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Abstract

We establish a regularity criterion for weak solutions of the dissipative quasi-geostrophic equations (with dissipation (−�)γ/2,
0 < γ � 1). More precisely, we show that if θ ∈ L

r0
t ((0, T );Bα

p,∞(R2)) with α = 2
p + 1 − γ + γ

r0
is a weak solution of the 2D

quasi-geostrophic equation, then θ is a classical solution in (0, T ] × R2. This result extends the regularity result of Constantin and
Wu [P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. I. H.
Poincaré – AN (2007), doi:10.1016/j.anihpc.2007.10.001] to scaling invariant spaces.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we obtain a regularity criterion for weak solutions of the 2D dissipative quasi-geostrophic equations.
We consider the following initial value problem{

θt + u · ∇θ + (−�)γ/2θ = 0, x ∈ R2, t ∈ (0,∞),

θ(0, x) = θ0(x),
(1.1)

where γ ∈ (0,2] is a fixed parameter and the velocity u = (u1, u2) is divergence free and determined by the Riesz
transforms of the potential temperature θ :

u = (−R2θ, R1θ) = (−∂x2(−�)−1/2θ, ∂x1(−�)−1/2θ
)
.
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The 2D quasi-geostrophic equation is an important model in geophysical fluid dynamics used in meteorology and
oceanography (see, for example, Pedlosky [25]). It is derived from general quasi-geostrophic equations in the special
case of constant potential vorticity and buoyancy frequency.

The main mathematical question concerning the initial value problem (1.1) is whether there exists a global in
time smooth solution to (1.1) evolving from any given smooth initial data. Before we recall the known results in this
direction we note that cases γ > 1, γ = 1 and γ < 1 are called subcritical, critical and supercritical, respectively.
Existence of a global weak solution was established by Resnick [27]. Furthermore, in the subcritical case, Constantin
and Wu [10] proved that every sufficiently smooth initial data give rise to a unique global smooth solution. In the
critical case, γ = 1, Constantin, Cordoba and Wu [8] established the existence of a unique global classical solution
corresponding to any initial data that are small in L∞. The assumption requiring smallness in L∞ was removed by
Caffarelli and Vasseur [1], Kiselev, Nazarov and Volberg [22] and Dong and Du [16]. In [22] the authors proved
persistence of a global solution in C∞ corresponding to any C∞ periodic initial data. Dong and Du in [16] adapted
the method of [22] and obtained global well-posedness for the critical 2D dissipative quasi-geostrophic equations with
H 1 initial data in the whole space. On the other hand, Caffarelli and Vasseur established regularity of Leray–Hopf
solution by proving the following three claims:

(1) Every Leray–Hopf weak solution corresponding to initial data θ0 ∈ L2 is in L∞
loc(R

2 × (0,∞)).
(2) The L∞ solutions are Hölder regular i.e. they are in Cγ for some γ > 0.
(3) Every Hölder regular solution is a classical solution in C1,β .

While the main question addressing global in time existence is settled in the critical case, it still remains open
in the supercritical case, γ < 1. In this case Chae and Lee [4], Wu [29,31], Chen, Miao and Zhang [6], Hmidi and
Keraani [20] established existence of a global solution in Besov spaces evolving from small initial data (see also
[24,21]). Recently, Constantin and Wu in [11] implemented the approach of [1] in the supercritical case. They proved
that every Leray–Hopf weak solution corresponding to initial data θ0 ∈ L2 is in L∞

loc(R
2 × (0,∞)) and hence the

claim (1) is valid in the supercritical case. Concerning an analogue of the claim (2), Constantin and Wu in [11] proved
that L∞ solutions are Hölder continuous under the additional assumption that the velocity u ∈ C1−γ . In a separate
paper [12] Constantin and Wu considered the step (3) of the above approach and established a conditional regularity
result of the type: if a Leray–Hopf solution is in the sub-critical space L∞((t0, t1);Cδ(R2)) for some δ > 1 − γ on
the time interval [t0, t1], then such a solution is a classical solution on (t0, t1].

In this paper we extend the conditional regularity result of [12] to scaling invariant mixed time–space Besov spaces
Lr0((0, T );Bα

p,∞) with

α = 2

p
+ 1 − γ + γ

r0
. (1.2)

More precisely, we show that if

θ ∈ L
r0
t

(
(0, T );Bα

p,∞
(
R2))

is a weak solution of the 2D quasi-geostrophic equation (1.1), then θ is a classical solution of (1.1) in (0, T ] × R2.
Significance of this space is that it is a critical space, by which we mean scaling invariant under the scaling transfor-
mation

θλ = λγ−1θ
(
λx,λγ t

)
.

Since the following embedding relations

L∞
t L2

x ∩ L∞
t Cδ

x ↪→ L∞
t L2

x ∩ L∞
t Ḃ

δ(1− 2
p

)

p,∞ ↪→ L
r0
t Bα

p,∞
hold for sufficiently large p and r0, our regularity result can be understood as an extension of the regularity result of
Constantin and Wu [12] to critical spaces.

