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Abstract

We study the growth of Df n(f (c)) when f is a Fibonacci critical covering map of the circle with negative Schwarzian derivative,
degree d � 2 and critical point c of order � > 1. As an application we prove that f exhibits exponential decay of geometry if and
only if � � 2, and in this case it has an absolutely continuous invariant probability measure, although not satisfying the so-called
Collet–Eckmann condition.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions la croissance de Df n(f (c)) lorsque f est un revêtement critique de Fibonacci du cercle avec dérivée Schwar-
zienne négative, degré d � 2 et point critique c d’ordre � > 1. Comme application nous démontrons que f exhibe une décroissance
exponentielle de géométrie si et seulement si � � 2, et dans ce cas f a une mesure de probabilité invariante absolument continue,
sans satisfaire la condition de Collet–Eckmann.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

A critical covering map of the circle S
1 = R/Z is a Cr (r � 1) covering map f : S

1 → S
1 with just one critical

point, say c, which must be of inflection type. In the present work, we will consider critical covering maps of degree
d � 2. This kind of map has been considered before, for example in [20–22,30]. Under the point of view of dynamical
systems such critical coverings with neither wandering intervals nor periodic attractors are all topologically conju-
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gate to the map of the circle induced by the map x �→ dx of the real line R. This implies in particular that the set
B(f ) := {x ∈ S

1: ω(x) = S
1} is a countable intersection of open and dense subsets of S

1. But metric properties of
the underlying dynamics as the Lebesgue measure of B(f ) or the growth of Df n(f (c)), as n → ∞, depend on the
order and combinatorial behavior of the forward critical orbit. Here we will consider the case of critical points of order
� > 1 with the Fibonacci combinatorics, which will be defined below.

The Fibonacci combinatorics appeared before in the context of unimodal maps related to a question posed by
J. Milnor [28] about the classification of the measure-theoretical attractors in dynamical systems on compact spaces.
Among the quadratic real polynomials Qα(x) = αx(1 − x) there is one whose turning point has this combinatorics
and, as it implies a strong recurrence of the critical point, it was considered in [14] as a candidate to exhibit a wild
attractor. A wild attractor for Qα (also called absorbing Cantor attractor in [13]) is a compact invariant Cantor set
whose basin of attraction is a meager subset of [0,1] with full Lebesgue measure [28]. It was proved in [24] that
a quadratic real polynomial with the Fibonacci combinatorics has no wild attractor. This was generalized later for
any combinatorics [23] (see also [7,10–13,16,26]). On the other hand, in [1] it was proved that if a unimodal real
polynomial of degree big enough has the Fibonacci combinatorics then it has a wild attractor.

Under mild hypotheses a critical covering map f as above is ergodic with respect to the Lebesgue measure [35],
that is, every totally invariant set has Lebesgue measure zero or one. Then, if it has an absolutely continuous invariant
probability measure it has no wild attractor and the topological conjugacy between f and a map of the circle induced
by x �→ dx is absolutely continuous.

In order to prove that there is an absolutely continuous invariant probability measure one examines the derivative
on the orbit of the critical value and tries to show that it undergoes a relative expansion, for example by showing
that the map satisfies the so-called Collet–Eckmann condition, stating that the derivative on the critical orbit grows
exponentially, or weaker conditions as the summability condition in [2,31] and also [3]. This may be done either by
directly examining the derivative for some specially chosen moments of the orbit (at closest returns, for example) or
by studying the geometric aspects of sequences of inductively defined return maps around the critical point. In the
latter case, if some metric relations between successive stages decay exponentially fast then one says that f exhibits
exponential decay of geometry (see below for a precise definition), the opposite situation being bounded geometry,
where scales do not decay at all. Exponential decay of geometry and topological additional hypotheses (as finiteness
of central returns) are related to the expansion of the derivative on the critical orbit and have also been a way of
proving existence of absolutely continuous invariant probability measures (see [27] for the unimodal case). We also
mention that in the proof of denseness of hyperbolicity in the logistic family Qα (see [8,9,25]), a central problem in
one-dimensional dynamics, the exponential decay of geometry played an important role.

Several questions about dynamics on the real line were treated with tools from complex analysis. But these tools can
be applied just to a somewhat narrow set of cases which do not include situations where the order of the critical point
is a general real number greater than one. It is also a natural aim that real analysis is enough to solve the questions
from real dynamics. In this line of thought the non-existence of wild attractors for negative Schwarzian derivative
Fibonacci unimodal maps with critical point of order 1 < � � 2 was proved by G. Keller and T. Nowicki in [17] with
just real analysis (in fact the result extends a little above � = 2). Moreover, the exponential decay of geometry was
proved by W. Shen in [33] for non-renormalizable unimodal maps with any combinatorics with critical point of order
1 < � � 2. Shen strongly uses the natural symmetry around the critical point that arises in the unimodal case, contrary
to what happens with the inflection critical point of critical covering maps.

Here the decay of geometry for a map with an inflection critical point is considered for the first time. We prove
that Fibonacci critical covering maps of the circle of degree d � 2 having critical point of order 1 < � � 2 display
decay of geometry. Moreover, our result is sharp since in [22] it was proved that Fibonacci critical coverings have
bounded geometry for every � > 2. This is similar to the unimodal case where bounded geometry for the Fibonacci
combinatorics follows for every � > 2 from a result in [17].

We also mention that the study of the growth of |Df n(f (c))| connected to the question of the existence of an
absolutely continuous invariant probability measure and the regularity of topological conjugacies appeared at least
three decades ago, see for example [5,15,18,19,29,32,34] and others references in the books [4] and [6].
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2. Basic concepts and main results

We look at the circle S
1 as the quotient space R/Z with the orientation and metric induced from the real line R.

Given a C1 critical covering map f : S
1 → S

1 of degree d � 2 we choose one of its fixed points, say p, and set
I1 := S

1 \ {p}. The distance between 2 points x and y in I1 will be denoted by |x − y| and the length of an interval
I ⊂ I1 will be denoted by |I |.

Note that f has d branches mapping onto I1 (below we will identify I1 with (0,1) ⊂ R in order to consider
homeomorphic extensions of these branches and prove a technical but essential lemma). From now on we will assume
that the critical point c of f is recurrent and define the sequence I1 ⊃ I2 ⊃ I3 ⊃ · · · {c} such that, for n � 1, the interval
In+1 is a component of the domain of the first return map φn to In. If φn(c) ∈ In+1, for some n � 1, we say that n

is a central return moment. The critical return time sn is defined by φn(c) = f sn(c). If the sequence s1, s2, s3, s4, . . .

coincides with the Fibonacci sequence 1,2,3,5, . . . the critical covering map f is called a Fibonacci critical covering
map. It is not difficult to show that Fibonacci critical covering maps have no central returns.

One of the main geometric aspects of one-dimensional dynamics with critical points is the evolution of the scaling
factor μn = |In+1|/|In|, particularly in the subsequence (ni)i of non-central return moments (which is the sequence
itself in the case of Fibonacci critical covering maps). If μni

→ 0 exponentially fast as i → ∞ we say that f has
exponential decay of geometry.

