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Abstract

For a general class of autonomous quasi-linear elliptic equations on R
n we prove the existence of a least energy solution and

show that all least energy solutions do not change sign and are radially symmetric up to a translation in R
n.

© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Pour une large classe d’équations quasilinéaires elliptiques autonomes sur R
N , on montre l’existence d’une solution de moindre

énergie. On montre aussi que toutes les solutions de moindres énergies ont un signe constant et sont, à une translation près, radiales.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we show the existence, radial symmetry and sign of the least energy solutions for a class of quasi-linear
elliptic equations,

−div
(
jξ (u,Du)

) + js(u,Du) = f (u) in D′(
R

n
)
, (1.1)

where {ξ �→ j (s, ξ)} is p-homogeneous. We look for solutions of (1.1) in D1,p(Rn) where 1 < p � n. If we set
F(s) = ∫ s

0 f (t), Eq. (1.1) is formally associated with the functional

I (u) =
∫
Rn

j (u,Du) −
∫
Rn

F (u),
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which is non-smooth on D1,p(Rn), under natural growth assumptions on the integrand j (s, ξ) (see conditions (1.8),
(1.9) below), although it admits directional derivatives along the smooth directions. By least energy solution of (1.1)
we mean a non-trivial function u ∈ D1,p(Rn) such that

I (u) = inf
{
I (v): v ∈ D1,p(Rn), v �= 0 is a solution of (1.1)

}
.

Our work is motivated by [8] where abstract conditions are given under which problems of type (1.1) admit a least
energy solution and all least energy solutions do not change sign and are radially symmetric, up to a translation in R

n.
In this paper, under quite general assumptions on j (s, ξ) and f (s), we prove that, in fact, these abstract conditions
hold. In the special case of the p-Laplace equation (1 < p � n)

−�pu = f (u) in D′(
R

n
)
, (1.2)

there are various achievements regarding the existence of solutions. For p = 2, namely for

−�u = f (u) in D′(
R

n
)
,

we refer to the classical paper by Berestycki and Lions [3] for the scalar case and to the paper by Brezis and Lieb [7]
for both scalar and systems cases. In [3,7] the existence of a least energy solution is obtained. When p �= 2 we refer
to the papers [18,20] and the references therein for the existence of solutions. The issue of least energy solutions is
not considered in these papers. We also mention [16] where under assumptions on f , allowing to work with regular
functionals in W 1,p(Rn), the existence of a least energy solution is derived. For a more general j (s, ξ) the only
previous result about existence of least energy solutions is [21, Theorem 3.2] which actually played the rôle of a
technical lemma therein. However it requires significant restrictions on f that we completely removed in this paper.

In [3,7] the existence of a least energy solution is obtained by solving a constrained minimization problem under
suitable assumptions on F and f . In [7] the authors assume that F is a C1 function on R \ {0}, locally Lipschitz
around the origin and having suitable sub-criticality controls at the origin and at infinity. In Theorem 1 of [18], the
authors extend the existence results of [3] to the p-Laplacian case and need more regularity on the function F (for
instance f is taken in Liploc). In our general setting, we consider a set of assumptions on F which is close to that of
[7] and some natural assumptions on j which are often considered in the current literature of this kind of problems.

1.1. Main result in the case 1 < p < n

Let F : R → R be a function of class C1 such that F(0) = 0. Denoting by p∗ the critical Sobolev exponent we
assume that:

lim sup
s→0

F(s)

|s|p∗ � 0; (1.3)

there exists s0 ∈ R such that F(s0) > 0. (1.4)

Moreover, if f (s) = F ′(s) for any s ∈ R,

lim
s→∞

f (s)

|s|p∗−1
= 0. (1.5)

Finally,

if u ∈ D1,p
(
R

n
)

and u �≡ 0 then f (u) �≡ 0. (1.6)

Condition (1.6) is satisfied for instance if f (s) �= 0 for s �= 0 and small because if u ∈ D1,p(Rn) and u �≡ 0 the measure
of the set {x ∈ R

n: η � |f (u(x))| � 2η} is positive for η > 0 and small.
Let j (s, ξ) : R × R

n → R be a function of class C1 in s and ξ and denote by js and jξ the derivatives of j with
respect of s and ξ respectively. We assume that:

for all s ∈ R the map
{
ξ �→ j (s, ξ)

}
is strictly convex and p-homogeneous; (1.7)

there exist positive constants c1, c2, c3, c4 and R such that
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c1|ξ |p � j (s, ξ) � c2|ξ |p, for all s ∈ R and ξ ∈ R
n; (1.8)∣∣js(s, ξ)

∣∣ � c3|ξ |p,
∣∣jξ (s, ξ)

∣∣ � c4|ξ |p−1, for all s ∈ R and ξ ∈ R
n; (1.9)

js(s, ξ)s � 0, for all s ∈ R with |s| � R and ξ ∈ R
n. (1.10)

Conditions (1.7)–(1.10) on j are quite natural assumptions and were already used, e.g., in [1,10,11,30,31]. See also
Remark 2.18 for further comments regarding the rôle played by condition (1.10).

Theorem 1.1. Assume that conditions (1.3)–(1.10) hold. Then Eq. (1.1) admits a least energy solution u ∈ D1,p(Rn).
Furthermore any least energy solution of (1.1) has a constant sign and is radially symmetric, up to a translation in R

n.

1.2. Main result in the case p = n

Let F : R → R be a function of class C1 such that F(0) = 0. We assume that:

there exists δ > 0 such that F(s) < 0 for all 0 < |s| � δ; (1.11)

there exists s0 ∈ R such that F(s0) > 0; (1.12)

there exist q > 1 and c > 0 such that
∣∣f (s)

∣∣ � c + c|s|q−1 for all s ∈ R. (1.13)

if u ∈ D1,n
(
R

n
)

and u �≡ 0 then f (u) �≡ 0. (1.14)

Concerning the Lagrangian j we still assume conditions (1.7)–(1.10) (with p = n).