In order to prove the regularity result we first establish local existence and uniqueness of weak solutions to (1.1)
in certain mixed time–space Besov spaces of Chemin type L̃rBα

p,q (for a definition of this space, see Section 2). We
prove such existence and uniqueness results following the approach of Chen et al. [6]. We choose α according to (1.2)
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which in turn implies that the space Bα
p,q itself is subcritical. Therefore the time of existence depends only on the norm

of the initial data and not on the profile. We combine the local existence (stated in Proposition 3.1) and uniqueness
of weak solutions (stated in Proposition 3.3) to prove regularity by using a contradiction argument in the spirit of the
work of Giga [19] in the context of the Navier–Stokes equations.

We recall that the first conditional regularity result for solutions to (1.1) was obtained by Constantin, Majda and
Tabak [9]. Recently Chae established a conditional regularity result in Sobolev spaces in [3] and in Triebel–Lizorkin
spaces in [2], while Dong and Chen in [14] extended the regularity criterion of Chae [3] to Besov spaces by proving
that a solution to (1.1) is regular on the time interval (0, T ] if

∇θ ∈ Lr
(
(0, T ); Ḃ0

p,∞
)

with
2

p
+ γ

r
= γ,

4

γ
� p � ∞.

In comparison with [14] we require less regularity for θ . We note that these conditional regularity results are in the
spirit of the conditional regularity results available for the 3D Navier–Stokes equations e.g. [23,26,28,18,7].

Organization of the paper

The paper is organized as follows. In Section 2 we introduce the notation that shall be used throughout the paper
and we review known estimates on the nonlinear term. In Section 3 we state the main results of the paper. Then in
Section 4 we prove the existence and regularity results, while in Appendix A we fill out details of the existence result
stated in Section 3.

2. Notation and preliminaries

2.1. Notation and spaces

We recall that for any β ∈ R the fractional Laplacian (−�)β is defined via its Fourier transform:

̂(−�)βf (ξ) = |ξ |2βf̂ (ξ).

We note that by a weak solution to (1.1) we mean θ(t, x) in (0,∞) × R2 such that for any smooth function φ(t, x)

satisfying φ(t, ·) ∈ S for each t , the identity∫
R2

θ(T , ·)φ(T , ·) dx −
∫
R2

θ(0, ·)φ(0, ·) dx −
T∫

0

∫
R2

θφt dx dt −
T∫

0

∫
R2

uθ∇φ dx dt +
T∫

0

∫
R2

θΛγ φ dx dt = 0

holds for any T > 0.
Before we recall the definition of the spaces that will be used throughout the paper, we shall review the Littlewood–

Paley decomposition. For any integer j , define Δj to be the Littlewood–Paley projection operator with Δjv = φj ∗ v,
where

φ̂j (ξ) = φ̂
(
2−j ξ

)
, φ̂ ∈ C∞

0

(
R2 \ {0}), φ̂ � 0,

supp φ̂ ⊂ {
ξ ∈ R2

∣∣ 1/2 � |ξ | � 2
}
,

∑
j∈Z

φ̂j (ξ) = 1 for ξ 	= 0.

Formally, we have the Littlewood–Paley decomposition

v(t, ·) =
∑
j∈Z

Δjv(t, ·).

Also denote

Λ = (−�)1/2, Δ̄−1 =
∑
j<0

Δj .

As usual, for any p ∈ [1,∞) and s � 0, we denote by Ẇ s
p and Ws

p , respectively the homogeneous and inhomoge-
neous Sobolev spaces with norms
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‖v‖Ẇ s
p

:=
∥∥∥∥(∑

k∈Z

∣∣2ksΔkv
∣∣2

)1/2∥∥∥∥
Lp

∼ ∥∥Λsv
∥∥

Lp ,

‖v‖Ws
p

:= ‖v‖Ẇ s
p

+ ‖v‖Lp .

When p = 2, we use Ḣ s and Hs instead of Ẇ s
p and Ws

p . For any p,q ∈ [1,∞] and s ∈ R, we denote by Ḃs
p,q and

Bs
p,q , respectively the homogeneous and inhomogeneous Besov spaces equipped with norms

‖v‖Ḃs
p,q

:=
{

(
∑

j∈Z
2jsq‖Δjv‖q

Lp)1/q, for q < ∞,

supj∈Z 2js‖Δjv‖Lp, for q = ∞,

‖v‖Bs
p,q

:=
{

(
∑

j�0 2jsq‖Δjv‖q
Lp)1/q + ‖Δ̄−1v‖Lp , for q < ∞,

supj�0 2js‖Δjv‖Lp + ‖Δ̄−1v‖Lp, for q = ∞.

If s > 0, we have

Bs
p,q = Ḃs

p,q ∩ Lp, ‖v‖Bs
p,q

∼ ‖v‖Ḃs
p,q

+ ‖v‖Lp .

