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Abstract

In this paper, we prove some uniqueness and convergence results for a competing system and its singular limit, and an interior
measure estimate of the free boundary for the singular limit.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The Lotka–Volterra model of competing species describes the competition of a number of species in a fixed domain.
Its general form is as following:⎧⎪⎨

⎪⎩
∂ui

∂t
− �ui = fi(ui) − ui

∑
j �=i

bij uj , in Ω × (0,+∞),

ui = φi, on Ω × {0},
where bij � 0 are constants and 1 � i, j � M , and M is the number of the species and Ω is a bounded domain in R

n

(n � 1) with smooth boundary. Usually we consider homogeneous Dirichlet or Neumann boundary condition. We
only study nonnegative solutions, that is, ui � 0 for all i.

The study of this reaction–diffusion systems has a long history and there exist a great amount of works. However,
most of these works are concerned with the case of two species. As far as we know, the study in case of many
competing species is not so much, in 1990s Dancer and Du studied three species competition systems and got very
interesting existence results. In fact, it’s believed that generally this system has complicated dynamics (see [8,9]), even
in the ordinary differential equation cases (see [15]).

In recent years, people show a lot of interests in strongly competing systems with many species, that is, the system
(or its elliptic case)
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∂ui

∂t
− �ui = −κui

∑
j �=i

bij uj ,

where κ is sufficiently large (or its limit at κ = +∞). Conti, Terracini and Verzini [5,6], Caffarelli, Karakhanyan
and Lin [1,2], etc., established the regularity of the singular limit (and the partial regularity of its free boundary) as
κ → +∞ and the uniform regularity for all κ > 0. Conti, Terracini and Verzini find that in the singular limit species
are spatially segregated and they satisfy a remarkable system of differential inequalities, and these two conditions are
also satisfied by the solution of a variational problem. Although it’s not fully established, it’s very possible that this
singular limit has a variational structure. That is, the solution of corresponding elliptic problem is the harmonic map
from the domain Ω into a metric space Σ with nonpositive curvature, which has been studied by many authors since
the work of [11]. Here the metric space Σ is defined as follows:

Σ := {
(u1, u2, . . . , uM) ∈ R

M : ui � 0, uiuj = 0 for i �= j
}
.

Under the intrinsic metric structure, it is a metric space of nonpositive curvature (for the definition, please see [11]).
The harmonic map is the critical point (in weak sense) of the following functional

∑
i

∫
Ω

|∇ui |2,

defined in the class of functions u = (u1, u2, . . . , uM) ∈ (H 1(Ω))M satisfying ui � 0 and uiuj = 0, a.e.,
see [5].

In this paper, we present some results concerning this problem. First we prove the uniqueness result of the following
Dirichlet boundary value problem of elliptic systems in a smooth domain Ω in R

n for ∀n � 1:⎧⎨
⎩

�ui = κui

∑
j �=i

bij uj , in Ω,

ui = ϕi, on ∂Ω.

(1.1)

Here bij > 0 are constants and satisfy bij = bji , ϕi are given Lipschitz continuous functions on ∂Ω , which satisfy
ϕi � 0. In the paper we will simply take bij = 1, without loss of generality.

In the paper [6], they prove the existence of the positive solution of (1.1), using Leray–Schauder degree theory.
However, the uniqueness of the solution was not known. Here, we will use the sub- and sup-solution method to show
that the uniqueness is indeed right. That is

Theorem 1.1. ∀κ � 0, there exists a unique positive solution (u1, . . . , uM) of (1.1).

The application of the sub- and sup-solution method in nonlinear elliptic systems was known for a long time, see
for example [13]. Our main contribution here is a simple observation which leads to the uniqueness in our current
situation.

This method can also be applied to the parabolic case. We consider the parabolic analogue of Eq. (1.1), that is, the
following initial–boundary value problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂ui

∂t
− �ui = −κui

∑
j �=i

bij uj , in Ω × (0,+∞),

ui = ϕi, on ∂Ω × (0,+∞),

ui = φi, on Ω × {0}.

