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Abstract

We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampère equations. Among them we show
that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This
result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampère operator behaves
just the contrary of the first eigenvalue of the Laplace operator.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the pioneering papers [14,16] a deep connection between a priori estimates for solutions to Dirichlet problems
relative to a class of linear elliptic equations and the classical isoperimetric inequality is established; nowadays the
notion of rearrangement of a function is a standard tool when looking for sharp comparison results for solutions to
elliptic and parabolic partial differential equations. Moreover, Pólya–Szegö type principles are certainly chief tools in
this kind of results and, each time such principles appear, some isoperimetric inequality is tacitly used. The aim of
this paper is somehow to show that, when dealing with the Monge–Ampère operator, affine isoperimetric inequalities
are most likely the natural ones.

In order to introduce our results we consider two celebrated conjectures which belong to the folklore of applied
mathematics:

Lord Rayleigh’s conjecture Among all membranes with given area, the circle has the lowest fundamental frequency.
St.Venant’s conjecture Among all solid bars with the same cross-sectional area, the circular shaft gives the maximal

torsional rigidity.

An elegant proof of these conjectures based on Pólya–Szegö principle can be found in [10].
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In the framework of partial differential equations, these conjectures lead to two well-known results:
among all smooth, bounded, open set Ω ⊂ R

n with fixed measure

(i) the first eigenvalue of the Laplace operator λ1(Ω) is minimal just on balls, i.e.

λ1(Ω) � λ1
(
Ω�

)
, (1.1)

where Ω� is a ball having the same measure as Ω , and equality holds if and only if Ω is a ball;
(ii) the solution w to the following Poisson problem{

�w = n in Ω ,

w = 0 on ∂Ω
(1.2)

satisfies

‖w‖L1(Ω) � |Ω�| n+2
n

(n + 2)ω
2
n
n

= |Ω| n+2
n

(n + 2)ω
2
n
n

, (1.3)

equality holding if and only if Ω is a ball. Here ωn means, as usual, the measure of the unitary ball in R
n.

These results still hold true when generalized to a wide class of quasilinear operators (see for instance [17,2] and
the references quoted in). In this paper we are interested in considering the fully nonlinear Monge–Ampère operator.
In particular, whenever Ω ⊂ R

n is a smooth, bounded, strictly convex, open set, there exists a unique (see [7,22])
eigenvalue of the Monge–Ampère operator σ1(Ω) and problem (1.2) finds its natural formulation in the following
Dirichlet problem{

detD2u = 1 in Ω ,

u = 0 on ∂Ω .
(1.4)

In [21,18] Pólya–Szegö type inequalities suitable for Monge–Ampère equations have been proved using Aleksandrov–
Fenchel inequalities. As a consequence it holds

σ1(Ω) � σ1
(
Ω�)

(1.5)

and moreover, if u is the solution to (1.4), then it satisfies

‖u‖L1(Ω) � |Ω�| n+2
n

(n + 2)ω
2
n
n

. (1.6)

Here, however, Ω� denotes the ball having the same quermassintegral corresponding to the (n−2)-th mean curvature
as Ω (note that |Ω| � |Ω�|). In particular we remind that, for n = 2, such a quermassintegral is just the perimeter
and (1.6) was first proved by Talenti in [15].

However, it was unclear whether (1.5) and (1.6) hold also when replacing Ω� by Ω�. To this aim it is crucial to
observe that the Monge–Ampère operator is invariant under volume preserving affine transformations. In particular, if
A is a volume preserving affine transformation, then σ1(Ω) = σ1(AΩ); this implies that the eigenvalue relative to a
ball is equal to that one computed on any ellipsoid having the same measure. In addiction, if u is the solution to (1.4),
then uA(x) = u(Ax) is the solution to (1.4) in A−1Ω and ‖u‖L1(Ω) = ‖uA‖L1(A−1Ω). These considerations suggested
us to look for affine isoperimetric inequalities. The outcome is quite unexpected; we will prove the following facts:

among all smooth, bounded, convex, open sets Ω ⊂ R
n with fixed measure

(I) the eigenvalue of the Monge–Ampère operator σ1(Ω) is maximal just on ellipsoids, i.e.

