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Abstract

We consider a semilinear elliptic Dirichlet problem with jumping nonlinearity and, using variational methods, we show that the
number of solutions tends to infinity as the number of jumped eigenvalues tends to infinity. In order to prove this fact, for every
positive integer k we prove that, when a parameter is large enough, there exists a solution which presents k interior peaks. We also
describe the asymptotic behaviour and the profile of this solution as the parameter tends to infinity.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons un problème de Dirichlet semi-linéaire avec le terme non linéaire qui interfère avec les valeurs propres de
l’opérateur linéaire. Avec des méthodes variationnelles, nous montrons que le nombre de solutions est arbitrairement grand pourvu
que le nombre de valeurs propres qui interfèrent avec le terme non linéaire soit suffisamment grand. Pour la démonstration nous
prouvons que pour tout k ∈ N le problème a une solution qui présente k pics quand un paramètre est suffisamment grand. Nous
décrivons aussi le comportement asymptotique et la forme de cette solution quand ce paramètre tend à l’infini.
© 2009 Elsevier Masson SAS. All rights reserved.

MSC: 35J20; 35J60; 35J65

Keywords: Jumping nonlinearities; Multiplicity of solutions; Variational methods

1. Introduction

Several papers have been devoted to study existence and multiplicity of solutions for semilinear elliptic problems
of the following type
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{
�u + g(u) = ξ in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded connected domain of R
n, ξ ∈ L2(Ω) and g : R → R is a continuous function such that

lim
t→−∞

g(t)

t
= α and lim

t→+∞
g(t)

t
= β (1.2)

with α and β in R. We assume, for example, α � β (the case α � β is similar).
We denote by λi (or also by λi(Ω)) the eigenvalues of the Laplace operator −� in H 1

0 (Ω). Since Ω is a connected
domain, we have λ1 < λ2 � λ3 � . . . .

If there exists some eigenvalue λi such that λi ∈ ]α,β[ , we say that g is a jumping nonlinearity and that λi is
a jumped eigenvalue. It is well known that, if g ∈ C 1(R) and g′(t) �= λi ∀t ∈ R, ∀i ∈ N, then there exists a unique
solution u ∈ H 1

0 (Ω) for every ξ ∈ L2(Ω). In fact, in this case one can apply for example a well-known result of
Caccioppoli (see [9]).

The situation is very different if g′(t) meets some eigenvalue λi , what happens, for example, if g is a jumping
nonlinearity. The first paper concerning this case is due to Ambrosetti and Prodi (see [4]). They consider in [4] the
problem{

�u + g(u) = ξ0 + te1 in Ω,

u = 0 on ∂Ω,
(1.3)

where g ∈ C 2(R), ξ0 ∈ L2(Ω), t ∈ R and e1 is a positive eigenfunction corresponding to the first eigenvalue λ1. Under
the assumptions that g′′(t) > 0 for all t ∈ R and

0 < lim
t→−∞g′(t) < λ1 < lim

t→+∞g′(t) < λ2, (1.4)

they prove that there exists a function t̄ : L2(Ω) → R such that problem (1.3) has exactly two solutions if t > t̄(ξ0),
exactly one solution if t = t̄ (ξ0) and no solution if t < t̄(ξ0).

After the result of Ambrosetti and Prodi, several authors have studied semilinear problems where the nonlinear
terms interfere with the spectrum of the linear operator and in particular (especially in the early 1980s) elliptic equa-
tions with jumping nonlinearities (see [1–3], [5–8], [10–18,20,21,23–32], [35–38], etc.). They apply in these papers
analytical, topological and variational methods and exploit several tools (as topological degree, Morse index, Ry-
bakowski index, etc.) in order to describe the right-hand side members ξ for which the problem has solution and to
estimate the number of solutions. The literature on this subject is really very extensive and in recent years there has
been a new growing interest in these problems (see [8,18]). Here we recall only the following results.

If no eigenvalue of −� in H 1
0 (Ω) belongs to the interval [α,β], then a well-known theorem of Rabinowitz

(see [34]) applies and guarantees that problem (1.1) has at least one solution for every ξ ∈ L2(Ω).
If α < λ1 < β , there exists a function t̄ : L2(Ω) → R such that problem (1.3) has at least two solutions if t > t̄(ξ0),

at least one solution if t = t̄ (ξ0) and no solution if t < t̄(ξ0) (see [4,7,3], etc.). If α < λ1 < λ2 < β , there exist at least
four solutions of problem (1.3) for t > 0 large enough (see [27,38], etc.).

If n = 1 (i.e. Ω is an interval) and α < λ1 < λi < β , then (see [29,12,36]) problem (1.3) has at least 2i distinct
solutions for t > 0 large enough (indeed, exactly 2i solutions if suitable additional conditions are satisfied). Notice that
this result does not hold in the case n > 1. In fact, in [14] Dancer considered problem (1.3) with g(u) = −αu− +βu+
(where u+ = max{u,0} and u− = u+ − u) and showed that for every i � 2 there exists a smooth bounded domain Ωi

in R
n, with n > 1, and a function ξ0 ∈ L2(Ωi) such that problem (1.3), with Ω = Ωi , has only four solutions for t > 0

large enough even if α < λ1(Ωi) < λi(Ωi) < β .
In the present paper our aim is to show that the number of solutions of a problem with jumping nonlinearity may

be arbitrarily large, for any fixed domain Ω , provided the number of jumped eigenvalues is large enough. Therefore,
we consider the following problem{

�u − αu− + βu+ = e1 in Ω,

u = 0 on ∂Ω,
(1.5)
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where we fix α < λ1 and let β → +∞ (notice that, if in problem (1.3) we replace u by tu and let t → +∞, we
obtain (1.5) as limit problem). We show that, for any fixed domain Ω , the number of distinct solutions tends to
infinity as β → +∞. In fact, for every positive integer k we construct, for β > 0 large enough, a solution uk,β of
problem (1.5), which presents k peaks and converges as β → +∞ to the solution e1

α−λ1
(see also Remark 3.9).

The main result of this paper is presented in the following theorem.

Theorem 1.1. Let Ω be a bounded connected domain of R
n, with n � 3. Let us fix α < λ1. Then, for every positive

integer k there exists β̄k > 0 such that for all β > β̄k problem (1.5) has a solution uk,β satisfying the following
properties:

(I) there exist a positive constant r̄ and k points x
β

1 , . . . , x
β
k in Ω , with

dist
(
x

β
i , ∂Ω

)
>

r̄√
β

for i = 1, . . . , k, and
∣∣xβ

i − x
β
j

∣∣� 2r̄√
β

for i �= j, (1.6)

such that, for every β > β̄k , uk,β(x) � 0 ∀x ∈ Ω \⋃k
i=1 B(x

β
i , r̄√

β
) while u+

k,β �≡ 0 in B(x
β
i , r̄√

β
) for i = 1, . . . , k;

(II) the points x
β

1 , . . . , x
β
k satisfy, in addition,

lim
β→+∞ e1

(
x

β
i

)= max
Ω

e1 for i = 1, . . . , k, and lim
β→+∞

√
β
∣∣xβ

i − x
β
j

∣∣= ∞ for i �= j ;

(III) for every β > β̄k , we have uk,β(x) >
e1(x)
α−λ1

∀x ∈ Ω and

lim
β→+∞ sup

{
uk,β(x) − e1(x)

α − λ1
: x ∈ Ω \

k⋃
i=1

B
(
x

β
i , ρ

)}= 0 ∀ρ > 0; (1.7)

(IV) for every i = 1, . . . , k, the functions U
k,β,x

β
i

, defined in
√

β(Ω − x
β
i ) by

U
k,β,x

β
i

(x) = uk,β

(
x√
β

+ x
β
i

)
∀x ∈√β

(
Ω − x

β
i

)
,

converge as β → +∞ to the nonconstant radial solution U of the problem⎧⎨
⎩

�U + U+ = 0 in R
n,

lim|x|→∞U(x) = 1

α − λ1
max

Ω
e1.

(1.8)

Moreover, the convergence is uniform on the compact subsets of R
n.

Remark 1.2. It is clear that it follows from property (I) that the number of distinct solutions tends to infinity as
β → +∞. From property (II) we infer that the peaks concentrate near the maximum points of e1 and, if the distance
between two peaks tends to zero as β → +∞, the approaching rate is less than the concentration rate. Property (III)
shows that the peaks “are based” on the solution e1

α−λ1
, which is the minimal solution of the problem (as one can

easily verify). Finally, property (IV) describes the asymptotic profile of the rescaled peaks. Let us point out that only
if n � 3 the problem (1.8) has a nontrivial solution (since any bounded super-harmonic function in R

n with n < 3 is
a constant function). In the cases n = 1 and n = 2 new, more refined, arguments have to be used in order to construct
k-peak solutions and describe their asymptotic behaviour (see [33]).

The method we use for the proof of Theorem 1.1 is completely variational. The solutions are obtained as critical
points of the functional f : H 1

0 (Ω) → R defined by

f (u) = 1

2

∫ [|Du|2 − α
(
u−)2 − β

(
u+)2]

dx +
∫

e1udx ∀u ∈ H 1
0 (Ω). (1.9)
Ω Ω
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Notice that similar phenomena occur also in other fields of Nonlinear Analysis. For example, k-peak solutions with
similar properties as in Theorem 1.1 appear in many superlinear problems such as singular perturbation problems,
nonlinear Schrödinger equations, nonlinear scalar field equations, elliptic equations involving critical or supercrit-
ical Sobolev exponents, etc. Solutions of this type are usually obtained by using a Lyapunov–Schmidt type finite-
dimensional reduction method. In particular, we recall the paper [18] of Dancer and Yan, where they consider the
problem{

�u + |u|p = te1 in Ω,

u = 0 on ∂Ω,
(1.10)

with p ∈ ]1, n+2
n−2 [ (here the nonlinear term satisfies (1.2) with α = −∞ and β = +∞). For every positive integer k,

they prove the existence of a k-peak solution of (1.10) for t > 0 large enough (thus proving a well-known Lazer–
McKenna conjecture). Concerning superlinear problems of this type, several results have been obtained in the last few
years (see for example [19,22,40] and the references therein).

2. Notation and preliminary results

We look for solutions u ∈ H 1
0 (Ω) of the following type. For every β > 0, set rβ = 3r̄1√

β
where r̄1 is the radius of the

ball in R
n for which the first eigenvalue of the Laplace operator is equal to 1, i.e.

inf

{ ∫
B(0,r̄1)

|Du|2 dx: u ∈ H 1
0

(
B(0, r̄1)

)
,

∫
B(0,r̄1)

u2 dx = 1

}
= 1. (2.1)

For every positive integer k, consider the set

Ωk,β = {
(x1, . . . , xk) ∈ Ωk: |xi − xj | � 2rβ if i �= j, dist(xi, ∂Ω) � rβ for i = 1, . . . , k

}
. (2.2)

It is clear that, for every fixed k ∈ N, Ωk,β �= ∅ for β large enough and the balls B(x1, rβ), . . . ,B(xk, rβ) are pairwise
disjoint and included in Ω if (x1, . . . , xk) ∈ Ωk,β .