Theorem 1.2. Assume that conditions (1.7)–(1.14) hold. Then Eq. (1.1) admits a least energy solution u ∈ D1,n(Rn).
Furthermore any least energy solution of (1.1) has a constant sign and if a least energy solution u ∈ D1,n(Rn) satisfies
u(x) → 0 as |x| → ∞ then it is radially symmetric, up to a translation in R

n.

Our approach to prove Theorems 1.1 and 1.2 is based in an essential way on the work [8]. There abstract condi-
tions (see (C1)–(C3) and (D1)–(D3) below) are given which, if they are satisfied, guarantee the conclusions of our
Theorems 1.1 and 1.2.

We point out that the way we prove the existence of least energy solutions, by solving a constrained minimization
problem, is crucial in order to get the symmetry and sign results of all least energy solutions. First we show that the
problem

min

{∫
Rn

j (u,Du): u ∈ D1,p
(
R

n
)
, F (u) ∈ L1(

R
n
)
,

∫
Rn

F (u) = 1

}
(1.15)

admits a solution, which is the hardest step. To do this, we exploit some tools from non-smooth critical point theory,
such as the weak slope, developed in [12,13,24,25] (see Section 2.2). Then we prove that any minimizer is of class
C1 and satisfy the Euler–Lagrange equation as well as the Pucci–Serrin identity. This allow us to check the abstract
conditions of [8] which provide a link between least action solutions of (1.1) and solutions of problem (1.15). Roughly
speaking if the abstract conditions hold then there exist a least energy solution and to any least energy solution of
(1.1) correspond, up to a rescaling, a minimizer of (1.15). It is proved in [27] that any such minimizer are radially
symmetric. In addition it is shown in [8] that any minimizer has a constant sign.

Let us point out that, in our setting, the existence results that we obtain have no equivalent in the literature. Also,
even assuming the existence of least energy solutions, our results of symmetry and sign are new. In particular we
observe that, under our assumptions, to try to show that they are radial using moving plane methods or rearrangements
arguments is hopeless. We definitely need to use the approach of [8] which, in turn, is based on the remarkable
paper [27]. In [27] results of symmetry for C1 mimimizers are obtained for general functionals under one or several
constraints. Let us finally mention that in [8], and thus in our paper, the results of radial symmetry are obtained without
using the fact that our solutions have a constant sign.
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2. The case 1 < p < n

2.1. Conditions (C1)–(C3)

In the following D1,p(Rn) will denote the closure of the space C∞
c (Rn) with respect to the norm ‖u‖ =

(
∫

Rn |Du|p)1/p and D∗ is the dual space of D1,p(Rn). Let us consider the problem

−div
(
jξ (u,Du)

) + js(u,Du) = f (u) in D′(
R

n
)
, (2.1)

associated with the functional

I (u) =
∫
Rn

j (u,Du) −
∫
Rn

F (u),

where F(s) = ∫ s

0 f (t) dt . Moreover, introducing the functionals,

J (u) =
∫
Rn

j (u,Du), V (u) =
∫
Rn

F (u), u ∈ D1,p
(
R

n
)
,

we consider the following constrained problem

minimize J (u) subject to the constraint V (u) = 1. (P1)

More precisely, let us set

X = {
u ∈ D1,p

(
R

n
)
: F(u) ∈ L1(

R
n
)}

,

and

T = inf
C

J, C = {
u ∈ X: V (u) = 1

}
.

Consider the following conditions:

(C1) T > 0 and problem (P1) has a minimizer u ∈ X;
(C2) any minimizer u ∈ X of (P1) is a C1 solution and satisfies the equation

−div
(
jξ (u,Du)

) + js(u,Du) = μf (u) in D′(
R

n
)
, (2.2)

for some μ ∈ R;
(C3) any solution u ∈ X of Eq. (2.2) satisfies the identity

(n − p)J (u) = μnV (u).

From [8] we have the following

Proposition 2.1. Assume that 1 < p < n and that conditions (C1)–(C3) hold. Then (1.1) admits a least energy solution
and each least energy solution has a constant sign and is radially symmetric, up to a translation in R

n.

Indeed X is an admissible function space in the sense introduced in [8]. Then Proposition 3 of [8] gives the
existence of a least energy solution and that any least energy solution is radially symmetric. Finally, the sign result
follows directly from Proposition 5 of [8].

In view of Proposition 2.1, our aim is now to prove that conditions (C1)–(C3) are fulfilled under assumptions
(1.3)–(1.10).

Remark 2.2. In [8], in the scalar case, the equation considered is precisely (1.2) and the corresponding functional

I (u) = 1

p

∫
Rn

|∇u|p −
∫
Rn

F (u).

However, in order to show that conditions (C1)–(C3) imply the conclusion of Proposition 2.1, the only property of
|∇u|p that it is used is p-homogeneity, namely that (1.7) hold.
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2.2. Some recalls of non-smooth critical point theory

In this section we recall some abstract notions that will be used in the sequel. We refer the reader to [12,13,24,25],
where this theory is fully developed.

Let X be a metric space and let f :X → R ∪ {+∞} be a lower semicontinuous function. We set

dom(f ) = {
u ∈ X: f (u) < +∞}

and epi(f ) = {
(u, η) ∈ X × R: f (u) � η

}
.

The set epi(f ) is endowed with the metric

d
(
(u, η), (v,μ)

) = (
d(u, v)2 + (η − μ)2)1/2

.

Let us define the function Gf : epi(f ) → R by setting

Gf (u, η) = η.

Note that Gf is Lipschitz continuous of constant 1. In the following B(u, δ) denotes the open ball of center u and of
radius δ. We recall the definition of the weak slope for a continuous function.