(1.2)

Here ϕi are given Lipschitz continuous functions on ∂Ω , which satisfy ϕi � 0; and φi are given Lipschitz continuous
functions on Ω , which satisfy φi � 0 and φi = ϕi on ∂Ω . We have the following theorem:

Theorem 1.2. ∀κ � 0, the solution (u1(x, t), . . . , uM(x, t)) of (1.2) exists globally, and it converges to the (unique)
solution of the stationary equation (1.1) as t → +∞ (in C(Ω)).
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Then we give a uniform Lipschitz estimate, using Kato inequality (this inequality was also used in [10]) and our
observation from the symmetric assumption bij = bji :

Theorem 1.3. There exists a constant C independent of κ , such that for any solution ui,κ of (1.2) we have

sup
Ω×[0,+∞)

Lip(ui,κ ) � C.

The elliptic case can be treated similarly.

Theorem 1.4. There exists a constant C independent of κ , such that for solution ui,κ of (1.1) we have

sup
Ω

|∇ui,κ | � C.

Next we consider the uniqueness of the singular limit of (1.1) as κ → +∞. We know that, as κ → +∞, solutions
of (1.1) converge to some (u1, . . . , uM) which satisfy the following conditions (see [6]):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�ui � 0, in Ω,

�

(
ui −

∑
j �=i

uj

)
� 0, in Ω,

ui = ϕi, on ∂Ω,

uiuj = 0, in Ω.

(1.3)

First we establish some results concerning the estimate of the (n − 1)-dimensional Hausdorff measure of the free
boundary. From the regularity theory in [1], we know that ∂{ui > 0} and ∂{vi > 0} are smooth hypersurface except
a closed set of dimension n − 2. What we show is that they have finite n − 1 dimension Hausdorff measure in the
interior of Ω .

Theorem 1.5. For any compact set Ω ′ � Ω , we have

Hn−1(Ω ′ ∩ ∂{ui > 0}) < +∞.

This result is valid for locally energy minimizing maps too, because it also satisfy the same conditions such as
monotonicity of the frequency function (see [3]). We also establish a uniform interior estimate of the level sur-
face.

Then we consider the uniqueness problem of (1.3). In the paper [7], the authors prove the uniqueness and least
energy property of (u1, . . . , uM) which satisfies (1.3) in the case of M = 3 and in dimension 2. Here we will generalize
their result to arbitrary dimension and arbitrary number of species.

Theorem 1.6. Given a solution (u1, . . . , uM) of (1.3), it must be the harmonic map into the space Σ .

By definition the harmonic map is the critical point of the energy functional
∫
Ω

∑
i |∇ui |2 dx (under the same

boundary condition, see [11] or [3]). Because this functional is convex with respect to the geodesic homotopy, then
it must be the (unique) energy minimizing map. The uniqueness of energy minimizer has been proved by M. Conti,
S. Terracini and G. Verzini in [5], see their Theorem 4.2. We also use the construction of the test functions in their
proof in our Section 6.

Our method is to compute the derivative of the energy functional with respect to the geodesic homotopy between u

and a comparison (an energy minimizing map v with same boundary values). This involves some procedures of
integration by parts. In order to make this procedure rigorous, we first calculate in an approximate setting where we
can avoid the free boundary which may contain singularity, at this stage we can also cancel (or place a good control on)
the terms which involve the integration on the free boundary of v. This control is necessary, even with our knowledge
on the interior measure estimate of the free boundary of v, because we do not have the corresponding estimate near
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the boundary (this may be true, if we can choose the boundary value good enough). At last, for those integration on
the free boundary of u, we can control them well enough and after take the limit, they all cancel.

At last, we consider the uniqueness of the initial–boundary value problems and the asymptotic of following singular
limit of (1.2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
− �ui � 0, in Ω × (0,+∞),(

∂

∂t
− �

)(
ui −

∑
j �=i

uj

)
� 0, in Ω × (0,+∞),

uiuj = 0, in Ω × (0,+∞),

ui = ϕi, on ∂Ω × (0,+∞),

ui = φi, on Ω × {0}.

(1.4)

Various regularity results concerning this system are proved in [1]. We give a simple proof of the following result:

Theorem 1.7. There exists a unique solution of (1.4), and it converges to the unique solution of (1.3) as t → +∞.

