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Abstract

We consider the Schrödinger equation with no radial assumption on real hyperbolic spaces H
n. We obtain in all dimensions

n � 2 sharp dispersive and Strichartz estimates for a large family of admissible pairs. As a first consequence, we obtain strong
well-posedness results for NLS. Specifically, for small initial data, we prove L2 and H 1 global well-posedness for any subcritical
power (in contrast with the Euclidean case) and with no gauge invariance assumption on the nonlinearity F . On the other hand,
if F is gauge invariant, L2 charge is conserved and hence, as in the Euclidean case, it is possible to extend local L2 solutions to
global ones. The corresponding argument in H 1 requires conservation of energy, which holds under the stronger condition that F

is defocusing. Recall that global well-posedness in the gauge invariant case was already proved by Banica, Carles and Staffilani,
for small radial L2 data or for large radial H 1 data. The second application of our global Strichartz estimates is scattering for NLS
both in L2 and in H 1, with no radial or gauge invariance assumption. Notice that, on Euclidean spaces R

n, this is only possible
for the critical power γ = 1 + 4

n and can be false for subcritical powers while, on hyperbolic spaces Hn, global existence and

scattering of small L2 solutions hold for all powers 1 < γ � 1 + 4
n . If we restrict to defocusing nonlinearities F , we can extend

the H 1 scattering results of Banica, Carles and Staffilani to the nonradial case. Also there is no distinction anymore between short
range and long range nonlinearities: the geometry of hyperbolic spaces makes every power-like nonlinearity short range.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions l’équation de Schrödinger sur les espaces hyperboliques réels H
n, sans aucune hypothèse de radialité. Nous com-

mençons par établir une inégalité dispersive optimale en toute dimension n � 2, ainsi qu’une inégalité de Strichartz pour une grande
famille de paires admissibles. Nous en déduisons que l’équation semi-linéaire est fortement bien posée dans L2 ou dans H 1, pour
des données initiales petites et pour des non-linéarités relativement générales, en particulier pour toutes les puissance sous-critiques
(contrairement au cas euclidien) et sans hypothèse d’invariance par changement de jauge. Dans ce dernier cas, on a conservation
de la charge et les solutions L2 locales se prolongent en solutions L2 globales ; le phénomène analogue dans H 1 repose sur la
conservation de l’énergie, qui est vérifiée pour des non-linéarités défocalisantes. Rappelons que Banica, Carles et Staffilani avaient
précédemment montré que l’équation semi-linéaire était globalement bien posée pour des non-linéarités invariantes par change-
ment de jauge et pour des données radiales petites dans L2 ou arbitraires dans H 1. Comme seconde application, nous montrons
qu’il y a diffusion (scattering) dans L2 et dans H 1, à nouveau sans hypothèse de radialité ou d’invariance par changement de
jauge. Rappelons que dans R

n ceci n’est possible que pour l’exposant critique γ = 1 + 4
n et peut être faux pour des exposants

sous-critiques, tandis que sur l’espace hyperboliques H
n, on a existence globale et diffusion pour tout exposant 1 < γ � 1 + 4

n
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(et pour des conditions initiales petites dans L2). Dans le cas défocalisant, nous pouvons étendre au cas non radial les résultats de
diffusion H 1 de Banica, Carles, Staffilani. Observons également que, sur l’espace hyperbolique, toutes les non-linéarités de type
puissance n’ont qu’un effet à courte portée, contrairement au cas euclidien.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The nonlinear Schrödinger equation (NLS) in Euclidean space R
n{

i∂tu(t, x) + �u(t, x) = F
(
u(t, x)

)
,

u(0, x) = f (x)
(1)

has motivated a number of mathematical results in the last 30 years. Indeed, this equation (especially in the cubic case
F(u) = ±u|u|2) seems ubiquitous in physics and appears in many different contexts, including nonlinear optics, the
theory of Bose–Einstein condensates and of water waves. In particular a detailed scattering theory for NLS has been
developed.

An essential tool in the study of (1) is the dispersive estimate∥∥eit�f
∥∥

L∞(Rn)
� C|t |− n

2 ‖f ‖L1(Rn)

for the linear homogeneous Cauchy problem{
i∂tu + �u = 0, t ∈ R, x ∈ R

n,

u(0) = f.
(2)

This estimate is classical and follows directly from the representation formula for the fundamental solution. A well-
known procedure (introduced by Kato [15], Ginibre and Velo [9], and perfected by Keel and Tao [16]) then leads to
the Strichartz estimates

‖u‖Lp(I ;Lq(Rn)) � C‖f ‖L2(Rn) + C‖F‖
Lp̃′

(I ;Lq̃′
(Rn))

(3)

for the linear inhomogeneous Cauchy problem{
i∂tu(t, x) + �u(t, x) = F(t, x),

u(0, x) = f (x).

The estimates (3) hold for any bounded or unbounded time interval I ⊆ R and for all pairs (p, q), (p̃, q̃) ∈ [2,∞] ×
[2,∞) satisfying the admissibility condition

2

p
+ n

q
= n

2
. (4)

Notice that both endpoints (p, q) = (∞,2) and (p, q) = (2, 2n
n−2 ) are included in dimension n � 3 while only the first

one is included in dimension n = 2.
The issue of well-posedness for the nonlinear Cauchy problem (1) has been widely studied, at least for a power

nonlinearity F(u) = ±|u|γ or F(u) = ±|u|γ−1u and for suitable ranges of the exponent γ > 1. Here is a brief account
of the classical theory. In the model case F(u) = |u|γ , we have

• local well-posedness in L2 in the subcritical case γ < 1 + 4
n

;
• global well-posedness in L2 in the critical case γ = 1 + 4

n
for small data;

• local well-posedness in H 1 in the subcritical case γ < 1 + 4
n−2 ;

• global well-posedness in H 1 in the critical case γ = 1 + 4 for small data.

n−2
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Notice that the value of the critical exponent depends on the dimension n. On the other hand, in the model case
F(u) = |u|γ−1u, Eq. (1) is gauge invariant and defocusing, which implies L2 and H 1 conservation laws. Thus, in
addition to the previous results, we have

• global well-posedness in L2 in the subcritical case γ < 1 + 4
n

;
• global well-posedness in H 1 in the subcritical case γ < 1 + 4

n−2 .

Global existence for arbitrary data in the critical case remains an open problem, although several results are available
(Bourgain [5], Tao, Visan and Zhang [19], . . . ).

The results above are proved essentially by a fixed point argument in a suitable mixed space Lp(R;Lq(Rn)), using
Strichartz estimates in combination with conservation laws when available.