We say that a function u ∈ H 1
0 (Ω) is a k-peak function, with respect to the balls B(x1, rβ), . . . ,B(xk, rβ), if

u+ =∑k
i=1 u+

i where, for every i = 1, . . . , k, u+
i is a nonnegative function in H 1

0 (Ω) such that u+
i �≡ 0 and u+

i (x) = 0
∀x ∈ Ω \ B(xi, rβ).

One can easily verify that, if a k-peak function u of this form is a solution of problem (1.5), then for every i =
1, . . . , k the function t �→ f (u+ tu+

i ) has for t = 0 the unique maximum point in the set [−1,+∞[ and f ′(u)[u+
i ] = 0,

that is∫
Ω

∣∣Du+
i

∣∣2 dx − β

∫
Ω

(
u+

i

)2
dx +

∫
Ω

e1u
+
i dx = 0. (2.3)

Therefore, it is natural to consider the subsets Vi of H 1
0 (Ω) consisting of all the k-peak functions u, with respect to the

balls B(x1, rβ), . . . ,B(xk, rβ), such that f ′(u)[u+
i ] = 0, and to look for critical points of the functional f constrained

on the subsets Vi (even if they are not smooth manifolds and this fact gives some more problems when we have to
prove that the constrained critical points actually give solutions of (1.5)).

For the k-peak functions u of the form described above we use also constraints of the following type (a barycenter
type constraint)∫

Ω

(
u+

i (x)
)2

(x − xi) dx = 0. (2.4)

For every i = 1, . . . , k, we denote by Bi the subset of H 1
0 (Ω) consisting of all the k-peak functions u, with respect to

the balls B(x1, rβ), . . . ,B(xk, rβ), such that (2.4) holds.

Finally, let us denote by S
β
x1,...,xk

the set of all the k-peak functions u ∈ H 1
0 (Ω), with respect to the balls

B(x1, rβ), . . . ,B(xk, rβ), such that u ∈ Vi ∩ Bi for every i = 1, . . . , k.
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Proposition 2.1. Let k be a positive integer, β > 0 large enough so that Ωk,β �= ∅, α < λ1 and consider a point
(x1, . . . , xk) ∈ Ωk,β .

Then S
β
x1,...,xk

�= ∅ and the minimum of the functional f on the set S
β
x1,...,xk

is achieved.

Proof. First notice that S
β
x1,...,xk

�= ∅ because of the choice of the radius rβ . In fact, since
√

βrβ > r̄1, there exist
nonnegative functions vi ∈ H 1

0 (Ω) such that vi = 0 in Ω \ B(xi, rβ),
∫
Ω

|Dvi |2dx < β
∫
Ω

v2
i dx and

∫
Ω

(vi(x))2(x −
xi) dx = 0 (for example, we can choose as vi a positive eigenfunction related to the first eigenvalue of the Laplace
operator in H 1

0 (B(xi, r̃β)), with r̄1√
β

< r̃β < rβ ).

Therefore, u =∑k
i=1 tivi ∈ S

β
x1,...,xk

for suitable ti > 0.

For every function u ∈ S
β
x1,...,xk

, we have

f (u) = f
(−u−)+

k∑
i=1

f
(
u+

i

)
(2.5)

where f (−u−) � f ( e1
α−λ1

) (since α < λ1) and f (u+
i ) > 0 for i = 1, . . . , k (because u ∈ Vi implies f (u+

i ) =
max{f (tu+

i ): t � 0}). It follows that inf
S

β
x1,...,xk

f > −∞.

Let us consider a minimizing sequence (uj )j for f on S
β
x1,...,xk

. Taking into account that uj ∈ Vi , namely∫
Ω

∣∣Du+
j,i

∣∣2 dx − β

∫
Ω

(
u+

j,i

)2
dx +

∫
Ω

e1u
+
j,i dx = 0, (2.6)

and that e1 > 0 in Ω , we have∫
Ω

∣∣Du+
j,i

∣∣2 dx < β

∫
Ω

(
u+

j,i

)2
dx. (2.7)

Therefore, if we set vj,i = u+
j,i

‖u+
j,i‖L2(Ω)

the sequence (vj,i)j is bounded in H 1
0 (Ω). As a consequence, up to a subse-

quence, it converges as j → ∞ to a function vi ∈ H 1
0 (Ω) in L2(Ω), weakly in H 1

0 (Ω) and almost everywhere in Ω

(thus vi � 0 in Ω and ‖vi‖L2(Ω) = 1). Notice that uj ∈ Vi ∀j ∈ N implies

lim inf
j→∞

∥∥u+
j,i

∥∥
L2(Ω)

> 0 for i = 1, . . . , k. (2.8)

In fact, arguing by contradiction, assume that for some i ∈ {1, . . . , k}, up to a subsequence, ‖u+
j,i‖L2(Ω) → 0 as

j → ∞. Then, from (2.6) we obtain

∥∥u+
j,i

∥∥
L2(Ω)

∫
Ω

|Dvj,i |2 dx − β
∥∥u+

j,i

∥∥
L2(Ω)

+
∫
Ω

e1vj,i dx = 0 (2.9)

and, as j → ∞,
∫
Ω

e1vi dx = 0 which gives a contradiction because e1 > 0, vi � 0 in Ω and vi �≡ 0.
Now, let us prove that

lim sup
j→∞

∥∥u+
j,i

∥∥
L2(Ω)

< +∞ for i = 1, . . . , k. (2.10)

Arguing again by contradiction, assume that for some i ∈ {1, . . . , k}, up to a subsequence, ‖u+
j,i‖L2(Ω) → ∞ as

j → ∞. Thus, from (2.6) we have∫
Ω

|Dvj,i |2 dx − β + ∥∥u+
j,i

∥∥−1
L2(Ω)

∫
Ω

e1vj,i dx = 0 (2.11)
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which, as j → ∞, implies

lim
j→∞

∫
Ω

|Dvj,i |2 dx = β. (2.12)

Taking into account that

f
(
u+

j,i

)= max
{
f
(
tu+

j,i

)
: t � 0

}
= max

{
t2

2

[∫
Ω

|Dvj,i |2 dx − β

]
+ t

∫
Ω

e1vj,i dx: t � 0

}

= 1

2

[
β −

∫
Ω

|Dvj,i |2 dx

]−1(∫
Ω

e1vj,i dx

)2

, (2.13)

from (2.12) we infer that limj→∞ f (u+
j,i ) = +∞. As a consequence, we have also limj→∞ f (uj ) = +∞, in contra-

diction with the fact that (uj )j is a minimizing sequence. Therefore, the sequence (u+
j )j is bounded in L2(Ω). Notice

that also the sequence (u−
j )j is bounded in L2(Ω) as one can easily verify taking into account that α < λ1. Thus, the

sequence (uj )j is bounded in L2(Ω) and, as a consequence, also in H 1
0 (Ω) (because supj∈N f (uj ) < +∞). It follows

that, up to a subsequence, uj converges to a function u ∈ H 1
0 (Ω) in L2(Ω), weakly in H 1

0 (Ω) and a.e. in Ω . The
convergence in L2(Ω) implies that u is a k-peak function with respect to the balls B(x1, rβ), . . . ,B(xk, rβ) (notice
that u+

i �≡ 0 because of (2.8)) and that u ∈ Bi for every i = 1, . . . , k. Now we prove that, as j → ∞,∫
Ω

∣∣Du−
j

∣∣2 dx →
∫
Ω

∣∣Du−∣∣2 dx and
∫
Ω

∣∣Du+
j,i

∣∣2 dx →
∫
Ω

∣∣Du+
i

∣∣2 dx for i = 1, . . . , k (2.14)

(namely, that uj → u also in H 1
0 (Ω)) which allows us to conclude that u ∈ Vi for i = 1, . . . , k and that u is a

minimizing function for f on S
β
x1,...,xk

.
For the proof we argue by contradiction and assume that (up to a subsequence)

lim
j→∞

∫
Ω

∣∣Du−
j

∣∣2 dx >

∫
Ω

∣∣Du−∣∣2 dx or

lim
j→∞

∫
Ω

∣∣Du+
j,i

∣∣2 dx >

∫
Ω

∣∣Du+
i

∣∣2 dx for some i ∈ {1, . . . , k}. (2.15)

Notice that, since

f (uj ) = f
(−u−

j

)+
k∑

i=1

f
(
u+

j,i

)
, (2.16)

we have (up to a subsequence)

inf
S

β
x1,...,xk

f = lim
j→∞f (uj ) = lim

j→∞f
(−u−

j

)+
k∑

i=1

lim
j→∞f

(
u+

j,i

)
(2.17)

where

lim
j→∞f

(−u−
j

)= f
(−u−) if lim

j→∞

∫
Ω

∣∣Du−
j

∣∣2 dx =
∫
Ω

∣∣Du−∣∣2 dx (2.18)

while

lim
j→∞f

(−u−
j

)
> f

(−u−) if lim
j→∞

∫ ∣∣Du−
j

∣∣2 dx >

∫ ∣∣Du−∣∣2 dx. (2.19)
Ω Ω
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For i = 1, . . . , k we have

lim
j→∞f

(
u+

j,i

)= f
(
u+

i

)
and f ′(u)

[
u+

i

]= 0 if lim
j→∞

∫
Ω

∣∣Du+
j,i

∣∣2 dx =
∫
Ω

∣∣Du+
i

∣∣2 dx (2.20)

(because f ′(u)[u+
i ] = limj→∞ f ′(uj )[u+

j,i], in this case, and f ′(uj )[u+
j,i] = 0 ∀j ∈ N since uj ∈ Vi ).

On the contrary, if limj→∞
∫
Ω

|Du+
j,i |2 dx >

∫
Ω

|Du+
i |2 dx, we have f ′(u)[u+

i ] < 0. As a consequence, there

exists t̄i ∈ ]0,1[ such that f ′(t̄iu+
i )[t̄iu+

i ] = 0. It follows that

f
(
t̄iu

+
i

)= 1

2
t̄i

∫
Ω

e1u
+
i dx <

1

2

∫
Ω

e1u
+
i dx = lim

j→∞
1

2

∫
Ω

e1u
+
j,i dx = lim

j→∞f
(
u+

j,i

)
(2.21)

(where the first and the last equality hold because, if w is a nonnegative function in H 1
0 (Ω), f ′(w)[w] = 0 implies

f (w) = 1
2

∫
Ω

e1w dx).