Let Cd denote the set of C1 critical coverings f of degree d � 2 which also have the following properties:

• The critical point c is recurrent and not periodic.
• There exist a C1 map ψ : I1 → I1 satisfying limx→c ψ(x) = 0 and real constants ϑ > 0 and � > 1 such that

f (x) = f (c) + ϑ sgn(x − c)|x − c|�(1 + ψ(x)
)

(1)

for every x in a neighborhood of c.
• Restricted to S

1 \ {c}, the map f is C3 and has negative Schwarzian derivative.

Remark that a map f ∈ Cd cannot have neither a wandering interval nor a periodic attractor, see [6] and also [35].
Our main result claims the exponential growth of Df sn(f (c)) as n → ∞ for Fibonacci critical coverings.

Theorem 1. There are constants ρ > 1 and C > 0 such that if f ∈ Cd has the Fibonacci combinatorics and order
� ∈ (1,2] then Df sn(f (c)) � Cρn, for all n � 1.

Three consequences are the following.

Theorem 2. If f ∈ Cd has the Fibonacci combinatorics and order � ∈ (1,2] then f has an absolutely continuous
invariant probability measure.

Theorem 3. If f ∈ Cd has the Fibonacci combinatorics and order � ∈ (1,2] then f exhibits exponential decay of
geometry.

Theorem 4. If f ∈ Cd has the Fibonacci combinatorics and order � ∈ (1,2] then the ω-limit set ω(c) of its critical
point is a minimal invariant Cantor set with zero Hausdorff dimension.

In order to prove Theorem 1 we find a recursive difference equation (12) involving Df sn(f (c)) and the parameter
λn = |f sn(c) − c|/|f sn+2(c) − c|. Then we proceed as in [17] to get the exponential growth of Df sn(f (c)) with n.
Using a classical argument, we show that the sequence of derivatives Df k(f (c)) goes to infinity as k → ∞ and this is
exactly the criterion in [3] assuring the existence of an absolutely continuous invariant probability measure, as stated
in Theorem 2. Finally, Theorem 1 together with distortion control imply the third and the fourth theorems.

A technical difference with respect to the work of Keller and Nowicki [17] is that we do not get an a priori numeric
lower bound for λn, and in fact we do not need it for the proof. It suffices to use that λn is uniformly bounded away
from one, which is a consequence of the real bounds (see Theorem 9 below). Another difference is a cross-ratio
argument where an asymmetric huge extendibility allowed by topological properties plays a central role. For this
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argument, the assumption of negative Schwarzian derivative is essential, since the range of extendibility goes much
beyond the neighborhood of the critical point.

We also derive some more precise statements about the geometry and the derivative growth in the Fibonacci com-
binatorics, as a consequence of these theorems and a technical result proved in [22] for any � > 1. This result states, in
particular, that the two components of In \ In+1 are comparable with In. Hence In+1 is not only exponentially small
with respect to In but also with respect to these two adjacent components.

The derivative growth presents three distinct pictures, depending on the value of �, as the following theorems tell.

Theorem 5. Let f ∈ Cd with the Fibonacci combinatorics and � ∈ (1,2). Then

lim
n→∞

1

n
log logDf sn

(
f (c)

) = μ,

where

μ = 1 + √
1 + 4�

2�
.

In particular, the geometry decays super exponentially.

This theorem says that Df sn(f (c)) grows super exponentially with n, for � < 2. But as sn grows with ωn, where

ω = 1+√
5

2 is the golden number, and μ = μ(�) decreases from ω, when � = 1, to 1, when � = 2, then we can conclude
that Df sn(f (c)) does not grow exponentially with sn. Therefore, as a consequence, f is not Collet–Eckmann. But we
can extend this conclusion to all iterates, by the following theorem.

Theorem 6. Let f ∈ Cd with the Fibonacci combinatorics and � ∈ (1,2). Then

lim
k→∞

log logDf k(f (c))

logk
= logμ

logω
< 1,

where μ = μ(�) is given as in Theorem 5 and ω is the golden number. In particular, f does not satisfy the Collet–
Eckmann condition.

For � = 2 the exponential growth of Df sn(f (c)) with n is the best that we can hope.

Theorem 7. Let f ∈ Cd with the Fibonacci combinatorics and � = 2. Then the growth of Df sn(f (c)) is not more than
exponential. In particular, the geometry decays with a ratio which is not more than exponential.

Finally, for � > 2 we conclude that Df sn(f (c)) and the geometry are bounded. This last assertion, in particular, is
also proved in [22].

Theorem 8. Let f ∈ Cd with the Fibonacci combinatorics and � > 2. Then Df sn(f (c)) is bounded, and in particular
the geometry is bounded.

This paper is organized as follows. In Section 3 we review the technical tools related to the uniform distortion
control of powers of f which are widely used in one-dimensional dynamics. The so-called real bounds play a central
role: they state an a priori property on the geometry of the induced sequence of first return maps. In Section 4 we
discuss in more details the Fibonacci combinatorics, which is explicitly used in the proofs. The facts stated in this
section are very similar to the Fibonacci combinatorics of unimodal maps. In Section 5 we state the extendibility
properties of a first entry map from the critical value to a neighborhood of the critical point which will be essential to
get lower and upper bounds for its derivative, through a cross-ratio argument. These bounds are obtained in Section 6
and used to show Theorem 1, in Section 7. In this section we also prove the existence of an absolutely continuous
invariant probability measure, the exponential decay of geometry and the zero Hausdorff dimension of ω(c). Finally,
in Section 8 we derive, using a result in [22], the more precise consequences of these findings, which are stated in
Theorems 5, 6, 7 and 8.
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3. Cross-ratio, distortion control

Koebe Principles are the most important tools to controlling distortion and finding lower bounds for derivatives
that will ultimately prove Theorem 1. We list some important definitions and results that may be found, for example,
in [6].

Let J,T ⊂ I1 ⊂ S
1 be a pair of intervals such that J ⊂ T and T \ J has 2 non-empty connected components L

and R. We say that J is α-well inside T if min{|L|, |R|} � α|J |. The cross-ratio of J and T is the ratio

C(T ,J ) = |T |
|J |

|L|
|R| .

Let h : T → S
1 be a diffeomorphism onto its image and define

B(h,T ,J ) = C(h(T ),h(J ))

C(T ,J )
.

If h is C3 and has negative Schwarzian derivative then B(h,T ,J ) > 1. As a consequence, if J ⊂ T is degenerated to
a point x we have

∣∣Dh(x)
∣∣ � |h(L)||h(R)|

|h(T )|
|T |

|L||R| . (2)

On the other hand, if we degenerate R to a point x then

∣∣Dh(x)
∣∣ � |h(T )||h(J )|

|h(L)|
|L|

|T ||J | . (3)

There is also the Macroscopic Koebe Principle saying that if h(J ) is α-well inside h(T ) then J is also α-well
inside T . Under the same condition the distortion is controlled by

Dh(x)

Dh(y)
�

(
1 + α

α

)2

, (4)

for all x, y ∈ J .
In [20] and [35] one may find the following important result, that will be used everywhere throughout this work.