σ1(Ω) � σ1
(

E (Ω)
)
, (1.7)

where E (Ω) is an ellipsoid having the same measure as Ω , and equality holds if and only if Ω is an ellipsoid;
(II) the solution u to (1.4) satisfies

‖u‖L1(Ω) � |Ω| n+2
n

(n + 2)ω
2
n
n

, (1.8)

equality holding if and only if Ω is an ellipsoid.
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The main idea underlying the proof of (1.7) and (1.8) consists in an a priori estimate of the energy of convex func-
tions (according to the natural notion of energy associated to Monge–Ampère operator). In particular we restrict our
attention to smooth convex functions whose level sets are all homothetic to the zero level set. Due to very special
circumstances, the energy of a function, whose zero level set is a convex body Ω , happens to be related to the measure
of the so-called polar body Ω∗.

We thank professor B. Kawohl for bringing to our attention the paper [5], where the use of functions with level sets
mutually homothetic has been successfully applied to generalize to arbitrary dimension a well-known result by Pólya
(see [11, §5.5–§5.6]).

2. Notation and preliminaries

We start by recalling some classical notions of convex analysis, following [3,13]. Let Kn
0 be the class of convex

bodies: nonempty, compact, convex sets of R
n. A convex body Ω is the intersection of its supporting halfspaces, thus

it can be conveniently described by its support function h(Ω, ·) = hΩ(·), defined by

hΩ(x) = sup
{〈x, y〉: y ∈ Ω

}
, x ∈ R

n.

When 0 ∈ intΩ , for a unit vector ξ ∈ Sn−1 ∩ domhΩ(·), hΩ(ξ) means the distance of the support plane to Ω

with exterior normal vector ξ from the origin. It immediately follows from the definition that hΩ(·) is a positive
1-homogeneous, subadditive, convex function. If Ω is of class C2+ (i.e. Ω is a convex body whose boundary is of
class C2 with nonvanishing Gaussian curvature kΩ ), the map ν :x ∈ ∂Ω → ξ = ν(x) ∈ Sn−1 has an inverse ν−1 of
class C1 and it holds

hΩ(ξ) = 〈
ν−1(ξ), ξ

〉
(clearly, ν−1(ξ) is the only point belonging to ∂Ω having exterior normal unit vector equal to ξ ).

Besides the support function, other functions can be used to describe a convex body analytically.
Let Ω ∈ Kn

0 be such that 0 ∈ intΩ; the function

ρ(Ω,x) = max{λ � 0: λx ∈ Ω}, for x ∈ R
n − {0},

is called the radial function of Ω . It results that ρ(Ω,x)x ∈ ∂Ω for every x ∈ R
n − {0} and

|Ω| = 1

n

∫

Sn−1

ρ(Ω, ξ)n dHn−1(ξ).

Now let us define the polar body of a convex body Ω as follows

Ω∗ = {
x ∈ R

n: 〈x, y〉 � 1 ∀y ∈ Ω
}
.

It is well-known that Ω∗ ∈ Kn
0 and

ρ(Ω∗, ξ) = 1

hΩ(ξ)
for ξ ∈ Sn−1,

which expresses a simple way to find the boundary points of the polar body Ω∗ from the support planes to Ω .
In order to recall the celebrated Blaschke–Santalò inequality we need some more definitions. Let Ω ∈ Kn

0 ; for
z ∈ intΩ , let Ωz be the polar body of its translation Ω − z, i.e. Ωz = (Ω − z)∗. As noted by Santalò in 1949, there
exists a unique point s ∈ intΩ , named Santalò point, such that∣∣Ωs

∣∣ �
∣∣Ωz

∣∣ ∀z ∈ intΩ.

The Blaschke–Santalò inequality states that (see, for instance, [8])

|Ω|∣∣Ωs
∣∣ � ω2

n, (2.1)

where ωn is the measure of the unitary ball in R
n, equality holding in (2.1) if and only if Ω is an ellipsoid. We observe

that the volume product |Ω||Ωs | is invariant under affine transformations; for this reason (2.1) is known as an affine
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isoperimetric inequality. Another affine isoperimetric inequality, equivalent to (2.1), is the following Petty inequality
(see [9])

Aa(Ω)n+1 =
( ∫

Sn−1

kΩ(ξ)−
n

n+1 dHn−1(ξ)

)n+1

� nn+1ω2
n|Ω|n−1, (2.2)

where Ω is of class C2+ and equality holds if and only if Ω is an ellipsoid. The quantity Aa(Ω) is known as affine
surface area of Ω and it is invariant under volume preserving affine transformations.