Therefore we infer that, if (2.15) occurs, there exists a function ū ∈ S
β
x1,...,xk

(of the form ū = −u− +∑k
i=1 t̄iu

+
i

with t̄i ∈ ]0,1] for i = 1, . . . , k) such that

f (ū) < lim
j→∞f (uj ) = inf

S
β
x1,...,xk

f (2.22)

which is a contradiction.
Thus uj → u in H 1

0 (Ω), u ∈ S
β
x1,...,xk

and f (u) = min
S

β
x1,...,xk

f . �
Proposition 2.1 allows us to introduce the function ϕβ : Ωk,β → R defined by

ϕβ(x1, . . . , xk) = min
S

β
x1,...,xk

f ∀(x1, . . . , xk) ∈ Ωk,β. (2.23)

Proposition 2.2. For every positive integer k and for α < λ1, fix β > 0 large enough so that Ωk,β �= ∅. Then there

exists (x
β

1 , . . . , x
β
k ) ∈ Ωk,β such that ϕβ(x

β

1 , . . . , x
β
k ) = maxΩk,β

ϕβ (see (2.23)).

Proof. Let us consider a sequence (x1,j , . . . , xk,j )j in Ωk,β such that

lim
j→∞ϕβ(x1,j , . . . , xk,j ) = sup

Ωk,β

ϕβ. (2.24)

Since Ωk,β is a compact set, there exists (x
β

1 , . . . , x
β
k ) ∈ Ωk,β such that, up to a subsequence, (x1,j , . . . , xk,j ) →

(x
β

1 , . . . , x
β
k ) as j → ∞.

By Proposition 2.1, there exists uβ ∈ S
β

x
β
1 ,...,x

β
k

such that f (uβ) = min
S

β

x
β
1 ,...,x

β
k

f . For every j ∈ N, consider the

function ūj ∈ S
β
x1,j ,...,xk,j

such that ūj = −ū−
j + ∑k

i=1 ū+
j,i , where ū+

j,i(x) = u+
β,i(x + x

β
i − xi,j ) and −ū−

j is the
minimizing function for the minimum

min

{
f (v): v ∈ H 1

0 (Ω), v � 0 in Ω,

∫
Ω

vū+
j,i dx = 0 for i = 1, . . . , k

}
(2.25)

(since α < λ1, there exists a unique minimizing function which depends continuously on the point (x1,j , . . . , xk,j ) ∈
Ωk,β ).

Standard arguments show that ūj → uβ and f (ūj ) → f (uβ) as j → ∞. Thus, taking into account that

min
S

β
x1,j ,...,xk,j

f � f (ūj ) ∀j ∈ N because ūj ∈ S
β
x1,j ,...,xk,j

, we obtain

sup
Ωk,β

ϕβ = lim
j→∞ϕβ(x1,j , . . . , xk,j ) � lim

j→∞f (ūj ) = f (uβ) = ϕβ

(
x

β

1 , . . . , x
β
k

)
(2.26)

which implies ϕβ(x
β
, . . . , x

β
) = maxΩk,β

ϕβ . �
1 k
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In order to describe the behaviour of the problem as β → +∞, we need also some preliminary results on the
capacity.

For every smooth bounded domain A in R
n with n � 3, the capacity of A is defined by

cap(A) = min

{∫
Rn

|Du|2 dx: u ∈ D1,2(
R

n
)
, u � 1 a.e. in A

}
. (2.27)

It is well known that there exists a unique minimizing function uA. Moreover, we have uA = 1 in A, 0 < uA � 1 in
R

n \ A, �uA = 0 in R
n \ Ā.

Notice that we have also

cap(A) = −
∫
∂A

(DuA · ν)dσ (2.28)

where ν denotes the outward normal on ∂A.

Lemma 2.3. Let A1,A2, . . . ,As , with s > 1, be s pairwise disjoint smooth bounded domains in R
n with n � 3. Then,

we have

cap

(
s⋃

i=1

Ai

)
<

s∑
i=1

cap(Ai). (2.29)

Proof. For every i = 1, . . . , s, consider the minimizing function uAi
for cap(Ai); then introduce the function μ ∈

D1,2(Rn) defined by

μ(x) = max
{
uAi

(x): i = 1, . . . , s
} ∀x ∈ R

n. (2.30)

Notice that μ is subharmonic (but not harmonic) in R
n \⋃s

i=1 Āi . Therefore, if we set A =⋃s
i=1 Ai , we have μ � uA,

μ �≡ uA and

−
∫
∂A

(DuA · ν)dσ < −
s∑

i=1

∫
∂Ai

(DuAi
· ν)dσ (2.31)

because uA (the minimizing function for cap(A)) is harmonic in R
n \ Ā. Thus we obtain

cap(A) =
∫
Rn

|DuA|2 dx = −
∫
∂A

(DuA · ν)dσ < −
s∑

i=1

∫
∂A

(DuAi
· ν)dσ =

s∑
i=1

∫
Rn

|DuAi
|2 dx =

s∑
i=1

cap(Ai),

(2.32)

which completes the proof. �
3. Asymptotic behaviour and proof of the main results

Our next aim is to prove that, if (x
β

1 , . . . , x
β
k ) ∈ Ωk,β and uβ ∈ S

β

x
β
1 ,...,x

β
k

is a function such that f (uβ) =
ϕβ(x

β

1 , . . . , x
β
k ) = maxΩk,β

ϕβ (see Proposition 2.2), then uβ is a solution of problem (1.5) for β large enough. There-
fore, we need to study the behaviour of uβ as β → +∞ and to describe the asymptotic profile of the function uβ

(suitably rescaled).

Proposition 3.1. For every positive integer k, for α < λ1 and for β > 0 large enough so that Ωk,β �= ∅, consider a

point (x
β

1 , . . . , x
β
k ) ∈ Ωk,β and a function uβ ∈ S

β

x
β
1 ,...,x

β
k

such that f (uβ) = ϕβ(x
β

1 , . . . , x
β
k ) = maxΩk,β

ϕβ . Then we

have
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(a) uβ > e1
α−λ1

∀β and uβ → e1
α−λ1

a.e. in Ω as β → +∞;

(b)

lim
β→+∞β

n−2
2

[
f (uβ) − 1

2(α − λ1)

]
= k

2(α − λ1)2

(
max

Ω
e1

)2
cap(r̄1) (3.1)

where (for short) cap(r̄1) denotes the capacity of the ball of radius r̄1 in R
n;

(c)

lim
β→+∞ e1

(
x

β
i

)= max
Ω

e1 for i = 1, . . . , k, (3.2)

lim
β→+∞

√
β
∣∣xβ

i − x
β
j

∣∣= ∞ for i �= j. (3.3)

Proof. Property (a) follows by standard arguments taking into account that, since f (uβ) = min
S

β

x
β
1 ,...,x

β
k

f , −u−
β is the

unique minimizing function for the minimum

min

{
f (u): u ∈ H 1

0 (Ω), u � 0 in Ω,

∫
Ω

uu+
β dx = 0

}
(3.4)

and that u+
β = 0 in Ω \⋃k

i=1 B(x
β
i , rβ) with rβ → 0 as β → +∞.

Notice that, for every u ∈ H 1
0 (Ω), f (u) = f (−u−) + f (u+) and

f
(−u−)= 1

2

∫
Ω

∣∣Du−∣∣2 dx − α

2

∫
Ω

(
u−)2

dx −
∫
Ω

e1u
− dx.

If we set v = −u− − e1
α−λ1

, taking into account that f ( e1
α−λ1

) = 1
2(α−λ1)

, a direct computation shows that

f
(−u−)= 1

2(α − λ1)
+ 1

2

∫
Ω

|Dv|2 dx − α

2

∫
Ω

v2 dx. (3.5)

For the proof of property (b), we prove first that

lim inf
β→+∞β

n−2
2

[
f (uβ) − 1

2(α − λ1)

]
� k

2(α − λ1)2

(
max

Ω
e1

)2
cap(r̄1). (3.6)

For every β > 0 (β large enough) choose (x̄
β

1 , . . . , x̄
β
k ) ∈ Ωk,β such that

lim
β→+∞ e1

(
x̄

β
i

)= max
Ω

e1 for i = 1, . . . , k, and lim
β→+∞

√
β
∣∣x̄β

i − x̄
β
j

∣∣= ∞ for i �= j. (3.7)

Consider a function ūβ ∈ S
β

x̄
β
1 ,...,x̄

β
k

such that f (ūβ) = ϕβ(x̄
β

1 , . . . , x̄
β
k ). For every r > 0, set Ωβ

r = Ω \⋃k
i=1 B(x̄

β
i , r√

β
).

Standard arguments show that

lim
β→+∞ min

{ ∫
Ω

β
r

|Du|2 dx: u ∈ H 1
0 (Ω),

∫
Ω

β
r

u2 dx = 1

}
= λ1. (3.8)

Therefore, since α < λ1, for every r > 3r̄1 there exists βr > 0 such that

f (ūβ) − 1

2(α − λ1)
�

k∑
i=1

f
(
ū+

β,i

)+
k∑

i=1

1

2

∫
B(x̄

β
i ,r/

√
β)

[|Dv̄β |2 − αv̄2
β

]
dx ∀β > βr (3.9)

where v̄β = −ū−
β − e1 . Taking into account that f (ū+ ) � 0 for i = 1, . . . , k, after rescaling we obtain
α−λ1 β,i
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β
n−2

2

[
f (ūβ) − 1

2(α − λ1)

]
�

k∑
i=1

1

2

∫
B(

√
βx̄

β
i ,r)

[
|DV̄β |2 dx − α

β
V̄ 2

β

]
dx ∀β > βr, (3.10)

where V̄β(x) = v̄β( x√
β
).

Now, for i = 1, . . . , k, consider the functions V̄β,x̄i
, defined in

√
β(Ω − x̄i ) by V̄β,x̄i

(x) = V̄β(x + √
βx̄i). Since∫

Ω
|Dū+

β,i |2 dx � β
∫
Ω

(ū+
β,i)

2 dx (that is the subset of B(x̄i , rβ) where ūβ � 0 has the first eigenvalue which is not

greater than β), standard arguments show that (up to a subsequence) V̄β,x̄i
converges as β → +∞ to a function

V̄∞,i ∈ D1,2(Rn) such that 0 � V̄∞,i (x) � 1
λ1−α

maxΩ e1 ∀x ∈ R
n and the set where V̄∞,i = 1

λ1−α
maxΩ e1 has first

eigenvalue not greater than 1. Therefore, taking into account that the ball of radius r̄1 has the smallest capacity among
the domains whose first eigenvalue is less than or equal to 1, we obtain∫

Rn

|DV̄∞,i |2 dx � 1

(λ1 − α)2

(
max

Ω
e1

)2
cap(r̄1) for i = 1, . . . , k. (3.11)

Now, as β → +∞, we infer from (3.10) that

lim inf
β→+∞β

n−2
2

[
f (ūβ) − 1

2(α − λ1)

]
� 1

2

k∑
i=1

∫
B(0,r)

|DV̄∞,i |2 dx ∀r > 3r̄1, (3.12)

which, as r → ∞, gives

lim inf
β→+∞β

n−2
2

[
f (ūβ) − 1

2(α − λ1)

]
� 1

2

k∑
i=1

∫
Rn

|DV̄∞,i |2 dx. (3.13)

Taking into account that

f (uβ) = max
Ωk,β

ϕβ � ϕβ

(
x̄

β

1 , . . . , x̄
β
k

)= f (ūβ), (3.14)

(3.6) follows easily from (3.11) and (3.13).
Let us prove that

lim sup
β→+∞

β
n−2

2

[
f (uβ) − 1

2(α − λ1)

]
� k

2(α − λ1)2

(
max

Ω
e1

)2
cap(r̄1). (3.15)

For every ρ ∈ ]r̄1,3r̄1[ , consider a positive radial function w ∈ H 1
0 (B(0, ρ)) such that

∫
B(0,ρ)

|Dw|2 dx <∫
B(0,ρ)

w2 dx. Then, denote by ũβ the function in S
β

x
β
1 ,...,x

β
k

such that

ũ+
β,i(x) = tiw

(√
β
(
x − x

β
i

)) ∀x ∈ B

(
x

β
i ,

ρ√
β

)
, (3.16)

with ti > 0 such that f ′(ũ+
β,i)[ũ+

β,i] = 0 for i = 1, . . . , k, and ũ−
β such that

ũ−
β (x) = 0 ∀x ∈

k⋃
i=1

B

(
x

β
i ,

ρ√
β

)
, (3.17)

f
(−ũ−

β

)= min

{
f (v): v ∈ H 1

0 (Ω), v � 0 in Ω, v = 0 in
k⋃

i=1

B

(
x

β
i ,

ρ√
β

)}
(3.18)

(notice that, since α < λ1 and e1 > 0, this minimum is really achieved by a unique function which is negative in
Ω \⋃k

i=1 B̄(x
β
i ,

ρ√ )).