There is another simple result which we would like to mention. A simple blow up argument shows that ∂ui,κ

∂t
are

uniformly bounded as κ → +∞, so for solution u of (1.4), ∂ui

∂t
are bounded. Although we don’t need this result in

our paper, we hope it will be useful in other settings.
At last, we would like to add a remark on the symmetric assumptions on bij in the above equation. This assumption

is essential for our proof. This can also be seen from the regularity results in [1], which, according to [6], may be wrong
if bij is not symmetric.

The organization of this paper is as follows. In Section 2, we prove Theorem 1.1. In Section 3, we prove Theo-
rem 1.2. In Section 3, we prove Theorem 1.3 and Theorem 1.4. The methods in these three sections are very easy. In
Section 5, we prove Theorem 1.5. In Section 6, we prove Theorem 1.6. These two sections are the main part of this
paper. In Section 7, we prove Theorem 1.7. This again, is a simple treatment.

2. Uniqueness in the elliptic case

We use the following iteration scheme to prove the uniqueness of solutions for (1.1). First, we know the following
harmonic extension is possible:{

�ui,0 = 0, in Ω,

ui,0 = ϕi, on ∂Ω,
(2.1)

that is, this equation has a unique positive solution ui,0.
Then the iteration can be defined as:⎧⎨

⎩
�ui,m+1 = κui,m+1

∑
j �=i

uj,m, in Ω,

ui,m+1 = ϕi, on ∂Ω,

(2.2)

this is a linear equation, and it satisfies the Maximum Principle, so the existence and uniqueness of the solution is
clear.

Now concerning these ui,m we have the following result:

Proposition 2.1. In Ω

ui,0(x) > ui,2(x) > · · · > ui,2m(x) > · · · > ui,2m+1(x) > · · · > ui,3(x) > ui,1(x).

Proof. We divide the proof into several claims.

Claim 1. ∀i,m, ui,m > 0 in Ω .
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Because
∑

j �=i uj,0 > 0 in Ω , Eq. (2.2) satisfies the maximum principle. From the boundary condition ϕi � 0, then
we have ui,1 > 0 in Ω . By induction, we see the claim is right for all ui,m.

Claim 2. ui,1 < ui,0 in Ω .

From the equation, now we have{
�ui,1 � 0, in Ω,

ui,1 = ui,0, on ∂Ω,
(2.3)

so we have ui,1 < ui,0 from the comparison principle.
In the following we assume the conclusion of the proposition is valid until 2m + 1, that is in Ω

ui,0 > · · · > ui,2m > ui,2m+1 > ui,2m−1 > · · · > ui,1.

Then we have:

Claim 3. ui,2m+1 � ui,2m+2.

By (2.2) we have

�ui,2m+2 � κui,2m+2

∑
j �=i

uj,2m, (2.4)

�ui,2m+1 = κui,2m+1

∑
j �=i

uj,2m. (2.5)

Because ui,2m+1 and ui,2m+2 have the same boundary value, comparing (2.4) and (2.5), by the comparison principle
again we obtain that ui,2m+1 � ui,2m+2.

Claim 4. ui,2m+2 � ui,2m.

This can be seen by comparing the equations they satisfy:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�ui,2m+2 = κui,2m+2

∑
j �=i

uj,2m+1,

�ui,2m = κui,2m

∑
j �=i

uj,2m−1.
(2.6)

By assumption we have uj,2m+1 � uj,2m−1, so the claim follows from the comparison principle again.

Claim 5. ui,2m+3 � ui,2m+1.

This can be seen by comparing the equations they satisfy:{
�ui,2m+3 = κui,2m+2

∑
j �=i uj,2m+2,

�ui,2m+1 = κui,2m+1
∑

j �=i uj,2m.
(2.7)

By Claim 4 we have uj,2m � uj,2m+2, so the claim follows from the comparison principle again. �
Now we know that there exist two family of functions ui and vi , such that limm→∞ uj,2m(x) = uj (x) and

limm→∞ uj,2m+1(x) = vj (x), ∀x ∈ Ω . Moreover, from the elliptic estimate, we know this convergence is smooth
in Ω and uniformly on Ω . So by taking the limit in (2.2) we obtain the following equations:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�ui = κui

∑
j �=i

vj ,

�vi = κvi

∑
j �=i

uj .
(2.8)

Because ui,2m+1 � uj,2m, by taking limit we also have

vi � ui. (2.9)

Now summing (2.8) we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�

( ∑
i

ui

)
= κ

∑
i

(
ui

∑
j �=i

vj

)
,

�

( ∑
i

vi

)
= κ

∑
i

(
vi

∑
j �=i

uj

)
.