For s ∈ R, 1 � p,q, r � ∞, I an interval in R, the homogeneous mixed time–space Besov space L̃r (I ; Ḃs
p,q) is

the space of distributions in D(I ; S ′
0(R

d)) such that

‖f ‖
L̃r (I ;Ḃs

p,q )
:=

∥∥∥∥2sj

(∫
I

∥∥Δjf (t)
∥∥r

Lp(Rd )
dt

)1/r∥∥∥∥
lq (Z)

< ∞

(usual modification applied if r = ∞ or q = ∞). Also the inhomogeneous time–space Besov norm is given by

‖f ‖L̃r (I ;Bs
p,q ) := ‖f ‖Lr(I ;Lp(Rd )) + ‖f ‖

L̃r (I ;Ḃs
p,q )

.

These spaces were introduced by Chemin [5].

2.2. Preliminaries

The following Bernstein’s inequality is well known.

Lemma 2.1.

(i) Let p ∈ [1,∞] and s ∈ R. Then for any j ∈ Z, we have

λ2js‖Δjv‖Lp �
∥∥ΛsΔjv

∥∥
Lp � λ′2js‖Δjv‖Lp (2.1)

with some constants λ and λ′ depending only on p and s.
(ii) Moreover, for 1 � p � q � ∞, there exists a positive constant C depending only on p and q such that

‖Δjv‖Lq � C2(1/p−1/q)dj‖Δjv‖Lp . (2.2)

Now we recall the generalized Bernstein’s inequality and a lower bound for an integral involving fractional Lapla-
cian which will be used in the paper. They can be found in [30,21] and [6].

Lemma 2.2.

(i) Let p ∈ [2,∞) and γ ∈ [0,2]. Then for any j ∈ Z, we have

λ2γj/p‖Δjv‖Lp �
∥∥Λγ/2(|Δjv|p/2)∥∥2/p

L2 � λ′2γj/p‖Δjv‖Lp (2.3)

with some positive constants λ and λ′ depending only on p and γ .
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(ii) Moreover, we have∫
R2

(
Λγ v

)|v|p−2v � c
∥∥Λγ/2|v|p/2

∥∥2
L2 , (2.4)

and ∫
R2

(
Λγ Δjv

)|Δjv|p−2Δjv � c2γj‖Δjv‖p
Lp , (2.5)

with some positive constant c depending only on p and γ .

Next we recall the commutator estimate that shall be used throughout the paper.

Lemma 2.3. Let d � 1 be an integer, p,q ∈ [1,∞], 1
r

= 1
r1

+ 1
r2

� 1, ρ1 < 1, ρ2 < 1 and u be a divergence free vector
field. Assume in addition that

ρ1 + ρ2 + d min

(
1,

2

p

)
> 0, ρ1 + d

p
> 0.

Then for any j ∈ Z we have∥∥[u,Δj ] · ∇v
∥∥

Lr
t (L

p(Rd ))
� Ccj 2−j ( d

p
+ρ1+ρ2−1)‖∇u‖

L̃
r1
t (Ḃ

d
p +ρ1−1
p,q (Rd ))

‖∇v‖
L̃

r2
t (Ḃ

d
p +ρ2−1
p,q (Rd ))

, (2.6)

where C is a positive constant independent of j and {cj } ∈ lq satisfying ‖cj‖lq � 1. Here

[u,Δj ] · ∇v = u · Δj(∇v) − Δj(u · ∇v).

Proof. See [6] and [13]. �
Also we state the following result about a product of two functions in Besov spaces. For a proof, see, for exam-

ple, [6].

Lemma 2.4. Let s > − d
p

− 1, s < s1 < d
p

, 2 � p � ∞, 1 � q � ∞, 1
r

= 1
r1

+ 1
r2

� 1 and u be a divergence free vector
field. Then

‖u · ∇v‖
L̃r

t (Ḃ
s
p,q )

� ‖u‖
L̃

r1
t (Ḃ

s1
p,q )

‖∇v‖
L̃

r2
t (Ḃ

s+ d
p −s1

p,q )

.

If s1 = d
p

or s1 = s, then q has to be taken to be 1.

3. Formulation of results

In this section we formulate existence and uniqueness results that shall be used in the proof of our main regularity
result. Also we formulate the main regularity result.

First we state the local well-posedness result for (1.1).

Proposition 3.1. Let γ ∈ (0,1], p ∈ [2,∞), q ∈ [1,∞] and r0 ∈ [2,∞). Denote by α = 2
p

+ 1 − γ + γ
r0

. Assume

θ0 ∈ Bα
p,q(R2). Then there exists T � c‖θ0‖−r0

Ḃα
p,q

for some constant c > 0 such that the initial value problem for (1.1)

has a unique weak solution

θ(t, x) ∈ L̃2((0, T );Bα+ γ
2

p,q

) ∩ L̃∞(
(0, T );Bα

p,q

)
.