Theorem 9 (Real bounds). There is α = α(�) > 0 (which can be uniform for � � �0, for every �0 > 1), such that if
f ∈ Cd has order � then In+1 is α-well inside In for every non-central return moment n after two non-central return
moments. In particular, if f has the Fibonacci combinatorics, this is true for every n � 3.

Again we consider φn, the first return map to the interval In associated to the critical covering f ∈ Cd . All branches
of φn map their domains diffeomorphically onto In except by the critical branch φn|In+1 , which is a C1 homeomor-
phism onto In. In the case of the critical branch, even if the distortion cannot be bounded because of the presence of
the critical point, the corollary of the next lemma guarantees that it can be written as the composition of f with a map
(a power of f ) having uniformly bounded distortion.

Lemma 10. If f ∈ Cd and x ∈ I1 \ In+1 is a point such that there exists the smallest k � 1 such that f k(x) ∈ In+1
then there is an interval T containing x which is mapped by f k diffeomorphically onto In.

Proof. The statement follows from the fact that In is a nice interval in the sense of Martens [26]. �
Lemma 11. There is K = K(�) > 0 such that if f ∈ Cd has the Fibonacci combinatorics and order � > 1 then for
every x ∈ I1 \ In+1, n � 3, and k the first positive integer such that f k(x) ∈ In+1 there is an interval J to which x

belongs such that f k(J ) = In+1 and

Df j (y)

j
� K,
Df (z)
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for all y, z ∈ J and j = 0,1,2, . . . , k. The constant K is given by

K =
(

1 + α

α

)2

,

where α = α(�) > 0 is the constant given in Theorem 9.

Proof. By Lemma 10 there is an interval T such that x ∈ T and f k|T is a diffeomorphism onto In. Let J be the pre-
image of In+1 under f k|T . By Theorem 9, In+1 is α-well inside In. Now we apply the Macroscopic Koebe Principle
to h = f k−j |jf (T ) and conclude that f j (J ) is α-well inside f j (T ), for every j = 0,1, . . . , k. Finally the distortion

control of (4) applied to h = f j |T implies the lemma. �
4. The Fibonacci combinatorics

The domain of φn has a connected component Mn+1, called post critical domain, which contains φn(c). Following
the terminology in [9], a branch of φn which is a restriction of a branch of φn−1 is called an immediate branch.

Lemma 12. If f ∈ Cd has the Fibonacci combinatorics then the following properties hold:

(1) The post critical domain of φn is an immediate branch. In particular φn+1(c) = φn−1 ◦ φn(c), for all n � 2.
(2) Two consecutive post critical domains Mn and Mn+1 (and in particular φn−1(c) and φn(c)), n � 1, are on

opposite sides of c inside I1.

Proof. Due to the fact that the critical branch of φn is a homeomorphism from In+1 onto In, for all n � 1, φn has
exactly one immediate branch, for every n � 2. As d � 2 the first return map φ1 has exactly d branches and all these
branches are restrictions of f . Now φ2 has its critical branch with return time equal to 2 (since by the hypothesis
s2 = 2), its immediate branch with return time equal to 1 and any of its branches which is not an immediate branch
with return time at least equal to 2. Then, as s3 = 3, φ3(c) = φ1 ◦ φ2(c). By induction, assume, for n � 2, that the
immediate branch of φn has return time sn−1 and that the return time of its others branches (including the critical
branch) are at least sn. So, as sn+1 = sn−1 + sn, the post critical branch of φn must be its immediate branch. Also,
except for its immediate and critical branches, all the other branches of φn+1 will have return time greater or equal
than 2sn, which is greater than sn+1, and the induction follows.

The second statement follows from the fact that the branches of φn preserve orientation and the fact that its post
critical branch is an immediate branch. �

The following lemma illustrates the strong recurrence property of Fibonacci critical coverings.

Proposition 13. If g ∈ Cd has a sequence of return times s1, s2, s3, s4, . . . smaller (with respect to the lexicographic
order) than the Fibonacci sequence 1,2,3,5, . . . then g has central returns.

Proof. We argue that if g ∈ Cd has a sequence of return times s1, s2, s3, s4, . . . smaller (with respect to the lexico-
graphic order) than the Fibonacci sequence 1,2,3,5, . . . then g has central returns. Among the branches of the first
return map of a critical covering the immediate branch has the smallest possible return time. So, if a critical covering
has no central returns its sequence of critical returns is at least as big as the Fibonacci sequence 1,2,3,5, . . . . �

The following lemma is one of the applications of Lemma 11 in the Fibonacci case.

Lemma 14. Let K = K(�) > 0 be the constant given in Lemma 11. If f ∈ Cd has the Fibonacci combinatorics and
order � > 1 then

K−1 <
Df j (f sn+1(f (c)))

Df j (f (c))
< K,

for all n � 4 and for all j = 0,1, . . . , sn − 1.



E. Colli et al. / Ann. I. H. Poincaré – AN 26 (2009) 1533–1551 1539
Proof. As φn|In+1 has c as its only critical point and c is not periodic, then the interval J = f (In+1) is diffeomorphi-
cally mapped onto In by f sn−1, it is disjoint from In, it is the first entry map into In and it contains the points f (c)

and f (f sn+1(c)), since c and f sn+1(c) are in In+1. Therefore the lemma follows directly from Lemma 11 (applied
to In). �
5. Extendibility around the critical value

From now on it will be always assumed in the statements that we are considering a function f ∈ Cd with the
Fibonacci combinatorics.

We define f m(c) = cm, for m � 1, the points of the critical orbit. Among them there are the points csn , that belong
to Mn+1 ⊂ In and are in alternate sides of c, accordingly to the second statement of Lemma 12. We also define, for
each n � 1, the point zn = (φn|In+1)

−1(c). The points zn will help us to find the right cross-ratios in order to evaluate
Df sn−1(f (c)).

Lemma 15 (Definition and placement of zn). Let zn = (φn|In+1)
−1(c), for every n � 1. Then zn is between csn−1

and csn+1 .

Proof. As φn(c) = csn ∈ Mn+1 it is easy to see that zn and csn are in opposite sides of c. That zn is between c and
csn−1 follows from the fact that csn−1 ∈ Mn and zn ∈ In, and that they are both in the same side of c. That csn+1 is
between zn and c follows from the monotonicity of φn|In+1 , that send the points zn, csn+1 , c to c, csn+2 , csn , in this
order, and csn+2 is between c and csn . �

We now identify I1 with the interval (0,1) in the real line, in order to consider extendibility properties of the return
map φn|In+1 not restricted by the circle topology. Regarding as an interval map, f has d branches in (0,1), two of
them being φ1|M2 and φ1|I2 .