β



R. Molle, D. Passaseo / Ann. I. H. Poincaré – AN 27 (2010) 529–553 539
Since ũβ ∈ S
β

x
β
1 ,...,x

β
k

, we have

f (uβ) = min
S

β

x
β
1 ,...,x

β
k

f � f (ũβ) =
k∑

i=1

f
(
ũ+

β,i

)+ f
(−ũ−

β

)
. (3.19)

Observe that, for i = 1, . . . , k,

f
(
ũ+

β,i

)= max
t�0

f
(
t ũ+

β,i

)

= max
t�0

{
t2

2

[∫
Ω

∣∣Dũ+
β,i

∣∣2 dx − β

∫
Ω

(
ũ+

β,i

)2
dx

]
+ t

∫
Ω

e1ũ
+
β,i dx

}

� max
t�0

{
t2

2

[∫
Ω

∣∣Dũ+
β,i

∣∣2 dx − β

∫
Ω

(
ũ+

β,i

)2
dx

]
+ t max

Ω
e1

∫
Ω

ũ+
β,i dx

}

= β
2−n

2 max
t�0

{
t2

2

∫
B(0,ρ)

[|Dw|2 − w2]dx + 1

β
t max

Ω
e1

∫
B(0,ρ)

w dx

}
. (3.20)

Since the last maximum tends to zero as β → +∞ (as one can easily verify by a direct computation) it follows that

lim
β→+∞β

n−2
2 f

(
ũ+

β,i

)= 0 for i = 1, . . . , k. (3.21)

Now, set ṽβ = −ũ−
β − e1

α−λ1
. By a direct computation we obtain

f
(−ũ−

β

)= 1

2(α − λ1)
+ 1

2

∫
Ω

|Dṽβ |2 dx − α

2

∫
Ω

ṽ2
β dx, (3.22)

which, combined with (3.19) and (3.21), gives

lim sup
β→+∞

β
n−2

2

[
f (uβ) − 1

2(α − λ1)

]
� 1

2
lim sup
β→+∞

β
n−2

2

∫
Ω

[|Dṽβ |2 − αṽ2
β

]
dx. (3.23)

If we set Ṽβ(x) = ṽβ( x√
β
) ∀x ∈ √

βΩ , we have

β
n−2

2

∫
Ω

[|Dṽβ |2 − αṽ2
β

]
dx =

∫
√

βΩ

[
|DṼβ |2 − α

β
Ṽ 2

β

]
dx. (3.24)

Up to a subsequence, we can assume that there exist x1, . . . , xk in Ω̄ such that x
β
i → xi , as β → +∞, for i = 1, . . . , k.

Moreover, for i = 2, . . . , k, we can assume that
√

β(x
β
i − x

β

1 ) converges or
√

β|xβ
i − x

β

1 | → ∞ as β → +∞; if we

consider all the cases for which
√

β(x
β
i −x

β

1 ) converges, we obtain a subset S1 of {1,2, . . . , k} such that
√

β(x
β
i −x

β
j )

converges as β → +∞ if i and j both belong to S1, while
√

β|xβ
i − x

β
j | → ∞ if, for example, i ∈ S1 and j /∈ S1.

Repeating this procedure, we can find a subset S2 of {1,2, . . . , k} \ S1 having similar properties, then a subset S3 of
{1,2, . . . , k} \ (S1 ∪ S2), etc. Thus, we obtain h (h � k) pairwise disjoint subsets S1, . . . , Sh of {1,2, . . . , k} such that⋃h

i=1 Si = {1,2, . . . , k} and, as β → +∞,
√

β|xβ
i − x

β
j | → ∞ if i and j belong to different subsets while it remains

bounded if i and j both belong to the same subset (moreover it is clear that, in this case, xi = xj ). Now, standard
arguments allow us to say that there exist h functions W̃1, . . . , W̃h in D1,2(Rn) such that (up to a subsequence)

lim
β→+∞

∫
√

[
|DṼβ |2 − α

β
Ṽ 2

β

]
dx =

h∑
j=1

∫
Rn

|DW̃j |2 dx (3.25)
βΩ
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and, in addition, the function W̃j (for every j = 1, . . . , h) has the following property: if Sj consists of kj elements,
there exist kj pairwise disjoint balls with radius ρ in R

n, B(c1, ρ), . . . ,B(ckj
, ρ), such that

∫
Rn

|DW̃j |2 dx = m2
j cap

( kj⋃
i=1

B(ci, ρ)

)
(3.26)

where mj = e1(xi )
λ1−α

for i ∈ Sj (different choices of i in Sj clearly give the same constant mj ).
Therefore, by (3.23)–(3.26), we have

lim sup
β→+∞

β
n−2

2

[
f (uβ) − 1

2(α − λ1)

]
� 1

2

h∑
j=1

m2
j cap

( kj⋃
i=1

B(ci, ρ)

)
∀ρ ∈ ]r̄1,3r̄1[. (3.27)

Now let ρ → r̄1, then take into account that cap(
⋃kj

i=1 B(ci, r̄1)) � kj cap(r̄1), because of Lemma 2.3. Thus, we obtain

lim sup
β→+∞

β
n−2

2

[
f (uβ) − 1

2(α − λ1)

]
� 1

2

h∑
j=1

m2
j cap

( kj⋃
i=1

B(ci, r̄1)

)

� 1

2

h∑
j=1

m2
j kj cap(r̄1)

� 1

2(α − λ1)2

(
max

Ω
e1

)2
k cap(r̄1) (3.28)

(where the last inequality holds because m2
j � 1

(α−λ1)
2 (maxΩ e1)

2 and k1 + k2 + · · · + kh = k).
So (3.15) is proved and the proof of property (b) is complete.
In order to prove property (c), it suffices to observe that m2

j < 1
(α−λ1)

2 (maxΩ e1)
2 if e1(xi) < maxΩ e1 and that

cap(
⋃kj

i=1 B(ci, r̄1)) < kj cap(r̄1) if kj > 1 (see Lemma 2.3). Therefore, if kj > 1 for some j ∈ {1,2, . . . , h} or if
e1(xi) < maxΩ e1 for some i ∈ {1, . . . , k}, we have

lim sup
β→+∞

β
n−2

2

[
f (uβ) − 1

2(α − λ1)

]
<

1

2(α − λ1)2

(
max

Ω
e1

)2
k cap(r̄1) (3.29)

in contradiction with (3.6). Thus, we infer that e1(xi) = maxΩ e1 for i = 1, . . . , k (namely (3.2) holds) and, in addition,
that h = k and kj = 1 for j = 1, . . . , h (which gives (3.3)). �
Proposition 3.2. For every positive integer k, for α < λ1 and for β > 0 large enough so that Ωk,β �= ∅, let

(x
β

1 , . . . , x
β
k ) ∈ Ωk,β and uβ ∈ S

β

x
β
1 ,...,x

β
k

such that f (uβ) = ϕβ(x
β

1 , . . . , x
β
k ) = maxΩk,β

ϕβ . For every i = 1, . . . , k,

let U
β,x

β
i

be the function defined in
√

β(Ω − x
β
i ) by U

β,x
β
i

(x) = uβ( x√
β

+ x
β
i ) ∀x ∈ √

β(Ω − x
β
i ).

Then, as β → +∞, U
β,x

β
i

tends to a smooth radial function U such that

U− = 1

λ1 − α
max

Ω
e1(1 − uB(0,r̄1)),

where uB(0,r̄1) is the minimizing function for the capacity of B(0, r̄1), and U+ is an eigenfunction corresponding to the
first eigenvalue of −� in H 1

0 (B(0, r̄1)) (that is
∫
B(0,r̄1)

|DU+|2 dx = ∫
B(0,r̄1)

(U+)2 dx). Moreover, the convergence is
uniform on the compact subsets of R

n.

Proof. Notice that, for every i = 1, . . . , k, U+
β,x

β
i

1B(0,3r̄1) ∈ H 1
0 (B(0,3r̄1)) (here we set 1B(0,3r̄1) (x) = 1 if x ∈

B(0,3r̄1), otherwise 1B(0,3r̄1)(x) = 0). Moreover, we have∫ ∣∣DU+
β,x

β
i

∣∣2 dx �
∫ (

U+
β,x

β
i

)2
dx (3.30)
B(0,3r̄1) B(0,3r̄1)



R. Molle, D. Passaseo / Ann. I. H. Poincaré – AN 27 (2010) 529–553 541
(because f ′(uβ)[u+
β,i] = 0). Therefore, there exists Ei ∈ H 1

0 (B(0,3r̄1)) such that (up to a subsequence)

(
∫
B(0,3r̄1)

(U+
β,x

β
i

)2 dx)− 1
2 U+

β,x
β
i

→ Ei , as β → +∞, in L2(B(0,3r̄1)), weakly in H 1
0 (B(0,3r̄1)) and a.e. in B(0,3r̄1).

It follows that∫
B(0,3r̄1)

|DEi |2 dx � 1 (3.31)

and ∫
B(0,3r̄1)

E2
i (x)x dx = 0. (3.32)

Arguing as in the proof of (3.6) and taking also into account property (c) of Proposition 3.1, we infer that there exist
k domains D1, . . . ,Dk in R

n such that

lim inf
β→+∞β

n−2
2

[
f (uβ) − 1

2(α − λ1)

]
� 1

2(α − λ1)2

(
max

Ω
e1

)2 k∑
i=1

cap(Di) (3.33)

and U−
β,x

β
i

→ 1
λ1−α

maxΩ e1(1 −uDi
) as β → +∞ (here uDi

is the minimizing function for cap(Di)). Moreover Ei ∈
H 1

0 (Di), which implies that λ1(Di) � 1 (λ1(Di) denotes the first eigenvalue of −� in H 1
0 (Di)). As a consequence,

(3.33) is not in contradiction with (3.15) only if Di is a ball of radius r̄1 for every i = 1, . . . , k. In fact, only the
balls of radius r̄1 have the smallest capacity among the domains D of R

n such that λ1(D) � 1. Then, taking into
account (3.31), we infer that Ei is an eigenfunction related to the first eigenvalue of the ball Di (because λ1(Di) = 1),
hence (3.32) implies that Di = B(0, r̄1) for i = 1, . . . , k.