For any r ∈ [2,∞],
‖θ‖ ˜ r α+ γ

r 2
� C‖θ0‖Bα

p,q
(3.1)
Lt Bp,q ((0,T )×R )
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with a positive constant C independent of r , and θ is smooth in (0, T ) × R2. Moreover, if q < ∞, we also have

θ(t, x) ∈ C
([0, T );Bα

p,q

)
.

Remark 3.2. From the proof, it is clear that if r0 > 2 then the unique solution θ is actually in

L̃1((0, T );Bα+γ
p,q

) ∩ L̃∞(
(0, T );Bα

p,q

)
.

Moreover, for any r ∈ [1,∞] estimate (3.1) holds. However, we will not use this in our main theorem.

An analogous local well-posedness result in the critical space B
2
p

+1−γ

p,q was established in [6] (see also [31] for a
similar well-posedness result and several uniqueness results, and [24,21] for local well-posedness results in Sobolev
spaces). However, we remark that with θ0 in the critical space the time of existence T depends on the profile of θ0
instead of the norm.

The next proposition is about the uniqueness of weak solutions in mixed time–space Besov spaces.

Proposition 3.3. Let γ ∈ (0,1], p ∈ [2,∞), T ∈ (0,∞) and r0 ∈ [2,∞). Denote by α = 2
p

+ 1 − γ + γ
r0

.

(a) Let q ∈ [1,∞). If θ, θ ′ ∈ L̃
r0
t Bα

p,q((0, T ) × R2) are two weak solutions of (1.1) with the same initial data, then

θ = θ ′ in [0, T ) × R2.
(b) Let q = ∞. If θ, θ ′ ∈ L

r0
t Bα

p,q((0, T )×R2) are two weak solutions of (1.1) with the same initial data, then θ = θ ′

in [0, T ) × R2.

The following regularity criteria is our main result. Roughly speaking, it says weak solutions in certain critical
time–space Besov spaces are regular.

Theorem 3.4. Let γ ∈ (0,1], p ∈ [2,∞), T ∈ (0,∞) and r0 ∈ [2,∞). Denote by α = 2
p

+ 1 − γ + γ
r0

. If

θ ∈ L
r0
t

(
(0, T );Bα

p,∞
(
R2))

is a weak solution of (1.1), then θ is in C∞((0, T ] × R2), and thus it is a classical solution of (1.1) in the region
(0, T ] × R2.

4. Proofs of existence, uniqueness and regularity

In this section we present proofs of the above stated results. In order to prove Propositions 3.1 and 3.3 we modify
accordingly the approach used by Chen et al. [6].

4.1. Proof of Proposition 3.1

4.1.1. A priori estimate
We apply the operator Δj to the first equation in (1.1) to obtain

∂tΔj θ + Δj(u · ∇θ) + Λγ Δjθ = 0, (4.1)

which is equivalent to

∂tΔj θ + u · ∇Δjθ + Λγ Δjθ = [u,Δj ] · ∇θ. (4.2)

Now we multiply (4.2) by |Δjθ |p−2Δjθ and integrate in x. Since u is divergence free, the integration by parts yields∫
2

u · ∇Δjθ |Δjθ |p−2Δjθ dx = 0.
R
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Hence we have
1

p

d

dt
‖Δjθ‖p

Lp +
∫
R2

(
Λγ Δjθ

)|Δjθ |p−2Δjθ dx =
∫
R2

[u,Δj ] · ∇θ |Δjθ |p−2Δjθ dx. (4.3)

Now we use Lemma 2.2 to obtain a lower bound on the second term on the left-hand side of (4.3) and Hölder’s
inequality to get an upper bound on the right-hand side of (4.3) to derive

d

dt
‖Δjθ‖Lp + λ2γj‖Δjθ‖Lp � C

∥∥[u,Δj ] · ∇θ
∥∥

Lp , (4.4)

where λ = λ(p,γ ) > 0. Gronwall’s inequality applied on (4.4) implies

‖Δjθ‖Lp � e−λ2γj t
∥∥Δjθ(0)

∥∥
Lp + C

t∫
0

e−λ2γj (t−s)
∥∥([u,Δj ] · ∇θ

)
(s)

∥∥
Lp ds. (4.5)

Fix r ∈ [2,∞]. We take the Lr
t norm over the interval of time (0, T ) to obtain:

‖Δjθ‖Lr
t L

p
x ((0,T )×R2) � I1 + I2, (4.6)

where

I1 = ∥∥e−λ2γj t
∥∥

Lr
t (0,T )

∥∥Δjθ(0)
∥∥

L
p
x
,

I2 =
∥∥∥∥∥

t∫
0

e−λ2γj (t−s)
∥∥([u,Δj ] · ∇θ

)
(s)

∥∥
L

p
x
ds

∥∥∥∥∥
Lr

t (0,T )

.