As a byproduct, this method shows that solutions u(t, x) to (1) are small in a suitable L
q
x sense as t → ±∞.

Hence, asymptotically, the contribution of the nonlinearity is dominated by the linear part and the nonlinear equation
(1) becomes close to the linear equation (2). This basic observation is at the origin of scattering theory for NLS. By
L2 scattering we mean that, for every global solution u ∈ C(R,L2(Rn)), there exist scattering data u± ∈ L2(Rn)

such that∥∥u(t) − eit�u±
∥∥

L2
x
→ 0 as t → ±∞.

The definition of H 1 scattering is analogous.
The classical scattering theory for NLS, in the defocusing case F(u) = |u|γ−1u, can be summarized as follows:

• scattering in L2 holds in the critical case γ = 1 + 4
n

for small data;
• scattering in H 1 holds for 1 + 4

n
< γ < 1 + 4

n−2 ;

• scattering in H 1 fails for 1 < γ � 1 + 2
n

.

This paper is a contribution to the study of Strichartz estimates and NLS on a manifold M . Several results have
been obtained for this problem and quite general classes of manifolds. The geometry of M plays obviously an essential
role: on a compact or positively curved manifold, one expects weaker decay properties and hence weaker results for
NLS; on the other hand, on a noncompact negatively curved manifold, one expects better dispersion properties than
in the Euclidean case and hence stronger well-posedness and scattering results for NLS.

The compact case has been studied extensively by Burq, Gérard and Tzvetkov [6] after earlier results by Bourgain
[5] on the torus. In general one obtains Strichartz estimates∥∥eit�f

∥∥
Lp(I ;Lq(M))

� C(I)‖f ‖H 1/p(M)

which are local in time and with a loss of smoothness in space. As a consequence, the results for NLS are weaker than
on R

n. Let us mention in particular the local well-posedness theory in Hs(Tn) developed by Bourgain in the early
nineties, extended ten years later to general compact manifolds by Burq, Gérard and Tzvetkov, and improved in some
special cases such as spheres S

n [6] or 4-dimensional compact manifolds [8].
In this paper we shall restrict our attention to real hyperbolic spaces M = H

n of dimension n � 2. Actually our re-
sults extend straightforwardly to all hyperbolic spaces i.e. Riemannian symmetric spaces of noncompact type and rank
one (they extend furthermore to Damek–Ricci spaces and this will be the subject of a forthcoming work). Consider
the following linear Cauchy problem on H

n:{
i∂tu(t, x) + �Hnu(t, x) = F(t, x), t ∈ R, x ∈ H

n,

u(0, x) = f (x).
(5)

On one hand, Banica [3] (see also [17]) obtained the following weighted dispersive estimate, for radial solutions to
the homogeneous equation (5) in dimension n � 3:

w(x)
∣∣u(t, x)

∣∣ � C
(|t |− n

2 + |t |− 3
2
)∫

n

∣∣f (y)
∣∣w(y)−1 dy.
H
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Here w(x) = sinh r
r

, where r denotes the geodesic distance from x to the origin. On the other hand, Pierfelice [18]
obtained the following sharp weighted Strichartz estimate, for radial solutions to the inhomogeneous equation (5) in
dimension n � 3:∥∥w

1
2 − 1

q u
∥∥

L
p
t L

q
x
� C‖f ‖L2

x
+ C

∥∥w
1
q̃
− 1

2 F
∥∥

L
p̃′
t L

q̃′
x
.

Here w(r) = ( sinh r
r

)n−1 is the jacobian of the exponential map and ( 1
p
, 1

q
), ( 1

p̃
, 1

q̃
) belong to the interval In = {( 1

p
, 1

q
) ∈

[0, 1
2 ] × (0, 1

2 ] | 2
p

+ n
q

= n
2 }. Actually this result was established in the more general setting of Damek–Ricci spaces

and it implies unweighted estimates for a wider range of indices, as pointed out by Banica, Carles and Staffilani [4].
Our first main result is the following dispersive estimate (Theorem 3.4), which holds for general functions (no

radial assumption) in dimension n � 2.

Dispersive estimate. Let q, q̃ ∈ (2,∞]. Then, for 0 < |t | < 1, we have∥∥u(t)
∥∥

Lq(Hn)
� C|t |−max{ 1

2 − 1
q
, 1

2 − 1
q̃
}n‖f ‖

Lq̃′
(Hn)

while, for |t | � 1, we have∥∥u(t)
∥∥

Lq(Hn)
� C|t |− 3

2 ‖f ‖
Lq̃′

(Hn)
.

If q = q̃ = 2, we have of course L2 conservation ‖u(t)‖L2(Hn) = ‖f ‖L2(Hn) for all t ∈ R. Our second main result
is the following Strichartz estimate (Theorem 3.6), which is deduced from the previous estimate and holds under the
same general assumptions.

Strichartz estimate. Assume that ( 1
p
, 1

q
) and ( 1

p̃
, 1

q̃
) belong to the triangle Tn = {( 1

p
, 1

q
) ∈ (0, 1

2 ] × (0, 1
2 ) | 2

p
+ n

q
�

n
2 } ∪ {(0, 1

2 )}. Then

‖u‖L
p
t L

q
x
� C‖f ‖L2

x
+ C‖F‖

L
p̃′
t L

q̃′
x
.

Notice that the set Tn of admissible pairs for H
n is much wider than the corresponding set In for R

n (which is just
the lower edge of the triangle). This striking phenomenon was already observed in [4] for radial solutions. It can be
regarded as an effect of hyperbolic geometry on dispersion.

Next we apply these estimates to study well-posedness and scattering for the nonlinear Cauchy problem{
i∂tu + �u = F(u),

u(0) = f.
(6)

Throughout our paper, we shall use the following (standard) terminology about the nonlinearity F = F(u):

• F is power-like if there exist constants γ > 1 and C � 0 such that{∣∣F(u)
∣∣ � C|u|γ ,∣∣F(u) − F(v)

∣∣ � C
(|u|γ−1 + |v|γ−1

)|u − v|, (7)

• F is gauge invariant if

Im
{
F(u)u

} = 0, (8)

• F is defocusing if there exists a C1 function G = G(v) � 0 such that

F(u) = G′(|u|2)u. (9)

Notice that gauge invariance implies L2 conservation of charge or mass:∫
n

∣∣u(t, x)
∣∣2

dx =
∫
n

∣∣f (x)
∣∣2

dx ∀t,
H H
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while the defocusing assumption implies H 1 conservation of energy:∫
Hn

∣∣∇u(t, x)
∣∣2

dx +
∫
Hn

G
(∣∣u(t, x)

∣∣2)
dx = constant.