(2.10)

It is easily seen that

∑
i

(
ui

∑
j �=i

vj

)
=

∑
i

vi

( ∑
j �=i

uj

)
,

so we must have
∑

i ui ≡ ∑
i vi because they have the same boundary value. This means, by (2.9), ui ≡ vi . In

particular, they satisfy Eq. (1.1).

Proposition 2.2. If there exists another positive solution wi of (1.1), we must have ui ≡ wi .

Proof. We will prove ui,2m � wi � uj,2m+1,∀m, then the proposition follows immediately. We divide the proof into
several claims.

Claim 1. wi � ui,0.

This is because{
�wi � 0, in Ω,

wi = ui,0, on ∂Ω.
(2.11)

Claim 2. wi � ui,1.

This is because⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�wi = κwi

∑
j �=i

wj ,

�ui,1 = κui,1

∑
j �=i

uj,0.
(2.12)

Noting that we have wj < uj,0, so the comparison principle applies.
In the following we assume that our claim is valid until 2m + 1, that is

ui,2m � wi � ui,2m+1.

Then we have

Claim 3. ui,2m+2 � wi .
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This can be seen by comparing the equations they satisfy:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�wi = κwi

∑
j �=i

wj ,

�ui,2m+2 = κui,2m+3

∑
j �=i

uj,2m+1.
(2.13)

By assumption we have uj,2m+1 � wj , so the claim follows from the comparison principle again.

Claim 4. ui,2m+3 � wi .

This can be seen by comparing the equations they satisfy:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�wi = κwi

∑
j �=i

wj ,

�ui,2m+3 = κui,2m+3

∑
j �=i

uj,2m+2.
(2.14)

By Claim 3 we have uj,2m+2 � wj , so the claim follows from the comparison principle again. �
Remark 2.3. From our proof, we know that the uniqueness result still holds for equations of more general form:⎧⎨

⎩
�ui = ui

∑
j �=i

bij (x)uj , in Ω,

ui = ϕi, on ∂Ω,

(2.15)

where bij (x) are positive (and smooth enough) functions defined in Ω , which satisfy bij ≡ bji .

3. Asymptotics in the parabolic case

In this section we prove Theorem 1.2. We can use the method of Section 2 to prove there exists a globally unique
solution ui(x, t). Moreover we can get a result about the asymptotic behavior of this solution from this method.

Proof. Let’s consider the iteration scheme analogous to (2.2). First we consider

⎧⎪⎪⎨
⎪⎪⎩

∂ui,0

∂t
− �ui,0 = 0, in Ω × (0,+∞),

ui,0 = ϕi, on ∂Ω × (0,+∞),

ui,0 = φi, on Ω × {0}.
(3.1)

We know this equation has a unique positive solution ui,0(x, t). We also have

lim
t→+∞ui,0(x, t) = ui,0(x), (3.2)

where the convergence is (for example), in the space of C0(Ω) and ui,0(x) is the solution of (2.1). In fact, we can
prove that

∫
Ω

∣∣∣∣∂ui,0

∂t

∣∣∣∣
2

dx � C1e
−C2t (3.3)

for some positive constants C1 and C2.
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Now the iteration can be defined as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ui,m+1

∂t
− �ui,m+1 = −κui,m+1

∑
j �=i

uj,m, in Ω × (0,+∞),

ui,m+1 = ϕi, on ∂Ω × (0,+∞),

ui,m+1 = φi, on Ω × {0}.

(3.4)

This is just a linear parabolic equation, and there exists a unique global solution ui,m+1(x, t). Differentiating (3.4) in
time t we get

∂

∂t

∂ui,m+1

∂t
− �

∂ui,m+1

∂t
= −κ

∂ui,m+1

∂t

∑
j �=i

uj,m,−κui,m+1

∑
j �=i

∂uj,m

∂t
. (3.5)

By the induction assumption and maximum principle we know for t > 1 we have for some constant C′
m∑

j �=i

uj,m+1 � C′
m, (3.6)

and ∫
Ω

∣∣∣∣∂ui,m

∂t

∣∣∣∣
2

dx � Cm,1e
−Cm,2t (3.7)

for some positive constants Cm,1 and Cm,2.