Definition 2.3. Let X be a complete metric space, g :X → R a continuous function, and u ∈ X. We denote by |dg|(u)

the supremum of the real numbers σ in [0,∞) such that there exist δ > 0 and a continuous map

H :B(u, δ) × [0, δ] → X,

such that, for every v in B(u, δ), and for every t in [0, δ] it results

d
(

H(v, t), v
)
� t,

g
(

H(v, t)
)
� g(v) − σ t.

The extended real number |dg|(u) is called the weak slope of g at u.

According to the previous definition, for every lower semicontinuous function f we can consider the metric space
epi(f ) so that the weak slope of Gf is well defined. Therefore, we can define the weak slope of a lower semicontinuous
function f by using |dGf |(u,f (u)).

Definition 2.4. For every u ∈ dom(f ) let

|df |(u) =

⎧⎪⎨
⎪⎩

|dGf |(u,f (u))√
1 − |dGf |(u,f (u)

)2
, if |dGf |(u,f (u)

)
< 1,

+∞, if |dGf |(u,f (u)) = 1.

The previous notion allows to give, in this framework, the definition of critical point of f (namely a point u ∈
dom(f ) with |df |(u) = 0) as well as the following

Definition 2.5. Let X be a complete metric space, f :X → R ∪ {+∞} a lower semicontinuous function and let c ∈ R.
We say that f satisfies the Palais–Smale condition at level c ((PS)c in short), if every sequence (un) in dom(f ) such
that |df |(un) → 0 and f (un) → c ((PS)c sequence, in short) admits a subsequence (unk

) converging in X.

We now recall a consequence of Ekeland’s variational principle [17] in the framework of the weak slope (just apply
[13, Theorem 3.3] with r = rh = σ = σh = εh for a sequence εh → 0; see also [13, Corollary 3.4]).

Proposition 2.6. Let X be a complete metric space and f :X → R ∪ {+∞} a lower semicontinuous function which is
bounded from below. Assume that (uh) ⊂ dom(f ) is a minimizing sequence for f , that is f (uh) → c = infX f . Then
there exists a sequence (εh) ⊂ R

+ with εh → 0 as h → ∞ and a sequence (vh) ⊂ X such that

|df |(vh) � εh, d(vh,uh) � εh, f (vh) � f (uh).

In particular (vh) is a minimizing sequence and a (PS)c sequence for f .
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Finally, we mention the notion of subdifferential as introduced in [9].

Definition 2.7. For a function f :X → R, we set

∂f (x) = {
α ∈ X′: (α,−1) ∈ Nepi(f )

(
x,f (x)

)}
,

where X′ is the dual space of X, NC(x) = {ν ∈ X′: 〈ν, v〉 � 0, for all v ∈ TC(x)} is the normal cone (and TC(x) the
tangent cone) to the set C at the point x.

More precisely, see [9, Definitions 3.1, 3.3 and 4.1].

2.3. Verification of conditions (C1)–(C3)

In this section we assume that (1.3)–(1.10) hold and then show that (C1)–(C3) are fulfilled.
First we extend J |C to the functional J ∗ :D1,p(Rn) → R ∪ {+∞},

J ∗(u) =
{

J (u) if u ∈ C,

+∞ if u /∈ C,
(2.3)

which turns out to be lower semicontinuous. Since C can be regarded as a metric space endowed with the metric of
D1,p(Rn), the weak slope |dJ |C |(u) and the Palais–Smale condition for J |C may be defined.

Lemma 2.8. For all u ∈ C there exists μ ∈ R such that

|dJ |C |(u) � sup
{
J ′(u)(v) − μV ′(u)(v): v ∈ C∞

c

(
R

n
)
, ‖Dv‖p � 1

}
.

In particular, for each (PS)c-sequence (uh) for J |C there exists (μh) ⊂ R such that

lim
h

sup
{
J ′(uh)(v) − μhV

′(uh)(v): v ∈ C∞
c

(
R

n
)
, ‖Dv‖p � 1

} = 0.

Proof. By condition (1.9), for all u ∈ C and any v ∈ C∞
c (Rn) the directional derivative of J at u along v exists and it

is given by

J ′(u)(v) =
∫
Rn

jξ (u,Du) · Dv +
∫
Rn

js(u,Du)v. (2.4)

Moreover the function {u �→ J ′(u)(v)} is continuous from C into R. Of course, we may assume that |dJ |C |(u) < +∞.

If J ∗ is defined as in (2.3), we have |dJ ∗|(u) = |dJ |C |(u), so that by virtue of [9, Theorem 4.13] there exists ω ∈
∂J ∗(u) with |dJ ∗|(u) � ‖ω‖D∗ . Moreover, by [9, Corollary 5.9(ii)], we have ∂J ∗(u) ⊆ ∂J (u) + RV ′(u). Finally, by
[9, Theorem 6.1(ii)], we get ∂J (u) = {η} where, for any function v ∈ C∞

c (Rn), 〈η, v〉 = J ′(u)(v). This concludes the
proof. �
Remark 2.9. Assuming only that F is C1 on R\ {0} and it is locally Lipschitz around the origin (as in [7] as it follows
by [7, Assumption 2.8] which is used in the proof of Theorem 2.2 therein) Lemma 2.8 cannot hold in the form it is
stated. In this more general case, there would exist μ ∈ R and some function ϕ ∈ L∞(Rn) such that the solutions of
the minimum problem satisfy

−div
(
jξ (u,Du)

) + js(u,Du) = μf (u)χ{u �=0} + ϕχ{u=0} in D′(
R

n
)
. (2.5)

In fact, notice that this is exactly what is obtained at the bottom of p. 103 in [7]. Then, in light of the strong regularity
of their solutions (that is W

2,σ
loc (Rn) for some σ > 1), the equation is satisfied pointwise and as �u = 0 a.e. in {u = 0}

(by a result of Stampacchia, see [32]) they infer ϕ = 0. On the other hand, in our degenerate framework we cannot
reach this regularity level and concluding that ϕ = 0 (and hence that u solves (2.2)) seems, so far, out of reach.