If we specialize to the model cases F = ±|u|γ and F = ±|u|γ−1u, then the gauge invariant nonlinearities are

F = ±|u|γ−1u

and the defocusing ones

F = +|u|γ−1u.

Let us first summarize our well-posedness results (Theorems 4.2 and 4.4).

Well-posedness for NLS. Consider the Cauchy problem (6) with a power-like nonlinearity F of order γ .

• Assume γ � 1 + 4
n

. Then the problem is globally well-posed for small L2 data. For arbitrary L2 data, it is locally
well-posed if γ < 1 + 4

n
.

• Assume γ � 1 + 4
n−2 . Then the problem is globally well-posed for small H 1 data. For arbitrary H 1 data, it is

locally well-posed if γ < 1 + 4
n−2 .

• If F is gauge invariant and γ < 1+ 4
n

, the problem is globally well-posed for arbitrary L2 data. If F is defocusing
and γ < 1 + 4

n−2 , the problem is globally well-posed for arbitrary H 1 data.

Similar results were obtained in [4] for radial functions and nonlinearities F = |u|γ−1u. As expected, they are
better for hyperbolic spaces than for Euclidean spaces. For instance, on H

n we have global well-posedness for small
L2 data, for any power 1 < γ � 1 + 4

n
, while on R

n we must assume in addition gauge invariance. Of course, under
this condition, we can also handle arbitrarily large data, using conservation laws, as in the Euclidean case.

Let us next summarize our scattering results.

Scattering for NLS. Consider the Cauchy problem (6) with a power-like nonlinearity F of order γ .

• Assume γ � 1 + 4
n

. Then, for all small data f ∈ L2, the unique global solution u(t, x) has the scattering property:
there exist u± ∈ L2 such that∥∥u(t) − eit�Hn u±

∥∥
L2(Hn)

→ 0 as t → ±∞.

• Assume γ � 1 + 4
n−2 . Then, for all small data f ∈ H 1, the unique global solution u(t, x) has the scattering

property: there exist u± ∈ H 1 such that∥∥u(t) − eit�Hn u±
∥∥

H 1(Hn)
→ 0 as t → ±∞.

• Assume γ < 1 + 4
n−2 and the defocusing condition. Then, for all data f ∈ H 1 at t = ±∞, the NLS has a unique

global solution u(t, x) with the following scattering property:∥∥u(t) − eit�Hn f
∥∥

H 1(Hn)
→ 0 as t → ±∞.

Notice that on H
n we have small data scattering for all powers 1 < γ � 1+ 4

n
(respectively 1 < γ � 1+ 4

n−2 ). This

is in sharp contrast with R
n, where scattering is known to fail for the range 1 < γ � 1 + 2

n
.

The results in this paper were presented by the second author at the Convegno Nazionale di Analisi Armonica
(Caramanico, 22–25 May 2007) and by the first author at the Conference (in honor of Sigurdur Helgason on the
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occasion of his 80th birthday) Integral Geometry, Harmonic Analysis and Representation Theory (Reykjavik, 15–
18 August 2007) and at the DFG–JSPS Joint Seminar Infinite Dimensional Harmonic Analysis IV (Tokyo, 10–14
September 2007).

A related preprint [14] was produced independently and simultaneously by Ionescu and Staffilani. While we are
mostly interested in sharp dispersive and Strichartz estimates, with applications to general nonlinearities and scatter-
ing, their main aim is scattering in H 1 and the Morawetz inequality in the defocusing case. Thus our works, although
overlapping, are complementary rather than concurrent.

2. Real hyperbolic spaces

In this paper, we consider the simplest class of Riemannian symmetric spaces of noncompact type, namely real hy-
perbolic spaces H

n of dimension n � 2. We refer to Helgason’s books [10–12] for their structure, geometric properties,
and for harmonic analysis on these spaces. Recall that H

n can be realized as the upper sheet{
x2

0 − x2
1 − · · · − x2

n = 1,

x0 � 1,

of hyperboloid in R
1+n, equipped with the Riemannian metric

d�2 = −dx2
0 + dx2

1 + · · · + dx2
n,

or as the homogeneous space G/K , where G = SO(1, n)0 and K = SO(n). In geodesic polar coordinates, the Rie-
mannian metric is given by

d�2 = dr2 + (sinh r)2 d�2
Sn−1 ,

the Riemannian volume by

dv = (sinh r)n−1 dr dvSn−1,

and the Laplace–Beltrami operator by

�̃ = �Hn = ∂2
r + (n − 1) coth r∂r + (sinh r)−2�Sn−1 .

Inhomogeneous Sobolev spaces on H
n (and on more general manifolds) are defined by

Hs,q
(
H

n
) = (I − �̃)−

s
2 Lq

(
H

n
)

(1 < q < ∞, s ∈ R).

Using Lq spectral analysis (see for instance [1]), they can be also defined as well by

Hs,q
(
H

n
) = (−�̃)−

s
2 Lq

(
H

n
)
.

Moreover, for s = N ∈ N, Hs,q(Hn) coincides with

WN,q
(
H

n
) = {

f ∈ Lq
(
H

n
) ∣∣ ∣∣∇j f

∣∣ ∈ Lq
(
H

n
) ∀0 � j � N

}
,

where ∇ denotes the covariant derivative. Recall eventually the Sobolev embedding theorem:

Hs,q
(
H

n
) ⊂ Hs̃,q̃

(
H

n
)

if s − s̃ � n

(
1

q
− 1

q̃

)
> 0.

3. Dispersive and Strichartz estimates on HHH
n

Consider first the homogeneous linear Schrödinger equation on the hyperbolic space H
n of dimension n � 2:{

i∂tu(t, x) + �̃u(t, x) = 0,

u(0, x) = f (x),

whose solution is given by

u(t, x) = eit�̃f (x) = f ∗ st (x) =
∫
n

st
(
d(x, y)

)
f (y)dy.
H
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The convolution kernel st is a bi-K-invariant function on G i.e. a radial function on G/K = H
n, which can be

expressed as an inverse spherical Fourier transform:

st (r) = const. e−i( n−1
2 )2t

+∞∫
−∞

e−itλ2
ϕλ(r)

dλ

|c(λ)|2 .