Since∥∥e−λ2γj t
∥∥

Lr
t (0,T )

�
(

1 − e−rλ2γj T

rλ2γj

) 1
r

� λ− 1
r 2− γ

r
j ,

we can bound I1 from above as follows

I1 � λ− 1
r 2− γ

r
j
∥∥Δjθ(0)

∥∥
L

p
x
. (4.7)

In order to estimate I2 we use Young’s inequality to obtain

I2 �
∥∥e−λ2γj t

∥∥
L1

t (0,T )

∥∥[u,Δj ] · ∇θ
∥∥

Lr
t L

p
x ((0,T )×R2)

. (4.8)

Since

1 − e−λ2γj T

λ2γj
� 2−γj ,

as well as

1 − e−λ2γj T

λ2γj
� T ,

we have

1 − e−λ2γj T

λ2γj
� 2

− γ
r3

j
T

1− 1
r3 ,

where r3 is arbitrary real number such that r3 > 1 and will be chosen later. Hence (4.8) implies

I2 � 2
− γ

r3
j
T

1− 1
r3

∥∥[u,Δj ] · ∇θ
∥∥

Lr
t L

p
x ((0,T )×R2)

. (4.9)

Now (4.6) combined with (4.7) and (4.9) gives

‖Δjθ‖LrL
p
((0,T )×R2) � λ− 1

r 2− γ
r
j
∥∥Δjθ(0)

∥∥ p + 2
− γ

r3
j
T

1− 1
r3

∥∥[u,Δj ] · ∇θ
∥∥

r p 2 . (4.10)

t x Lx Lt Lx ((0,T )×R )
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After we multiply (4.10) by 2(α+ γ
r
)j and take lq(Z) norm we infer:

‖θ‖
L̃r (Ḃ

α+ γ
r

p,q )
� λ− 1

r

∥∥θ(0)
∥∥

Ḃα
p,q

+ T
1− 1

r3
∥∥2

(− γ
r3

+α+ γ
r
)j [u,Δj ] · ∇θ

∥∥
Lr

t L
p
x ((0,T )×R2)

∥∥
lq

. (4.11)

In order to estimate ‖2
(− γ

r3
+α+ γ

r
)j [u,Δj ] · ∇θ‖Lr

t L
p
x ((0,T )×R2)‖lq we apply Lemma 2.3 with

v = θ, d = 2, r1 = r2 = 2r, ρ1 = ρ2 = 1 − γ + γ

2r
+ γ

r0
< 1

and use the boundedness of the Riesz transforms to obtain∥∥[u,Δj ] · ∇θ
∥∥

Lr
t L

p
x ((0,T )×R2)

� cj 2
−(α+ γ

r0
+ γ

r
−γ )j‖u‖

L̃r1 (Ḃ
α+ γ

r1
p,q )

‖θ‖
L̃r2 (Ḃ

α+ γ
r2

p,q )

� cj 2
−(α+ γ

r0
+ γ

r
−γ )j‖θ‖

L̃r1 (Ḃ
α+ γ

r1
p,q )

‖θ‖
L̃r2 (Ḃ

α+ γ
r2

p,q )

,

where cj ∈ lq is such that ‖cj‖lq � 1. Therefore

2
(− γ

r3
+α+ γ

r
)j∥∥[u,Δj ] · ∇θ

∥∥
Lr

t L
p
x ((0,T )×R2)

� cj 2
(− γ

r3
− γ

r0
+γ )j‖θ‖

L̃r1 (Ḃ
α+ γ

r1
p,q )

‖θ‖
L̃r2 (Ḃ

α+ γ
r2

p,q )

. (4.12)

After we choose r3 such that

1 = 1

r3
+ 1

r0
, (4.13)

we observe that (4.12) implies∥∥2
(− γ

r3
+α+ γ

r
)j∥∥[u,Δj ] · ∇θ

∥∥
Lr

t L
p
x ((0,T )×R2)

∥∥
lq

� ‖θ‖
L̃r1 (Ḃ

α+ γ
r1

p,q )

‖θ‖
L̃r2 (Ḃ

α+ γ
r2

p,q )

. (4.14)

Now we combine (4.11) and (4.14) together with (4.13) to conclude

‖θ‖
L̃r (Ḃ

α+ γ
r

p,q )
� λ− 1

r

∥∥θ(0)
∥∥

Ḃα
p,q

+ T
1
r0 ‖θ‖

L̃r1 (Ḃ
α+ γ

r1
p,q )

‖θ‖
L̃r2 (Ḃ

α+ γ
r2

p,q )

, (4.15)

which is our main a priori estimate. In particular, if we denote by

Λ(θ,T ) = ‖θ‖
L̃2(Ḃ

α+ γ
2

p,q )
+ ‖θ‖

L̃∞(Ḃα
p,q )

,

we then have

Λ(θ,T ) �
∥∥θ(0)

∥∥
Ḃα

p,q
+ T

1
r0 Λ(θ,T )2. (4.16)

With a help of the a priori estimate (4.15), it is standard to construct a solution of (1.1) by using approximations. For
the sake of completeness, we give a sketch of a proof in Appendix A. We refer to [15] and [17] for the proof of the
smoothness of θ in (0, T ] × R2.

