∗ (a + b − x0, y0) − ε

for every (x, y) ∈ [a, b) × (β, γ2], such that |x − x0| < r , |y − y0| < r , and every v∗ ∈ Υ +[(a,β), (a + b − x, y)].
Therefore, the change of variable ξ = a + b − t implies

b∫
x

f
(
v(ξ), v′(ξ)

)
dξ � H 1∗ (a + b − x0, y0) − ε = H 2(x0, y0) − ε.

Similarly, when (x, y) ∈ (a, b] × [γ1, α) consider the change of variable in (5.11). This time

T : Υ −[
(a,α), (x, y)

] → Υ +[
(a + b − x, y), (b,α)

]
and we can reason as above applying what proved in Step 1.
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Step 4. When y0 = β and a � x0 < b we need to compare H 2(x0, y0) with
∫ b

x
f (v(t), v′(t))dt, where v ∈

Υ +[(x, y), (b,β)] if y < β and v ∈ Υ −[(x, y), (b,β)] if y � β , with (x, y) close to (x0, y0). In the first case we
can apply Claims 3–5 of Step 1, that still work if y0 = β , while when y � β we consider the change of variable
defined in Step 3, see (5.11). Defining H 1∗ (ξ, y) as in (5.12) for (ξ, y) ∈ (a, b] × [β,γ2], we apply Step 2 to get an
inequality for H 1∗ which reduces to the inequality for H 2 we were looking for, by inverting the change variable.

In a similar way we can prove the lower semicontinuity of H 1(x, y) at (x0, α), x0 > a. �
6. Link between the solvability of free and constrained problems

In this section we prove that the solvability of suitable constrained problems (P ±) with varying endpoints implies
the solvability of (P ). Notice that in view of Theorem 2.4 all the results stated in this section hold even if condition
(2.4) is replaced by one of the conditions (2.9+), (2.9−), provided that I is closed.

Theorem 6.1. Let f : I × R → [0,+∞) be a continuous function, satisfying (2.2)–(2.4). Let v1 and v2 be as in
Proposition 4.3 and set w1 := min{v1, v2} and w2 := max{v1, v2}.

Assume that the following constrained problems, whenever they are well defined, are solvable:

(P −)
[
(a,α), (x, y)

]
and

(
P +)[

(a,α), (x, y)
]

for all (x, y) such that x ∈ (a, b], w1(x) � y � w2(x); (6.1)

(P +)
[
(x, y), (b,β)

]
and (P −)

[
(x, y), (b,β)

]
for all (x, y) such that x ∈ [a, b), w1(x) � y � w2(x). (6.2)

Then (P ) is solvable.

Proof. Since Proposition 4.3 holds true, we have that infv∈Υ F(v) = infv∈Υ ∗
w1,w2

F(v). Thus, it is sufficient to prove
that the last infimum is attained.

Define

D∗ = {
(x, y): x ∈ [a, b], w1(x) � y � w2(x)

}
and let H be defined as in (5.1), with γ1 = min{α, s1} and γ2 = max{β, s2}. Since D∗ is compact, by Theorem 5.1 we
get that the function H has a minimum in (x∗, y∗) ∈ D∗. By assumptions (6.1) and (6.2) we deduce that if x∗ > a

then the infimum H 1(x∗, y∗) is attained at a certain function u∗
1 ∈ Υ [(a,α), (x∗, y∗)] decreasing if y∗ � α, increasing

if y∗ > α. If moreover x∗ < b then the infimum H 2(x∗, y∗) is attained at a certain function u∗
2 ∈ Υ [(x∗, y∗), (b,β)],

increasing if y∗ � β decreasing if y∗ > β . Reasoning as in the proof of Proposition 4.3 it is easy to see that, without
loss of generality, we may assume that w1(x) � u∗

1(x) � w2(x) for every x ∈ [a, x∗] and w1(x) � u∗
2(x) � w2(x) for

every x ∈ [x∗, b].
Now, we set

u∗(x) :=
{

u∗
1(x) if x ∈ [a, x∗],

u∗
2(x) if x ∈ [x∗, b]; (6.3)

then u∗ ∈ Υ ∗
w1,w2

and F(u∗) = min(x,y)∈D∗H(x,y).

Let us fix v ∈ Υ ∗
w1,w2

and let x̂ satisfy v(x̂) = minx∈[a,b] v(x) if v ∈ ΥM , or v(x̂) = maxx∈[a,b] v(x) if v ∈ Υm. Then
(x̂, v(x̂)) ∈ D∗, so

F(v) � H
(
x̂, v(x̂)

)
� H(x∗, y∗) = F(u∗).