For hyperbolic spaces H
n (and more generally for Damek–Ricci spaces), this expression can be made more explicit,

using the inverse Abel transform:

st (r) = const.(it)−
1
2 e−i( n−1

2 )2t

(
− 1

sinh r

∂

∂r

) n−1
2

e
i
4

r2
t . (10)

Here (it)− 1
2 = e−i π

4 sign(t)|t |− 1
2 and, in the even dimensional case, the fractional derivative reads(

− 1

sinh r

∂

∂r

) n−1
2

e
i
4

r2
t = 1√

π

+∞∫
|r|

(
− 1

sinh s

∂

∂s

) n
2

e
i
4

s2
t

sinh s ds√
cosh s − cosh r

. (11)

Proposition 3.1. There exists a constant C > 0 such that the following pointwise kernel estimate holds, for every
t ∈ R

∗ and r � 0:∣∣st (r)∣∣ � C

{
|t |−3/2(1 + r)e− n−1

2 r if |t | � 1 + r,

|t |−n/2(1 + r)
n−1

2 e− n−1
2 r if |t | � 1 + r.

(12)

Remark 3.2. In dimension n = 3, this estimate boils down to∣∣st (r)∣∣ � C|t |−3/2(1 + r)e−r

and was well known (see for instance [3]). In other dimensions, it is sharper than the kernel estimates obtained
previously [3,4]. Our estimate can be rewritten as follows:∣∣st (r)∣∣ � C

{ |t |−3/2ϕ0(r) if |t | � 1 + r,

|t |−n/2j (r)−1/2 if |t | � 1 + r,

using the ground spherical function ϕ0(r) � (1 + r)e− n−1
2 r and the jacobian of the exponential map j (r) =

( sinh r
r

)n−1 � ( er

1+r
)n−1.

Proof of Proposition 3.1. We shall assume t > 0 for simplicity and we shall resume in part the analysis carried out
in [2] for the heat kernel. Consider first the odd dimensional case. Set m = n−1

2 and let us expand(
− 1

sinh r

∂

∂r

)m

e
i
4

r2
t = e

i
4

r2
t

m∑
j=1

t−j fj (r). (13)

The functions fj (r) involved are linear combinations of products ϕ�1(r) · · ·ϕ�j
(r), where

ϕ�(r) =
(

1

sinh r

∂

∂r

)�

r2

and �1, . . . , �j ∈ N
∗ are such that �1 + · · · + �j = m. Using the elementary global estimate

ϕ�(r) = O
(
(1 + r)e−�r

)
,

we are lead to the conclusion:∣∣st (r)∣∣ � t−
1
2

m∑(
1 + r

t

)j

e−mr � t−
1
2

{
1 + r

t
+

(
1 + r

t

)m}
e−mr .
j=1
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Because of the fractional derivative (11), the even dimensional case n = 2m is more delicate to handle. According to
the above estimate of (13), we have

∣∣st (r)∣∣ � t−
1
2

+∞∫
r

{
1 + s

t
+

(
1 + s

t

)m}
e−ms sinh s ds√

cosh s − cosh r
. (14)

Here and throughout the proof, we make repeated use of the following elementary estimates:

sinh s � s

1 + s
es, (15)

and

cosh s − cosh r = 2 sinh
s − r

2
sinh

s + r

2

� s − r

1 + s − r
e

s−r
2

s + r

1 + s + r
e

s+r
2

� s − r

1 + s − r

s

1 + s
es or

{
s2−r2

1+r
er if r � s � r + 1,

es if s � r + 1.
(16)

Thus (14) becomes

∣∣st (r)∣∣ � t−
1
2

+∞∫
r

{
1 + s

t
+

(
1 + s

t

)m}
e−(m− 1

2 )s

√
1 + s − r√

s − r

√
s√

1 + s
ds. (17)

After performing the change of variables s = r + u and using the trivial inequalities
√

r + u√
1 + r + u

� 1, 1 + r + u � (1 + r)(1 + u),

we obtain eventually∣∣st (r)∣∣ � t−
1
2

{
1 + r

t
+

(
1 + r

t

)m}
e−(m− 1

2 )r . (18)

This allows us to conclude that∣∣st (r)∣∣ � Ct−
1
2

1 + r

t
e−(m− 1

2 )r (19)

when t � 1 + r . If t � 1 + r , the polynomial power m in (18) must be brought down to m − 1
2 . For this purpose, let us

rewrite more carefully the expansion(
− 1

sinh s

∂

∂s

)m

e
i
4

s2
t =

∑
0<j<m

t−j fj (s)e
i
4

s2
t + t−(m−1)

(
− i

2

s

sinh s

)m−1(
− 1

sinh s

∂

∂s

)
e

i
4

s2
t .

The contribution of the sum (which does not occur in dimension n = 2) can be handled as above and is

O

(
t−

1
2

{
1 + r

t
+

(
1 + r

t

)m−1}
e−(m− 1

2 )r

)
.

Thus it remains for us to show that the integral

I (t, r) =
+∞∫
r

(
s

sinh s

)m−1(
∂

∂s
e

i
4

s2
t

)
ds√

cosh s − cosh r

is O(t− 1
2 (1 + r)m− 1

2 e−(m− 1
2 )r ) when t � 1 + r . Let us split

I (t, r) = I1(t, r) + I2(t, r) + I3(t, r)
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according to

+∞∫
r

=

√
r2+t∫

r

+
r+1∫

√
r2+t

+
+∞∫

r+1

.

The first integral is easy to handle. We simply differentiate ∂
∂s

e
i
4

s2
t = i

2
s
t
e

i
4

s2
t and use the elementary estimates (15),

(16) together with the fact that s ∈ [r, r + 1]. As a result,

∣∣I1(t, r)
∣∣ � t−1(1 + r)m− 1

2 e−(m− 1
2 )r

√
r2+t∫

r

s ds√
s2 − r2

= t−
1
2 (1 + r)m− 1

2 e−(m− 1
2 )r .

Let us turn to the second and third integrals, that we integrate by parts:

I2(t, r) + I3(t, r) = e
i
4

s2
t

(
s

sinh s

)m−1 1√
cosh s − cosh r

{∣∣s=r+1

s=
√

r2+t
+ ∣∣s=+∞

s=r+1

}
+

{ r+1∫
√

r2+t

+
+∞∫

r+1

}
e

i
4

s2
t

{
(m − 1)

(
s

sinh s

)m−2
s coth s − 1

sinh s
(cosh s − cosh r)−

1
2

+ 1

2

(
s

sinh s

)m−1

(cosh s − cosh r)−
3
2 sinh s

}
ds.

The boundary terms are estimated as I1(t, r):(
s

sinh s

)m−1 1√
cosh s − cosh r

∣∣∣∣
s=

√
r2+t

� t−
1
2 (1 + r)m− 1

2 e−(m− 1
2 )r .