This identification allows that all results will be valid also in the context of interval maps with d branches. These
maps are in correspondence with circle maps with (in general) d points of discontinuity of the derivative. But these
discontinuity points will make no difference in the arguments.

Let g0 and g1 be the lifts of f that extend φ1|M2 and φ1|I2 , respectively, to the whole line. Their difference is
constant and equal to some integer τ with absolute value smaller than d . More precisely, defining the unitary vector
en = csn−c

|csn−c| then

g1 = g0 + τe1, (5)

for some τ ∈ {1, . . . , d − 1}.
Therefore if we define by induction gn = gn−2 ◦gn−1, for n � 2, then gn is the homeomorphic extension of φn|In+1

to the whole line. We claim that

gn ◦ gn−1 = gn−1 ◦ gn + (d − 1)τen+1. (6)

For n = 1 the assertion follows after explicitly developing the equality

g1 ◦ g0 = (g0 + τe1) ◦ (g1 − τe1).

If it is true for n then

gn+1 ◦ gn = gn−1 ◦ gn ◦ gn = (
gn ◦ gn−1 − (d − 1)τen+1

) ◦ gn = gn ◦ gn+1 + (d − 1)τen+2.

Another auxiliary point is xn, a pre-image of one of the boundary points of (0,1).

Lemma 16 (Definition and placement of xn). For n � 1 let ∂n be the boundary point of (0,1) which is opposite to csn

with respect to c and let xn = g−1
n (∂n). Then

(1) xn is between csn−1 and zn, for every n � 2;
(2) xn = g−1

n−1(xn−2), for every n � 3.
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Proof. (1) It is enough to prove that gn(xn) is between gn(csn−1) and gn(zn) = c. But by (6)

gn(csn−1) = csn+1 − (d − 1)τen,

that is, gn(csn−1) is outside (0,1) and in the same side of ∂n with respect to c. The first claim follows.
(2) By definition gn(xn) = ∂n = ∂n−2, hence gn−2(gn−1(xn)) = ∂n−2. This implies that gn−1(xn) = xn−2, proving

the second claim. �
Lemma 17. For n � 3, the restriction of gn to (xn, zn−1) is a C1 homeomorphism onto (∂n, csn−2) having c as its
unique critical point.

Proof. Although the statement is for n � 3, we first look at g1 and g2. Let U1 = I2 and U2 = g−1
1 (M2). Then g1|U1 is

a C1 homeomorphism onto (0,1) having c as its unique critical point. The same is true for g2|U2 , since g2 = g0 ◦ g1
and g0|M2 is a diffeomorphism onto (0,1). Notice that x1 ∈ ∂U1, x2 ∈ ∂U2, and U2 ⊂ U1.

Now we let Un = (xn, zn−1), for every n � 3. We claim that zn and xn+1 belong to Un, for all n � 1, hence Un+1 ⊂
Un for every n � 1. This assertion immediately follows in the case n � 3 from the localization Lemmas 15 and 16.
Moreover, z1 ∈ U1 = I2 since z1 = (φ1|I2)

−1(c) and z2 ∈ U2 = g−1
1 (M2), since I3 ⊂ g−1

1 (M2) and z2 = (φ2|I3)
−1(c).

That x2 ∈ U1 follows from x2 ∈ ∂U2 and U2 ⊂ U1. That x3 ∈ U2 follows from x3 = g−1
2 (x1) (by the second assertion

of Lemma 16), g2(U2) = (0,1) and x1 ∈ (0,1).
We claim that gn|Un is a C1 homeomorphism with unique critical point c for all n � 1. As for n = 1,2 it is already

proved, assume by induction that n � 3 and that the claim is valid for n − 1 and n − 2. First Un ⊂ Un−1 implies
that gn−1|Un is a C1 homeomorphism with unique critical point c. Moreover, as zn−1 ∈ ∂Un and gn−1(zn−1) = c

then gn−1(Un) intersects just one component of Un−2 \ {c}. But in fact gn−1(Un) is exactly this component, since
gn−1(xn) = xn−2 ∈ ∂Un−2, by the second assertion of Lemma 16. Then gn−2 restricted to gn−1(Un) is a diffeomor-
phism onto its image and the composition gn = gn−2 ◦ gn−1, restricted to Un, is a C1 homeomorphism onto its image
having c as its unique critical point.

As gn(xn) = ∂n and gn(zn−1) = gn−2(c) = csn−2 the image of gn|Un is the interval given in the assertion. �
It is the following corollary of Lemma 17 that will be explicitly used when estimating the derivative growth us-

ing cross-ratio expansion. The notation introduced in the lemma closely follows previous works on this subject, for
example [1].

Lemma 18. For n � 2 let x
f
n = f (xn), z

f
n = f (zn), c

f
sn = f (csn), cf = f (c) (in this case, xn, zn, csn and c are all

in the closure of I2, and f means the continuous extension of the branch φ1|I2 to I 2). Then, for every n � 3, f sn−1

diffeomorphically sends (x
f
n , z

f

n−1) onto (∂n, csn−2). Moreover, the points cf and c
f
sn+1 are sent to csn and csn+2 .

Proof. By Lemma 17, f sn sends (xn, zn−1) homeomorphically onto (∂n, csn−2) with c as its unique critical point. As

c is a critical point for the first iterate, if f sn−1 restricted to (x
f
n , z

f

n−1) had a critical point then there would exist
j < sn such that f j (c) = c. This would be a contradiction, since c is not periodic.

Moreover, f sn−1(cf ) = f sn(c) = csn and

f sn−1(cf
sn+1

) = f sn(csn+1) = f sn+2(c) = csn+2 . �
6. Derivative on the critical orbit

We will control the growth of Df sn(f (c)) stated in Theorem 1 using the expansion of suitably chosen (degenerated)
cross-ratios, that will allow us to construct difference equations, similarly as was done in [17].

We use the notation introduced in Lemma 18 (following [1]), where wf = f (w), for every point w ∈ I2, and define
also the distances dn := |csn − c|, d

f
n := |cf

sn − cf |, but just once we use x
f
n to denote |xf

n − c|. We also introduce the
parameter

λn = dn
,

dn+2
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that will play an important role in the proof. Since csn and csn+2 are in the same side of {c}, λn is always greater than
one. But the real bounds of Theorem 9 give more.

Lemma 19. Let α > 0 be as in Theorem 9, f ∈ Cd with the Fibonacci combinatorics and λn defined as above. Then

λn � 1 + α

for every n � 2.

Proof. There is a component R of In+1 \ In+2 between csn+2 ∈ In+2 and csn ∈ In \ In+1. Theorem 9 implies that
|R| � α|In+2|. Then

dn � R + dn+2 � α|In+2| + dn+2 � (α + 1)dn+2. �
The local approximation given in (1) gives useful estimates involving the d

f
n ’s and also the derivative of f at

the csn ’s. One of the estimates also uses Lemma 19.

