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Abstract

We study relative periodic orbits (i.e. time-periodic orbits in a frame rotating at constant velocity) in a class of triatomic
Euclidean-invariant (planar) Hamiltonian systems. The system consists of two identical heavy atoms and a light one, and the
atomic mass ratio is treated as a continuation parameter. Under some nondegeneracy conditions, we show that a given family of
relative periodic orbits existing at infinite mass ratio (and parametrized by phase, rotational degree of freedom and period) persists
for sufficiently large mass ratio and for nearby angular velocities (this result is valid for small angular velocities). The proof is
based on a method initially introduced by Sepulchre and MacKay [J.-A. Sepulchre, R.S. MacKay, Localized oscillations in conser-
vative or dissipative networks of weakly coupled autonomous oscillators, Nonlinearity 10 (1997) 679-713] and further developed
by Mufloz-Almaraz et al. [F.J. Mufloz-Almaraz, et al., Continuation of periodic orbits in conservative and Hamiltonian systems,
Physica D 181 (2003) 1-38] for the continuation of normal periodic orbits in Hamiltonian systems. Our results provide several
types of relative periodic orbits, which extend from small amplitude relative normal modes [J.-P. Ortega, Relative normal modes
for nonlinear Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 665—704] up to large amplitude solutions which
are not restrained to a small neighborhood of a stable relative equilibrium. In particular, we show the existence of large amplitude
motions of inversion, where the light atom periodically crosses the segment between heavy atoms. This analysis is completed by
numerical results on the stability and bifurcations of some inversion orbits as their angular velocity is varied.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Hamiltonian systems of classical interacting particles are extensively used to study the vibrational dynamics of
molecules or atomic clusters. In these models, nuclei interact via a strongly nonlinear potential that incorporates the
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effects of the electrons in the Born—Oppenheimer approximation. Despite this simplification, analyzing the dynamics
of the resulting models remains a challenging problem.

In this context, a vast literature is focused on the existence and bifurcations of periodic orbits and their correspon-
dence to the quantum mechanical eigenfunctions and quantum spectra (see e.g. [31,30,32] and their references). Such
considerations can be extended to relative periodic orbits and equilibria, which are periodic or stationary in a frame
rotating at constant velocity [33,14,13,25].

In this paper we consider a cluster B—A—B of three particles interacting in a plane, with two atoms B of identical
masses and one lighter atom A (without loss of generality we fix to unity the mass of light atom A and denote by y
the mass of heavy atoms B). For simplicity we define the interaction energy via pair interaction potentials U, W (as
done for example in reference [32]), but our results could be extended to more general Euclidean-invariant potentials.
We focus on the existence of relative periodic orbits (this includes the particular case of periodic orbits) and restrict
ourselves to rotations whose axis is perpendicular to the cluster plane. Our model is described by the Hamiltonian

H= %(PE +P))+ %ﬁ% +U(I101 = O2l) + W(I101 = dill) + W(I Q2 —aill), (1
where 01, 0> € R? (resp. g1) are the positions of the heavy (resp. light) masses and P, P, p1 their momenta. We as-
sume that U, W are sufficiently smooth on (0, +00) and the interaction forces U’, W’ vanish at some critical distances
D*,d* > 0 with U"(D*) > 0, W”(d*) > 0 and d* > D*/2 (in order to allow triangular equilibrium configurations).

Classical approaches for proving the existence of periodic orbits in Hamiltonian systems rely on critical point the-
ory [22] (see also [35,34] for applications to molecular potentials and more recent references), on the local Lyapunov
center theorem [12] and Weinstein—-Moser theorem [38,26], on global continuation techniques for Lyapunov fami-
lies of periodic orbits (see [43] and its references) and degree theory for asymptotically linear Hamiltonian systems
(see [8] and references therein).

In Hamiltonian systems with a continuous symmetry, the existence of relative periodic orbits around stable relative
equilibria has been proved under general assumptions using extensions of the Weinstein—-Moser theorem [15,28]. In
addition, local continuation theorems for relative periodic orbits under small variations of energy and momentum are
available [24,29,40] (see [25,39] and their references for the case of relative equilibria).

Here we examine relative periodic orbits using a continuation technique, which consists in varying the mass ratio
between heavy and light atoms, starting from the infinite mass ratio limit. When the two atoms B have infinite mass,
a class of solutions can be made by placing them in two static positions and letting the light atom A oscillate in
the resulting potential. The distance between the two atoms B is obtained in turn as a critical point of an effective
potential averaged over the orbit of mass A. We prove that relative periodic orbits of this system can be continued
to finite mass ratio under some nondegeneracy conditions which are generally satisfied. A procedure of the same
kind exists in the context of celestial mechanics as one passes from the restricted to the full three-body problem
[1,23], with several important differences (some of which are outlined below). Moreover, the same idea has been
used for studying time-periodic and spatially localized oscillations (discrete breathers) in one-dimensional diatomic
Hamiltonian lattices [17].