Now we recall (see [30, Theorem 2]) the following
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Lemma 2.10. Let (uh) be a bounded sequence in D1,p(Rn) and, for each v ∈ C∞
c (Rn), set

〈wh,v〉 =
∫
Rn

jξ (uh,Duh) · Dv +
∫
Rn

js(uh,Duh)v = J ′(uh)(v).

If the sequence (wh) is strongly convergent to some w in D∗(Ω) for each open and bounded subset Ω ⊂ R
n, then

(uh) admits a strongly convergent subsequence in D1,p(Ω) for each open and bounded subset Ω ⊂ R
n.

Lemma 2.11. Assume (1.3)–(1.10). Then condition (C1) holds.

Proof. In view of assumption (1.4) the constraint C is not empty (see Step 1 at page 324 in [3]). Let then (uh) ⊂ C be
a minimizing sequence for J |C . Therefore, we have

lim
h

∫
Rn

j (uh,Duh) = T , F (uh) ∈ L1(
R

n
)
,

∫
Rn

F (uh) = 1, for all h ∈ N.

After extracting a subsequence, still denoted by (uh), we get using (1.8),

uh ⇀ u in Lp∗(
R

n
)
, Duh ⇀ Du in Lp

(
R

n
)
, uh(x) → u(x) a.e. (2.6)

As j (s, ξ) is positive, convex in the ξ argument, uh → u in L1
loc(R

n) and Duh ⇀ Du in L1
loc(R

n), by well-known
lower semicontinuity results (cf. [22,23]), it follows∫

Rn

j (u,Du) � lim inf
h

∫
Rn

j (uh,Duh) = T . (2.7)

Moreover, setting F = F+ − F− with F+ = max{F,0} and F− = max{−F,0}, in view of assumptions (1.3) and
(1.5) (which implies that |F(s)|/|s|p∗

goes to zero as s → ∞), fixing some c > 0 one can find r2 > r1 > 0 such that
F+(s) � c|s|p∗

for all |s| � r1 and |s| � r2, so that

1 +
∫
Rn

F−(uh) =
∫
Rn

F+(uh) � c

∫
Rn

|uh|p∗
χ{|uh|�r1}∪{|uh|�r2} + βLn

({|uh| > r1
})

where β = max{F+(s): r1 � |s| � r2} and Ln is the Lebesgue measure in R
n. Clearly Ln({|uh| > r1}) remains

uniformly bounded, as (uh) is bounded in Lp∗
(Rn). Hence, by Fatou’s lemma, this yields F+(u),F−(u) ∈ L1(Rn)

and thus, finally, F(u) ∈ L1(Rn). We have proved that u ∈ X. Notice that, still by assumptions (1.3) and (1.5), in light
of [7, Lemma 2.1], we find two positive constants ε1, ε2 such that

Ln
({

x ∈ R
n:

∣∣uh(x)
∣∣ > ε1

})
� ε2, for all h ∈ N. (2.8)

Hence, in view of [26, Lemma 6] (cf. the proof due to H. Brezis at the end of p. 447 in [26]) there exists a shifting
sequence (ξh) ⊂ R

n such that (uh(x + ξh)) converges weakly to a non-trivial limit. Thus, in (2.6), we may assume
that u �≡ 0. Applying Proposition 2.6 to the lower semicontinuous functional J ∗ defined in (2.3), we can replace the
minimizing sequence (uh) ⊂ C by a minimizing sequence (vh) ⊂ C with ‖vh − uh‖D1,p = o(1) as h → ∞ (we shall
rename vh again as uh) such that the weak slope vanishes, namely |dJ |C |(uh) � εh, with εh → 0 as h → ∞. It follows
by Lemma 2.8 that there exists a sequence (μh) ⊂ R of Lagrange multipliers such that

J ′(uh)(v) = μhV
′(uh)(v) + 〈ηh, v〉, for all h ∈ N and v ∈ C∞

c

(
R

n
)
, (2.9)

where ηh strongly converges to 0 in D∗. Also for any bounded domain Ω ⊂ R
n, by (1.5) (which implies that, for

each ε > 0, there exists aε ∈ R such that |f (s)| � aε + ε|s|p∗−1 for all s ∈ R) it follows that the map D1,p(Ω) � v �→
f (v) ∈ D∗(Ω) is completely continuous. Thus by condition (1.6), since u �= 0, there exists a function ψ0 ∈ C∞

c (Rn)

such that, setting K0 = supp(ψ0), it holds

V ′(uh)(ψ0) =
∫
K0

f (uh)ψ0 �→ 0, as h → ∞.