Lemma 20. For sufficiently high n, there are numbers θ
(1)
n , θ

(2)
n and θ

(3)
n going to 1 as n → ∞, such that

d
f
n = θ(1)

n ϑd�
n, (7)

Df (csn) = θ(2)
n ϑ�d�−1

n , (8)

d
f
n

d
f
n − d

f

n+2

= θ(3)
n

d�
n

d�
n − d�

n+2

= θ(3)
n

1

1 − λ−�
n

, (9)

where ϑ is the constant given in (1).

Proof. Eq. (7) follows directly from (1). From the same equation we get that

Df (x) = ϑ�|x − c|�−1(1 + ψ1(x)
)

(10)

for x in a neighborhood of the critical point, where ψ1 is a continuous function such that limx→c ψ1(x) = 0, and this
proves (8).

Let ξ(a, x) = 1−x
1−ax

, for x ∈ [0, (1 + α)−1] and a < 1 + α, where α > 0 is the constant given in Lemma 19. We
have

d
f
n

d
f
n − d

f

n+2

= 1

1 − d
f
n+2

d
f
n

= 1

1 − θ
(1)
n+2

θ
(1)
n

λ−�
n

= θ(3)
n

1

1 − λ−�
,

where θ
(3)
n = ξ(

θ
(1)
n+2

θ
(1)
n

, λ−�), which is defined for n sufficiently high, since θ
(1)
n → 1. As ξ(a, ·) uniformly tends to 1 as

a → 1 then θ
(3)
n → 1. �

Now taking into account Lemma 18 we apply (2) to the diffeomorphism f sn−1 in the interval (x
f
n , cf ) and obtain

a fundamental lower bound for its derivative.

Lemma 21. For sufficiently high n, there is K
(1)
n going to 1 as n → ∞ such that

Df sn−1(cf
sn+1

)
� K(1)

n

dn − dn+2

d
f

n+1

d
f

n−1

d
f

n−1 − d
f

n+1

.

Proof. Let Tn = (x
f
n , cf ) with subintervals Ln = (x

f
n , c

f
sn+1), Rn = (c

f
sn+1 , c

f ) and Jn = {cf
sn+1} (degenerated), which

are sent, under f sn−1, to the intervals (∂n, csn), (∂n, csn+2), (csn+2 , csn) and {csn+2}, respectively. Eq. (2) yields

Df sn−1(cf
sn+1

)
� |f sn−1(Ln)|

|f sn−1(Tn)|
dn − dn+2

d
f

x
f
n

x
f − d

f
.

n+1 n n+1
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As |∂n − c| alternates between two positive values and csn → 0 (since c is recurrent), then it follows that K
(1)
n ≡

|f sn−1(Ln)|/|f sn−1(Tn)| → 1 as n → ∞. Moreover, as x
f
n < d

f

n−1, by Lemma 16,

x
f
n

x
f
n − d

f

n+1

= 1

1 − d
f
n+1

x
f
n

>
1

1 − d
f
n+1

d
f
n−1

= d
f

n−1

d
f

n−1 − d
f

n+1

,

and the assertion follows. �
At this point but only for later use we also give, in the following lemma, an upper bound for Df sn−1(cf ), using (3).

Lemma 22. For sufficiently high n � 1,

Df sn−1(cf
)
�

(
K(1)

n

)−1 dn − dn+2

d
f

n+1

d
f

n−1 − d
f

n+1

d
f

n−1

,

where K
(1)
n is the same as in Lemma 21.

Proof. Let Tn = (x
f
n , cf ) with subintervals Ln = (x

f
n , c

f
sn+1), Jn = (c

f
sn+1 , c

f ) and Rn = {cf } (degenerated), which
are sent, under f sn−1, to the intervals (∂n, csn), (∂n, csn+2), (csn+2 , csn) and {csn}, respectively. Eq. (3) yields

Df sn−1(cf
)
� |f sn−1(Tn)|

|f sn−1(Ln)|
dn − dn+2

d
f

n+1

x
f
n − d

f

n+1

x
f
n

and the result follows similarly as in the proof of Lemma 21. �
We define the auxiliary parameter

qn ≡ Df sn−1(c
f
sn+1)

Df sn−1(cf )
,

which is bounded away from zero and from infinity, by Lemma 14. The next lemma will be the starting point to obtain
the exponential growth of Df sn−1(cf ) with n for 1 < � � 2.

Lemma 23. For sufficiently high n, there is K
(2)
n → 1 as n → ∞ such that

Df sn+1(cf )2

Df sn(cf )Df sn−1(cf )
� K(2)

n �2λ2−�
n−1

qn−1

qn

1 − λ−1
n

1 − λ−�
n−2

1 − λ−1
n−1

1 − λ−�
n−1

. (11)

Proof. A straightforward calculation using the chain rule and sn+1 = sn + sn−1 shows that the left-hand side of (11)
is equal to

qn−1

qn

Df sn−1−1(cf
sn

)
Df sn−1(cf

sn+1

)Df (csn+1)
2Df (csn)

Df (csn−1)
.

Eq. (8) implies that

Df (csn+1)
2Df (csn)

Df (csn−1)
= θ(4)

n ϑ2�2 d2�−2
n+1 d�−1

n

d�−1
n−1

,

where θ
(4)
n → 1 as n → ∞. Using Lemma 21 for the two remaining factors of this product and also Lemma 20 the

Inequality follows, with

K(2)
n = θ

(4)
n θ

(3)
n−1θ

(3)
n−2

θ
(1)

θ
(1)

K(1)
n K

(1)
n−1. �
n+1 n
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Finally, the next lemma will be useful at obtaining finer results on the growth of the derivative along the orbit of
the critical value.

Lemma 24. There is C > 0 such that, for sufficiently high n,

C−1λ2−�
n−1 � Df sn+1(cf )2

Df sn(cf )Df sn−1(cf )
� Cλ2−�

n−1.

Proof. The first inequality is a consequence of Lemmas 14 and 19 applied to (11) of Lemma 23. The second inequality
can be obtained in two stages: first by following the same arguments as in the proof of Lemma 23, using Lemma 22.
And then using Lemmas 14 and 19 again. �
7. Exponential growth of derivative

7.1. Exponential growth

We aim at proving the exponential growth of Df sn(cf ) with n, which is the same as finding a positive lim inf for
1
n

logDf sn(cf ). From Lemma 23, there is n0 such that n � n0 implies[
Df sn+1(cf )

1 − λ−1
n

]2[
Df sn(cf )

1 − λ−1
n−1

]−1[
Df sn−1(cf )

1 − λ−1
n−2

]−1

� Qn−1

Qn

σn, (12)

where

Qn = qn

(
1 − λ−1

n

)
and

σn = K(2)
n �2λ2−�

n−1

1 − λ−1
n−1

1 − λ−�
n−1

1 − λ−1
n−2

1 − λ−�
n−2

(13)

(for the sake of precision, as K
(2)
n is defined only for high n in Lemma 23, let σn be the minimum (positive) value

such that (12) is true for the finite set of values of n where K
(2)
n is not defined). Taking logarithms on both sides and

defining δn = 1
2 logQn, εn = 1

2 logσn and

Xn = log

[
Df sn(cf )

1 − λ−1
n−1

]
,

we obtain

Xn+1 − 1

2
Xn − 1

2
Xn−1 � δn−1 − δn + εn. (14)

The following lemma gives an explicit “solution” of this inequation and gives an inferior limit for Xn

n
when the δn’s

are bounded.