One difficulty in our approach is due to the Euclidean invariance of the Hamiltonian system, which precludes a
direct application of the implicit function theorem, replaced here by a technically involved Lyapunov—Schmidt reduc-
tion. As a benefit, the method provides large amplitude solutions which are not restrained to a small neighborhood of
a relative equilibrium. Firstly, we obtain a family of relative periodic orbits on which internal oscillations extend from
small amplitude normal modes up to large amplitude motions with arbitrarily large periods. Moreover, we show the
existence of inversions where the light atom A crosses the B—B segment periodically. As their period is varied, these
inversions form a one-parameter family of solutions which does not emerge from a relative equilibrium (they emerge
from a pair of symmetric homoclinic orbits in the limit of infinite mass ratio). From a mathematical point of view,
their existence in such systems was still an open problem up to our knowledge. Such solutions have been numerically
computed in different models (see e.g. [32] and its references), but in system (1) their numerical continuation in en-
ergy was delicate [32]. Our continuation method, which starts from the simplified problem with infinite mass ratio, is
numerically implemented in the present paper and provides an efficient way to compute these solutions.

It is interesting to compare our approach with related problems in celestial mechanics, which arise as one looks for
relative periodic orbits of the full three-body problem by continuation from the restricted problem with one infinites-
imal mass (see [1,23,7] and their references). Indeed, system (1) could be recast in a similar form (with a molecular
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interaction potential replacing the gravitational one) after an appropriate time rescaling, and for small angular veloc-
ities. With this rescaled form of (1), two masses would be equal to 1 and one mass to 1/y. The static B—B stretch in
the limit y — 400 would correspond in the context of celestial mechanics to a circular orbit of the Kepler problem
viewed in a moving frame. However, a major simplification occurs in celestial mechanics since the interaction energy
of the infinitesimal mass with each finite mass is small (O(1/y)). As a consequence, in the restricted gravitational
three-body problem the equations for the static B—B stretch and the light mass A are uncoupled, whereas they are
coupled in the asymptotic limit of the triatomic system (1) since the potential W does not depend on y. This coupling
makes the analysis of periodic orbits more difficult.

As previously mentioned, the limit of infinite mass ratio was introduced by Livi, Spicci and MacKay [17] to prove
the existence of discrete breathers in a one-dimensional Hamiltonian lattice known as the (diatomic) Fermi—Pasta—
Ulam model. In this system, two types of atoms with different masses alternate on a one-dimensional lattice and
interact anharmonically with their nearest neighbors. An uncoupled limit is obtained when the mass ratio between
heavy and light atoms goes to infinity (light masses do not interact and oscillate in a local potential corresponding to
immobile heavy masses). In this limit, the simplest type of discrete breather consists of a single particle oscillating
while the others are at rest. As Livi et al. have shown, such localized solutions can be in general continued to large
and finite mass ratio (see also [5] for numerical continuation results up to mass ratio equal to unity). The continuation
procedure of reference [17] is simpler than the one in our triatomic system, because Euclidean invariance is trivially
eliminated in the lattice by working with displacements between neighbors, whereas relative periodic orbits (periodic
in a rotating frame) are analyzed in our case.

The approach of Livi et al. finds its roots in the former work of MacKay and Aubry [18] on the existence of
breathers in one-dimensional chains of weakly coupled anharmonic oscillators. In the latter case, the uncoupled
or “anti-continuum” limit is obtained by fixing the nearest-neighbors coupling constant to 0. The concept of anti-
continuum limit characterized by large mass ratio has been subsequently applied to prove the existence of breathers
in lattices of higher dimension invariant under translations [3]. In Ref. [19] a general strategy has been proposed for
extending this result to (relative) discrete breathers in more general Hamiltonian systems invariant under rotations.
A full existence proof was obtained by two of us in [10], but for reversible (even in time) and strictly time-periodic
oscillations only. The approach presented in the present paper would allow to suppress such restrictions, since we
obtain relative periodic orbits and nonreversible oscillations in triatomic systems using a method which would carry
over to an arbitrary number of particles.

Now let us describe our continuation method in more detail. In Section 2 we reformulate the triatomic system using
the classical Jacobi coordinates in order to eliminate the translational degeneracy. The equations are considered in a
frame rotating at constant velocity, and time-periodic solutions (corresponding to relative periodic orbits) are searched
in this rotating frame. We introduce a convenient scaling in order to analyze the resulting equations for large values
of y. The problem of finding periodic orbits is reformulated as a suitable functional equation in a loop space.