Thus, u∗ is a minimizer for problem (P ). �
Thanks to the link between the solvability of constrained problems with that of the unconstrained one (P ), ex-

pressed by Theorem 6.1, we can immediately deduce the existence of the minimum for problem (P ) when (P +) and
(P −) admit minimum whatever the boundary conditions may be. In fact, the following result hold.

Corollary 6.2. Let f : I × R → [0,+∞) be a continuous function, satisfying (2.2)–(2.4). If the following constrained
variational problems (see (2.5))
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• (P +)[(a,α), (x, y)] for all (x, y) ∈ (a, b] × [α,max{β, s2}],
• (P −)[(a,α), (x, y)] for all (x, y) ∈ (a, b] × [min{α, s1}, α],
• (P +)[(x, y), (b,β)] for all (x, y) ∈ [a, b) × [min{α, s1}, β],
• (P −)[(x, y), (b,β)] for all (x, y) ∈ [a, b) × [β,max{β, s2}],

are solvable, then (P ) admits minimum.
Moreover, if the above constrained problems have a Lipschitz solution, also (P ) does.

Proof. Let u−
1 , u+

1 be minimizers of (P −)[(a,α), ( a+b
2 ,min{α, s1})] and of (P +)[( a+b

2 ,min{α, s1}), (b,β)],
respectively. Analogously, let u−

2 , u+
2 be, respectively, minimizers of (P +)[(a,α), ( a+b

2 ,max{β, s2})] and of
(P −)[( a+b

2 ,max{β, s2}), (b,β)] respectively. Then by Proposition 3.1 the “glued” functions

v1(x) :=
{

u−
1 (x) if a � x � a+b

2 ,

u+
1 (x) if a+b

2 � x � b,
v2(x) :=

{
u−

2 (x) if a � x � a+b
2 ,

u+
2 (x) if a+b

2 � x � b

satisfy all the assumptions of Proposition 4.3, so the assertion follows from Theorem 6.1.
As regards the Lipschitz regularity, observe that the minimizer of (P ) just found is obtained by gluing two mini-

mizers of the constrained problems (see (6.3)). So, if they are Lipschitz, also the minimizer of (P ) enjoys the same
regularity property. �
7. Existence results

As a consequence of Corollary 6.2, when the constrained problems (P +), (P −) admits minimum whatever the
endpoints may be, then problem (P ) is solvable. Therefore, using the criteria for the existence of the minimum for
constrained problems stated in [14, Corollaries 16, 17], we can deduce results concerning the free problem (P ).

• Convex case
We first consider the case of noncoercive but convex integrands. In the sequel, whenever (2.4) holds true, we will

adopt the following notation

σ1 := min{α, s1}, σ2 := max{β, s2}
where s1, s2 were defined in (2.5).

Theorem 7.1. Let f : I × R → [0,+∞) be a continuous function satisfying (2.2)–(2.4). Suppose that for every
s ∈ [σ1, σ2] the function f (s, ·) is convex. Assume that

lim|z|→+∞ inf
{
f (s, z) − z∂f (s, z)

} = −∞, for a.e. s ∈ [σ1, σ2]. (7.1)

Then problem (P ) admits minimum. Moreover, if (7.1) holds for every s ∈ [σ1, σ2] then (P ) admits a Lipschitz
minimizer.

Proof. In order to apply Corollary 6.2, we have to show that the constrained problems (P +) and (P −) admit minimum
whatever the endpoints may be. This is a consequence of the existence result proved in [14, Theorem 15]. Indeed,
following the notations in [14, Section 5] for the constrained problem (P +), the growth condition (7.1) means that
λ(s) = −∞ for a.e. s ∈ [s1, s2], hence c0 := ess supλ(s) = −∞. Then, in order to apply [14, Theorem 15(ii)] we only
need to verify the validity of condition (17) in [14, Theorem 12], that is put

g−(s, z) := sup
{
f (s, z) − z∂f (s, z)

}
, γ (s, y) := sup

{
z > 0: g−(s, z) � y

}
we have to show that

1/γ (s, c) ∈ L1(σ1, σ2) for every c < min
s∈[σ1,σ2]

f (s,0). (7.2)

Indeed, we will show now that

inf γ (s, c) > 0 for every c < min f (s,0)

s∈[σ1,σ2] s∈[σ1,σ2]
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implying (7.2). In fact, assume by contradiction that infs∈[σ1,σ2] γ (s, c) = 0 for some c < mins∈[σ1,σ2] f (s,0). Then
there exists a sequence (sh)h in [σ1, σ2] such that

sup

{
f

(
sh,

1

h

)
− 1

h
∂f

(
sh,

1

h

)}
< c. (7.3)