Multiplying (3.5) by ∂ui,m+1
∂t

, with the help of (3.6), we get (note that we have the boundary condition ∂ui,m+1
∂t

= 0
on ∂Ω)

d

dt

∫
Ω

1

2

∣∣∣∣∂ui,m+1

∂t

∣∣∣∣
2

+
∫
Ω

∣∣∣∣∇ ∂ui,m+1

∂t

∣∣∣∣
2

� κC′
m

∫
Ω

∑
j �=i

∣∣∣∣∂uj,m

∂t

∣∣∣∣
∣∣∣∣∂ui,m+1

∂t

∣∣∣∣. (3.8)

Using Cauchy inequality, we get

d

dt

∫
Ω

1

2

∣∣∣∣∂ui,m+1

∂t

∣∣∣∣
2

+
∫
Ω

∣∣∣∣∇ ∂ui,m+1

∂t

∣∣∣∣
2

� κC′
m

( ∫
Ω

∑
j �=i

∣∣∣∣∂uj,m

∂t

∣∣∣∣
2) 1

2
( ∫

Ω

∣∣∣∣∂ui,m+1

∂t

∣∣∣∣
2) 1

2

. (3.9)

From (3.7) and Poincaré inequality, we get

∫
Ω

∣∣∣∣∂ui,m+1

∂t

∣∣∣∣
2

dx � Cm+1,1e
−Cm+1,2t , (3.10)

for some positive constants Cm+1,1 and Cm+1,2.
By standard parabolic estimate this also implies

sup
Ω

∣∣∣∣∂ui,m+1

∂t

∣∣∣∣ � C′
m+1e

−Cm+1t , (3.11)

for another two constants C′
m+1 and Cm+1. At last we get

lim
t→+∞ui,m+1(x, t) = ui,m+1(x). (3.12)
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Furthermore, the convergence can be taken (for example), in the space of C0(Ω) and ui,m+1(x) is the solution
of (2.2).

The same method of Section 6.1 gives, in Ω × (0,+∞)

ui,0 > · · · > ui,2m > ui,2m+2 > · · · > ui > · · · > ui,2m+1 > ui,2m−1 > · · · > ui,1.

Now our Theorem 1.2 can be easily seen. In fact, ∀ε > 0, there exists an m, such that

max
Ω

∣∣ui,2m(x) − ui(x)
∣∣ < ε

and

max
Ω

∣∣ui,2m+1(x) − ui(x)
∣∣ < ε.

We also have that there exists a T > 0, depending on m only, such that, ∀t > T ,

max
Ω

∣∣ui,2m(x, t) − ui,2m(x)
∣∣ < ε,

and

max
Ω

∣∣ui,2m+1(x, t) − ui,2m+1(x)
∣∣ < ε.

Combing these together, we get ∀t > T ,

max
Ω

∣∣ui(x, t) − ui(x)
∣∣ < 4ε. (3.13)

This implies, ui(x, t) converges to the solution ui(x) of (1.1) as t → +∞, uniformly on Ω . (If the boundary values
are sufficiently smooth, we know that in fact the convergence in Theorem 1.2 is smooth enough.) �
4. A uniform Lipschitz estimate

Here we use the Kato inequality to establish the uniform Lipschitz bound of solutions for (1.1) and (1.2). We will
only treat the parabolic case, the elliptic case is similar.

First differentiating Eq. (1.2) in a space direction e we obtain an equation for Deu := e · ∇u:(
∂

∂t
− �

)
Deui,κ = −κDeui,κ

∑
j �=i

uj,κ − κui,κ

∑
j �=i

Deuj,κ . (4.1)

Now using the Kato inequality we have(
∂

∂t
− �

)
|Deui,κ | � −κ|Deui,κ |

∑
j �=i

uj,κ + κui,κ

∑
j �=i

|Deuj,κ |. (4.2)

Sum these in i we get(
∂

∂t
− �

)∑
i

|Deui,κ | � 0. (4.3)