Also the sequence (J ′(uh)(ψ0)) is bounded. In fact, denoting by C a generic positive constant, we have by (1.9) that
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∫
K0

∣∣jξ (uh,Duh)
∣∣|Dψ0| � C

∫
K0

|Duh|p−1 � C

(∫
K0

|Duh|p
) p−1

p

� C,

∫
K0

∣∣js(uh,Duh)
∣∣|ψ0| � C

∫
K0

|Duh|p � C,

and we conclude using (2.4). Now, formula (2.9) yields

μhV
′(uh)(ψ0) + 〈ηh,ψ0〉 = J ′(uh)(ψ0)

with ηh → 0 in D∗. We deduce that the sequence (μh) is bounded in R and thus we can assume that it converges
to some μ ∈ R. It follows that wh = μhV

′(uh) + ηh = μhf (uh) + ηh converges strongly to some w in D∗(Ω).
Therefore, by Lemma 2.10, we infer that (uh) admits a subsequence which strongly converges in D1,p(Ω). Thus,
we have proved that the sequence (uh) is locally compact in D1,p(Rn) (fact that is useful in the forthcoming steps).
From this we can easily deduce that J ′(u)(v) = μV ′(u)(v) for all v ∈ C∞

c (Rn), namely (2.2). However this is not
enough (nor necessary) to show that u is a minimizer of (P1) since we do not know if V (u) = 1. In this aim we set
uσ (x) = u(x/σ). Then it holds J (uσ ) = σn−pJ (u) and V (uσ ) = σnV (u) and hence, by a simple scaling argument,
we get that

∫
Rn

j (w,Dw) � T

( ∫
Rn

F (w)

) n−p
n

, for all w ∈ D1,p
(
R

n
)

with V (w) > 0. (2.10)

We follow now an argument in the spirit of the perturbation method developed in the proof of [7, Lemma 2.3]. Taking
any function φ ∈ Lp∗

(Rn) with compact support, we claim that∫
Rn

F (uh + φ) = 1 +
∫
Rn

F (u + φ) −
∫
Rn

F (u) + o(1), as h → ∞.

Indeed, if we set K = supp(φ), we get∫
Rn

F (uh + φ) =
∫
Rn

F (uh) +
∫
K

F(uh + φ) − F(uh)

= 1 +
∫
K

F(u + φ) − F(u) + o(1)

= 1 +
∫
Rn

F (u + φ) − F(u) + o(1), as h → ∞,

where the second equality follows by the dominated convergence theorem in light of (1.5) and the strong convergence
of uh to u in Lp∗−1(K). Moreover, we have∫

Rn

j (uh + φ,Duh + Dφ) = T +
∫
Rn

j (uh + φ,Duh + Dφ) − j (uh,Duh) + o(1)

= T +
∫
K

j (uh + φ,Duh + Dφ) − j (uh,Duh) + o(1)

= T +
∫
K

j (u + φ,Du + Dφ) − j (u,Du) + o(1)

= T +
∫
Rn

j (u + φ,Du + Dφ) − j (u,Du) + o(1),

as h → ∞, where the third equality is justified again by the dominated convergence theorem, since as Duh → Du in
Lp(K) for h → ∞ we have



L. Jeanjean, M. Squassina / Ann. I. H. Poincaré – AN 26 (2009) 1701–1716 1709
∣∣j (uh + φ,Duh + Dφ) − j (uh,Duh)
∣∣ � c2|Duh + Dφ|pχK + c2|Duh|pχK,

j (uh + φ,Duh + Dφ) − j (uh,Duh) → j (u + φ,Du + Dφ) − j (u,Du) a.e. in R
n.

Therefore, choosing w = uh +φ inside inequality (2.10), where φ ∈ D1,p(Rn) has compact support and 1+∫
Rn F (u+

φ) − F(u) > 0, and taking the limit as h → ∞, it follows that

T +
∫
Rn

j (u + φ,Du + Dφ) −
∫
Rn

j (u,Du) � T

(
1 +

∫
Rn

F (u + φ) −
∫
Rn

F (u)

) n−p
n

.

Fixed λ close to 1, we consider for some r > 1 a C∞ function Λ : R
+ → R

+ such that

Λ(t) = λ if t � 1, Λ(t) = 1 if t � r, ρ = inf
t∈R+ Λ(t) >

1

2
, sup

t∈R

∣∣Λ′(t)
∣∣ <

ρ

r
, (2.11)

and we introduce the smooth and bijective map Π : Rn → R
n by setting Π(x) = Λ(|x|)x, for all x ∈ R

n. Finally, we
set

Πh(x) = hΠ

(
x

h

)
=

⎧⎪⎪⎨
⎪⎪⎩

λx if |x| � h,

Λ

( |x|
h

)
x if h � |x| � rh,

x if |x| � rh,

φh(x) = u
(
Πh(x)

) − u(x).

In particular, it follows that φh ∈ D1,p(Rn) is a compact support function which satisfies

1 +
∫
Rn

F (u + φh) − F(u) > 0,

at least for all values of λ sufficiently close to 1 (see Eq. (2.12) below). Hence, for any h ∈ N, we conclude

T +
∫
Rn

j (u + φh,Du + Dφh) −
∫
Rn

j (u,Du) � T

(
1 +

∫
Rn

F (u + φh) −
∫
Rn

F (u)

) n−p
n

.

Notice that, we have∫
Rn

j (u + φh,Du + Dφh) =
∫
Rn

j
(
u
(
Πh(x)

)
,Du

(
Πh(x)

)) = I1 + I2 + I2.

In view of assumptions (1.7) and (1.8), by dominated convergence we have

I1 =
∫
Rn

j
(
u(λx),λ(Du)(λx)

)
χ{|x|�h}

= λp

∫
Rn

j
(
u(λx), (Du)(λx)

)
χ{|x|�h}

= λp

∫
Rn

j
(
u(λx), (Du)(λx)

) + o(1)

= λp−n

∫
Rn

j (u,Du) + o(1), as h → ∞.

If Lh = (∂jΠ
i
h) and Mh = (∂j (Π

−1
h )i) denote the n × n Jacobian matrices of the maps Πh,Π

−1
h respectively, taking

into account that γ = sup{‖Lh‖n×n: h ∈ N} < ∞ and γ ′ = sup{|detMh|: h ∈ N} < ∞ and using the growth condition
(1.8) on j , we get
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I2 =
∫
Rn

j
(
u
(
Πh(x)

)
,Du

(
Πh(x)

)
χ{h�|x|�rh}

� c2

∫
Rn

∣∣Du
(
Πh(x)

)∣∣pχ{h�|x|�rh}

= c2

∫
Rn

∣∣Lh(Du)
(
Πh(x)

)∣∣pχ{h�|x|�rh}

� c2γ
p

∫
Rn

∣∣(Du)
(
Πh(x)

)∣∣pχ{h�|x|�rh}

= c2γ
pγ ′

∫
Rn

∣∣Du(y)
∣∣pχ{h�|Π−1

h (y)|�rh} = o(1), as h → ∞.