Now, it remains to prove that U+
β,x

β
i

converges as β → +∞ to the positive eigenfunction Ē of −� in H 1
0 (B(0, r̄1))

such that the function U = Ē + 1
α−λ1

maxΩ e1(1 − uB(0,r̄1)) is a smooth function.

Arguing by contradiction, assume that, as β → +∞, U+
β,x

β
i

→ t̄ Ē with t̄ �= 1. Consider a radial function ψ ∈
C1

0(B(0,3r̄1)) such that ψ(x) = 1 if |x| = r̄1 and set ψβ(x) = ψ(
√

β(x − x
β
i )). Then, a direct computation gives

lim
β→+∞β

n−2
2 f ′(uβ)[ψβ ] = (t̄ − 1)

∫
∂B(0,r̄1)

(DU · ν)dσ �= 0 (3.34)

(where ν denotes the outward normal on ∂B(0, r̄1)) and

lim
β→+∞β

n−1
2

∫
B(x

β
i ,rβ )

u+
β,i(x)ψβ(x)(x − xi) dx =

∫
B(0,r̄1)

[
U(x) + (t̄ − 1)Ē(x)

]
ψ(x)x dx = 0. (3.35)

Therefore, taking into account that uβ is the unique maximum point for f in the set {uβ + tu+
β,i : t � −1}, by standard

methods one can prove that there exists a continuous map θ : [−1,1] → H 1
0 (B(x

β
i , rβ)) such that θ(t) = 0 for |t | � 1

2
and, for |t | � 1

2 ,

f
(
uβ + tu+

β,i + θ(t)
)
< f (uβ),

[
uβ + tu+

β,i + θ(t)
]+ �≡ 0 in B

(
x

β
i , rβ

)
,∫

B(x
β
i ,rβ )

([
uβ + tu+

β,i + θ(t)
]+

(x)
)2(

x − x
β
i

)
dx = 0.

Notice that

f ′(uβ + tu+
β,i + θ(t)

)[(
uβ + tu+

β,i + θ(t)
)+]

depends continuously on t , it is positive for t = − 1
2 and negative for t = 1

2 . Therefore, there exists t̃ ∈ ]− 1
2 , 1

2 [ such
that

f ′(uβ + t̃u+
β,i + θ(t̃)

)[(
uβ + t̃u+

β,i + θ(t̃)
)+]= 0.
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It follows that uβ + t̃u+
β,i + θ(t̃) ∈ S

β

x
β
1 ,...,x

β
k

, which is a contradiction because f (uβ) = min
S

β

x
β
1 ,...,x

β
k

f and f (uβ +
t̃u+

β,i + θ(t̃)) < f (uβ).
Thus we can conclude that t̄ = 1, which completes the proof. �

Lemma 3.3. For every positive integer k, for α < λ1 and for β > 0 large enough so that Ωk,β �= ∅, let (x
β

1 , . . . , x
β
k ) ∈

Ωk,β and uβ ∈ S
β

x
β
1 ,...,x

β
k

such that f (uβ) = ϕβ(x
β

1 , . . . , x
β
k ) = maxΩk,β

ϕβ . Then, there exists β̃ > 0 such that, for

every β > β̃ ,

sup

{
uβ(x): x ∈

k⋃
i=1

A
β
i

}
< 0, where A

β
i =

{
x ∈ Ω:

2

3
rβ �

∣∣x − x
β
i

∣∣� rβ

}
.

Proof. For i = 1, . . . , k, consider the function U
β,x

β
i

: √β(Ω − x
β
i ) → R introduced in Proposition 3.2. From Propo-

sition 3.2 it follows that, when β → +∞, U
β,x

β
i

→ 1
α−λ1

maxΩ e1(1 − uB(0,r̄1)) in H 1(A2r̄1,3r̄1) where A2r̄1,3r̄1 is the

annulus {x ∈ R
n: 2r̄1 � |x| � 3r̄1}. Taking into account the minimality property of uβ , it follows by standard methods

that the convergence is uniform in A2r̄1,3r̄1 . Therefore, as β → +∞,

sup
A

β
i

uβ = sup
A2r̄1,3r̄1

U
β,x

β
i

→ 1

α − λ1
max

Ω
e1 min

A2r̄1,3r̄1

(1 − uB(0,r̄1)) < 0.

Since this fact holds for every i = 1, . . . , k, the proof is complete. �
Remark 3.4. As a consequence of Lemma 3.3, for β > 0 large enough, we have

uβ(x) < 0 ∀x ∈ Ω \
k⋃

i=1

B

(
x

β
i ,

2

3
rβ

)
. (3.36)

In fact, the minimality property of uβ implies that

f (uβ) = min

{
f (uβ + ψ): ψ ∈ H 1

0 (Ω), ψ = 0 in
k⋃

i=1

B
(
x

β
i , rβ

)
, uβ + ψ � 0 in Ω \

k⋃
i=1

B
(
x

β
i , rβ

)}
(3.37)

(since α < λ1, ψ = 0 is the unique minimizing function). Taking into account that e1 > 0, sup{uβ(x): x ∈
∂B(x

β
i , rβ)} < 0 for i = 1, . . . , k implies uβ(x) < 0 ∀x ∈ Ω \⋃k

i=1 B(x
β
i , rβ). This fact, combined with Lemma 3.3,

proves our assertion.

Let us point out that this property is important because the condition uβ � 0 in Ω \⋃k
i=1 B(x

β
i , rβ) is, indeed,

a unilateral constraint (an obstacle type constraint) which would have given rise to a variational inequality if uβ = 0

somewhere in Ω \⋃k
i=1 B(x

β
i , rβ). On the contrary, since (3.36) holds, uβ satisfies the equation �uβ + αuβ = e1 in

Ω \⋃k
i=1 B̄(x

β
i , 2

3 rβ).

Lemma 3.5. For every positive integer k, for α < λ1 and for β > 0 large enough so that Ωk,β �= ∅, let (x
β

1 , . . . , x
β
k ) ∈

Ωk,β and uβ ∈ S
β

x
β
1 ,...,x

β
k

such that f (uβ) = min
S

β

x
β
1 ,...,x

β
k

f . Moreover, assume β > β̃ (see Lemma 3.3).

Then, for every i = 1, . . . , k, there exists λi
β ∈ R

n such that

f ′(uβ)[ψ] =
∫
Ω

u+
β,i(x)ψ(x)

[
λi

β · (x − x
β
i

)]
dx ∀ψ ∈ H 1

0

(
B
(
x

β
i , rβ

))
(3.38)

(that is, uβ is a constrained critical point for the functional f on the constraint Bi ).
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Proof. It suffices to apply a technique already used above, in order to deal with the constraint Vi which is not smooth.
Arguing by contradiction, assume that uβ is not a constrained critical point for f on Bi . Taking also into account

that the map t �→ f (uβ + tu+
β,i) has for t = 0 the unique maximum point in the set [−1,+∞[ , it follows by standard

methods that there exists a continuous map η : [−1,1] → H 1
0 (B(x

β
i , rβ)) such that η(t) = 0 for |t | � 1

2 ,

f
(
uβ + tu+

β,i + η(t)
)
< f (uβ) ∀t ∈ [−1,1], (3.39)

[uβ + tu+
β,i + η(t)]+ �≡ 0 in B(x

β
i , rβ) and uβ + tu+

β,i + η(t) belongs to Bi ∀t ∈ ]−1,1], that is∫
B(xi ,rβ )

([
uβ + tu+

β,i + η(t)
]+

(x)
)2(

x − x
β
i

)
dx = 0 ∀t ∈ [−1,1]. (3.40)

Notice that η(− 1
2 ) = η( 1

2 ) = 0 implies that

f ′(uβ + tu+
β,i + η(t)

)[(
uβ + tu+

β,i + η(t)
)+] (3.41)

is positive for t = − 1
2 and negative for t = 1

2 . Therefore, since (3.41) depends continuously on t , there exists t̃ ∈
]− 1

2 , 1
2 [ such that uβ + t̃u+

β,i + η(t̃) ∈ Vi (namely (3.41) is equal to zero for t = t̃). It follows that uβ + t̃u+
β,i + η(t̃) ∈

S
β

x
β
1 ,...,x

β
k

and f (uβ + t̃u+
β,i + η(t̃)) < f (uβ). Clearly, this fact gives a contradiction because f (uβ) = min

S
β

x
β
1 ,...,x

β
k

f .

Thus, uβ is a constrained critical point for f on Bi , namely there exists λi
β ∈ R

n such that (3.38) holds. �
Lemma 3.6. For every positive integer k, for α < λ1 and for β > 0 large enough so that Ωk,β �= ∅, let (x

β

1 , . . . , x
β
k )

and (y
β

1 , . . . , y
β
k ) in Ωk,β , uβ ∈ S

β

x
β
1 ,...,x

β
k

and vβ ∈ S
β

y
β
1 ,...,y

β
k

such that f (uβ) = ϕβ(x
β

1 , . . . , x
β
k ) = maxΩk,β

ϕβ and

f (vβ) = ϕβ(y
β

1 , . . . , y
β
k ). Moreover, assume that

lim
β→+∞

√
β
(
x

β
i − y

β
i

)= 0 for every i = 1, . . . , k. (3.42)

Then

lim
β→+∞ sup

Ω

|uβ − vβ | = 0. (3.43)

Let us consider the function V
β,y

β
i

defined in
√

β(Ω − y
β
i ) by

V
β,y

β
i

(x) = vβ

(
x√
β

+ y
β
i

)
∀x ∈√β

(
Ω − y

β
i

)
. (3.44)

Then, also V
β,y

β
i

(as U
β,x

β
i

) converges to the function U (see Proposition 3.2) and the convergence is uniform on the

compact subsets of R
n.

Now, assume in addition that uβ �≡ vβ for β large enough and set

(Uβ − Vβ)
x

β
i

(x) = (uβ − vβ)

(
x√
β

+ x
β
i

)
∀x ∈√β

(
Ω − x

β
i

)
. (3.45)

Then, there exists wi ∈ R
n such that, up to a subsequence, (supΩ |uβ − vβ |)−1(Uβ − Vβ)

x
β
i

converges, as β → +∞,

to (DU · wi) ∈ D1,2(Rn) and the convergence is uniform on the compact subsets of R
n. Moreover, wi �= 0 for some

i ∈ {1, . . . , k}.