Now let Ω,Θ ∈ Kn
0 ; Minkowski inequality states that the mixed volume V (Ω,Θ, . . . ,Θ) bounds from above the

product of the volumes of Ω and Θ ; namely

V (Ω,Θ, . . . ,Θ) � |Ω| 1
n |Θ| n−1

n (2.3)

and equality holds if and only if Ω and Θ are homothetic. Here and in what follows, when Ω,Θ ∈ C2+, we will read

V (Ω,Θ, . . . ,Θ) = 1

n

∫

Sn−1

hΩ(ξ)

kΘ(ξ)
dHn−1(ξ).

It is possible to rewrite the quantities Aa(Ω) and V (Ω,Θ, . . . ,Θ) as integrals over ∂Ω ; for the reader’s convenience
we quote here the changing of variables formulae. Whenever Ω is of class C2+, for every integrable real function f

on ∂Ω , we have∫
∂Ω

f (x)dHn−1(x) =
∫

Sn−1

f (ν−1(ξ))

kΩ(ν−1(ξ))
dHn−1(ξ); (2.4)

similarly, for every integrable real function g on Sn−1, we get∫

Sn−1

g(ξ) dHn−1(ξ) =
∫

∂Ω

g
(
ν(x)

)
kΩ

(
ν(x)

)
dHn−1(x).

In this way we can write

Aa(Ω) =
∫

∂Ω

k
1

n+1
Ω dHn−1(x), V (Ω,Θ, . . . ,Θ) = 1

n

∫
∂Ω

hΩ

kΩ

kΘ

dHn−1(x).

In what follows, for practical reasons we will deal with open sets. To shorten notation, the notions introduced above
(support and radial functions, polar body and affine isoperimetric inequalities, etc.) applied to an open set have to be
understood applied to its closure.

For further applications we collect here some small things concerning the Monge–Ampère operator detD2u. It is
elliptic only for functions u ∈ C2(Ω) that are convex in Ω and, for this reason, from now on we consider only convex
functions. Moreover, it can be written in the following divergence form

detD2u = 1

n

(
Sij

(
D2u

)
uj

)
i
, (2.5)

where Sij = ∂
∂uij

(detD2u) is the cofactor of uij , and the following pointwise identity holds (see for instance [12,18])

k{u�t} = Sij (D2u)uiuj

|Du|n+1

∣∣∣∣{u=t}
. (2.6)

It is well-known (see [7,22]) that, if Ω ⊂ R
n is a smooth, bounded, strictly convex, open set, there exists a positive

constant (depending only on Ω), denoted by σ1(Ω), satisfying the following properties:

(i) there exists ψ1 ∈ C1,1(Ω) ∩ C∞(Ω) such that ψ1 < 0 in Ω and

detD2ψ1 = σ1(Ω)(−ψ1)
n in Ω, ψ1 convex in Ω, ψ1 = 0 on ∂Ω; (2.7)
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(ii) if (ψ,μ) ∈ (C1,1(Ω) ∩ C∞(Ω)) × ]0,+∞[ satisfies (2.7) with (ψ1, σ1) replaced by (ψ,μ), then μ = σ1 and
ψ = θψ1 for some positive constant θ ;

(iii) if Ω1 ⊂ Ω2, then σ1(Ω1) � σ1(Ω2).

All these features of σ1 suggest the well-known properties of the first eigenvalue of a linear second order elliptic
operator; this is why σ1 is known as the first (and unique) eigenvalue of the Monge–Ampère operator. It is possible to
characterize σ1 in a variational way by

σ1(Ω) = inf

{∫
Ω

(−u)detD2udx∫
Ω

(−u)n+1 dx
: u ∈ C2(Ω), u convex in Ω, u = 0 on ∂Ω

}
. (2.8)

Finally we recall that a Pohožaev type identity holds true for the Monge–Ampère equation (see [21]).

Proposition 2.1. Let f ∈ C1(R) be a nonnegative function and let F(u) = ∫ 0
u

f (s) ds. If u is a smooth convex solution
to the problem{

detD2u = f (u) in Ω ,

u = 0 on ∂Ω

in a bounded, convex, open set Ω ⊂ R
n with smooth boundary, then

− n

n + 1

∫
Ω

(−u)detD2udx + 1

n + 1

∫
∂Ω

kΩ 〈x, ν〉|Du|n+1 dHn−1(x) = n

∫
Ω

F(u)dx, (2.9)

where ν is the exterior normal unit vector to ∂Ω at the point x.