Section 3 is devoted to the limit case y = +o00. The limiting problem takes the form of a two degrees of freedom
Hamiltonian system for the oscillations of light mass A coupled to a nonlinear integral constraint, both involving an
unknown static B—B stretch. We restrict our attention to isosceles configurations, for which the Hamiltonian system
becomes integrable with one degree of freedom. This allows us to obtain a global branch of periodic solutions for the
system with nonlinear integral constraint (Theorem 1, p. 1251).

The continuation of relative periodic orbits to large and finite values of y is performed in Section 4. Under some
nondegeneracy conditions, we show that a given family of relative periodic orbits existing for y = 400 (parametrized
by phase, rotational degree of freedom and period) persists for large values of y and nearby angular velocities (Theo-
rem 2, p. 1255). Our analytical results are valid for small (O(y’l/ 2y) angular velocities. In particular, Theorems 1 and
2 yield the existence of relative periodic orbits for the triatomic system with large mass ratio (Theorem 3, p. 1256). To
complete these analytical results, we perform in Section 5 the numerical continuation of such solutions with respect
to mass ratio and angular velocity, and study their stability properties.

The proof of Theorem 2 is based on the following method. To continue periodic solutions from y = +o0 to large
values of y we use a method introduced by Sepulchre and MacKay [37] for the continuation of normal periodic
orbits in Hamiltonian systems (classical continuation results valid in less general situations can be found elsewhere,
see e.g. [1], Chapter 8 or [23], Chapter 6 and their references). The theory developed by Sepulchre and MacKay
has been generalized by Mufioz-Almaraz et al. [27] to treat more degenerate situations corresponding to Euclidean
invariance. The first step is to introduce in the equations of motion artificial dissipative terms (with respect to energy,
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angular momentum) multiplied by some damping coefficients «, 8 (this idea goes back to a work of Schmidt [36],
who used this technique to derive the Lyapunov center theorem from Hopf’s bifurcation theorem). The problem of
finding periodic orbits is equivalent to searching for the zeros of a certain nonlinear operator, which is shown to be a
submersion at a particular solution, thanks to the additional undetermined coefficients «, 8. By the Lyapunov—Schmidt
decomposition this yields a local family of periodic solutions (parametrized by their period, phase and rotational
degree of freedom), which can be continued under small parameter changes. For time-periodic solutions, dissipative
terms «, B are necessarily equal to 0, hence one recovers exact solutions of the original equations of motion. As
show in this paper, this approach can be adapted to the present setting where y — 400 and relative periodic orbits
are considered. This allows us to continue families of relative periodic orbits with respect to mass ratio and angular
velocity.

2. Formulation of the problem

We consider the triatomic system previously introduced and described by the Hamiltonian (1). The linear momen-
tum P = P1 + Pz + p1 and the angular momentum J= Q1 A P1 + Q2 A Py + g1 A pp are conserved quantities. We
have introduced a tilde in the notations to indicate that we work in a fixed reference frame. The tilde will be suppressed
when working in a rotating reference frame.

2.1. Choice of coordinates and scaling

Without loss of generality, we assume the center of mass of the triatomic system to be fixed at 0, i.e.
MO+ 02) + g1 = 0 (this is equivalent to working in a reference frame moving at constant velocity). This reduces
the equations of motion (which correspond initially to a 12-dimensional differential equation) to a 8-dimensional
system.

We shall use the notation y = €2, the limit y >> 1 corresponding to € < 1. We search for oscillations which are
time-periodic in a rotating reference frame with constant angular velocity §2 = e, @ being fixed and € ~ 0. We shall
note Q1, Q2, q1 the atomic positions in this new reference frame. The equations of motion for atomic positions can
be rewritten as a Hamiltonian system in canonical form, with Hamiltonian

2
€ 1
H == (V] +73) + 231 — 2(Q1K Y1 + Q4K Y2 +q{Ky1)

+U(1Q1 = QM) + W(IIQ1 —q1ll) + W(I1 Q2 — q1ll),

where Y1, Y3, y; are the variables conjugate to Q1, 02, ¢1 and K = (_01 é) Note that H = H — §2.J . Now we describe
atomic positions using the Jacobi coordinates represented in Fig. 1 and defined by

1
uy =0 — 01, u2=f11—§(Q1+Q2)- )

q1

U
Q2
w1

Q1

Fig. 1. Triatomic system and Jacobi coordinates.
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The choice of Jacobi coordinates allows us to rewrite the triatomic system with fixed center of mass as a 8-dimen-
sional Hamiltonian system in canonical form. The Hamiltonian reads
2 2 -
H =€ jwi |+ U (Jlur[}) - eou Ky