4.1.2. Uniqueness
The proof of the uniqueness part of Proposition 3.1 is not much different from that of Proposition 3.3. We refer the

reader to the next section for details.

4.2. Proof of Proposition 3.3

Here we establish the uniqueness result for weak solutions to (1.1), i.e. Proposition 3.3. Suppose that θ and θ ′ are
two solutions to (1.1) in L̃

r0
t Bα

p,q((0, T )×R2) which correspond to the same initial data θ0(x). We denote δθ = θ − θ ′
and δu = u − u′, where u′ = (−R2θ

′, R1θ
′). Then it follows that:⎧⎨⎩ ∂t δθ + u · ∇δθ + δu · ∇θ ′ + Λγ δθ = 0, x ∈ R2, t > 0,

δu = R⊥δθ, (4.17)
δθ(x,0) = 0.
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We follow the strategy used to derive (4.4) to obtain

d

dt
‖Δjδθ‖Lp + λ2γj‖Δjδθ‖Lp � C

(∥∥[u,Δj ] · ∇δθ
∥∥

Lp + ∥∥Δj(δu · ∇θ ′)
∥∥

Lp

)
. (4.18)

Since δθ(x,0) = 0, Gronwall’s inequality applied on (4.18) implies

‖Δjδθ‖Lp � C

t∫
0

e−λ2γj (t−s)
(∥∥([u,Δj ] · ∇δθ

)
(s)

∥∥
Lp + ∥∥(

Δj

(
δu · ∇θ ′))(s)∥∥

Lp

)
ds.

We take the L
r0
t norm over the interval of time (0, T ) and use Young’s inequality to obtain:

‖Δjδθ‖
L

r0
t L

p
x ((0,T )×R2)

� C
∥∥e−λ2γj t

∥∥
Lr′

t (0,T )

(∥∥[u,Δj ] · ∇δθ
∥∥

L

r0
2

t L
p
x ((0,T )×R2)

+ ∥∥Δj(δu · ∇θ ′)
∥∥

L

r0
2

t L
p
x ((0,T )×R2)

)
, (4.19)

where 1
r ′ = 1 − 1

r0
.

Now let us pick η ∈ (0, 2
p
) such that

1 − γ

r ′ − η + 4

p
> 0. (4.20)

We bound ‖e−λ2γj t‖
Lr′

t (0,T )
from above by 2− γ

r′ j , then multiply (4.19) by 2( 2
p

−η)j and take lq norm with respect to j

to infer:

‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )

� C(I3 + I4), (4.21)

where

I3 = ∥∥2( 2
p

−η− γ

r′ )j
∥∥[u,Δj ] · ∇δθ

∥∥
L

r0
2

t L
p
x ((0,T )×R2)

∥∥
lq (Z)

,

I4 = ‖δu · ∇θ ′‖
L̃

r0
2

t Ḃ

2
p −η− γ

r′
p,q ((0,T )×R2)

.

In order to estimate I3 we apply Lemma 2.3 with

v = δθ, d = 2, (r1, r2) = (r0, r0), (ρ1, ρ2) =
(

1 − γ

r ′ ,−η

)
and the boundedness of the Riesz transforms as follows∥∥[u,Δj ] · ∇δθ

∥∥
L

r0
2

t L
p
x ((0,T )×R2)

� cj 2−( 2
p

− γ

r′ −η)j‖u‖
L̃r0 (Ḃ

2
p − γ

r′ +1
p,q )

‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )

� cj 2−( 2
p

− γ

r′ −η)j‖θ‖
L̃r0 (Ḃ

2
p − γ

r′ +1
p,q )

‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )

,

where cj ∈ lq is such that ‖cj‖lq � 1. Since

2

p
− γ

r ′ + 1 = α,

we obtain

I3 � ‖θ‖
L̃r0 (Ḃα

p,q )
‖δθ‖

L̃r0 (Ḃ

2
p −η

p,q )

. (4.22)

On the other hand to estimate I4 we use Lemma 2.4 with

s = 2 − γ

′ − η, s1 = 2 − η,

p r p
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and the boundedness of the Riesz transforms to obtain

I4 � ‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )

‖θ ′‖
L̃r0 (Ḃα

p,q )
. (4.23)

Now we combine (4.21), (4.22) and (4.23) to conclude

‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )

� ‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )

(‖θ‖
L̃r0 (Ḃα

p,q )
+ ‖θ ′‖

L̃r0 (Ḃα
p,q )

)
. (4.24)

We first look at part (a) of the proposition, i.e. the case q < ∞. As T → 0, the terms in the parenthesis on the
right-hand side of (4.24) go to 0. For part (b), i.e. q = ∞, from (4.24) and the Minkowski’s inequality we get

‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )

� ‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )

(‖θ‖Lr0 (Ḃα
p,q ) + ‖θ ′‖Lr0 (Ḃα

p,q )

)
. (4.25)

As T → 0, the terms in the parenthesis on the right-hand side of (4.25) go to 0. Thus in both cases if T is chosen
small enough, then

‖δθ‖
L̃r0 (Ḃ

2
p −η

p,q )((0,T )×R2)

= 0,

which in turn implies δθ = 0. Now the standard continuity argument can be employed to show that δθ(x, t) = 0 for
all x ∈ R2 and t � 0.