Concerning the last equality notice that, as |Πh(x)| � ρ|x| � ρh, where ρ is the constant appearing in defini-
tion (2.11), the condition |Π−1

h (y)| � h implies |y| � ρh and hence the integrand goes to zero pointwise. Finally,
of course, we have

I3 =
∫
Rn

j (u,Du)χ{|x|>rh} = o(1), as h → ∞.

In conclusion, we get∫
Rn

j (u + φh,Du + Dφh) = λp−n

∫
Rn

j (u,Du) + o(1), as h → ∞.

In the same way, we get
∫
Rn

F (u + φh) =
∫
Rn

F
(
u
(
Πh(x)

)) =
∫
Rn

F
(
u(y)

)∣∣det(Mh)
∣∣

= λ−n

∫
Rn

F (u) + o(1), as h → ∞. (2.12)

Finally, collecting the previous formulas, we reach the inequality

T + (
λp−n − 1

)∫
Rn

j (u,Du) � T

(
1 + (

λ−n − 1
)∫
Rn

F (u)

) n−p
n

which holds for every λ sufficiently close to 1. Choosing λ = 1 + ω and λ = 1 − ω with ω > 0 small and then letting
ω → 0+, we conclude that∫

Rn

j (u,Du) = T

∫
Rn

F (u).

Since u �≡ 0, it follows that
∫

Rn F (u) > 0, so that plugging w = u into (2.10) one entails
∫

Rn F (u) � 1. On the other

hand, inequality (2.7) yields
∫

Rn j (u,Du) � T . This, of course, forces

T =
∫
Rn

j (u,Du),

∫
Rn

F (u) = 1, (2.13)

which concludes the proof. �
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Remark 2.12. In the proof of Lemma 2.11, in order to show that the (minimizing) sequence (uh) is strongly convergent
in D1,p(Ω) for any bounded domain Ω of R

n, we have exploited the sub-criticality assumption (1.5) on f , which is
stronger than the corresponding assumption (2.6) in [7] on F , that is

lim
s→∞

F(s)

|s|p∗ = 0.

In [7], due to the particular structure of j , namely the model case j (s, ξ) = 1
2 |ξ |2, to conclude the proof the weak

convergence of (uh) to u in D1,2(Rn) turns out to be sufficient, while to cover the general case j (s, ξ) the local con-
vergence seems to be necessary to handle the perturbation argument devised at the end of Lemma 2.11. We point out
that, also in [18], the authors assume condition (1.5) on f , although they are allowed to take a spherically symmetric
minimizing sequence which provides compactness.

Lemma 2.13. Assume (1.3)–(1.10). Then condition (C2) holds.

Proof. Let u ∈ D1,p(Rn) be a minimizer for problem (P1). Then the sequence uh = u is minimizing for (P1). By
Proposition 2.6 we can find a sequence (vh) ⊂ D1,p(Rn) such that ‖vh − u‖D1,p = o(1) and |dJ |C |(vh) → 0 as
h → ∞. Hence, by Lemma 2.8 there exists a sequence (μh) ⊂ R such that

J ′(vh)(ϕ) = μhV
′(vh)(ϕ) + 〈ηh,ϕ〉, for all ϕ ∈ C∞

c

(
R

n
)

(2.14)

where ηh converges strongly to 0 in D∗. As in the proof of Lemma 2.11 we can assume that μh → μ and since vh → u

in D1,p(Rn), obviously

J ′(u)(ϕ) = μV ′(u)(ϕ), for all ϕ ∈ C∞
c

(
R

n
)
.

Namely Eq. (2.2) is satisfied in the sense of distributions for some μ ∈ R. By means of assumptions (1.8), (1.9)
and (1.10), a standard argument yields u ∈ L∞

loc(R
n) (see, e.g., [29, Theorem 1 and Remark at p. 261]). By the

regularity results contained in [15,33], it follows that u ∈ C
1,β

loc (Rn), for some 0 < β < 1. �
Let ϕ ∈ L∞

loc(R
n) and let L(s, ξ) : R × R

n → R be a function of class C1 in s and ξ such that, for any s ∈ R, the
map {ξ �→ L(s, ξ)} is strictly convex. We recall, in the autonomous setting, a Pucci–Serrin variational identity for
locally Lipschitz continuous solutions of a general class of equations, recently obtained in [14].

Lemma 2.14. Let u : Rn → R be a locally Lipschitz solution of

−div
(
Lξ (u,Du)

) + Ls(u,Du) = ϕ in D′(
R

n
)
.

Then
n∑

i,j=1

∫
Rn

Dih
jDξi

L(u,Du)Dju −
∫
Rn

(divh)L(u,Du) =
∫
Rn

(h · Du)ϕ (2.15)

for every h ∈ C1
c (Rn,R

n).

Remark 2.15. The classical Pucci–Serrin identity [28] is not applicable here, since it requires the C2 regularity of the
solutions while in our degenerate setting (for p �= 2) the maximal allowed regularity is C

1,β

loc (see [15,33]).

Lemma 2.16. Assume (1.3)–(1.10). Then condition (C3) holds.