The integral terms are bounded by

(1 + r)m−2e−(m− 1
2 )r

r+1∫
√

r2+t

{(
1 + r

s2 − r2

) 1
2 +

(
1 + r

s2 − r2

) 3
2
}
s ds +

+∞∫
r+1

(1 + s)m−1e−(m− 1
2 )s ds. (20)

Here we have used (15), (16) and the elementary estimate s coth s−1
sinh s

� se−s . In the expression between braces, the first
factor is dominated by the second one. Thus the first integral in (20) is bounded by

(1 + r)
3
2

r+1∫
√

r2+t

(
s2 − r2)− 3

2 s ds = (1 + r)
3
2
{−(

s2 − r2)− 1
2
∣∣s=r+1

s=
√

r2+t

}
� t−

1
2 (1 + r)

3
2 .

The second integral in (20) is estimated as (17):
+∞∫

r+1

(1 + s)m−1e−(m− 1
2 )s ds =

+∞∫
1

(1 + r + u)m−1e−(m− 1
2 )(r+u) du � (1 + r)m−1e−(m− 1

2 )r .

As a conclusion, we obtain

I (t, r) � t−
1
2 (1 + r)m− 1

2 e−(m− 1
2 )r .

Thus we have shown that∣∣st (r)∣∣ � t−m(1 + r)m− 1
2 e−(m− 1

2 )r

when 0 < t � 1 + r . �
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Corollary 3.3. Let 2 < q < ∞ and 1 � α � ∞. Then there exists a constant C > 0 such that the following kernel
estimate holds, with respect to Lorentz norms:

‖st‖Lq,α � C

{ |t |−n/2 if 0 < |t | � 1,

|t |−3/2 if |t | � 1.
(21)

Proof. Recall that Lorentz spaces Lq,α(Hn) are variants of the classical Lebesgue spaces, whose norms are defined
by

‖f ‖Lq,α =
{

[∫ +∞
0 {s1/qf ∗(s)}α ds

s
]1/α if 1 � α < ∞,

sups>0 s1/qf ∗(s) if α = ∞,

where f ∗ denotes the decreasing rearrangement of f . In particular, if f is a positive radial decreasing function on H
n,

then f ∗ = f ◦ V −1, where

V (r) = C

r∫
0

(sinh s)n−1 ds �
{

rn as r → 0,

e(n−1)r as r → +∞
is the volume of a ball of radius r > 0 in H

n. Hence

‖f ‖Lq,α =
[ +∞∫

0

{
V (r)1/qf (r)

}α V ′(r)
V (r)

dr

]1/α

�
[ 1∫

0

f (r)αr
αn
q

−1
dr

]1/α

+
[ +∞∫

1

f (r)αe
α(n−1)

q
r
dr

]1/α

if 1 � α < ∞ and

‖f ‖Lq,∞ = sup
r>0

V (r)1/qf (r) � sup
0<r<1

r
n
q f (r) + sup

r�1
e

n−1
q

r
f (r).

The Lorentz norm estimate (21) follows from these considerations and from the pointwise estimate (12). �
Let us turn to Lq mapping properties of the Schrödinger propagator eit�̃ on H

n. Recall that eit�̃ is a one parameter
group of unitary operators on L2(Hn).

Theorem 3.4. Let 2 < q , q̃ � ∞. Then there exists a constant C > 0 such that the following dispersive estimates hold:∥∥eit�̃
∥∥

Lq̃′→Lq � C

{
|t |−max{ 1

2 − 1
q
, 1

2 − 1
q̃
}n if 0 < |t | < 1,

|t |− 3
2 if |t | � 1.

Remark 3.5. In the Euclidean setting, small time estimates are similar for q = q̃ , other small time estimates do not
hold, and large time estimates are drastically different.

Proof of Theorem 3.4. These estimates are obtained by interpolation and by using Corollary 3.3. Specifically, small
time estimates follow from⎧⎪⎪⎨⎪⎪⎩

∥∥eit�̃
∥∥

L1→Lq = ‖st‖Lq � Cq |t |− n
2 ∀q > 2,∥∥eit�̃

∥∥
Lq′→L∞ = ‖st‖Lq � Cq |t |− n

2 ∀q > 2,∥∥eit�̃
∥∥

L2→L2 = 1,

and large time estimates from⎧⎪⎪⎨⎪⎪⎩
∥∥eit�̃

∥∥
L1→Lq = ‖st‖Lq � Cq |t |− 3

2 ∀q > 2,∥∥eit�̃
∥∥

Lq′→L∞ = ‖st‖Lq � Cq |t |− 3
2 ∀q > 2,∥∥eit�̃

∥∥ ′ � C ‖s ‖ q,1 � C |t |− 3
2 ∀q > 2.
Lq →Lq q t L q
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Fig. 1. Admissible set for H
n in dimension n � 3.

The key ingredient here is a sharp version of the Kunze–Stein phenomenon, due to Cowling, Meda and Setti (see [7])
and improved by Ionescu [13], which yields in particular

Lq ′
(K \ G) ∗ Lq ′

(G/K) ⊂ Lq ′,∞(K \ G/K) ∀q > 2.

By such an inclusion, we mean that there exists a constant Cq > 0 such that

‖f ∗ g‖
Lq′,∞ � Cq‖f ‖

Lq′ ‖g‖
Lq′ ∀f ∈ Lp′

(K \ G), ∀g ∈ Lp′
(G/K).

Hence by duality

Lq ′
(G/K) ∗ Lq,1(K \ G/K) ⊂ Lq(G/K) ∀q > 2. �

Consider next the inhomogeneous linear Schrödinger equation (5) on H
n:{

i∂tu(t, x) + �̃u(t, x) = F(t, x),

u(0, x) = f (x),

whose solution is given by Duhamel’s formula:

u(t, x) = eit�̃f (x) − i

t∫
0

ei(t−s)�̃F (s, x) ds. (22)

Strichartz estimates on Hn involve admissible pairs of indices (p, q) corresponding to the triangle

Tn =
{(

1

p
,

1

q

)
∈

(
0,

1

2

]
×

(
0,

1

2

) ∣∣∣ 2

p
+ n

q
� n

2

}
∪

{(
0,

1

2

)}
(23)

(see Fig. 1).