Lemma 25. Let (Xn)n�0 be a sequence satisfying (14), for arbitrary X0 and X1. Then

Xn � αnX0 + (1 − αn)X1 +
n−1∑
j=1

αn−j (δj−1 − δj ) +
n−1∑
j=1

αn−j εj , (15)

for n � 2, where α0 = 0, α1 = 1 and, by induction, αn = 1
2 (αn−1 + αn−2), for every n � 2. If moreover |δn| � c for

every n � 0 and lim infn εn > −∞ then

lim inf
n

Xn

n
� 2

3
lim inf

n
εn.
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Proof. The proof of (15) can be done by straightforward induction. Remark that αn → 2
3 when n → ∞ and in fact

αn − 2

3
= (−1)n+1 2

3
2−n.

In particular the sequence αn is bounded, implying that the first two terms of the right-hand side of this inequation go
to zero when divided by n. The third term can be written as

n−1∑
j=1

(
αn−j − 2

3

)
(δj−1 − δj ) + 2

3

n−1∑
j=1

δj−1 − δj .

The first sum is bounded by a sum of a finite geometric progression (with ratio 1
2 ) and the second is equal to 2

3 (δ0 −
δn−1), hence it is also bounded. Therefore the third term also goes to zero when divided by n. The last term is treated
in the same way: it is equal to

n−1∑
j=1

(
αn−j − 2

3

)
εj + 2

3

n−1∑
j=1

εj .

The lim inf of the first sum divided by n is greater or equal than 0 since the sum is uniformly bounded away from
−∞, and the lim inf of the second sum divided by n is greater or equal lim infn εn. �

Now we use this lemma to obtain a positive lower bound for lim infn
Xn

n
. We know that the δn’s are bounded, since

δn = 1
2 logqn(1−λ−1

n ), qn is uniformly bounded away from 0 and from ∞, by Lemma 14, and 1−λ−1
n is smaller than

one and also bounded away from 0, by Lemma 19. The next step is to prove that lim infn εn > 0 whenever � ∈ (1,2].

Lemma 26. Let � ∈ (1,2] and take εn = 1
2 logσn, where σn is defined as in (13). Then there is ε > 0 such that

lim inf
n

εn � ε.

Proof. Let ψ� : [1,+∞) → R be defined by ψ�(1) = 1 and

ψ�(t) = �
1 − t−1

1 − t−�
,

for t > 1. It is a Calculus’ exercise to show that ψ� is continuous, strictly increasing with limt→∞ ψ�(t) = �, and
also that � �→ ψ�(t0) is strictly increasing for every t0 > 1. With this definition, σn = K

(2)
n λ2−�

n−1ψ�(λn−1)ψ�(λn−2)

and, as K
(2)
n → 1 it suffices to show that λ2−�

n−1ψ�(λn−1)ψ�(λn−2) is uniformly greater than one. We divide the proof

into two cases: (i) 1 < � < 3
2 and (ii) 3

2 � � � 2. In the first case, we use ψ�(x) � 1, so that the product is greater

or equal than λ2−�
n−1, which in turn is greater or equal than

√
1 + α, by Lemma 19. In the second case, the first factor

is just assumed to be greater or equal than one (it is equal to one if � = 2), but ψ 3
2
(1 + α)2 is a lower bound for

the rest of the product, using the properties of ψ� stated above and also Lemma 19. This proves the lemma with
ε = min{√1 + α,ψ 3

2
(1 + α)2}. �

Therefore we conclude that

lim inf
n

Xn

n
� 2ε

3
,

for � ∈ (1,2], where ε > 0 is given by Lemma 26. But once again we use Lemma 19: as 1 − λ−1
n−1 is greater or equal

than α
1+α

this implies

lim inf
n

1

n
logDf sn

(
cf

)
� 2ε

3

and the proof of Theorem 1 is complete.
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7.2. The invariant measure

Lemma 27 below shows a classic summability condition on the critical orbit which has been used as a criterion to
prove the existence of an absolutely continuous invariant probability measure. We refer to the work [3] and references
therein, since it includes the case of maps with inflection critical points. There, in fact, the authors prove the existence
with the weaker condition that Df j (cf ) goes to infinity as j → ∞.

Lemma 27. If f ∈ Cd is a Fibonacci critical covering with order � ∈ (1,2] then
∑∞

j=0 Df j (f (c))− 1
� converges.

Proof. Define the monotone sequence Hn = ∑sn−1
j=0 Df j (cf )− 1

� , which is a subsequence of the partial sums of the
series in the statement, and note that

Hn+1 = Hn + Df sn
(
cf

)− 1
�

sn−1−1∑
j=0

Df j
(
c
f
sn

)− 1
� .

By Lemma 14,

Hn+1 � Hn + KDf sn
(
cf

)− 1
�

sn−1−1∑
j=0

Df j
(
cf

)− 1
� = Hn + KDf sn

(
cf

)− 1
� Hn−1,

and, as Hn−1 � Hn, we conclude that

Hn+1 �
n∏

k=1

(
1 + KDf sk

(
cf

)− 1
�
)
.

The exponential growth of Theorem 1 shows that Hn is uniformly bounded, hence the sum of the statement con-
verges. �
7.3. Exponential decay of geometry

We decompose the proof into three parts, since the first two will be used in Section 8.

Lemma 28. There is n0 such that

2−�−1ϑ |In|� �
∣∣f (In)

∣∣ � 4ϑ |In|�
for all n � n0, where ϑ > 0 is the constant of (1). Moreover, for every interval J ⊂ In \ {c},

∣∣f (J )
∣∣ � ϑ

2
|J |�.

Proof. Write In = (c − a, c + b) for positive a and b. As in the proof of (7),

ϑ

2

(
a� + b�

)
�

∣∣f (In)
∣∣ � 2ϑ

(
a� + b�

)
for large n. But a or b is greater or equal than |In|

2 , and from this it follows the first inequality of the first expression.
On the other hand, both a and b are smaller than |In|, and this implies the second inequality.

Now write J = (c + a, c + b), with b > a > 0 (without loss of generality). Then, using (10) and n big,

∣∣f (J )
∣∣ � ϑ�

2

b∫
a

|x|�−1 dx � ϑ�

2

b−a∫
0

|u|�−1 du = ϑ

2
|J |�. �
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Lemma 29. Let K > 0 be the constant of Lemma 11, ϑ the constant of (1). There is n0 such that

K−1ϑ−1

4

|In|
|In+1|� � Df sn−1(cf

)
� 2�+1Kϑ−1 |In|

|In+1|�
for all n � n0.