S e w + W
2 2 )2

. . . - 2 .. _
where w1, w, are conjugate variables to uy, u and wy = flz(ul —ewKuy), wpy=(~1+ %) 1(u2 — ewKuy). Note

+4
oo
2T

Uy — %H) —eé)u;sz, 3

that the degrees of freedom u1, u correspond to “reduced” masses € ~2/2 and (1 + %)_1.
Now we look for time-periodic solutions (with fixed period T') as € — 0 using an appropriate scaling. We set
u1(t) =u+ ery(t) with

T

/rl(s) ds =0, %)

0

and w; = ¢ 'v;. In the sequel we shall rewrite for convenience uy = ry, wy = vy and note ul = —Ku. The equations
of motion read

fl=2v — &G +er)t, 01 =—e(@vi + Fealr1,r)),
62 1 1
fz:(l—i—?)l)z—fd)rz s 1.122—65)02 _ge,ﬁ(rlarZ)a ®)

where F¢ i, Ge.i ‘R? x R?2 - R? are given by

_ i+ ery , i+ er ry + LN
Fealri,r) =U'(llia +ery|| _7+W< r ) =
o ( )||M+€V1|| 2 2||r2—i——“+2”1 I
, i+er ry — 0
-W rn—= 2 u+ery
22 — =5l
i+er |\ r2+ 0 , iter |\ rn— N
Gei(ri,ra) = W’( r2+ ) = + Wi |[r2 — = . (6)
2 Iy + 50| 2 llry — 51|
The system (5) has two conserved quantities, namely the Hamiltonian
5 _ o [ 1 €2 2 u—+ery
H=|vl*+U(lia+erl)—a@@+er) Kvl—f-z l+? ool + W |r2 + 3
+W( py— N )-az)rgsz, %
and the rescaled angular momentum J = € J given by
J=uAvi+elri Avi+rAv). (8)

Moreover system (5) is reversible. Indeed, if (i, r1, r2) is a solution of the second-order system arising from (5) then
(—Su, —Sri(—t), Sra(—1)) is also a solution, where we denote by S the symmetry S(a, b) = (—a, b).

The invariance of (5) under rotations will introduce technical difficulties for the continuation of periodic orbits
since it excludes a direct application of the implicit function theorem. This invariance could be suppressed by using
suitable internal coordinates (see e.g. [30,42,41,16] and their references). However these coordinates would introduce
artificial singularities in the planar case [16], which would preclude the continuation of any singular periodic orbit.
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2.2. Periodic orbits as zeros of a submersion

To analyze the limit € — 0, we follow the approach initiated by MacKay and Sepulchre [37] for the continuation
of periodic orbits in systems having a first integral and generalized by Mufioz-Almaraz et al. [27] to systems having
several integrals. Let us sum up the strategy in a few lines. The starting point of the method is to introduce in the equa-
tions of motion artificial dissipative terms (with respect to energy, angular momentum) multiplied by some damping
coefficients «, 8. The problem of finding periodic orbits is equivalent to searching for the zeros of a certain nonlinear
operator, which is shown to be a submersion at the points representing “normally degenerate” periodic solutions in
the case € = 0, thanks to the additional undetermined coefficients «, 8. We recall that a C 1 map F:X — Y between
Banach spaces is a submersion at a point Xy € X if DF (X() is surjective and its kernel has a closed complement
in X. By a Lyapunov—Schmidt decomposition we then find a local family of periodic solutions (parametrized by their
period, phase and rotational degree of freedom), which can be continued to large values of y and nearby angular
velocities. For time-periodic solutions, it is proved that dissipative terms «, 8 are necessarily equal to 0, hence one
recovers exact solutions of the original equations of motion.

To be more precise, we consider Eq. (5) with additional dissipative terms BVJ and oV H. Rescaling time by
t — t/T, we work with 1-periodic functions of ¢ and consider the period 7 as an unknown (for simplicity we shall
keep the same notation r;, v; for the rescaled functions). Condition (4) becomes

1

/rl(s) ds =0. )
0
One obtains the following differential system
i1 =T (2v1 — & + er) " + ae(Fea(ri, ra) + dvi) — Bevy),
01 =T (—€(dv + Fea(ri,r)) +a(2v) — &G +er))t) + B +er)t),

2
. E ) )
y = T((] + 7)1)2 — earsy +a(€dvy + Gea(ri,r)) — ﬁevzl),

2
Uy = T(—e@v; —Gea(ri,m) + a<<1 + %)vz —~ ea)rj> + ﬂerj‘). (10)

In what follows we note u = (r1, 2, v1, v2)’. The relation between the modified system (9), (10) and the original
one (4), (5) is given by the following proposition.