4.3. Proof of Theorem 3.4

We prove the theorem by a contradiction. Assume θ is not a regular solution in (0, T ] × R2. Without loss of
generality, one may assume T is the first blowup time. Since θ ∈ L

r0
t Bα

p,∞, for almost all s ∈ (0, T ) we have θ(s, ·) ∈
Bα

p,∞. For any such s, consider the initial value problem (1.1) with initial data θ0 = θ(s, ·). By applying the local
well-posedness result (Proposition 3.1), (1.1) has a unique weak solution

θ̄ ∈ L̃2((0, Ts);Bα+ γ
2

p,∞
) ∩ L̃∞(

(0, Ts);Bα
p,∞

) ∩ L̃r0
(
(0, Ts);B

α+ γ
r0

p,∞
)

for some

Ts � c
∥∥θ(s, ·)∥∥−r0

Ḃα
p,∞

(4.26)

with a constant c > 0 independent of s. Moreover, by simple embedding relations we have

θ̄ ∈ L̃r0
(
(0, Ts);B

α+ γ
r0

p,∞
)
↪→ L̃r0

(
(0, Ts);Bα

p,r0

)
↪→ Lr0

(
(0, Ts);Bα

p,∞
)
.

Now we apply the uniqueness result Proposition 3.3 and get θ̄ (·,·) = θ(s +·,·). The last equality and (4.26) imply that

T − s � c
∥∥θ(s, ·)∥∥−r0

Ḃα
p,∞

.

Therefore, for almost all s ∈ (0, T ), we have∥∥θ(s, ·)∥∥
Ḃα

p,∞ � c
1
r0 (T − s)

− 1
r0 ,

which contradicts the condition θ ∈ L
r0
t ((0, T );Bα

p,∞(R2)). The theorem is proved.

Acknowledgement

The authors would like to thank the referee and Dong Li for their helpful comments on an earlier version of the
paper.
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Appendix A

The appendix is devoted to the proof of the existence part in Theorem 3.1. Consider the following successive
approximations: θ0 ≡ u0 ≡ 0, and for k = 0,1,2, . . . ,⎧⎨⎩

∂t θ
k+1 + uk · ∇θk+1 + (−�)γ/2θk+1 = 0, x ∈ R2, t ∈ (0,∞),

uk+1 = (−R2θ
k+1, R1θ

k+1
)
,

θk+1(0, x) = θ0(x).

(A.1)

Similar to (4.16), we have

Λ
(
θk+1, T

)
�

∥∥θ(0)
∥∥

Ḃα
p,q

+ T
1
r0 Λ

(
θk, T

)
Λ

(
θk+1, T

)
. (A.2)

If we choose T = c‖θ0‖−r0

Ḃα
p,q

for small c > 0 depending on λ and the implicit constant in (A.2), it then holds that for

any k = 0,1,2, . . . ,

Λ
(
θk, T

)
� ‖θ0‖Ḃα

p,q
. (A.3)

Due to the Lp maximum principle for (1.1), we also have∥∥θk
∥∥

L̃2(B
α+ γ

2
p,q )

+ ∥∥θk
∥∥

L̃∞(Bα
p,q )

� ‖θ0‖Bα
p,q

. (A.4)

In order to get a contraction we closely follow the argument in Section 4.2. Denote δθk = θk+1 − θk and δuk =
uk+1 − uk . Then it follows that:⎧⎨⎩ ∂t δθ

k + uk · ∇δθk + δuk−1 · ∇θk + Λγ δθk = 0, x ∈ R2, t > 0,

δuk = R⊥δθk,

δθk(x,0) = 0.

(A.5)

We follow the strategy used to derive (4.4) to obtain

d

dt

∥∥Δjδθ
k
∥∥

Lp + λ2γj
∥∥Δjδθ

k
∥∥

Lp � C
(∥∥[

uk,Δj

] · ∇δθk
∥∥

Lp + ∥∥Δj

(
δuk−1 · ∇θk

)∥∥
Lp

)
. (A.6)

Since δθk(x,0) = 0, Gronwall’s inequality applied on (A.6) implies

∥∥Δjδθ
k
∥∥

Lp � C

t∫
0

e−λ2γj (t−s)
(∥∥([

uk,Δj

] · ∇δθk
)
(s)

∥∥
Lp + ∥∥(

Δj

(
δuk−1 · ∇θk

))
(s)

∥∥
Lp

)
ds.