We end this section by recalling some definitions and basic properties about rearrangements of functions. For an
exhaustive treatment of these topics we refer the reader for instance to [6,16]. Let G ⊂ R

n be an open, bounded set
and let u :G → ]−∞,0] be a measurable function. We define the distribution function μu of u as follows

μu(t) = ∣∣{x ∈ G: u(x) < t
}∣∣, t � 0.

μu is an increasing function; its generalized inverse function is called the increasing rearrangement u∗of u:

u∗(s) = sup
{
t � 0: μ(t) < s

}
, s ∈ [

0, |G|].
The spherically symmetric increasing rearrangement of u is defined by

u�(x) = u∗(ωn|x|n), x ∈ G�,

where G� is the ball centered at the origin, having the same measure as G. We explicitly observe that u and u� are
equidistributed, i.e. they have the same distribution function. This implies that

‖u‖Lp(G) = ∥∥u�
∥∥

Lp(G�)
, 1 � p � +∞.

The following proposition can be found in [1].

Proposition 2.2. Let u and v be two nonpositive measurable functions defined on G such that

s∫
0

(−u∗(r)
)
dr �

s∫
0

(−v∗(r)
)
dr, s ∈ [

0, |G|].

Then for every 1 � p � +∞
‖u‖Lp(G) � ‖v‖Lp(G).

Finally the following Pólya–Szegö principle holds.
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Proposition 2.3. Let u ∈ W
1,p

0 (G), 1 � p < +∞, be a nonpositive function. Then u� ∈ W
1,p

0 (G�) and∫
G

|Du|p dx �
∫

G�

∣∣Du�
∣∣p dx. (2.10)

3. Main results

We begin by stating and proving the following “desymmetrization” lemma.

Lemma 3.1. Let K,L ⊂ R
n be two C2 bounded, convex, open sets with the same measure and let w ∈ C2(K) be a

convex function, vanishing on ∂K . Then there exists a function wL satisfying the following properties:

(1) wL is a C2(L) convex function, vanishing on ∂L;
(2) wL is equidistributed with w;
(3) wL has level sets homothetic to L, all of them having the same Santalò point.

Proof. Let s be the Santalò point of L; we want to show that the desired function is

wL(x) = sup

{
t � 0: x − s ∈

(
μw(t)

|L|
)1/n

L

}
.

It is easy to see that, when τ � 0, it holds {x ∈ L: wL(x) � τ } = (μw(τ)/|L|)1/nL; then |{x ∈ L: wL(x) � τ }| =
μw(τ), that means wL is equidistributed with w. Moreover, by definition, wL = 0 on ∂L.

Since w is convex, (1−α){w < τ1}+α{w < τ2} ⊆ {w < (1−α)τ1 +ατ2}. Then, by Brunn–Minkowski inequality,

μw

(
(1 − α)τ1 + ατ2

)1/n � (1 − α)μw(τ1)
1/n + αμw(τ2)

1/n.

This implies that wL is convex. As a consequence of all these properties of wL we have

1

|DwL(x)| = 〈x − s, ν〉 μ′
w(wL(x))

μw(wL(x))n
, (3.1)

where ν is the exterior normal unit vector to the level set of wL passing through x. Using the regularity of w, a direct
computation yields wL ∈ C2(L). �

The desymmetrization procedure yields the following reverse Pólya–Szegö type principle.

Theorem 3.1. Let Ω ⊂ R
n be a smooth, bounded, strictly convex, open set and let E (Ω) be an ellipsoid having the

same measure as Ω . Let w ∈ C2(E (Ω)) be a negative convex function having elliptical symmetry and vanishing on
the boundary (i.e. its sublevel sets {w � t}, for every t � 0, are ellipsoids concentric and homothetic to E (Ω)) and let
wΩ be the function given in Lemma 3.1 (with the choice K = E (Ω) and L = Ω). Then∫

Ω

(−wΩ)detD2wΩ dx �
∫

E (Ω)

(−w)detD2w dx, (3.2)

equality holding if and only if Ω is an ellipsoid.