Theorem 3.6. Assume that (p, q) and (p̃, q̃) are admissible pairs as above. Then there exists a constant C > 0 such
that the following Strichartz estimate holds for solutions to the Cauchy problem (5):

‖u‖L
p
t L

q
x
� C

{‖f ‖L2
x
+ ‖F‖

L
p̃′
t L

q̃′
x

}
. (24)

Remark 3.7. This result was obtained previously for radial functions in [4], using sharp weighted Strichartz estimates
[18] in dimension n � 4, the elementary kernel expression (10) in dimension n = 3, and specific kernel estimates
in dimension n = 2. Notice that the admissible set for H

n is much larger than the admissible set for R
n (which

corresponds to the lower edge of the triangle Tn). This is due to large scale dispersive effects in negative curvature.
Actually it could be even larger if the region 2

p
+ n

q
< n

2 was not excluded for purely local reasons. This happens for
dispersive equations on homogeneous trees and will be discussed in another paper.
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Proof of Theorem 3.6. We resume the standard strategy developed by Kato [15], Ginibre and Velo [9], and Keel and
Tao [16]. Consider the operator

Tf (t, x) = eit�̃f (x)

and its formal adjoint

T ∗F(x) =
+∞∫

−∞
e−is�̃F (s, x) ds.

The method consists in proving the L
p′
t L

q ′
x → L

p
t L

q
x boundedness of the operator

T T ∗F(t, x) =
+∞∫

−∞
ei(t−s)�̃F (s, x) ds (25)

and of its truncated version

T̃ T ∗F(t, x) =
t∫

0

ei(t−s)�̃F (s, x) ds, (26)

for every admissible pair (p, q). The endpoint ( 1
p
, 1

q
) = (0, 1

2 ) is settled by L2 conservation and the endpoint ( 1
p
, 1

q
) =

( 1
2 , 1

2 − 1
n
) in dimension n � 3 will be handled at the end. Thus we are left with the pairs (p, q) such that 1

2 − 1
n

< 1
q

< 1
2

and ( 1
2 − 1

q
)n

2 � 1
p

� 1
2 . According to the dispersive estimates in Theorem 3.4, the L

p
t L

q
x norms of (25) and (26) are

bounded above by∥∥∥∥ ∫
|t−s|�1

|t − s|− 3
2
∥∥F(s)

∥∥
L

q′
x

∥∥∥∥
L

p
t

+
∥∥∥∥ ∫
|t−s|�1

|t − s|−( 1
2 − 1

q
)n

∥∥F(s)
∥∥

L
q′
x

∥∥∥∥
L

p
t

. (27)

On one hand, the convolution kernel |t − s|− 3
2 1{|t−s|�1} on R defines a bounded operator from L

p1
s to L

p2
t , for all

1 � p1 � p2 � ∞, in particular from L
p′
s to L

p
t , for all 2 � p � ∞. On the other hand, the convolution kernel

|t − s|−( 1
2 − 1

q
)n1{|t−s|�1} defines a bounded operator from L

p1
s to L

p2
t , for1 all 1 < p1,p2 < ∞ such that 0 � 1

p1
−

1
p2

� 1 − ( 1
2 − 1

q
)n, in particular from L

p′
s to L

p
t , for all 2 � p < ∞ such that 1

p
� ( 1

2 − 1
q
)n

2 . Consider eventually

the endpoint ( 1
p
, 1

q
) = ( 1

2 , 1
2 − 1

n
) in dimension n � 3. The integrals over |t − s| � 1 are estimated as before. The

integrals over |t − s| � 1 are handled as in [16], except that only small dyadic intervals are involved. Indices are
finally decoupled, using the T T ∗ argument. �
4. Well-posedness results for NLS on HHH

n

Strichartz estimates for inhomogeneous linear equations are used to prove local and global well-posedness results
for nonlinear problems. We present here a few results in this direction for the Schrödinger equation (6){

i∂tu + �̃u = F(u),

u(0) = f,

on M = Hn, with a power-like nonlinearity as in (7):∣∣F(u)
∣∣ � C|u|γ ,

∣∣F(u) − F(v)
∣∣ � C

(|u|γ−1 + |v|γ−1)|u − v|.
Let us recall the definition of well-posedness.

1 Actually for all 1 � p1,p2 � ∞ such that 0 � 1
p1

− 1
p2

� 1 − ( 1
2 − 1

q )n, except for the dual endpoints ( 1
p1

, 1
p2

) = (1, ( 1
2 − 1

q ) n
2 ) and

( 1
p , 1

p ) = (1 − ( 1
2 − 1

q ) n
2 ,0).
1 2
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Definition 4.1. Let s ∈ R. The NLS equation (6) is locally well-posed in Hs(M) if, for any bounded subset B of
Hs(M), there exist T > 0 and a Banach space XT , continuously embedded into C([−T ,+T ];Hs(M)), such that

• for any Cauchy data f (x) ∈ B , (6) has a unique solution u(t, x) ∈ XT ;
• the map f (x) �→ u(t, x) is continuous from B to XT .

The equation is globally well-posed if these properties hold with T = ∞.

In the Euclidean setting, γ = 1+ 4
n

is known to be the critical exponent for well-posedness in L2(Rn). Specifically,
the NLS (1) has a unique local solution for arbitrary data f ∈ L2 provided γ < 1+ 4

n
; in general this solution cannot be

extended to a global one; this is possible under the assumption (8) of gauge invariance. In the critical case γ = 1 + 4
n

,
the NLS (1) is globally well-posed for L2 data satisfying a smallness condition. On the other hand, γ = 1 + 4

n−2 is

known to be the critical exponent for well-posedness in H 1(Rn). Specifically, the NLS (1) is locally well-posed in
H 1 when 1 < γ < 1 + 4

n−2 . Local solutions can be extended to global ones under the defocusing assumption (9). All
these results are proved in a standard way using Strichartz estimates and conservations laws, when available.

In the hyperbolic setting, we have seen above that Strichartz estimates hold for a much wider range. As a conse-
quence, well-posedness results for the NLS (6) are considerably stronger. In particular, in contrast with the Euclidean
setting, global well-posedness for small data in L2 holds for any subcritical exponent γ without the assumption of
gauge invariance. Here are our well-posedness results in L2(Hn).

Theorem 4.2. If 1 < γ � 1 + 4
n

, the NLS (6) is globally well-posed for small L2 data. Moreover, in the subcritical

case 1 < γ < 1 + 4
n

, the NLS (6) is locally well-posed for arbitrary L2 data.

Proof. We resume the standard fixed point method based on Strichartz estimates. Define u = Φ(v) as the solution to
the Cauchy problem{

i∂tu(t, x) + �̃u(t, x) = F
(
v(t, x)

)
,

u(0, x) = f (x),
(28)

which is given by Duhamel’s formula (22):

u(t, x) = eit�̃f (x) +
t∫

0

ei(t−s)�̃F
(
v(s, x)

)
ds.