Proof. First notice that limβ→+∞
√

β|yβ
i − y

β
j | = ∞ for i �= j because of (3.3) and (3.42). Moreover, since f (vβ) =

ϕβ(y
β
, . . . , y

β
) � maxΩk,β

ϕβ = f (uβ), from Proposition 3.1 (property (b)) we obtain
1 k
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lim
β→+∞β

n−2
2

[
f (vβ) − 1

2(α − λ1)

]
� lim

β→+∞β
n−2

2

[
f (uβ) − 1

2(α − λ1)

]
= k

2(α − λ1)2

(
max

Ω
e1

)2
cap(r̄1).

(3.46)

Therefore, we can say that V
β,y

β
i

→ U as β → +∞. In fact, all the properties of U
β,x

β
i

we used to prove that U
β,x

β
i

→
U as β → +∞, are also satisfied by V

β,y
β
i

as one can easily verify (see the proof of Proposition 3.2). Moreover,

standard arguments allow us to say that the convergence is uniform on the compact subsets of R
n.

In order to prove (3.43), notice that

sup
B(x

β
i ,rβ )

|uβ − vβ | = sup
{∣∣U

β,x
β
i

(x) − V
β,y

β
i

(
x +√

β
(
x

β
i − y

β
i

))∣∣: x ∈ B(0,3r̄1)
}
. (3.47)

Since both U
β,x

β
i

and V
β,y

β
i

converge to U as β → +∞ uniformly on the compact subsets of R
n, taking also into

account (3.42), we obtain limβ→+∞ sup
B(x

β
i ,rβ )

|uβ − vβ | = 0 for i = 1, . . . , k. Hence, since α < λ1, it follows by

standard arguments that limβ→+∞ sup
Ω\⋃k

i=1 B(x
β
i ,rβ )

|uβ − vβ | = 0, which completes the proof of property (3.43).

Now, we assume that uβ �≡ vβ for β large enough and describe the behaviour of the function (supΩ |uβ −
vβ |)−1(Uβ − Vβ)

x
β
i

as β → +∞ (for i = 1, . . . , k). Up to a subsequence, it converges to a function Zi ∈ D1,2(Rn),

with supRn |Zi | � 1, that satisfies the equations �Z + Z = 0 in B(0, r̄1) and �Z = 0 in R
n \ B̄(0, r̄1), as one can

verify taking into account the behaviour of the functions U
β,x

β
i

and V
β,y

β
i

.

We prove that the interior and the exterior normal derivatives of Zi on the boundary of B(0, r̄1) coincide, so we
can say that Zi is a weak solution of the equation

�Z + a(x)Z = 0 in R
n, (3.48)

where a(x) = 1 if x ∈ B(0, r̄1) and a(x) = 0 otherwise. In order to prove this fact, notice that Lemma 3.5 implies the
existence of Λu,β and Λv,β in R

n such that∫
B(0,3r̄1)

[
DU

β,x
β
i

DΨ + α

β
U−

β,x
β
i

Ψ − U+
β,x

β
i

Ψ + 1

β
E

1,β,x
β
i

Ψ

]
dx

=
∫

B(0,3r̄1)

U+
β,x

β
i

(x)Ψ (x)(Λu,β · x)dx ∀Ψ ∈ H 1
0

(
B(0,3r̄1)

)
(3.49)

(where we set E
1,β,x

β
i

(x) = e1(x/
√

β + x
β
i )) and, for β > 0 large enough so that

√
β |xβ

i − y
β
i | < r̄1 (see (3.42)),

∫
B(0,2r̄1)

[
DV

β,x
β
i

DΨ + α

β
V −

β,x
β
i

Ψ − V +
β,x

β
i

Ψ + 1

β
E

1,β,x
β
i

Ψ

]
dx

=
∫

B(0,2r̄1)

V +
β,x

β
i

(x)Ψ (x)
(
Λv,β · [x −√

β
(
y

β
i − x

β
i

)])
dx ∀Ψ ∈ H 1

0

(
B(0,2r̄1)

)
. (3.50)

We say that

lim
β→+∞Λu,β = 0 and lim

β→+∞Λv,β = 0. (3.51)

In fact, arguing by contradiction, assume for example that (up to a subsequence)

lim
β→+∞|Λu,β | > 0 and lim

β→+∞
Λu,β

|Λu,β | = Λ̄. (3.52)

Now, set in (3.49) Ψ (x) = ΨΛ̄(x) = ζ(x)(Λ̄ · x) where ζ is a function in C1
0(B(0,3r̄1)) such that ζ(x) = 1 ∀x ∈

B(0, r̄1). Then, taking into account that
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∫
B(0,3r̄1)

[
DUDΨΛ̄ − U+ΨΛ̄

]
dx = 0 while

∫
B(0,r̄1)

U(x)(Λ̄ · x)2 dx > 0, (3.53)

as β → +∞ we obtain from (3.49)

0 =
[ ∫
B(0,r̄1)

U(x)(Λ̄ · x)2 dx

]−1 ∫
B(0,3r̄1)

[
DUDΨΛ̄ − U+ΨΛ̄

]
dx = lim

β→+∞|Λu,β | > 0, (3.54)

which is impossible. Therefore, we can conclude that limβ→+∞ Λu,β = 0.
In a similar way one can also prove that limβ→+∞ Λv,β = 0.
From (3.49) and (3.50), it follows that∫

B(0,2r̄1)

[
D(Uβ − Vβ)

x
β
i

DΨ + α

β

(
U−

β − V −
β

)
x

β
i

Ψ − (
U+

β − V +
β

)
x

β
i

Ψ

]
dx

=
∫

B(0,2r̄1)

(
U+

β (x) − V +
β (x)

)
x

β
i

Ψ (x)(Λu,β · x)dx +
∫

B(0,2r̄1)

V +
β,x

β
i

(x)Ψ (x)
(
(Λu,β − Λv,β) · x)dx

+ (
Λv,β ·√β

(
y

β
i − x

β
i

)) ∫
B(0,2r̄1)

V +
β,x

β
i

(x)Ψ (x)dx ∀Ψ ∈ H 1
0

(
B(0,2r̄1)

)
. (3.55)

We say that

lim sup
β→+∞

|(Λv,β · √β(y
β
i − x

β
i ))|

supΩ |uβ − vβ | < +∞ (3.56)

and

lim sup
β→+∞

|Λu,β − Λv,β |
supΩ |uβ − vβ | < +∞. (3.57)

First, let us prove (3.56). Arguing by contradiction, assume for example that (up to a subsequence)

lim
β→+∞

(Λv,β · √β(y
β
i − x

β
i ))

supΩ |uβ − vβ | = +∞. (3.58)

Now, if (3.57) holds, we choose in (3.55) a function Ψ such that Ψ (x) > 0 ∀x ∈ B(0, r̄1). Thus, letting β → +∞, we
obtain[ ∫

B(0,r̄1)

UΨ dx

]−1[ ∫
B(0,2r̄1)

DZiDΨ dx −
∫

B(0,r̄1)

ZiΨ dx

]
+ r̄1 lim sup

β→+∞
|Λu,β − Λv,β |
supΩ |uβ − vβ |

� lim
β→+∞

(Λv,β · √β(y
β
i − x

β
i ))

supΩ |uβ − vβ | = +∞ (3.59)

which is a contradiction (because of (3.57)).
In a similar way one can argue when (3.57) still holds while in (3.58) +∞ is replaced by −∞. So we can say that

(3.56) holds when (3.57) holds. In the other case, there exists Λ̃ such that, up to a subsequence,

lim
β→+∞

|Λu,β − Λv,β |
supΩ |uβ − vβ | = +∞ and lim

β→+∞
Λu,β − Λv,β

|Λu,β − Λv,β | = Λ̃. (3.60)

So, we can choose in (3.55) a function Ψ̃ in H 1
0 (B(0,2r̄1)), which is strictly positive in B( r̄1

2 Λ̃, r̄1
4 ) and vanishes

elsewhere. Thus, we have
∫
B(0,r̄1)

U(x)Ψ̃ (x) dx > 0 and
∫
B(0,r̄1)

U(x)Ψ̃ (x)(Λ̃ · x)dx > 0 (because (Λ̃ · x) > 0 ∀x ∈
B( r̄1 Λ̃, r̄1 )).
2 4
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Therefore, letting β → +∞ in (3.55), from (3.58) and (3.60) we obtain∫
B(0,2r̄1)

DZiDΨ̃ dx −
∫

B(0,r̄1)

ZiΨ̃ dx = lim
β→+∞

|Λu,β − Λv,β |
supΩ |uβ − vβ |

∫
B(0,r̄1)

UΨ̃ (Λ̃ · x)dx

+ lim
β→+∞

(Λv,β · √β(y
β
i − x

β
i ))

supΩ |uβ − vβ |
∫

B(0,r̄1)

UΨ̃ dx = +∞, (3.61)

which is a contradiction. In a similar way one can argue when (3.57) does not hold and (3.58) holds with −∞ in place
of +∞ (it suffices to replace Λ̃ by −Λ̃ when we choose Ψ̃ ). Thus, (3.56) is proved in any case.

Now we can prove (3.57). Arguing again by contradiction, assume that, up to a subsequence, (3.60) holds. Then,
choosing Ψ̃ as before and letting β → +∞ in (3.55), we obtain∫

B(0,2r̄1)

DZiDΨ̃ dx −
∫

B(0,r̄1)

ZiΨ̃ dx � lim
β→+∞

|Λu,β − Λv,β |
supΩ |uβ − vβ |

∫
B(0,r̄1)

UΨ̃ (Λ̃ · x)dx

+ lim inf
β→+∞

(Λv,β · √β(y
β
i − x

β
i ))

supΩ |uβ − vβ |
∫

B(0,r̄1)

UΨ̃ dx = +∞ (3.62)

(where the last equality holds because of (3.56)). This gives a contradiction, so (3.57) is proved too.
Now, for every smooth function Ψ̄ : ∂B(0, r̄1) → R, we can choose a smooth function Ψ in H 1

0 (B(0,2r̄1)) such
that Ψ (x) = Ψ̄ (x) ∀x ∈ ∂B(0, r̄1) and, moreover,∫

B(0,r̄1)

U(x)Ψ (x)x dx = 0 and
∫

B(0,r̄1)

U(x)Ψ (x)dx = 0. (3.63)

Therefore, letting β → +∞ in (3.55), we obtain∫
B(0,r̄1)

DZiDΨ dx −
∫

B(0,r̄1)

ZiΨ dx +
∫

A(r̄1,2r̄1)

DZiDΨ dx = 0 (3.64)

where A(r̄1,2r̄1) = B(0,2r̄1) \ B̄(0, r̄1). It follows that∫
∂B(0,r̄1)

Ψ (DZi · ν)dσ +
∫

∂A(r̄1,2r̄1)

Ψ (DZi · ν)dσ = 0 (3.65)

where ν denotes the outward normal. Taking into account that Ψ = Ψ̄ on ∂B(0, r̄1) and Ψ = 0 on ∂B(0,2r̄1), since
Ψ̄ is an arbitrary function, we infer that the interior and the exterior normal derivatives of Zi on ∂B(0, r̄1) indeed
coincide, so that Zi is a weak solution of Eq. (3.48).