Proof. Without loss of generality we can suppose that Ω has 0 as Santalò point. By (3.1), (2.4) and (2.1) we get∫
{wΩ=t}

k{wΩ�t}|DwΩ |n dHn−1(x) = nnμw(t)n

(μ′
w(t))n

∫
{wΩ=t}

k{wΩ�t}
(〈x, ν〉)n dHn−1(x)

= nnμw(t)n

(μ′
w(t))n

∫
n−1

1

(h({wΩ � t}, ξ))n
dHn−1(ξ)
S
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= nnμw(t)n

(μ′
w(t))n

∫

Sn−1

(
ρ
({wΩ � t}∗, ξ))n

dHn−1(ξ)

= nn+1μw(t)n

(μ′
w(t))n

∣∣{wΩ � t}∗∣∣

� ω2
n

nn+1μw(t)n

(μ′
w(t))n

∣∣{wΩ � t}∣∣−1

= ω2
n

nn+1μw(t)n−1

(μ′
w(t))n

=
∫

{w=t}
k{w�t}|Dw|n dHn−1(x). (3.3)

By integrating on R
−, recalling that wΩ = 0 on ∂Ω and using the co-area formula we get

∫
Ω

(−wΩ)det
(
D2wΩ

)
dx = 1

n

0∫
−∞

dt

( ∫
{wΩ=t}

k{wΩ�t}|DwΩ |n dHn−1(x)

)

� 1

n

0∫
−∞

dt

( ∫
{w=t}

k{w�t}|Dw|n dHn−1(x)

)

=
∫

E (Ω)

(−w)det
(
D2w

)
dx.

If equality holds in (3.2), then it also holds in (3.3), thus in the Blaschke–Santalò inequality. This means that Ω is an
ellipsoid. �

Now we are able to prove a reverse Faber–Krahn inequality for the Monge–Ampère eigenvalue and a Saint-Venant
style principle.

Theorem 3.2. Let Ω ⊂ R
n be a smooth, bounded, strictly convex, open set and let E (Ω) be an ellipsoid having the

same measure as Ω . Then:

(1) σ1(Ω) � σ1
(

E (Ω)
)
, (3.4)

equality holding if and only if Ω is an ellipsoid;
(2) the solution u to the problem⎧⎪⎨

⎪⎩
detD2u = 1 in Ω ,

u = 0 on ∂Ω ,

u convex in Ω,

(3.5)

satisfies
∫
Ω

(−u)dx � |Ω| n+2
n

(n + 2)ω
2
n
n

, (3.6)

equality holding if and only if Ω is an ellipsoid.

Proof. (1) Let v be a negative eigenfunction corresponding to σ1(E (Ω)), that means v is a solution to the following
problem⎧⎪⎨

⎪⎩
detD2v = σ1(E (Ω))(−v)n in E (Ω),

v = 0 on ∂E (Ω), (3.7)
v convex in E (Ω).
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We explicitly observe that v has elliptical symmetry, since the Monge–Ampère operator is invariant under affine
transformations and an eigenfunction in a ball is radially symmetric (see [4]). Now suppose that Ω has 0 as Santalò
point; by Lemma 3.1 applied with the choice K = E (Ω), L = Ω and w = v we construct the convex C2 function vΩ ,
equidistributed with v, vanishing on ∂Ω , having level sets homothetic to Ω with 0 as Santalò point. From the varia-
tional formulation of the eigenvalue (2.8) we deduce

σ1
(

E (Ω)
) =

∫
E (Ω)

(−v)detD2v dx∫
E (Ω)

(−v)n+1 dx
�

∫
Ω

(−vΩ)detD2vΩ dx∫
Ω

(−vΩ)n+1 dx

� min
u∈C2(Ω̄)

u convex in Ω
u=0 on ∂Ω

∫
Ω

(−u)detD2udx∫
Ω

(−u)n+1 dx
= σ1(Ω).

If equality holds in (3.4), then equality holds in (3.3), hence Ω is an ellipsoid.
(2) Let u be the unique solution to (3.5); following [20] we get

FΩ(u) =
∫
Ω

(−u)detD2udx

(
∫
Ω

(−u)dx)n+1
= min

z∈C2(Ω)
z convex in Ω
z=0 on ∂Ω

∫
Ω

(−z)detD2z dx

(
∫
Ω

(−z) dx)n+1
.