According to Theorem 3.6, we have the following Strichartz estimate

‖u‖L∞
t L2

x
+ ‖u‖L

p
t L

q
x
� C‖f ‖L2

x
+ C

∥∥F(v)
∥∥

L
p̃′
t L

q̃′
x

(29)

for all ( 1
p
, 1

q
) and ( 1

p̃
, 1

q̃
) in the triangle Tn, which amounts to the conditions⎧⎪⎪⎨⎪⎪⎩

2 � p,q � ∞ such that
β

p
+ n

q
= n

2
for some 0 < β � 2,

2 � p̃, q̃ � ∞ such that
β̃

p̃
+ n

q̃
= n

2
for some 0 < β̃ � 2.

(30)

Moreover∥∥F(v)
∥∥

L
p̃′
t L

q̃′
x

� C
∥∥|v|γ ∥∥

L
p̃′
t L

q̃′
x

� C‖v‖γ

L
p̃′γ
t L

q̃′γ
x

by our nonlinear assumption (7). Thus

‖u‖L∞
t L2

x
+ ‖u‖L

p
t L

q
x
� C‖f ‖L2

x
+ C‖v‖γ

L
p̃′γ
t L

q̃′γ
x

. (31)

In order to remain within the same function space, we require in addition

p = p̃′γ, q = q̃ ′γ. (32)
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It is easily checked that all these conditions are fulfilled if we take for instance

0 < β = β̃ � 2 such that γ = 1 + 2β

n
and p = q = p̃ = q̃ = 1 + γ = 2 + 2β

n
.

For such a choice, Φ maps L∞(R;L2(Hn)) ∩ Lp(R;Lq(Hn)) into itself, and actually X = C(R;L2(Hn)) ∩
Lp(R;Lq(Hn)) into itself. Since X is a Banach space for the norm

‖u‖X = ‖u‖L∞
t L2

x
+ ‖u‖L

p
t L

q
x
,

it remains for us to show that Φ is a contraction in the ball

Xε = {
u ∈ X

∣∣ ‖u‖X � ε
}
,

provided ε > 0 and ‖f ‖L2 are sufficiently small. Let v, ṽ ∈ X and u = Φ(v), ũ = Φ(ṽ). Arguing as above and using
in addition Hölder’s inequality, we estimate

‖u − ũ‖X � C
∥∥F(v) − F(ṽ)

∥∥
L

p̃′
t L

q̃′
x

� C
∥∥{|v|γ−1 + |ṽ|γ−1}|v − ṽ|∥∥

L
p̃′
t L

q̃′
x

� C
{‖v‖γ−1

L
p
t L

q
x
+ ‖ṽ‖γ−1

L
p
t L

q
x

}‖v − ṽ‖L
p
t L

q
x
,

hence

‖u − ũ‖X � C
(‖v‖γ−1

X + ‖ṽ‖γ−1
X

)‖v − ṽ‖X. (33)

If we assume ‖v‖X � ε, ‖ṽ‖X � ε and ‖f ‖L2 � δ, then (31) and (33) yield

‖u‖X � Cδ + Cεγ , ‖ũ‖X � Cδ + Cεγ and ‖u − ũ‖X � 2Cεγ−1‖v − ṽ‖X.

Thus

‖u‖X � ε, ‖ũ‖X � ε and ‖u − ũ‖X � 1

2
‖v − ṽ‖X

if Cεγ−1 � 1
4 and Cδ � 3

4ε. We conclude by applying the fixed point theorem in the complete metric space Xε .
In the subcritical case γ < 1 + 4

n
, one can prove in a similar way local well-posedness in L2 for arbitrary data f .

Specifically, we restrict to a small time interval I = [−T ,+T ] and proceed as above, except that we increase β̃ ∈ (β,2]
and p̃ = β̃

β
p accordingly, and that we apply in addition Hölder’s inequality in time. This way, we get the Strichartz

estimate

‖u‖X � C‖f ‖L2 + CT λ‖v‖γ

X, (34)

where X = C(I ;L2(Hn)) ∩ Lp(I ;Lq(Hn)) and λ = 1
p

− 1
p̃

> 0, and the related estimate

‖u − ũ‖X � CT λ
(‖v‖γ−1

X + ‖v‖γ−1
X

)‖v − ṽ‖X. (35)

As a consequence, we deduce that Φ is a contraction in the ball

XM = {
u ∈ X

∣∣ ‖u‖X � M
}
,

provided M > 0 is large enough and T > 0 small enough, more precisely 3
4M � C‖f ‖L2 and CT λMγ−1 � 1

4 . We
conclude as before. �
Remark 4.3. Notice that T depends only on the L2 norm of the initial data:

T = 3
γ−1

λ 4− γ
λ C− γ

λ ‖f ‖− γ−1
λ

L2 .

Thus, if the nonlinearity F is gauge invariant as in (8), then L2 conservation allows us to iterate and deduce global
existence from local existence, for arbitrary data f ∈ L2 in the subcritical case γ < 1 + 4 .
n
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Let us turn now to our well-posedness results in H 1(Hn).

Theorem 4.4. If 1 < γ � 1 + 4
n−2 , the NLS (6) is globally well-posed for small H 1 data. Moreover, in the subcritical

case 1 < γ < 1 + 4
n−2 , the NLS (6) is locally well-posed for arbitrary H 1 data.

Proof. Let us point out the modifications needed in order to adapt the proof of Theorem 4.2 and switch from Lebesgue
spaces Lq(Hn) to Sobolev spaces H 1,q (Hn).

By applying (−�̃)
1
2 , (28) becomes{

i∂t (−�̃)
1
2 u(t, x) + �̃(−�̃)

1
2 u(t, x) = (−�̃)

1
2 F

(
v(t, x)

)
,

(−�̃)
1
2 u(0, x) = (−�̃)

1
2 f (x)

and (29)

‖u‖L∞
t H 1

x
+ ‖u‖

L
p
t H

1,q
x

� C‖f ‖H 1
x

+ C
∥∥F(v)

∥∥
L

p̃′
t H

1,q̃′
x

.