Proposition 1. Let u be a 1-periodic solution of (9), (10) and u(t) = u(t/T). Assume there exists ty € R such that
VJ (i(ty)) and VHu(ty)) do not vanish and are not colinear. Then « = 8 = 0 and 1 is a T-periodic solution

of (4), (5).

Proof. Eq. (10) yields it = KV H (i) + oV H (ii) + BV J (i) with K = ( °, [) € Mg(R). We define F (i) = o H (ii) +

BJ (). Then 0 = fOT %F(z](t))dt = fOT IVF(@i(t))||*>dt since H and J are first integrals of (5). Consequently
VF(@u(t))=0forall f € R, and @« = § =0 follows by fixing t =#p. O

Now we reformulate (10) as a suitable functional equation. As previously indicated, we shall derive a static equation
satisfied by the degree of freedom u as € = 0. Since this static problem will inherit an invariance under rotation, we
shall fix

i=0(1,0) (1)
to eliminate this degeneracy. As a consequence we only need to determine a scalar equation satisfied by the static
degree of freedom . Multiplying by u the first two equations of (10), one obtains % fol (v1,u)dt = €Z, where (-,-)
denotes the canonical scalar product on R? and

1

1
I:—(1+a2)/(@vf+;E€,l;(r1,r2),zz)dz+,3/(rf+avf,ﬁ)dz. (12)
0 0
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In this computation we have used the fact that fol (71, u)dt = 0 due to time-periodicity. One has in the same way
fol(bl, u)dt =0, hence Z = 0 for € # 0. For ¢ = 0 we shall introduce the condition Z = 0 to fix the degree of
freedom u. The condition Z = 0 reads
1 1
/(@vf + Fea(ri,r), i)dt = b

1+ a2
0 0

(ri- +avi, i) dr. (13)

In the case « = 8 = 0 that we shall recover at the end of our analysis (see Proposition 1), this condition becomes
1
/ @V + Fea(rio ). @)di = 0. (14)
0

Egs. (10)—(13) can be rewritten as a functional equation

Fe,&)(rlvU1,7'27U2a€_?7T,a,,3)=0 (15)
with
- : = (i 1 ol 1 -
11— T Qv —o(u+er)~ +ae(Feq+ovy) — Bevy)
01 = T (—e(@vi" + Fe.i) +@Qui — @i +er)™) + Bl +er)' — e pi)
Feo = P2 = T((1+ 9)v2 — ery + a(edvy + Ge.q) — Bevy) (16)
0y — T(—e@vi — Geg +a((1+ $)va — edrd) + Berd)
L A i

and i = (1, 0)". Note that the second component of F 5 multiplied by (1,0)" has 0 time-average (this is readily
checked by multiplying this component by ). For interaction potentials U, W sufficiently smooth on (0, +00), the
operator F¢ g is C k from an open subset of the Hilbert space X into Y, where X = H(l) x (H)? x R*, Y=12x ]L% X
(IL?)? x R and HP, IL.? denote the classical Sobolev spaces (H”(T))?, (L*(T))? (T = R/Z). Moreover r € H(l) means
r e H' and f; r(s)ds =0, and one notes v € L7 if v € L? and [}, (v(s), (1,0)") ds = 0.

Particular solutions of the infinite mass ratio problem with € = 0 in (15) will be given in Section 3. More generally,
we shall prove in Section 4 that Fp 4, is a submersion at a given periodic solution of the infinite mass ratio problem
with € = 0 and @ = @y, provided this solution fulfills certain nondegeneracy conditions. Then using the persistence
of the zero set of a submersion under small perturbations, we shall obtain a family of periodic solutions of the full
problem (10)—(13) when € is small enough and @ = @g. By Proposition 1 this will yield a family of periodic solutions
of (5).

3. Limit case of infinite mass ratio y (¢ =0)
3.1. Local families of periodic solutions

Let us consider the situation when € = 0 in (15) and study the existence of simple classes of small amplitude
1-periodic solutions. The differential system (10) reads

f=T02v —aat), o =T(aQu — o) + pat),
2 =T (v2 + aG(ii, 1)), 0o =T (=G (i, r2) +avy), (17)

and the condition (13) can be written

1 1
/(cbvf‘+]_:(ﬁ,r2),ﬁ)dt= 1fa2 /(rll+owf‘,ﬁ)dt, (18)
0 0

with F (i1, r2) = Fo,q(0,r2) and G(it, r2) = Go,a(0,r2). We have G = V,,V and F = V;V, the potential V being
defined by V (i, r2) = U([|lul) + W(llr2 + 51D + W(llr2 — 51D-
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Sl
S

Fig. 2. Choice of coordinates for the triatomic system in an isosceles configuration.