Thus, if v is the solution to the following problem⎧⎪⎨
⎪⎩

detD2v = 1 in E (Ω),

v = 0 on ∂E (Ω),

v convex in E (Ω),

(3.8)

arguing as before we get

FE (Ω)(v) =
∫
Ω

(−v)detD2v dx

(
∫
Ω

(−v)dx)n+1
= min

w∈C2(E (Ω))
w convex in E (Ω)
w=0 on ∂E (Ω)

FE (Ω)(w)

�
∫
Ω

(−vΩ)detD2vΩ dx

(
∫
Ω

(−vΩ)dx)n+1
� min

z∈C2(Ω)
z convex in Ω
z=0 on ∂Ω

FΩ(z) = FΩ(u).

From the fact that u and v solve (3.5) and (3.8), respectively, we deduce∫
Ω

(−u)dx �
∫

E (Ω)

(−v)dx = |Ω| n+2
n

(n + 2)ω
2
n
n

. �

A second proof of (2). By Pohožaev identity (2.1) it holds∫
Ω

(−u)dx = 1

n(n + 2)

∫
∂Ω

kΩ 〈x, ν〉|Du|n+1 dHn−1(x). (3.9)

Thus, by integrating the equation detD2u = 1 over Ω , by using (2.5), (2.6), Hölder inequality and (3.9), we get

|Ω| = 1

n

∫
∂Ω

kΩ |Du|n dHn−1(x)

� 1

n

( ∫
∂Ω

kΩ

〈x, ν〉n dHn−1(x)

) 1
n+1

( ∫
∂Ω

kΩ 〈x, ν〉|Du|n+1 dHn−1(x)

) n
n+1

= 1

n

(
n|Ω∗|) 1

n+1

(
n(n + 2)

∫
Ω

(−u)dx

) n
n+1

.

The thesis immediately follows via Blaschke–Santalò inequality. �
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A third proof of (2). By Pohožaev identity (2.1) and (2.4) we have∫
Ω

(−u)dx = 1

n(n + 2)

∫
∂Ω

kΩ 〈x, ν〉|Du|n+1 dHn−1(x)

= 1

n(n + 2)

∫

Sn−1

hΩ |Du|n+1 dHn−1(ξ).

Now let us construct a convex set E such that kE(ν−1(ξ)) = |Du|−(n+1)(ν−1(ξ)). We observe that |Du| is the radial
function of the starshaped set Du(Ω) and that

∫
Sn−1 |Du|n+1(ν−1(ξ))ξ dHn−1(ξ) = 0; then, by Minkowski existence

theorem (see [13, p. 392]) there exists a convex set E, known as curvature image of Du(Ω), whose curvature function
coincides with |Du|n+1. By definition of mixed volume and (2.3) we have∫

Ω

(−u)dx = 1

n(n + 2)

∫

Sn−1

hΩ(ξ)

kE(ξ)
dHn−1(ξ)

= 1

n + 2
V (Ω,E, . . . ,E)

� 1

n + 2
|E| n−1

n |Ω| 1
n . (3.10)

On the other hand, by Petty inequality (2.2) we obtain

n|Ω| = n

∫
Ω

detD2udx =
∫

∂Ω

kΩ |Du|n dHn−1(x) =
∫

Sn−1

k
− n

n+1
E dHn−1(ξ)

� nω
2

n+1
n |E| n−1

n+1

that is

|E| � ω
− 2

n−1
n |Ω| n+1

n−1 . (3.11)

Combining (3.10) and (3.11) we get the claim. �
Corollary 3.1. Under the assumptions of Theorem 3.2, statement (2), the Lp-norm of u is minimal whenever Ω is an
ellipsoid, for every 1 � p � +∞.

Proof. Estimate (3.6) can be rewritten as

|Ω|∫
0

(−u∗(r)
)
dr �

|Ω|∫
0

(−v∗(r)
)
dr.