Let us point out that every solution Z of Eq. (3.48) must satisfy the condition
∫
∂B(0,r̄1)

Z dσ = 0. In fact, (3.48) im-
plies

0 =
∫

B(0,r̄1)

(�Z + Z)U dx = −
∫

∂B(0,r̄1)

Z(DU · ν)dσ +
∫

B(0,r̄1)

Z(�U + U)dx = −
∫

∂B(0,r̄1)

Z(DU · ν)dσ,

(3.66)

where (DU · ν) is a nonzero constant on the boundary of B(0, r̄1). Moreover, Zi is the unique solution Z in D1,2(Rn)

satisfying the condition Z(x) = Zi(x) ∀x ∈ ∂B(0, r̄1). In fact, the Dirichlet problem in B(0, r̄1){
�Z + Z = 0 in B(0, r̄1),

Z = Zi on ∂B(0, r̄1),
(3.67)

has only solutions of the form Z = Zi + tU , with t ∈ R, and Zi + tU ∈ D1,2(Rn) if and only if t = 0 (because
lim|x|→∞ U(x) = 1 maxΩ e1 �= 0).
α−λ1
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Also, notice that the functions of the form (DU · w) belong to D1,2(Rn) and are solutions of Eq. (3.48) for every
w ∈ R

n; moreover, if w �= 0, (DU ·w) is an eigenfunction for the Laplace–Beltrami operator on the sphere ∂B(0, r̄1).
Thus, in order to prove that Zi is a function of this form, it suffices to prove that

∫
∂B(0,r̄1)

ZiΦ dσ = 0 for any other
eigenfunction of the Laplace–Beltrami operator on ∂B(0, r̄1). We have already proved this fact in the case where Φ is
constant on ∂B(0, r̄1) (that is Φ is an eigenfunction corresponding to the first eigenvalue 0). In order to deal with the
other cases, let us consider the unit sphere S in R

n. It is well known (see [39]) that the first nonzero eigenvalue for the
Laplace–Beltrami operator on S is (n−1), that its multiplicity is n and that the coordinate functions xj (j = 1, . . . , n),
and the linear combinations of these, are the corresponding eigenfunctions. By rescaling, it follows that the functions
of the form (DU · w), with w ∈ R

n \ {0}, are the eigenfunctions corresponding to the second eigenvalue of the
Laplace–Beltrami operator on the sphere ∂B(0, r̄1).

Now, for every eigenfunction Φ of the Laplace–Beltrami operator on the unit sphere S, we consider the function
h(r) = ∫

S
Zi(rx)Φ(x)dσ (defined for r � 0). Notice that Φ(x) is an eigenfunction on S if and only if Φ( x

r̄1
) is

an eigenfunction on ∂B(0, r̄1). Therefore, our aim is now to show that h(r̄1) = 0 for the eigenfunctions Φ on S,
corresponding to eigenvalues greater than (n − 1).

Here we argue as in [15]. Taking into account Eq. (3.48), a direct computation shows that the function h is a weak
solution of the equation

− 1

rn−1

d

dr

(
rn−1 d

dr
h(r)

)
+ 1

r2
αh(r) = a(r)h(r) in ]0,+∞[ , (3.68)

where α denotes the eigenvalue corresponding to the eigenfunction Φ (here we set a(r) = 1 for r ∈ [0, r̄1], a(r) = 0
for r > r̄1).

We prove that, if α > n−1, then h(r) = 0 ∀r � 0 (not only for r = r̄1). Notice that h(0) = 0 because
∫
S
Φ(x)dσ =

0 if α � n− 1. Arguing by contradiction, assume that h �≡ 0 in [0,+∞[ . We say that, in this case, h cannot have more
than one zero in ]0,+∞[ . In fact, if z1 and z2, z1 < z2, are two positive zeroes of h, we can say that h′(z1) �= 0
(otherwise h ≡ 0 because it is solution of a Cauchy problem in z1 for Eq. (3.68)). Clearly, we may assume h′(z1) > 0
(otherwise we replace h by −h) so that, if we set

z̃2 = sup
{
r ∈ ]z1, z2[: h(t) > 0 ∀t ∈ ]z1, r[

}
, (3.69)

we have z̃2 ∈ ]z1, z2]. Now, set h̄(r) = − d
dr

U(r,0, . . . ,0). A simple calculation shows that h̄(r) is a positive solution
of Eq. (3.68) for α = n − 1 (it suffices to choose, for example, Φ(x) = x1 in the definition of h and take into account
that ∂U

∂x1
is a weak solution of (3.48)). Let us consider the function χ(r) := h̄′(r)h(r)− h̄(r)h′(r). A direct computation

shows that

χ ′(r) + n − 1

r
χ(r) = [n − 1 − α] h̄(r)h(r)

r2
∀r > 0. (3.70)

It follows that

χ ′(r) + n − 1

r
χ(r) < 0 ∀r ∈ ]z1, z̃2[ , (3.71)

because α > n − 1, h̄(r) > 0 ∀r > 0 and h(r) > 0 ∀r ∈ ]z1, z̃2[ . As a consequence, the function

Θ(r) := rn−1χ(r) = rn−1(h̄′(r)h(r) − h̄(r)h′(r)
)

(3.72)

is strictly decreasing on ]z1, z̃2[ . Therefore, since Θ(z1) = −zn−1
1 h̄(z1)h

′(z1) < 0, we have also Θ(z̃2) < 0 which is
impossible because Θ(z̃2) = −z̃n−1

2 h̄(z̃2)h
′(z̃2), with h′(z̃2) � 0.

Thus, h has at the most one zero in ]0,+∞[ . Therefore, if we set

r̃ = sup
{
r > 0: h(t) �= 0 ∀t ∈ ]0, r[}, (3.73)

we have r̃ ∈ ]0,+∞]. It is clear that we may assume h(r) > 0 ∀r ∈ ]0, r̃[ (otherwise we replace h by −h).
If r̃ < +∞, we have h(r̃) = 0 and h′(r̃) � 0. Moreover, we have Θ(r̃) < 0 because limr→0 Θ(r) = 0 and Θ(r)

is strictly decreasing in ]0, r̃[ (as we infer from (3.70), since h(r) > 0 ∀r ∈ ]0, r̃[). Therefore, we have Θ(r̃) =
−r̃n−1h̄(r̃)h′(r̃) < 0, which is impossible because h̄(r̃) > 0 and h′(r̃) � 0.
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Thus r̃ = +∞ and

Θ(r) � Θ(r̄1) < 0 ∀r � r̄1. (3.74)

Notice that, for r � r̄1, h̄(r) = c̄1
rn−1 for a suitable constant c̄1 > 0. Therefore, for c = −Θ(r̄1)

c̄1
> 0, we have

h′(r) + n − 1

r
h(r) � c > 0 ∀r � r̄1. (3.75)

Now, set H(r) = rn−1h(r). By a simple computation, it follows from (3.75) that H ′(r) � crn−1 ∀r � r̄1. Therefore,
we have lim infr→∞ H(r)

rn � c
n

, that is lim infr→∞ h(r)
r

� c
n

> 0, which implies limr→∞ h(r) = +∞.
Clearly, this fact gives a contradiction because supRn |Zi | � 1 and, as a consequence, sup{|h(r)|: r � 0} < +∞.
Thus, we can conclude that, for every i = 1, . . . , k, Zi = (DU · wi) for a suitable wi ∈ R

n.
It remains to show that wi �= 0 for some i ∈ {1, . . . , k}. Arguing by contradiction, assume that wi = 0 for every

i = 1, . . . , k. Then, standard arguments show that, for every i = 1, . . . , k,(
sup
Ω

|uβ − vβ |
)−1

(Uβ − Vβ)
x

β
i

→ 0, (3.76)

as β → +∞, uniformly on the compact subsets of R
n; it follows that

lim
β→+∞

(
sup
Ω

|uβ − vβ |
)−1

sup⋃k
i=1 B(x

β
i ,rβ )

|uβ − vβ | = 0 (3.77)

and, as a consequence, that (supΩ |uβ − vβ |)−1(uβ − vβ) → 0 as β → +∞ uniformly in Ω , which is obviously a
contradiction. So the proof is complete. �
Remark 3.7. As a first consequence of Lemma 3.6, we can say that there exists β̃k > 0 such that, for β > β̃k , uβ is

the unique function in S
β

x
β
1 ,...,x

β
k

such that f (uβ) = min
S

β

x
β
1 ,...,x

β
k

f . In fact, arguing by contradiction, assume that (up to

a subsequence) there exists another minimizing function vβ ∈ S
β

x
β
1 ,...,x

β
k

, vβ �≡ uβ , such that f (vβ) = min
S

β

x
β
1 ,...,x

β
k

f .

A direct computation shows that∫
B(0,3r̄1)

(
V +

β,x
β
i

(x)
)2

x dx =
∫

B(0,3r̄1)

(
U+

β,x
β
i

(x)
)2

x dx + 2
∫

B(0,3r̄1)

U+
β,x

β
i

(x)
(
V +

β − U+
β

)
x

β
i

(x)x dx

+ o
(

sup
Ω

|vβ − uβ |
)

for i = 1, . . . , k. (3.78)

Since uβ and vβ both belong to S
β

x
β
1 ,...,x

β
k

, we have (for β large enough)

∫
B(0,3r̄1)

(
V +

β,x
β
i

(x)
)2

x dx =
∫

B(0,3r̄1)

(
U+

β,x
β
i

(x)
)2

x dx = 0.

Therefore, as β → +∞, from (3.78) we obtain∫
B(0,r̄1)

U(x)
(
DU(x) · wi

)
x dx = 0. (3.79)

It follows that wi = 0. In fact, if wi �= 0, (DU(x) · wi)(x · wi) < 0 for (x · wi) �= 0.
Therefore, taking also into account that U has radial symmetry, we infer that∫

U(x)
(
DU(x) · wi

)
x dx = −c̄wi, (3.80)
B(0,r̄1)
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for a suitable positive constant c̄, in contradiction with (3.79). Thus wi = 0 for every i = 1, . . . , k, which is impossible
because of Lemma 3.6 (since wi �= 0 for some i ∈ {1, . . . , k}).

Hence we can conclude that, for β > 0 large enough, uβ is the unique minimizing function for f on S
β

x
β
1 ,...,x

β
k

.

Proposition 3.8. For every positive integer k, for α < λ1 and for β > 0 large enough so that Ωk,β �= ∅, let

(x
β

1 , . . . , x
β
k ) ∈ Ωk,β and uβ ∈ S

β

x
β
1 ,...,x

β
k

such that f (uβ) = ϕβ(x
β

1 , . . . , x
β
k ) = maxΩk,β

ϕβ . Then, there exists β̄k > 0

such that uβ is a solution of problem (1.5) for every β > β̄k .