Searching for 1-periodic solutions of (17), (18) satisfying the assumptions of Proposition 1, we obtain « = 8 =0
and thus

=T Qv — oib), v =0,

iy =Ty, Uy = —TG(it, 1),
1

/(c?)vf‘+37-'(ﬁ,r2),ﬁ)dt20. (19)
0
Then we have v; = la)u (since v; is constant and rq is time-periodic) and r; = 0 (since r{ has 0 time-average).

Recalling u = o(1, 0)’ and after elimination of v, from the equations, problem (19) reduces to
1

B+ T2V, V(3(1,0)',r2) =0, f (3(1.0). r2(5)) ds = L. (20)

where F is the first component of F. In the sequel we consider the case @ = 0 of (20) (the case @ ~ 0 will be later
treated perturbatively, see Theorem 3).

For @ = 0, system (20) admits two symmetric triangular equilibrium solutions (iz, r2) = ((D*, 0)’, (0, =R*)"),
where we note R* = (d*> — p*2)1/2 and p* = D*/2. Other triangular equilibria are obtained by any rotation of these
two equilibria. In addition there exist other equilibrium configurations where all atoms are aligned, with r, = 0 or
u, rp colinear.

Let us choose the triangular equilibrium (&*, r}) = ((D*,0)", (0, R*)") and study some families of periodic so-
lutions in its neighborhood. Since W”(d*) > 0, the Hessian matrix D2 V(i*, *) has two positive real eigenvalues

$2 = 2W”(d*)R*2/d*2, %2 W”(d*)D*Z/(Zd*Z) As in the class1ca1 theory of Hamiltonian systems (the only
difference here being the integral constraint of (20)) one can find a family of small amplitude nonlinear normal modes
associated with each eigenvalue. This aspect is treated in detail in reference [10] for n-particle systems. Here we shall
see how to obtain such solutions in a simple case.
In what follows we restrict our study to isosceles configurations with || Q1 — q1]| = || Q2 — g1 (see Fig. 2). Bifur-
cating solutions will be computed using the variables r, = (0, R2), p = 0/2 and we shall express the final results with
the unscaled variable R(t) = R»(¢/T). Problem (20) with @ = 0 becomes

IV,
R”—i——O(R,,E):O, 1)
T
3V()
/—_ R(t), p)dt =0, 22)
ap
0

where R is T—periodic, p > 0 and Vo(R, p) =2W (v/ R%Z + p2) + U(2p). System (21), (22) admits the equilibrium
solutions (R, p) = (£R*, p*),i.e. VVo(£R*, p*) =0.

In the isosceles configuration, the infinite mass ratio limit is considerably simpler to analyze because the differ-
ential equation (21) is integrable. However its phase space qualitatively depends on the variable p and Eq. (21) is
coupled with the integral constraint (22). This will introduce technical difficulties in the global analysis of (21), (22)
(Section 3.2). However, the local solution branch considered below can be easily computed using a classical treatment
of pitchfork bifurcations.
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In what follows we sketch the main arguments and refer to classical references [9,21,12] for more details on the
analysis of pitchfork bifurcations. Setting T = 27 /2, problem (21), (22) can be rewritten as a functional equation

G(Ry, j, £2) =0, (23)

where (R, p) € HEZU (R/Z) x R (the subscript ev in the notation of the Sobolev space refers to even functions of #),

2

_ 2
G(Re.p. D =( 1

1
R/2’+ (Rz 0), / —(R2(1), o dl)
0

V
ap
maps H2,(R/Z) x (R*)? into L2, (R/Z) x R and $2 plays the role of a bifurcation parameter. Now we examine the
solutions of (23) near the trivial solution (R*, p*). Let us note that

D*Vo(R*, p*) = (‘b’ b)

c

where a = a)’l“2, b=wiw} and c = w;z +4U"(D*). After elementary computations, one shows that (R;, §) belongs
to the kernel of the operator Ao = D(g,,5)G(R*, p*, £2) if and only if

2

4 A2

Since D2Vy(R*, p*) is invertible (one has U”(D*) > 0, W”(d*) > 0) these conditions reduce to

Ry +aR+bp=0, (ac—b*)p=0.

2
(1)*
/ 2(2121%2:0, 5 =0.

This linear problem has nontrivial solutions in H; 2 ,(R/Z) x R for k2 = w} (k € N*¥), but it suffices to consider the
case k = 1 (the other critical values of £2 yield in fact the same bifurcating solutions when one comes back to the
unscaled problem (21)).