Proof. As f sn−1 sends the interval f (In+1) diffeomorphically onto In with bounded distortion, by Lemmas 10 and 11,
it suffices to combine this information with Lemma 28. �
Proof of Theorem 3. Let n0 be given by Lemma 29 and such that Df (csn) � 2ϑ�d�−1

n , given by (8). By the Chain
Rule ∣∣Df sn

(
cf

)∣∣ � 2�+2K�
|In|

|In+1|� d�−1
n ,

where K > 0 is the constant of Lemma 11. As f sn(c) = csn ∈ In, then d�−1
n |In| � |In|�. Then we get

Df sn
(
cf

)
� 2�+2K�

( |In|
|In+1|

)�

. (16)

As the left-hand side grows exponentially, by Theorem 1, then the exponential decay of geometry of Theorem 3
follows. �

We can also prove the exponential decay of the ratio |Mn+1|
|In| , which follows from the following lemma combined

with Theorem 3.

Lemma 30. If n is big enough then

|In|
|In+1| � 8K

( |In+1|
|Mn+2|

)�

, (17)

where K > 0 is the constant of Lemma 11.

Proof. Observe that the intervals f (Mn+2) ⊂ f (In+1) are mapped onto the intervals In+1 ⊂ In by f sn−1, with
bounded distortion, see the proof of Theorem 3. This shows that

|In|
|In+1| � K

|f (In+1)|
|f (Mn+2)| ,

K is the constant of Lemma 11. By Lemma 28, if n is big then∣∣f (In+1)
∣∣ � 4ϑ |In+1|�,

where ϑ is the constant of (1). On the other hand |f (Mn+2)| � ϑ
2 |Mn+2|�, by Lemma 28, and the result follows. �

7.4. Hausdorff dimension

The critical ω-limit set ω(c) is a subset of

Λ =
∞⋂

n=1

Λn,

where

Λn =
(

sn−1⋃
f i(In+1)

)
∪

(
sn−1−1⋃

f j (Mn+1)

)
.

i=0 j=0
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This, together with the fact that a Fibonacci critical covering f ∈ Cd has no wandering intervals imply that Λ is a
minimal invariant Cantor set and ω(c) = Λ.

The components of Λn are a covering of ω(c), for each n � 1. On the other hand, the intervals f i(In+1) with
1 � i < sn and f j (Mn+1) with 1 � j < sn−1 are connected components of the domain of the first entry map En

to In. Moreover, f i(In+1) contains f i(In+2) and f i(Mn+2), while f j (Mn+1) contains f j+sn(In+2). The intervals
f i(Mn+2) and f j+sn(In+2) are mapped by En onto In+1 while the interval f i(In+2) is mapped by En into Mn+1.

Since the branches of En have uniformly bounded distortion, by Lemmas 10 and 11, and using Theorem 3, we get
that the size of the intervals in the union Λn decay at least as an2

, for all n � 1 and some a < 1. The number of these
intervals grows at most as 2n and then we conclude that the Hausdorff dimension of ω(c) is zero.

8. Further results

In [22] it was proved a stronger result on a priori bounds involved in the Fibonacci geometry which will be the
basis to finer estimates for the derivative growth and the decay of geometry. Let GM

n+1, G0
n+1 and GI

n+1 be the three
connected components of In \ (In+1 ∪ Mn+1), where G0

n+1 is the component between In+1 and Mn+1 and GM
n+1 is

the lateral component adjacent to Mn+1. Let

rn = max

{ |In|
|GM

n+1|
,

|In|
|G0

n+1|
,

|In|
|GI

n+1|
}
.

Lemma 31 (Levin–Świa̧tek). For every � > 1 there is r = r(�) > 0 such that

lim sup
n

rn � r,

for every f ∈ Cd with the Fibonacci combinatorics and order �. In particular, for every such f , there is R = R(f )

such that rn � R for all n � 1.

In particular, Theorem 3 and Lemma 30 imply that In+1 and Mn+1 exponentially decrease not only with respect to
In but also with respect to these components.

A basic consequence is that the distance of csn to c, that we called dn, is comparable to |In|. As csn ∈ In we already
know that dn � |In|. The following lemma states the opposite inequality, up to a constant.

Lemma 32. Let f ∈ Cd have the Fibonacci combinatorics and order � > 1. Then there is n0 such that

dn � |In|
2r

,

for every n � n0, where r = r(�) is given by Lemma 31.

Proof. As csn ∈ Mn+1 and c ∈ |In+1| then dn > |G0
n+1|. By Lemma 31, there is n0 such that rn � 2r for every n � n0,

in particular |In| � 2r|G0
n+1|. �

This lemma, in turn, immediately allows one to relate ratios between dn’s and ratios between |In|’s. For example,

(2r)−1 dn

dn+1
� |In|

|In+1| � 2r
dn

dn+1
(18)

for large n (or with another f -dependent constant for any n � 1).
Moreover, Lemma 32 gives, for large n,

Df (csn) � ϑ

2
�

( |In|
2r

)�−1

,

implying, by Lemma 29, that there is a constant C1 > 0 such that

Df sn
(
cf

)
� C−1

1

( |In| )�

, (19)
|In+1|
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which is the counterpart of (16). This inequation, together with (16) and (18) gives a constant C2 > 0 such that for
large n

C−1
2

(
dn

dn+1

)�

� Df sn
(
cf

)
� C2

(
dn

dn+1

)�

. (20)

This, in turn, implies the existence of a constant C3 > 0 such that

−C3

�
� logλn − 1

�
logDf sn

(
cf

) − 1

�
logDf sn+1

(
cf

)
� C3

�
. (21)

If we define Xn = logDf sn(cf ) this, together with Lemma 24, gives a constant C4 > 0 such that

−C4 � Xn+1 − 1

�
(Xn−1 + Xn) � C4, (22)

for large n. With this inequation we will derive precise estimates on the growth of the derivative on the critical orbit.
We start by the stating the following lemma, which can be easily proved by induction.

Lemma 33. Let (Xn)n be a sequence satisfying

Xn+1 � 1

�
(Xn−1 + Xn) + �, (23)

for � ∈ R, and let (Yn)n be another sequence satisfying Y0 = X0, Y1 = X1 and Yn+1 = 1
�
(Yn + Yn−1) + �. Then

Xn � Yn,

for all n � 0. Similarly, if the inequality in (23) is inverted then Xn � Yn.

Hence, estimating the growth of Yn gives estimates about the growth of Xn. The sequence Yn, in turn, can be
studied by the two-dimensional affine iteration (un, vn) �→ (vn,

1
�
(un + vn) + �), by making un = Yn−1 and vn = Yn.