We take the L∞
t norm over the interval of time (0, T ) and use Young’s inequality to obtain:∥∥Δjδθ

k
∥∥

L∞
t L

p
x ((0,T )×R2)

� C
∥∥e−λ2γj t

∥∥
L1

t (0,T )

(∥∥[
uk,Δj

] · ∇δθk
∥∥

L∞
t L

p
x ((0,T )×R2)

+ ∥∥Δj

(
δuk−1 · ∇θk

)∥∥
L∞

t L
p
x ((0,T )×R2)

)
. (A.7)

Now let us pick η ∈ (0, 2
p
) such that

1 − γ − η + 4

p
> 0.

We bound ‖e−λ2γj t‖L1
t (0,T ) from above by 2

(
γ
r0

−γ )j
T

1
r0 as in Section 4.1.1, then multiply (A.7) by 2( 2

p
−η)j and take

lq norm with respect to j to infer:∥∥δθk
∥∥

L̃∞(Ḃ

2
p −η

p,q )

� CT
1
r0 (I5 + I6), (A.8)

where
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I5 = ∥∥2
( 2

p
−η+ γ

r0
−γ )j∥∥[

uk,Δj

] · ∇δθk
∥∥

L∞
t L

p
x ((0,T )×R2)

∥∥
lq (Z)

,

I6 = ∥∥δuk−1 · ∇θk
∥∥

L̃∞
t Ḃ

2
p −η+ γ

r0
−γ

p,q ((0,T )×R2)

.

In order to estimate I5 we apply Lemma 2.3 with

u = uk, v = δθk, d = 2, (r1, r2) = (∞,∞), (ρ1, ρ2) =
(

1 + γ

r0
− γ,−η

)
and the boundedness of the Riesz transforms as follows∥∥[

uk,Δj

] · ∇δθk
∥∥

L∞
t Lp((0,T )×R2)

� cj 2
−( 2

p
+ γ

r0
−γ−η)j∥∥uk

∥∥
L̃∞(Ḃα

p,q )

∥∥δθk
∥∥

L̃∞(Ḃ

2
p −η

p,q )

� cj 2
−( 2

p
+ γ

r0
−γ−η)j∥∥θk

∥∥
L̃∞(Ḃα

p,q )

∥∥δθk
∥∥

L̃∞(Ḃ

2
p −η

p,q )

,

where cj ∈ lq is such that ‖cj‖lq � 1. Thus, we obtain

I5 �
∥∥θk

∥∥
L̃∞(Ḃα

p,q )

∥∥δθk
∥∥

L̃∞(Ḃ

2
p −η

p,q )

. (A.9)

On the other hand to estimate I6 we use Lemma 2.4 with

s = 2

p
+ γ

r0
− γ − η, s1 = 2

p
− η

and the boundedness of the Riesz transforms to obtain

I6 �
∥∥δθk−1

∥∥
L̃∞(Ḃ

2
p −η

p,q )

∥∥θk
∥∥

L̃∞(Ḃα
p,q )

. (A.10)

Now we combine (A.8)–(A.10) and (A.3) to conclude∥∥δθk
∥∥

L̃∞(Ḃ

2
p −η

p,q )

� CT
1
r0

∥∥θk
∥∥

L̃∞(Ḃα
p,q )

(∥∥δθk−1
∥∥

L̃∞(Ḃ

2
p −η

p,q )

+ ∥∥δθk
∥∥

L̃∞(Ḃ

2
p −η

p,q )

)
� CT

1
r0 ‖θ0‖Ḃα

p,q

(∥∥δθk−1
∥∥

L̃∞(Ḃ

2
p −η

p,q )

+ ∥∥δθk
∥∥

L̃∞(Ḃ

2
p −η

p,q )

)
. (A.11)

We choose T = c‖θ0‖−r0

Ḃα
p,q

for even smaller c > 0 such that

CT
1
r0 ‖θ0‖Ḃα

p,q
� 1

3
.

Therefore, {θk} is a Cauchy sequence in L̃∞((0, T ); Ḃ
2
p

−η

p,q ), and it converges to a function θ in the same space.
Moreover, θ satisfies (1.1) in the sense of distributions and

‖θ‖
L̃2(B

α+ γ
2

p,q )
+ ‖θ‖

L̃∞(Bα
p,q )

� ‖θ0‖Bα
p,q

. (A.12)

As in [17], θ is smooth in (0, T ) × R2 and satisfies the first equation of (1.1) in the same region in the classical sense.
We claim θ ∈ C([0, T );Bα

p,q) if q < ∞. Observe that from (4.1), Lemmas 2.4 and 2.1(i) we know for j =
1,2,3, . . . ,

∂tΔj θ ∈ L∞(
(0, T );Bα

p,q

)
.

It follows immediately that

Δjθ ∈ C
([0, T );Bα

p,q

)
. (A.13)

On the other hand, (A.12) implies that as k → ∞∑
|j |�k

Δj θ → θ in L∞(
(0, T );Bα

p,q

)
.

This together with (A.13) proves the claim.
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