The kernel of AwT is one-dimensional and spanned by (R», p) = (cos2xt,0). Moreover problem (23) is invari-
ant under the symmetry Ry — R (¢ 4 1/2), therefore a classical Lyapunov—Schmidt reduction [9,21,12] yields a
bifurcation equation of pitchfork type

a(2 — w}) — 2:0° +o(|al[2 — wf| + ) =

where « denotes the coordinate of bifurcating solutions along Ker AwT' As a consequence, there exists a local branch
of periodic solutions of (21)—(22) close to (R*, p*), which can be parametrized (up to phase shift) by

R() :R*—}—acoth—i—O(az), (24)
Q2 =of +O(a2), (25)
= 0. 2

where o & 0 parametrizes the solution branch and 2 =27/ T denotes the solution frequency. Note that o and £2 are
even functions of o (changing « into —« is equivalent to shifting ¢ by 7 /2), and we have fixed R even in .

In addition there exists a second family of nonlinear normal modes, for which r, is even in time, admits two
nontrivial components and the angle between u and r; oscillates around /2. These modes correspond to the second
elgenvalue a)2 , and their existence can be proved by the same method as above, under the additional condition that
o} is not a multiple of w3 (for a slightly different method of proof see also [10], Theorem 1).

More generally, one can expect the existence of an infinity of families of periodic orbits (not necessarily time-
reversible) arbitrarily close to the triangular equilibrium (&*, r}) as it is the case classically in two degree of freedom
Hamiltonian systems, the only difference here being the integral constraint in (20). A way to obtain these solutions
would be to select a family of periodic solutions ry (parametrized by p and its energy E) and study the zeros of the
implicit function of (p, E) resulting from the integral constraint of (20) (see e.g. Fig. 6 in Section 3.2). This level set
approach will be used in Section 3.2 to obtain global existence results for isosceles configurations. However, it could
be used (at least locally) for more complex oscillations since F1(o(1,0)’, ry) changes its sign at 0 = D* =2p* (see

Lemma 1), hence fol Fi (2(1,0)", r2(s)) ds will vanish at some value of g if a periodic orbit r; is chosen sufficiently
close torj.
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3.2. Global solution branches

In this section we restrict ourselves to isosceles configurations where the atom A is equidistant from the two heavy
atoms B. As we have seen previously, the problem reduces to an integrable differential equation for the position of A
coupled with an integral constraint, both involving also the static B—B stretch. This simplified problem allows for a
more detailed mathematical analysis including a global existence result. We make the following assumptions on the
interaction potentials.

Hypothesis 1. The functions U, W are analytic over R*. Moreover, U’, W’ only vanish at some critical distance
D*, d* > 0 respectively, with U”(D*) > 0, W”/(d*) > 0 and d* > p* = D*/2. In addition, W is a convex function on
the interval (0, d*].

We recall that the assumption d* > p* allows for triangular equilibrium configurations with ||Q; — ¢1| = d*,
|Q1 — Q2| = D*. The property of analyticity will be used to obtain global bifurcation results. The last convexity
assumption could be relaxed but we prefer using it to simplify the analysis. This is not a severe restriction because the
repulsive part of the potential turns out to be convex in many physical models.

Our analysis will provide two families of periodic solutions. The first one corresponds to the nonlinear normal
modes (24)—(26) analytically continued in the large amplitude regime. The second solution family will be found
to exist under appropriate conditions on W and U. It consists in inversions where the light atom A crosses the B—B
segment. The two solution families are separated by an homoclinic orbit (corresponding to the limit of infinite period),
where the atom A asymptotically approaches the B—B line center.

Note that the first solution branch could be obtained using general results from the analytic theory of global bi-
furcations [4], but we prefer to present a self-contained proof of global continuation which is based on elementary
notions and yields more precise results. As previously mentioned, we shall reduce the analysis of (21), (22) to the
study of a level line of an (implicitly defined) analytic function of two real variables.

3.2.1. A level set approach

It is first necessary to obtain suitable bounds for the solutions p of (21), (22), since the phase portrait of (21)
qualitatively depends on p.

Let us note that

; 7 172
1 A%, _ _ _1 W/ R(t 2+ 2
?/a——O(R(f>’P)df=ZU’<2p>+2p7/ [(R() p1>/2 L,
o 7’ 5 (RO +p?)
which implies 7 fy' 3% (R(1), 5)dt > 0 when j > d* > p*. As a consequence the solutions of (21), (22) necessarily

satisfy p < d*.