On the other hand, for Φi to be the solution of⎧⎪⎪⎨
⎪⎪⎩

∂Φi

∂t
− �Φi = 0, in Ω × (0,+∞),

Φi = ϕi, on ∂Ω × (0,+∞),

Φi = φi, on Ω × {0},
(4.4)

we have (see [6] for the elliptic case)
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⎧⎨
⎩

Φi � ui,κ ,

Φi −
∑
j �=i

Φj � ui,κ −
∑
j �=i

uj,κ . (4.5)

This implies

sup
∂Ω×(0,+∞)

∣∣∣∣∂ui,κ

∂ν

∣∣∣∣ � C,

for all i, where ν is the outward unit normal vector and C is independent of κ . With the assumption of Lipschitz
continuity of the initial–boundary values, we in fact have

sup
∂Ω×(0,+∞)

|∇ui,κ | � C,

with a constant C independent of κ again. Next we also have at t = 0, ui,κ = φi , so

sup
Ω×{0}

|∇ui,κ | = sup
Ω

|∇φi |.

Now Maximum Principle implies a global uniform bound:

sup
Ω×[0,+∞)

|∇ui,κ | � C.

Then standard method means we also have a uniform Lipschitz bound with respect to the parabolic distance.

Remark 4.1. Without the boundary regularity, we can still get an interior uniform bound. Multiplying the equation by
ui,κ and integrating by parts, we can get an L2 bound for any T > 0

∑
i

T +1∫
T

∫
Ω

|∇ui,κ |2 � C, (4.6)

with C independent of κ . Then we can use the mean value property for sub-caloric (or subharmonic function) to give
a uniform upper bound for |∇ui,κ |.

Remark 4.2. If we consider the original Lotka–Volterra system

∂ui

∂t
− �ui = aiui − u2

i − κui

∑
j �=i

uj , (4.7)

with homogeneous Dirichlet boundary condition, the above results still hold. In fact, we only need to prove a boundary
gradient estimate, which can be guaranteed by the following argument: if we define vi to be the solution of

∂vi

∂t
− �vi = aivi − v2

i , (4.8)

with the same initial value, then by maximum principle we have for each κ

ui,κ � vi,

which, together with the boundary condition, implies∣∣∣∣∂ui,κ

∂ν

∣∣∣∣ �
∣∣∣∣∂vi

∂ν

∣∣∣∣,
where ν is the unit outward normal vector to ∂Ω ; using the boundary condition once again we get on the boundary

|∇ui,κ | � |∇vi |,
where the right-hand side is independent of κ .
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5. Interior measure estimate

In this section we prove Theorem 1.5.
In order to prove this theorem, we need some lemmas (following the same ideas in Section 5.2 of [12]). The first is

a compactness result, so given an N � 1, let’s define

H1
N :=

{
u: B1(0) → Σ, satisfies (1.3) except the boundary condition,∫

B1(0)

∑
i |∇u2

i |∫
∂B1(0)

∑
i u

2
i

� N,

∫
∂B 1

2
(0)

∑
i

u2
i = 1

}
.

Then we have

Lemma 5.1. H1
N is compact in L2(B1(0)).

Proof. First from the monotonicity of the frequency we have a well-known doubling property, which implies∫
∂B1(0)

∑
i

u2
i � C(N), (5.1)

where C(N) depends only on N . By the definition and Poincaré inequality (noting here we have a boundary con-
straint), we have∫

B1(0)

∑
i

∣∣∇u2
i

∣∣ +
∑

i

u2
i � C(N), (5.2)

for another constant C(N). So for any sequence um ∈ H1
N , there exists a subsequence converging to u, weakly in

H 1(B1) and strongly in L2(B1).
We claim that the limit u must be in H1

N , too. First, we know those properties in (1.3) are preserved under weak
convergence in H 1(B1) and strong convergence in L2(B1). Next, we claim for any r < 1, um converges to u strongly
in H 1(Br). This is because, if we take a smooth cut-off function ζ , from the continuity of um and the fact that �ui,m

is a Radon measure supported on ∂{um > 0}, we have

0 =
∫

�ui,m · ui,mζ 2

= −
∫

|∇ui,m|2ζ 2 + 2ζui,m∇ui,m∇ζ.

So from the weak convergence of ui,m in H 1(B1) and the fact that ui,m converges to ui uniformly, we get

lim
m→+∞

∫
|∇ui,m|2ζ 2 =

∫
|∇ui |2ζ 2.