Let us prove that

0 � f−
(

sh,
1

h

)
� max

s∈[σ1,σ2]
f (s,2), (7.4)

where f−(s, z) denotes the left derivative of f (s, ·) at the point z > 0. Since we can assume (2.8) without loss of
generality, the first inequality is trivial. By the convexity of f (sh, ·) and being f (s, z) � 0 we have

f (sh,2) � f

(
sh,

1

h

)
+ f−

(
sh,

1

h

)(
2 − 1

h

)
� f−

(
sh,

1

h

)

and (7.4) follows. By (7.3) and (2.8) we have

c > f

(
sh,

1

h

)
− 1

h
f−

(
sh,

1

h

)
� f (sh,0) − 1

h
max

s∈[σ1,σ2]
f (s,2).

So, taking a converging subsequence shk
→ s0 and passing to the limit we obtain

c � f (s0,0) � min
s∈[σ1,σ2]

f (s,0),

in contradiction with the choice of c.
Therefore, all the conditions of [14, Theorem 15(ii)] are satisfied and the constrained problem (P +) admits min-

imum whatever the endpoints may be. A similar argument works for (P −) too and this concludes the proof of the
existence of the minimum. As for the Lipschitz regularity, it follows from [14, Theorem 12]. �

Condition (7.1) is weaker than similar ones considered in [4–6], by various points of view, but mainly owing to
the requirement that it is satisfied just almost everywhere. In this way we can handle integrands f (s, z) possibly
vanishing in straight lines s = s0 with s0 lying in a given set of null measure. For instance, when the Lagrangian has
an affine-type structure, the statement of the previous theorem becomes the following.

Corollary 7.2. Let f (s, z) := φ(s) + ψ(s)h(z) with φ continuous and nonnegative, ψ continuous and almost every-
where positive, h nonnegative and convex. Assume that condition (2.4) is satisfied and that

lim|z|→+∞ inf
{
h(z) − z∂h(z)

} = −∞. (7.5)

Then problem (P ) is solvable. Moreover, if ψ(s) > 0 for every s ∈ I , then (P ) admits a Lipschitz minimizer.

Example 7.3. Let

f (s, z) = φ(s) + ψ(s)
√

1 + |z|q, q > 2

with φ,ψ as in Corollary 7.2. Clearly the associated functional is not coercive since ψ(s) may vanish. Nevertheless
(P ) admits minimizers for every boundary data.

Example 7.4. Let

f (s, z) = ψ(s)max
{
1, |z| − log |z|} or f (s, z) = ψ(s)

(|z| − √|z| ).
These functions f are both noncoercive. The former has been considered by Cellina–Ferriero [6] proving the existence
of a Lipschitz solution, and the second one, has been treated by Celada and Perrotta [4]. Notice that in these two
cases the authors assume that infs ψ(s) > 0. We are now able to remove this last requirement, indeed the integrands
satisfy condition (7.5) and the existence of the minimum is guaranteed even if infs ψ(s) = 0, provided that ψ is as in
Corollary 7.2.
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There are also situations in which condition (7.1) does not hold, but nevertheless problem (P ) admits minimum.
The following existence result, immediate consequence of [14, Corollary 16], holds for integrands having a product
structure.

Corollary 7.5. Let f (s, z) := ψ(s)h(z) with ψ continuous and positive, h nonnegative, convex, but not affine in any
half-line. Let condition (2.4) be satisfied and assume

lim|z|→+∞ inf
{
h(z) − z∂h(z)

} = 0. (7.6)

Then, problem (P ) admits a Lipschitz continuous minimizer.

Example 7.6. Let

f (s, z) = ψ(s)
√

1 + z2

with ψ as in Corollary 7.5. Condition (7.6) holds and (P ) admits a Lipschitz minimizer. Note that this result is also
consequence of the existence result obtained by Clarke [8].

Thanks to Corollary 2.6, the above results admit the following variant.

Corollary 7.7. If in Corollaries 7.2 and 7.5 condition (2.4) is replaced by

I is closed and unbounded and lim inf|s|→+∞ψ(s) > 0, (7.7)

then the conclusions still hold.

• Nonconvex case
Let us consider the relaxed problem

minimize

{
F ∗∗(v) =

b∫
a

f ∗∗(v(x), v′(x)
)

dx: v ∈ Υ

}
. (P ∗∗)

When the solvability of (P ∗∗) implies that of (P ), then all the previous existence results hold, provided that the as-
sumptions are referred to f ∗∗ instead of f . We mention now a recent relaxation theorem proved in [10, Theorem 4.4],
which can be usefully applied in this context.