With our assumptions on W, if p is fixed in the interval (0, d*) the potential V(-, p) has a double well structure,
with three critical points R = 0 and R = £Ry(5), with Ro(5) = (d** — p%)!/? (see Fig. 3). The equilibria R = £Ry(p)
of (21) are elliptic and R = 0 is a saddle point. The hardness coefficient

[tV 593V
hp)=| Sy ot = 2 52 27)

Vo(R, p)

o/

“R(p) 0 Re(p) R

Fig. 3. Local shape of the potential V(-, o) having a double well structure for p € (0,d™). In the case represented here, Vj(-, p) has a local
maximum at R = 0 and a global one at infinity. This case occurs for p sufficiently close to d*.
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Fig. 4. Phase space of Eq. (21) for p € (din, d*), in the vicinity of the two symmetric homoclinic orbits.

determines (depending on whether 4 > 0 or & < 0) if the frequency of oscillations around Ry(p) locally increases or
decreases with amplitude (we shall use this property in Appendix A).
Since W is strictly increasing (respectively decreasing) on the interval (d*, 400) (respectively on (0, d*)) we define

dmin = Inf{d € (0, d*), W(d) < Was},

where we note Woo = limy_, ;oo W(x) (W is either finite or equal to +00). If p lies within the interval (dpin, d*),
one has W(p) < Wy and thus V(0, p) < limg_, 4 Vo(R, p). This means Vy(-, p) has a local maximum at R =0
and a global one at infinity. In that case, the trajectories of (21) have the structure shown in Fig. 4 at least locally, with a
pair of symmetric homoclinic orbits to R = 0. The periodic orbits inside the homoclinic loops correspond to nonlinear
normal modes, and the periodic orbits lying outside correspond to inversions of the atom A. The set of periodic orbits
outside the homoclinic loops qualitatively depends on the behavior of W at infinity. If W, = 400, the surrounding
periodic orbits represented in Fig. 4 fill the entire phase space around the homoclinic loops. If W, < +00, they are
confined in a region bounded by a pair of symmetric heteroclinic orbits (joining (R, R") = (00, 0)), and no periodic
orbits exists outside.

In the sequel we assume p* > dpin. Consequently, one has p € (dmin, d*) when « = 0 is slightly increased along
the local solution branch (24)—(26) (in fact we shall see later that p* < p on this solution branch). Therefore, (R, R")
corresponds in Fig. 4 to the trajectory of period T close to the elliptic equilibrium (R (p), 0).

Remark 1. The case p* < dpin will not be considered here but could be treated with similar methods. In that case
the solution branch would have different properties, because homoclinic bifurcations occur in Eq. (21) as p exits the
interval (dmin, d*) due to qualitative changes in the potential Vj. If dpin > 0 (which implies W and V{y have a finite
limit at +00) and p = dp;n, then Vy admits three global maxima at R = —o00, 0, 400. For p € (0, dpin), there is one
global maximum at R = 0 and two “local” maxima at R = £o00.

Now we develop a simple level set approach to obtain global branches of periodic solutions. For this purpose, we
parametrize the periodic orbits by their energy difference E with respect to the ground state energy. More precisely
we have

E=2[W(/ROP +22) - (@]

(we have fixed R even in ¢). The value E = 0 corresponds to the equilibrium solution R = Ry(p), and R approaches
an homoclinic orbit to 0 as E — Epax () defined by Epnax (0) =2(W(p) — W(d™*)) (Emax () is the energy difference
between the unstable equilibrium R = 0 and the ground state Ry(p)). As we move along the family of periodic
orbits outside the homoclinic orbit, E increases from En,x(0) to the maximal value E* = 2(Wy — W(d™)). One
has E* = 400 (and dyj, = 0) when W is unbounded at +oo. If W is bounded at 400, the limiting value E* < 0o
corresponds to a pair of symmetric heteroclinic orbits joining (R, R') = (%00, 0).

To each value E € [0, Emax(0)) U (Emax(p), E*) corresponds a unique solution Rg ; of (21) with R’(0) =0 and
R(0) > Ro(p). We shall note Tk ; its period. Due to the analyticity of W (which implies in particular the analyticity
of R(r) with respect to initial conditions), and since W’(d) vanishes only at d = d* (yielding % > ( for R(0) >
Ro(p)), the solution Rg ; depends analytically on (¢, E, p) for t € R and (E, p) in the open domain A = A; U A,
with

Ai ={(E, p) €RT X (dmin, d"),0 < E < Emax(p)}, (28)
Ao={(E. ) €R X (dnyin. d*), Emax (5) < E < E*}. 29
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Fig. 5. Open domain A = A; U A, defined by (28), (29) and parts I'1, I> of its boundary defined by (30), (31).

The domain A is depicted in Fig. 5. In the sequel we note I'1, I'; the parts 