It follows from our nonlinearity assumptions (7) that∥∥F(v)
∥∥

L
p̃′
t H

1,q̃′
x

� C‖v‖γ

L
p
t H

1,q
x

provided 1
p̃′ = γ

p
and 1

q̃ ′ � γ
q

− γ−1
n

. Using the Hölder and Sobolev inequalities, we can indeed estimate∥∥∇xF (v)
∥∥

L
p̃′
t L

q̃′
x

� C
∥∥|v|γ−1|∇xv|∥∥

L
p̃′
t L

q̃′
x

� C‖v‖γ

L
p
t H

1,q
x

and also∥∥F(v)
∥∥

L
p̃′
t L

q̃′
x

� C
∥∥|v|γ ∥∥

L
p̃′
t L

q̃′
x

� C‖v‖γ

L
p
t H

1,q
x

under the weaker assumptions 1
p̃′ = γ

p
and 1

q̃ ′ � γ ( 1
q

− 1
n
). Thus

‖u‖L∞
t H 1

x
+ ‖u‖

L
p
t H

1,q
x

� C‖f ‖H 1
x

+ C‖v‖γ

L
p
t H

1,q
x

(36)

for a proper choice of parameters, for instance

0 < β = β̃ � 2 such that γ = 1 + 2β

n − 2
, p = p̃ = 1 + γ,

1

q
= 1

q̃
= 1

2
− β

n

1

1 + γ
.

As a first conclusion, we obtain that Φ : v �−→ u maps the Banach space X = C(R;H 1(Hn))∩Lp(R;H 1,q (Hn)) into
itself, and moreover the ball Xε into itself, provided ε and ‖f ‖H 1 are small enough.

Let us next prove existence and uniqueness of a fixed point for Φ in Xε . Arguing as above, we can estimate

‖u − ũ‖L
p
t L

q
x
� C

∥∥F(v) − F(ṽ)
∥∥

L
p̃′
t L

q̃′
x

� C
{‖v‖γ−1

L
p
t H

1,q
x

+ ‖ṽ‖γ−1

L
p
t H

1,q
x

}‖v − ṽ‖L
p
t L

q
x

� 2Cεγ−1‖v − ṽ‖L
p
t L

q
x

for v, ṽ ∈ Xε and corresponding u = Φ(v), ũ = Φ(ṽ). Thus Φ is a contraction in Xε for the norm inherited from the
Banach space Y = Lp(R;Lq(Hn)), provided ε is small enough. This yields uniqueness of a possible fixed point for
Φ in Xε . For existence, we use the standard iteration argument, starting from any u0 ∈ Xε , considering the sequence
uj = Φj(u0) and getting in the limit a fixed point u in the closure of Xε in Y . Eventually, since X is reflexive and
separable, uj has a weakly convergent subsequence ujk

→ ũ in Xε and hence u = ũ must belong to Xε .
As far as local well-posedness for arbitrary data is concerned, we adapt similarly the last part of the proof of

Theorem 4.2. Specifically the estimates (34) and (35) are now replaced by

‖u‖X � C‖f ‖H 1 + CT λ‖v‖γ
X
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and

‖u − ũ‖Y � CT λ
(‖v‖γ−1

X + ‖ṽ‖γ−1
X

)‖v − ṽ‖Y ,

where X = C(I ;H 1(Hn)) ∩ Lp(I ;H 1,q (Hn)) and Y = Lp(I ;Lq(Hn)). �
Remark 4.5. If the nonlinearity F is defocusing as in (9), H 1 conservation allows us to iterate and deduce global
existence from local existence, for arbitrary data f ∈ H 1 in the subcritical case γ < 1 + 4

n−2 .

5. Scattering for NLS on HHH
n

A second important application of our global Strichartz estimates is scattering for the NLS (6) in L2 and in H 1. Un-
der the additional assumptions of radial symmetry and gauge invariance or defocusing type this was already achieved
in [4], using the weighted radial Strichartz estimates obtained in [3] for n = 3 and in [18] for n � 3.

Actually, using our general estimates (24), we can prove scattering for small L2 data with no additional assumption.
Notice that, in the Euclidean case, this is only possible for the critical power γ = 1 + 4

n
and can be false for subcritical

powers, while on the hyperbolic space global existence and scattering of small L2 data hold for all powers 1 < γ �
1 + 4

n
. This is an analytic effect of hyperbolic geometry, which produces a larger admissible set for the Strichartz

estimates.

Theorem 5.1. Consider the Cauchy problem (6) with a power-like nonlinearity of order 1 < γ � 1 + 4
n

. Then global
solutions u(t, x) corresponding to small L2 data have the following scattering property: there exist u± ∈ L2 such that∥∥u(t) − eit�̃u±

∥∥
L2(Hn)

→ 0 as t → ±∞.

Proof. According to the proof of Theorem 4.2, for 1 < γ � 1 + 4
n

and small L2 data, the Cauchy problem (6) has a
unique solution u(t, x) in C(R;L2(Hn)) ∩ Lp(R;Lq(Hn)), for some suitable pair (p, q). Scattering will follow from
the Cauchy criterion:

If ‖z(t1) − z(t2)‖L2
x
→ 0 as t1, t2 → +∞, then there exists z+ ∈ L2 such that ‖z(t) − z+‖L2

x
→ 0 as t → +∞.

In our case z(t, x) = e−it�̃u(t, x). So if we prove that∥∥e−it2�̃u(t2) − e−it1�̃u(t1)
∥∥

L2
x
→ 0 as t1 � t2 → ±∞,

we can conclude that the global solution u(t, x)) has the scattering property stated above. Using our Strichartz esti-
mates (24), we get

∥∥e−it2�̃u(t2) − e−it1�̃u(t1)
∥∥

L2(Hn)
=

∥∥∥∥∥
t2∫

t1

e−is�̃F
(
u(s)

)
ds

∥∥∥∥∥
L2(Hn)

� ‖u‖γ

Lp([t1,t2];Lq(Hn))
.

Since u(t, x) ∈ Lp(R;Lq(Hn)), the last expression vanishes as t1 � t2 tend both to +∞ or −∞. �
Scattering in H 1 is proved in a similar way, using Theorem 4.4 instead of Theorem 4.2.

Theorem 5.2. Consider the Cauchy problem (6) with a power-like nonlinearity of order 1 < γ � 1+ 4
n−2 . Then global

solutions u(t, x) corresponding to small H 1 data have the following scattering property: there exist u± ∈ H 1 such
that ∥∥u(t) − eit�̃u±

∥∥
H 1(Hn)

→ 0 as t → ±∞.
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Another scattering result proved in [4] is existence of the so-called wave operator. This result extends straightfor-
wardly to the nonradial case, since it relies on the Strichartz estimates of [18] combined with the techniques of [19].

Theorem 5.3. Assume that F is defocusing and that γ < 1 + 4
n−2 . Then, for any data f ∈ H 1 at t = ±∞, our NLS

has a unique global solution u(t, x) with the following scattering property:∥∥u(t) − eit�̃f
∥∥

H 1(Hn)
→ 0 as t → ±∞.
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