Theorem 7.8. Let f,f ∗∗ : I × R → [0,+∞) be Borel-measurable functions. Suppose that s �→ f (s,0) is lower
semicontinuous, satisfying (2.3). Assume also that

co
{
z: f ∗∗(s, z) = f (s, z)

} = R for all s ∈ I (7.8)

and that at least one of the following conditions is satisfied

• the restriction of f ∗∗(·,0) to [α,β] has at most countable many minimizers,
• for every s ∈ [α,β] the detachment set {z ∈ R: f ∗∗(s, z) < f (s, z)} does not contain any interval (−δ,0) or (0, δ).

Then, if (P ∗∗) is solvable, also (P ) is solvable.

Therefore, if the Lagrangian f satisfies the assumptions of such a result and f ∗∗ satisfies the assumptions of
Theorem 7.1 (or the subsequent corollaries), then (P ) admits minimum.

Appendix A

In this section we provide the proofs of Theorem 2.4 and Corollary 2.6. We begin by proving a preliminary result
about condition (2.4), stating that the interval I can be assumed to be bounded, without loss of generality, if one of
conditions (A.2+), (A.2−) below holds true, so that condition (2.4) is trivially satisfied if I is closed.
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Lemma A.1. Let f : I × R → [0,+∞) be a Borel-measurable function. Let there exists measurable functions c1, c2 :
R → R satisfying

lim inf|s|→+∞ c1(s) > −∞, lim inf|s|→+∞ c2(s) > 0, (A.1)

such that

f (s, z) � c1(s) + c2(s)|z| for every s ∈ I, z � 0 (A.2+)

or

f (s, z) � c1(s) + c2(s)|z| for every s ∈ I, z � 0. (A.2−)

Then there exists L > 0 such that

inf
Υ

F = inf
Υ (L)

F

where Υ (L) := {u ∈ Υ : |u(x)| � L for every x ∈ [a, b]}.

Proof. Let us assume (A.2+) (the proof under condition (A.2−) is analogous). Moreover, assume that λ :=
infu∈Υ F(u) < +∞ (otherwise there is nothing to prove).

By (A.1) there exist constants ε > 0, K > 0, M > max{|α|, |β|}, such that for every |s| > M we have c1(s) > −K

and c2(s) > ε. Therefore,

f (s, z) � −K + εz for every s ∈ I with |s| � M, and every z > 0. (A.3)

Fixed a positive real constant H > λ, set L := 1
ε
(H + K(b − a)) + M .

Let us fix u ∈ Υ such that F(u) � H , and let x̄ ∈ [a, b] be such that |u(x̄)| > M (if such a point does not exist then
‖u‖L∞ � M < L). Suppose that u(x̄) > M (the proof is analogous if u(x̄) < −M). Let x0 := inf{x ∈ [a, b]: u(ξ) >

M for every ξ ∈ (x, x̄)}. Since M > α then x0 > a and u(x0) = M . So, by (A.3) we get

u(x̄) � u(x0) +
x̄∫

x0

[
u′(x)

]+ dx � M + 1

ε

( x̄∫
x0

f
(
u(x),u′(x)

)
dx + K(b − a)

)
� L.

Hence, ‖u‖L∞ � L for every u ∈ Υ such that F(u) < H and the assertion follows. �
Proof of Theorem 2.4. Let us assume (2.9+). Let us put

c1(s) := f ∗∗(s,0) − εK, c2(s) :=
{

0 if |s| < M,

ε if |s| � M.

Hence assumption (A.1) of Proposition A.2 is satisfied and we have

f ∗∗(s, z) − g(s)z � f ∗∗(s,0) + εz � f ∗∗(s, z) − εK + εz if z � K, |s| � M,

f ∗∗(s, z) − g(s)z � f ∗∗(s,0) � f ∗∗(s,0) − ε(K − z) if 0 � z � K, |s| � M,

f ∗∗(s, z) − g(s)z � f ∗∗(s,0) > f ∗∗(s,0) − εK = c1(s) + c2(s)z if z � 0, |s| � M

so that function f̃ satisfies condition (A.2+).
If (2.9−) holds, the proof is analogous. �

Proof of Corollary 2.6. Chosen a constant ξ0 ∈ ∂h∗∗(0), in this case conditions (2.9+) or (2.9−) are satisfied pro-
vided that:

lim
z→+∞

h∗∗(z)
z

− ξ0 > 0 or ξ0 − lim
z→+∞

h∗∗(z)
z

> 0,

respectively. If h∗∗ is not linear in the whole real line, then at least one of the limits limz→±∞ h∗∗(z)
z

is different
from ξ0. �
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