If � = 2 this iteration has the unique fixed point (Y∗, Y∗), where

Y∗ = −�

2
�

− 1
,

and eigenvalues

μ± = μ±(�) = 1 ± √
1 + 4�

2�
,

where the eigenvectors associated to μ± are multiples of (1,μ±). The eigenvalue μ− is negative with absolute value
smaller than one, for every � > 1, giving a contractive direction. On the other hand, μ+ decreases with � from the

golden number ω = 1+√
5

2 , when � = 1, to zero, as � → ∞, being greater than 1 for � < 2 and smaller than one for
� > 2. This gives an expanding or contracting direction, for � ∈ (1,2) and � > 2, respectively. From this it is easy to
conclude that:

(1) if � ∈ (1,2) and if Y0 and Y1 are both greater than Y∗ then Yn > 0 for large n and limn
1
n

logYn = μ+;
(2) if � > 2 then |Yn| is bounded.

In the case � = 2 the recurrence Yn+1 = 1
2 (Yn + Yn−1) + � has the explicit solution Yn = 2�

3 (n − 1) +
(a converging term), arguing as in the proof of Lemma 25. From these considerations, we derive the conclusions
in the three cases: 1 < � < 2, � = 2, and � > 2.

Proof of Theorem 5. If Xn = logDf sn(cf ) then the sequence (Xn)n satisfies (22), for large n and some (universal)
C4 > 0. Let Y∗ = C4

2
�
−1

, which is positive, by the hypothesis. By Theorem 1, Xn grows at least linearly, then there is

some (perhaps) larger n0 such that Xn0 and Xn0+1 are both greater than Y∗. Now let (Yn)n be a sequence satisfying
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Y0 = Xn0 , Y1 = Xn0+1 and Yn+1 = 1
�
(Yn−1 + Yn) − C4. Then, by Lemma 33, Xn � Yn−n0 for every n � n0. By the

considerations preceding this proof, lim infn 1
n

logXn � μ+(�) = μ.
On the other hand, if we redefine (Yn)n in such a way that Yn+1 = 1

�
(Yn−1 + Yn) + C4 then we conclude that

lim supn
1
n

logXn � μ+(�) = μ.
That the geometry decays super exponentially immediately follows from (16). �

Proof of Theorem 6. Let k � 1 and n0 be such that sn0 � k < sn0+1. If k = sn0 then Df k(cf ) = Df sn0 (cf ), otherwise

Df k
(
cf

) = Df sn0
(
cf

)
Df k−sn0

(
c
f
sn0

)
.

Let k1 = k − sn0 . As k1 < sn0+1 − sn0 = sn0−1 then we can apply Lemma 11 to obtain

(
1 + 1

αn0

)−2

�
Df k1(c

f
sn0

)

Df k1(cf )
�

(
1 + 1

αn0

)2

,

where αn0 is such that In0−1 is αn0 -well inside In0−2. Now let n1 such that sn1 � k1 < sn1+1 (certainly n1 � n0 − 2,
since k1 < sn0−1, see above). Then either k1 = sn1 and then we stop or

Df k1
(
cf

) = Df sn1
(
cf

)
Df k2

(
c
f
sn1

)
and (

1 + 1

αn0

)−2

�
Df k1(c

f
sn0

)

Df k1(cf )
�

(
1 + 1

αn0

)2

,

where αn1 is such that In1−1 is αn1 -well inside In1−2. Following this procedure, by induction, there will be some j � 0
such that kj = snj

. Consequently, Df k(cf ) and

Df sn0
(
cf

)
Df sn1

(
cf

) · · ·Df
snj

(
cf

)
will differ by a multiplicative constant

j∏
i=0

(
1 + 1

αni

)2

.

This constant is uniformly bounded (independently of k), since the αni
’s exponentially grow with i, by Theorem 3

and Lemma 31. If M > 0 is such a constant, then

− logM � logDf k
(
cf

) − logDf sn0
(
cf

) j∑
i=0

logDf sni (cf )

logDf sn0 (cf )
� logM.

By Theorem 5, logDf sn(cf ) is exponential with n, then for large k the sum in the last expression is positive and
uniformly bounded from zero and infinity.

One of the inequations then gives

lim sup
k

log logDf k(cf )

logk
� lim sup

k

log logDf sn0 (cf )

logk
.

But

1 � k

sn0

<
sn0+1

sn0

and this last quotient is bounded (it approaches the golden number ω), then k and sn0 are comparable up to a multi-
plicative constant. Moreover, sn0 is comparable to ωn0 . These considerations imply that

lim sup
log logDf k(cf )

logk
� lim sup

log logDf sn0 (cf )

n logω
= logμ

logω
.

k n0 0
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By a similar reasoning, we obtain lim infk
log logDf k(cf )

log k
� logμ

logω
and the theorem is proved. �

Proof of Theorem 8. We know that Xn = logDf sn(cf ) satisfies (22), and by Lemma 33 that Xn is bounded from
above by Yn, where the sequence (Yn)n satisfies the equality Yn+1 = 1

�
(Yn + Yn−1) + C4. As we concluded that Yn is

bounded then Xn is bounded, and the conclusion follows.
That the geometry is bounded follows from (19). �

Proof of Theorem 7. If Xn = logDf sn(cf ) then Xn+1 � 1
2 (Xn + Xn−1) + C4, accordingly to (22). Once again we

conclude that Xn is bounded by Yn satisfying the corresponding equality and, as remarked above, Yn grows linearly
with n. Then Xn cannot grow faster than linearly and the theorem follows. �
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[8] J. Graczyk, G. Świa̧tek, Generic hyperbolicity in the logistic family, Ann. of Math. (2) (1997) 1–52.
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[11] J. Graczyk, D. Sands, G. Świa̧tek, Decay of geometry for unimodal maps: Negative Schwarzian case, Ann. of Math. (2) 161 (2) (2005)

613–677.
[12] J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (2) (1979) 133–160.
[13] J. Guckenheimer, S. Johnson, Distortion of S-unimodal maps, Ann. of Math. (2) 132 (1) (1990) 71–130.
[14] F. Hofbauer, G. Keller, Some remarks on recent results about S-unimodal maps, Ann. Inst. H. Poincaré Phys. Théor. 53 (4) (1990) 413–425.
[15] M.V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1)

(1981) 39–88.
[16] M.V. Jakobson, G. Świa̧tek, Metric properties of non-renormalizable S-unimodal maps I. Induced expansion and invariant measures, Ergodic

Theory Dynam. Systems 14 (4) (1994) 721–755.
[17] G. Keller, T. Nowicki, Fibonacci maps re(al)visited, Ergodic Theory Dynam. Systems 15 (1) (1995) 99–120.
[18] K. Krzyzewski, W. Slenk, On invariant measures for expanding differentiable mappings, Studia Math. 3 (1969) 83–92.
[19] A. Lasota, J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1974)

481–488, (1973).
[20] G. Levin, Bounds for maps of the interval with one reflecting critical point I, Fund. Math. 157 (2–3) (1998) 287–298.
[21] G. Levin, S. van Strien, Bounds for maps of an interval with one critical point of inflection type. II, Invent. Math. 141 (2) (2000) 399–465.
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