From Trace Theorem, we also have∫
∂B 1

2
(0)

∑
i

u2
i = lim

m→+∞

∫
∂B 1

2
(0)

∑
i

u2
i,m = 1.

Thus for any r < 1∫
Br(0)

∑
i |∇u2

i |∫
∂Br (0)

∑
i u

2
i

= lim
m→+∞

∫
Br (0)

∑
i |∇u2

i,m|∫
∂Br (0)

∑
i u

2
i,m

� N.

By the monotonicity and continuity of the frequency this implies
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∫
B1(0)

∑
i |∇u2

i |∫
∂B1(0)

∑
i u

2
i

� N. �

The next step is to divide the free boundary into two parts: the good parts are those which are uniformly smooth
(the gradient has a uniform lower bound there), while for the bad parts we have a control on its size. In the following
we shall denote the free boundary of u as F (u).

Lemma 5.2. For any u ∈ H1
N , there exist finite balls Brk (xk) with rk � 1

2 such that{
x ∈ B 1

2
,

∑
i

∣∣∇u2
i

∣∣ � γ (N)

}
∩ F (u) ⊂

⋃
k

Brk (xk), (5.3)

and ∑
k

rn−1
k � 1

2
, (5.4)

where γ (N) is a constant depending only on the dimension n and N .

Proof. For any u0 ∈ H1
N , the singular set of the free boundary sing(F (u0)) has vanishing (n − 1)-dimensional Haus-

dorff measure:

Hn−1(sing
(

F (u0)
)) = 0.

So there exist finite balls Brk (xk) with rk � 1
2 such that

sing
(

F (u0)
) ⊂

⋃
k

B rk
2
(xk), (5.5)

and ∑
k

rn−1
k � 1

2n
. (5.6)

Of course, there exists a constant γ (u0) > 0, such that, on the set B 1
2
∩ F (u0) \ (

⋃
k B rk

2
(xk)),∑

i

|∇ui,0|2 � 3γ (u0). (5.7)

Now we claim there exists an ε(u0) > 0 such that for any u ∈ H1
N with ‖u − u0‖L2(B1)

� ε(u0), on B 1
2

∩ F (u) \
(
⋃

k Brk (xk)),∑
i

|∇ui |2 � γ (u0).

With the compactness of H1
N in L2(B1), our conclusion is easily seen.

Assume this claim is not true, then there exists a sequence of um ∈ H1
N with ‖um − u0‖L2(B1)

� 1
m

, but ∃xm ∈
B 1

2
∩ F (um) \ (

⋃
k Brk (xk)),∑

i

|∇ui,m|2(xm) � γ (u0). (5.8)

Then from the uniform Lipschitz estimate, we have um converge to u uniformly on any compact subset of B1(0).
This implies for any δ > 0, for m large enough depending only on δ, F (um) is in the δ neighborhood of F (u).
However, near B 1

2
∩ F (u0) \ (

⋃
k Brk (xk)), locally, there exist exact two components of u0 which are non-vanishing

here, without loss of generality, assuming to be u1,0 and u2,0, which satisfies

�(u1,0 − u2,0) = 0.
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Using the same method of the Clean Up Lemma in [1], we can show that locally, for m large, we also have, only u1,m

and u2,m are non-vanishing. (This can also be proven by the upper semicontinuity of the frequency function under the
convergence of um → u and xm → x.) Then we also have locally

�(u1,m − u2,m) = 0.

In view of their convergence in L2
loc, we have here locally

u1,m − u2,m → u1,0 − u2,0 smoothly.

Now coming back to (5.8), without loss of generality, assuming xm → x0, which lies in B 1
2

∩ F (u0) \ (
⋃

k Brk (xk)),
we can take the limit in (5.8) to get∑

i

|∇ui,0|2(x0) � γ (u0), (5.9)

which contradicts (5.7). �
First we need to control the measure of the good part. This needs a comparison with some standard models, for

example, in [12], they use the comparison with harmonic functions. But here we have no such smooth model to
compare, instead, we will compare it with the homogeneous elements in H1

N , which has the property

u(rx) = rdu(x), for some d > 0.