Proof. Let u ∈ D1,p(Rn) be any solution of Eq. (2.2). In light of conditions (1.8), (1.9) and (1.10), as we observed
in the proof of Lemma 2.13, it follows that u ∈ C

1,β

loc (Rn) for some 0 < β < 1. Then, since {ξ �→ j (s, ξ)} is strictly
convex, we can use Lemma 2.14 by choosing in (2.15) ϕ = 0 and

L(s, ξ) = j (s, ξ) − μF(s), for all s ∈ R
+ and ξ ∈ R

n,

h(x) = hk(x) = T

(
x

)
x, for all x ∈ R

n and k � 1, (2.16)

k
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being T ∈ C1
c (Rn) such that T (x) = 1 if |x| � 1 and T (x) = 0 if |x| � 2. In particular, for every k we have that

hk ∈ C1
c (Rn,R

n) and

Dih
j
k(x) = DiT

(
x

k

)
xj

k
+ T

(
x

k

)
δij , for all x ∈ R

n, i, j = 1, . . . , n,

(divhk)(x) = DT

(
x

k

)
· x

k
+ nT

(
x

k

)
, for all x ∈ R

n.

Then it follows by identity (2.15) that

n∑
i,j=1

∫
Rn

DiT

(
x

k

)
xj

k
DjuDξi

L(u,Du) +
∫
Rn

T

(
x

k

)
DξL(u,Du) · Du

−
∫
Rn

DT

(
x

k

)
· x

k
L(u,Du) −

∫
Rn

nT

(
x

k

)
L(u,Du) = 0,

for every k � 1. Since there exists C > 0 with∣∣∣∣DiT

(
x

k

)
xj

k

∣∣∣∣ � C for every x ∈ R
n, k � 1 and i, j = 1, . . . , n,

by the Dominated Convergence Theorem (recall that by (1.8) and the p-homogeneity of {ξ �→ j (s, ξ)}, of course one
has L(u,Du),DξL(u,Du) · Du ∈ L1(Rn)), letting k → ∞, we conclude that∫

Rn

[
nL(u,Du) − DξL(u,Du) · Du

] = 0,

namely, by (2.16) and, again, the p-homogeneity of {ξ �→ j (s, ξ)},

(n − p)

∫
Rn

j (u,Du) = μn

∫
Rn

F (u), (2.17)

namely (n − p)J (u) = μnV (u), proving that condition (C3) is fulfilled. �
Proof of Theorem 1.1. From Lemmas 2.11, 2.13 and 2.16 we see that the conditions (C1)–(C3) hold. The conclusion
follows directly from Proposition 2.1. �
Remark 2.17. In light of formula (2.17) and the positivity of j , it holds

∫
Rn F (u) > 0 as soon as u is a non-trivial

solution of (2.2).

Remark 2.18. Assumption (1.10) was already considered e.g. in [2,5,10,11,21,30,31]. We exploited it in order to get
existence (in (C1)), regularity (in (C2)) and hence also for the Pucci–Serrin identity (in (C3)), and it seems hard to
drop, mainly concerning the boundedness (and hence C1 regularity) issue of solutions. In fact, in lack of (1.10) some
problems may occur, already in the case of bounded domains and p = 2. For instance, as shown by J. Frehse in [19],
if B(0,1) is the unit ball in R

n centered at zero with n � 3,

j (x, s, ξ) =
(

1 + 1

|x|12(n−2)es + 1

)
|ξ |2

and f (s) = 0, then u(x) = −12(n − 2) log |x| is a weak solution to the corresponding Euler equation with u = 0 on
∂B(0,1). In particular u /∈ L∞(B(0,1)) although j is very regular. It is immediate to check that js(x, s, ξ)s � 0 for
any s � 0, so (1.10) fails. Although this counterexample involves an x-dependent Lagrangian (while we deal with
autonomous problems) these pathologies in regularity are related to the s-dependence in the Lagrangian j .
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3. The case p = n

We consider now the following constrained minimization problem

minimize J (u) for u �= 0 subject to the constraint V (u) = 0. (P0)

More precisely, let us set

X0 = {
u ∈ D1,n

(
R

n
)
: F(u) ∈ L1(

R
n
)}

, (3.1)

and

T0 = inf
C0

J, C0 = {
u ∈ X0: u �= 0, V (u) = 0

}
.

Consider the following conditions:

(D1) T > 0 and problem (P0) has a minimizer u ∈ X0;
(D2) any minimizer u ∈ X0 of (P0) is a C1 solution and satisfies the equation

−div
(
jξ (u,Du)

) + js(u,Du) = μf (u) in D′(
R

n
)
, (3.2)

for some μ ∈ R;
(D3) any solution u ∈ X0 of Eq. (3.2) with μ > 0 satisfies V (u) = 0.

From [8] we have the following

Proposition 3.1. Assume that p = n and that (D1)–(D3) hold. Then (1.1) admits a least energy solution and each
least energy solution has a constant sign. Moreover if u ∈ D1,n(Rn) is a least energy solution such that u(x) → 0 as
|x| → ∞ it is radially symmetric, up to a translation in R

n.

Proposition 3.1 follows directly from Propositions 4 and 6 in [8]. See also Remark 2.2.
Let us now show that (D1)–(D3) hold. First we recall a regularity result (see [6]).

Lemma 3.2. Let u,v ∈ D1,n(Rn), η ∈ L1(Rn) and w ∈ D∗(Rn) with

js(u,∇u)v � η,

and for all ϕ ∈ C∞
c (Rn)

〈w,ϕ〉 =
∫
Rn

jξ (u,∇u) · Dϕ +
∫
Rn

js(u,Du)ϕ.

Then js(u,∇u)v ∈ L1(Rn) and

〈w,v〉 =
∫
Rn

jξ (u,∇u) · Dv +
∫
Rn

js(u,∇u)v.

Now we have

Proposition 3.3. Assume (1.7)–(1.14). Then conditions (D1)–(D3) hold.