As a matter of fact (3.6) is valid on every sublevel set of u, that is∫
{u<u∗(s)}

(−u)dx �
∫

{v<v∗(s)}
(−v)dx, s ∈ (

0, |Ω|),

or, equivalently,
s∫

0

(−u∗(r)
)
dr + su∗(s) �

s∫
0

(−v∗(r)
)
dr + sv∗(s), s ∈ (

0, |Ω|). (3.12)

Let W(s) = ∫ s

0 (v∗(r) − u∗(r)) dr ; from (3.12) we can deduce

W(s) � sW ′(s), s ∈ (
0, |Ω|); W

(|Ω|) � 0; W(0) = 0.
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We get a contradiction if we suppose that W(s) admits a negative minimum in (0, |Ω|). Then W(s) � 0 in the whole
(0, |Ω|), that means

s∫
0

(−u∗(r)
)
dr �

s∫
0

(−v∗(r)
)
dr. (3.13)

This implies, via Proposition 2.2, that

‖u‖Lp(Ω) � ‖v‖Lp(E (Ω)), 1 � p � +∞. � (3.14)

Corollary 3.2. Under the assumptions of Theorem 3.2, statement (2), ‖u‖
W

1,p
0 (Ω)

is minimal whenever Ω is a ball,

for every 1 � p < +∞.

Proof. Since∫
Ω

|Du|p dx =
∫
Ω

|Du|p detD2udx = 1

n

∫
∂Ω

kΩ |Du|n+p dHn−1(x) − p

n

∫
Ω

|Du|p dx

and

|Ω| � 1

n

( ∫
∂Ω

kΩ |Du|n+p dHn−1(x)

) n
n+p

( ∫
∂Ω

kΩ dHn−1(x)

) p
n+p

,

by Gauss–Bonnet theorem we conclude∫
Ω

|Du|p dx � n

(n + p)ω
p
n
n

|Ω| n+p
n . �

We end this section with our last application of the desymmetrization procedure to prove that a Poincaré constant
is maximal on balls. In [19] the authors prove the following Poincaré type inequality for Hessian integrals.

Proposition 3.1. Let Ω ⊂ R
n be a strictly convex, open set of class C∞; then there exists a constant C, depending on

n and Ω , such that

C

(∫
Ω

|Du|2
) 1

2

�
(∫

Ω

(−u)detD2u

) 1
n+1

(3.15)

for all convex functions u ∈ C2(Ω), vanishing on ∂Ω . Moreover, the solution to the following Dirichlet problem⎧⎨
⎩

detD2u = �u in Ω ,

u = 0 on ∂Ω ,

u convex in Ω

(3.16)

attains the best constant CΩ , i.e.

CΩ = min

{∫
Ω

(−w)detD2w dx

(
∫
Ω

|Dw|2 dx)
n+1

2

: w ∈ C2(Ω),w convex in Ω, w = 0 on ∂Ω

}

=
∫
Ω

(−u)detD2udx

(
∫
Ω

|Du|2 dx)
n+1

2

. (3.17)

We prove that the constant CΩ in (3.17) satisfies the following isoperimetric inequality.

Theorem 3.3. Let Ω ⊂ R
n be a strictly convex, open set of class C∞; then CΩ � CΩ� , equality holding if and only if

Ω is a ball.



B. Brandolini et al. / Ann. I. H. Poincaré – AN 26 (2009) 1265–1275 1275
Proof. Let v be the solution to the symmetrized problem⎧⎨
⎩

detD2v = �v in Ω�,

v = 0 on ∂Ω�,

v convex in Ω�.

Suppose that Ω has 0 as Santalò point; by Lemma 3.1 applied with the choice K = Ω�, L = Ω and w = v we
construct the convex C2 function vΩ , equidistributed with v, vanishing on ∂Ω , having level sets homothetic to Ω

with 0 as Santalò point. Recalling Pólya–Szegö inequality (2.10) and observing that (vΩ)� = v, we obtain

CΩ� =
∫
Ω�(−v)detD2v dx

(
∫
Ω� |Dv|2 dx)

n+1
2

�
∫
Ω

(−vΩ)detD2vΩ dx

(
∫
Ω

|DvΩ |2 dx)
n+1

2

� min
z∈C2(Ω)

z convex in Ω
z=0 on ∂Ω

∫
Ω

(−z)detD2z dx

(
∫
Ω

|Dz|2 dx)
n+1

2

=
∫
Ω

(−u)detD2udx

(
∫
Ω

|Du|2 dx)
n+1

2

= CΩ.

Finally a direct computation yields

CΩ � CΩ� = (n + 2)
n−1

2 ω
n−1
n

n

n
n+1

2 |Ω| (n+2)(n−1)
2n

. �
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