Proof. We have to prove that the Lagrange multipliers (see Lemma 3.5) are equal to zero for β large enough, that
is there exists β̄k > 0 such that, for every i = 1, . . . , k, λi

β = 0 ∀β > β̄k . Arguing by contradiction, assume that, for

some i ∈ {1, . . . , k}, there exists a sequence (βj )j∈N such that limj→∞ βj = +∞ and λi
βj

�= 0 ∀j ∈ N. Clearly, we
can assume that

lim sup
j→∞

|λm
βj

|
|λi

βj
| � 1 for m = 1, . . . , k (3.81)

(otherwise we replace i by some m �= i and the sequence (βj )j by a suitable subsequence). Since |λi
βj

| �= 0, there exists

λi ∈ R
n, with |λi | = 1, such that (up to a subsequence)

λi
βj

|λi
βj

| → λi as j → ∞. Then, let us choose (y
βj

1 , . . . , y
βj

k ) ∈
Ωk,βj

and vβj
∈ S

βj

y
βj
1 ,...,y

βj
k

, with f (vβj
) = ϕβj

(y
βj

1 , . . . , y
βj

k ), in such a way that y
βj
m = x

βj
m for m �= i, y

βj

i = x
βj

i +
εj√
βj

λi , with εj > 0 ∀j ∈ N, limj→∞ εj = 0 and

lim
j→∞

εjβ
3
2
j

|λi
βj

| = 0 (3.82)

(this choice of y
βj

1 , . . . , y
βj

k is indeed possible because limj→∞
√

βj |xβj

i − x
βj
m | = ∞ for m �= i).

A direct computation shows that

f (vβj
) = f (uβj

) + f ′(uβj
)[vβj

− uβj
] + Rj (3.83)

where, for j large enough,

Rj � 1

2

∫
Ωj

[∣∣D(vβj
− uβj

)
∣∣2 − α(vβj

− uβj
)2]dx − βj

2

k∑
m=1

∫
B(x

βj
m ,rβj

)

(vβj
− uβj

)2 dx (3.84)

with Ωj = Ω \⋃k
m=1 B(x

βj
m , rβj

). Notice that

lim
j→∞ min

{∫
Ωj

|Du|2 dx: u ∈ H 1
0 (Ω),

∫
Ωj

u2 dx = 1

}
= λ1 (3.85)

which, since α < λ1, implies∫
Ωj

[∣∣D(vβj
− uβj

)
∣∣2 − α(vβj

− uβj
)2]dx � 0 (3.86)

for j large enough.
Now, fix a function η ∈ C 1

0(B(0,3r̄1)) such that η(x) = 1 ∀x ∈ B(0,2r̄1) and, for m = 1, . . . , k, set ηm
j (x) =

η[√βj (x − x
βj
m )] ∀x ∈ B(x

βj
m , rβj

) (ηm(x) = 0 elsewhere). Then, for j large enough so that uβj
< 0 in
j
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Ω \⋃k
m=1 B(x

βj
m , 2

3 rβj
), we have

f ′(uβj
)

[(
1 −

k∑
m=1

ηm
j

)
(vβj

− uβj
)

]
= 0. (3.87)

Thus, from (3.83), (3.84), (3.86) and (3.87), we obtain

f (vβj
) − f (uβj

) �
k∑

m=1

f ′(uβj
)
[
ηm

j (vβj
− uβj

)
]− βj

2

k∑
m=1

∫
B(x

βj
m ,rβj

)

(vβj
− uβj

)2 dx, (3.88)

where

f ′(uβj
)
[
ηm

j (vβj
− uβj

)
]=

∫
Ω

u+
βj ,m(x)ηm

j (x)(vβj
− uβj

)(x)
[
λm

βj
· (x − x

βj
m

)]
dx for m = 1, . . . , k, (3.89)

because ηm
j (vβj

− uβj
) ∈ H 1

0 (B(x
βj
m , rβj

)) (see Lemma 3.5).
After rescaling, we have (for j large enough)

β
n+1

2
j

|λi
βj

|sj
[
f (vβj

) − f (uβj
)
]
�

k∑
m=1

∫
B(0,3r̄1)

U+
βj ,x

βj
m

(x)η(x)
1

sj
(Vβj

− Uβj
)
x

βj
m

(x)
1

|λi
βj

|
(
λm

βj
· x)dx

− sjβ
3
2
j

2|λi
βj

|
k∑

m=1

∫
B(0,3r̄1)

1

s2
j

(Vβj
− Uβj

)2

x
βj
m

dx, (3.90)

where, for short, we set sj = supΩ |vβj
− uβj

| (notice that sj �= 0 ∀j ∈ N because vβj
�= uβj

, since εj > 0). From

Lemma 3.6 we infer that there exist w1, . . . ,wk in R
n such that (up to a subsequence) 1

sj
(Vβj

−Uβj
)
x

βj
m

→ (DU ·wm),

as j → ∞, uniformly in B(0,3r̄1) for every m = 1, . . . , k.
We say that wm = 0 for m �= i. In fact,∫

B(0,3r̄1)

(
V +

βj ,x
βj
m

(x)
)2

x dx =
∫

B(0,3r̄1)

(
U+

βj ,x
βj
m

(x)
)2

x dx + 2
∫

B(0,3r̄1)

U+
βj ,x

βj
m

(x)
(
V +

βj
− U+

βj

)
x

βj
m

(x)x dx + o(sj ).

(3.91)

Because of the choice of (y
βj

1 , . . . , y
βj

k ), if m �= i, we have∫
B(0,3r̄1)

(
V +

βj ,x
βj
m

(x)
)2

x dx =
∫

B(0,3r̄1)

(
U+

βj ,x
βj
m

(x)
)2

x dx = 0 (3.92)

for j large enough.
Therefore, as j → ∞, we obtain∫

B(0,r̄1)

U(x)
(
DU(x) · wm

)
x dx = 0, (3.93)

which implies wm = 0 (in fact, (3.93) holds if and only if wm = 0, as one can easily verify).
On the contrary, for m = i we have (for j large enough)∫

B(0,3r̄1)

(
U+

βj ,x
βj
i

(x)
)2

x dx = 0 (3.94)
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while ∫
B(0,3r̄1)

(
V +

βj ,x
βj
i

(x)
)2

x dx = εjλ
i

∫
B(0,3r̄1)

(
V +

βj ,x
βj
i

(x)
)2

dx. (3.95)

As j → ∞, from (3.91) and (3.95) we obtain

lim
j→∞

εj

sj
λi

∫
B(0,r̄1)

U2 dx = 2
∫

B(0,r̄1)

U(x)
(
DU(x) · wi

)
x dx, (3.96)

where wi �= 0 because wm = 0 for m �= i (see Lemma 3.6). It follows that limj→∞
εj

sj
∈ ]0,+∞[ and wi = −ciλ

i for
a suitable positive constant ci .

Now we can pass to the limit as j → ∞ in (3.90). So (taking also into account (3.81) and (3.82)) we obtain

lim inf
j→∞

β
n+1

2
j

|λi
βj

|sj
[
f (vβj

) − f (uβj
)
]
� −ci

∫
B(0,r̄1)

U(x)
(
DU(x) · λi

)(
x · λi

)
dx > 0, (3.97)

where the last inequality holds because ci > 0 and U(x)(DU(x) · λi)(x · λi) < 0 almost everywhere in B(0, r̄1) (for
every x such that (x · λi) �= 0).

It is clear that (3.97) gives a contradiction because f (vβj
) � f (uβj

) ∀j ∈ N, since f (vβj
) = ϕβj

(y
βj

1 , . . . , y
βj

k )

while f (uβj
) = maxΩk,β

ϕβj
.

Thus, we can say that uβ is a solution of problem (1.5) for β > 0 large enough, which completes the proof. �
Proof of Theorem 1.1. For every positive integer k, for α < λ1 and for β > 0 large enough so that Ωk,β �= ∅,

consider a point (x
β

1 , . . . , x
β
k ) ∈ Ωk,β and a function uβ ∈ S

β

x
β
1 ,...,x

β
k

such that f (uβ) = ϕβ(x
β

1 , . . . , x
β
k ) = maxΩk,β

ϕβ

(see Propositions 2.1 and 2.2).
If we set uk,β = uβ , then all the assertions in Theorem 1.1 follow directly from Propositions 3.1, 3.2 and 3.8 as one

can easily verify. �
Remark 3.9. The method used to prove Theorem 1.1 may be easily adapted to prove that, for all k ∈ N and ξ0 ∈
L2(Ω), the problem (1.3) with g(u) = −αu− +βu+ has, for β and t positive and large enough, a solution uk,β,t such
that, as t → +∞, 1

t
uk,β,t tends to the solution uk,β obtained in Theorem 1.1 for problem (1.5). Thus, our method

applies also in the case of the problem considered by Dancer in [14]. Indeed, the same result holds for more general
functions g satisfying (1.2) (see [33]).

Remark 3.10. One can easily verify that (since α < λ1) the trivial solution e1
α−λ1

is a strict local minimum point for
the functional f and that

lim
t→∞f

(
e1

α − λ1
+ te1

)
= −∞ ∀β > λ1. (3.98)

Moreover, f satisfies the well-known Palais–Smale compactness condition. Therefore, there exists a mountain pass
type solution. Let us point out that this solution differs from the ones given by Theorem 1.1 because they correspond
to higher critical values (even in the case k = 1).

In fact, let us fix x̄ ∈ Ω such that e1(x̄) < maxΩ e1 and choose a function ūβ ∈ S
β
x̄ , such that f (ūβ) = min

S
β
x̄

f .

Then, consider the continuous path p : [0,+∞[ → H 1
0 (Ω) defined as follows:

p(t) =
{

(1 − t) e1
α−λ1

+ t (ūβ − ū+
β ) ∀t ∈ [0,1],

ūβ − 2ū+
β + t ū+

β ∀t � 1.
(3.99)
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One can easily verify that

p(0) = e1

α − λ1
, lim

t→+∞

∥∥∥∥ e1

α − λ1
− p(t)

∥∥∥∥
H 1

0 (Ω)

= +∞,

lim
t→+∞f

(
p(t)

)= −∞ and max
{
f
(
p(t)

)
: t � 0

}= f (ūβ). (3.100)

Therefore, the mountain pass level is less than or equal to f (ūβ). The solution uβ obtained in this paper satisfies
property (b) of Proposition 3.1. Arguing as in the proof of Proposition 3.1 one can verify that

lim
β→+∞β

n−2
2

[
f (ūβ) − 1

2(α − λ1)

]
= 1

2(α − λ1)2

(
e1(x̄)

)2 cap(r̄1). (3.101)

Since e1(x̄) < maxΩ e1, it follows that f (ūβ) < f (uβ) for β large enough, which proves our assertion. Indeed
(see [33]) the mountain pass solution has one peak localized near the boundary of Ω ; moreover, the number of
solutions of this type, with peaks near ∂Ω , may be related to the geometrical properties of ∂Ω (on the other hand,
also the number of solutions with a prescribed number of interior peaks may be related to the shape of Ω).
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[24] S. Fučík, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat. 101 (1) (1976) 69–87.
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