Proof. In view of (1.12) the constraint C0 is not empty (see again Step 1 at p. 324 in [3]). Let then (uh) ⊂ C0 be a
minimizing sequence for J |C0 . Therefore, we have

lim
h

∫
n

j (uh,Duh) = T0, uh �= 0, F (uh) ∈ L1(
R

n
)
,

∫
n

F (uh) = 0,
R R
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for all h ∈ N. Since uh �= 0 and by (1.11), it holds∫
{|uh|>δ}

F(uh) =
∫

{0�|uh|�δ}

∣∣F(uh)
∣∣ > 0,

of course Ln({|uh| > δ}) > 0 for every h ∈ N. Then, since the map {u �→ J (u)} is invariant under scaling on D1,n(Rn),
it is readily seen that there exists � > 0 such that

Ln
({|uh| > δ

})
� �, for all h ∈ N. (3.3)

Arguing as in [7, Lemma 3.1], we have that

sup
h∈N

∫
{|uh|>δ}

|uh|r < ∞, for all r > 1. (3.4)

Then the sequence (uh) is bounded in Lq(Ω) for any bounded domain Ω ⊂ R
n and, after extracting a subsequence

still denoted by (uh), we have uh → u in Lq(Ω) for all q � 1, Duh ⇀ Du in Ln(Rn), and uh(x) → u(x) a.e. x ∈ R
n.

As j (s, ξ) is positive, convex in the second argument, uh → u in L1
loc(R

n) and Duh ⇀ Du in L1
loc(R

n) by lower
semi-continuity it follows∫

Rn

j (u,Du) � lim inf
h

∫
Rn

j (uh,Duh) = T0. (3.5)

Now from (3.3), as in the proof of Lemma 2.11 we get that, after a shift, the weak limit of (uh) is non-trivial, that
is u �= 0. Notice also that, in view of (1.11), (1.13) and the bound furnished by (3.4) we get, for any h ∈ N,∫

Rn

F−(uh) =
∫
Rn

F+(uh) =
∫

{|uh|>δ}
F+(uh) � C

∫
{|uh|>δ}

|uh|q � C,

where C is a generic positive constant. In particular, by Fatou’s lemma, it follows F ∈ L1(Rn). We have proved thus
u ∈ X0. Arguing as in Lemma 2.11, up to substituting (uh) ⊂ C0 with a new minimizing sequence (vh) ⊂ C0, we may
assume that |dJ |C0 |(uh) � εh, with εh → 0 as h → ∞. By Lemma 2.8 there exists a sequence (μh) ⊂ R such that

J ′(uh)(v) = μhV
′(uh)(v) + 〈ηh, v〉, for all h ∈ N and v ∈ C∞

c

(
R

n
)
, (3.6)

where ηh strongly converges to 0 in D∗ as h → ∞. As in Lemma 2.11, it can be proved that (μh) is bounded
(and hence it converges to some value μ ∈ R). Now since (3.6) hold and uh ⇀ u in D1,n(Rn) using the classical
convergence result of Murat (see Theorem 2.1 of [4]) we get that Duh(x) → Du(x) a.e. x ∈ R

n. At this point it
follows easily that (3.2) is satisfied (see e.g. [31, Theorem 3.4] for details).

Let us now prove that, actually, μ �= 0. If, by contradiction, it was μ = 0, then we would have∫
Rn

jξ (u,Du) · Dv +
∫
Rn

js(u,Du)v = 0, for all v ∈ C∞
c

(
R

n
)
.

Let now ζ : R → R be the map defined by

ζ(s) =
{

M|s| if |s| � R,

MR if |s| � R,
(3.7)

being R > 0 the constant defined in (1.10) and M a positive number (which exists by combining the growths conditions
(1.8), (1.9)) such that∣∣js(s, ξ)

∣∣ � nMj(s, ξ) (3.8)

for s ∈ R and ξ ∈ R
n. Notice that, by combining (1.10) and (3.8), we obtain[

js(s, ξ) + nζ ′(s)j (s, ξ)
]
s � 0, for all s ∈ R and ξ ∈ R

n. (3.9)
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Taking into account (1.10), by Lemma 3.2 we are allowed to choose v = ueζ(u) and hence∫
Rn

neζ(u)j (u,Du) +
∫
Rn

eζ(u)
[
js(u,Du) + nζ ′(u)j (u,Du)

]
u = 0.

Then, by (3.9) and (1.8) we get

nc1

∫
Rn

|Du|n � 0,

so that u = 0, which is not possible. Hence μ �= 0. Arguing as in Lemma 2.16 the Pucci–Serrin identity follows,
namely, as p = n∫

Rn

F (u) = n − p

μn

∫
Rn

j (u,Du) = 0.

The same conclusion obviously hold for any solution u ∈ X0 for (3.2) with μ > 0, this shows that (D3) hold. Now
since u ∈ X0 and

∫
Rn F (u) = 0, we have u ∈ C0, so that by (3.5)∫

Rn

j (u,Du) = T0.

As in Lemma 2.13, one can prove that any minimizer is C1 and satisfies the Euler–Lagrange equation (3.2), which
concludes the proof. �
Remark 3.4. The check that (D1) holds is actually simpler than in the case of (C1). In particular, to check (D1) we do
not need to use any kind of strong local convergence, as for the case 1 < p < n, using classical convergence results
due to Murat suffices. Observe also that, in the case p = n, if we have a non-trivial function v ∈ X0 which is a solution
to the problem

−div
(
jξ (v,Dv)

) + js(v,Dv) = f (v) in D′(
R

n
)
, (3.10)

then, by the Pucci–Serrin identity it follows that
∫

Rn F (v) = 0, so that v ∈ C0 and hence

I (v) =
∫
Rn

j (v,Dv) � T0 =
∫
Rn

j (u,Du) = I (u),

proving that u is, automatically, a least energy solution of (3.10).
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