It can be represented by u(rθ) = rdϕ(θ), for ϕ defined on S
n−1, satisfying⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(�θ + λ)ϕi � 0,

(�θ + λ)

(
ϕi −

∑
j �=i

ϕj

)
� 0,

ϕi � 0,

ϕiϕj = 0,

(5.10)

where λ satisfies d(d + n − 2) = λ and λ � N , and �θ is the Laplacian on S
n−1. By induction on the dimension, we

can assume

Hn−2(F (ϕ) ∩ S
n−1) � C(N,n). (5.11)

Note here in dimension n = 2, each ϕ can be computed explicitly.

Lemma 5.3. With the assumptions of the preceding lemma, if moreover∫
B1(0)

∑
i |∇u2

i |∫
∂B1(0)

∑
i u

2
i

− N(u,0) � σ, (5.12)

where σ is a constant depending only on the dimension n and N , and

N(u,0) = lim
r→0

r
∫
Br (0)

∑
i |∇u2

i |∫
∂Br (0)

∑
i u

2
i

. (5.13)

Then

Hn−1
(

F (u) ∩ B 1
2
\

( ⋃
k

Brk (xk)

))
� C(N),

where C(N) is a constant depending only on the dimension n and N .
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Proof. Take a δ > 0 small enough. If we choose σ small enough too, then by compactness there exists a homogeneous
w ∈ H1

N such that

‖u − w‖L2(B1)
� δ,

and F (u) is in the δ neighborhood of F (w). Define

S1 :=
{
x ∈ B 1

2
,

∑
i

∣∣∇u2
i

∣∣ � γ (N)

}
∩ F (u),

S2 :=
{
x ∈ B 1

2
,

∑
i

∣∣∇w2
i

∣∣ � γ (N)

}
∩ F (w).

If σ is small, S1 is in the δ neighborhood of S2, too. Take an ε � δ, and take a maximal ε separated sets {yk} of S2.
Then we have dist(yk, yl) � ε

2 and S2 ⊂ ⋃
k Bε(yk).

In each Bε(yk), w has exactly two components which are non-vanishing. Moreover, the free boundary F (w) ∩
Bε(yk) can be represented by the graph of a C1 function defined on the tangent plane to F (w) at yk . Now if δ is small
enough, this property is also valid for u. The same method of Lemma 5.25 in [12] gives our conclusion. �

Now the proof of Theorem 1.5 can be easily done by an iteration procedure exactly as in [12]. Here, we just need
to note that in Lemma 5.2, those radius ri can be chosen arbitrarily small so that the assumptions in Lemma 5.3 are
satisfied.

At last, we give a theorem on the uniform estimate of the measure of the level surface {ui = δ}.

Theorem 5.4. For u ∈ H 1
N , ∀δ > 0 and 1 � i � M , we have

Hn−1(B 1
2
∩ {ui = δ}) � C(N).

This is also valid if we consider the local energy minimizing map.

Proof. First, because each ui is subharmonic, from the L2(B1) bound we have

sup
B 1

2

ui � C(N). (5.14)

We claim that, ∀δ > 0, ∃C(δ,N), such that, ∀t > δ

Hn−1(B 1
2
∩ {ui = t}) � C(δ,N). (5.15)

If this is not true, then ∃tk � δ and uk ∈ H 1
N such that

Hn−1(B 1
2
∩ {ui,k = tk}

)
� k. (5.16)

By (5.14), we can assume tk → t � δ. By the compactness of H 1
N , we can assume uk → u in L2(B1). By the uniform

Hölder continuity [1], we can also assume ui,k → ui in C(B 2
3
).

If ui ≡ 0, then for k large

sup
B 2

3

ui,k <
t

2
.

This is impossible, so ui is not 0. In fact, {ui = t} ∩ B 1
2

�= ∅. Because in {ui > 0}, ui is harmonic, we have

Hn−1(B 1
2
∩ {ui = t}) < +∞. (5.17)

We also have for k large, B 1
2

∩ {ui,k = tk} lies in a small neighborhood of B 1
2

∩ {ui = t}. In this neighborhood, ui,k

converge to ui smoothly, so for k large, ∃C > 0 such that
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Hn−1(B 1
2
∩ {ui,k = tk}

)
� C. (5.18)

This is a contradiction, so our claim follows.
Now we can use an iteration to prove our theorem. For any u ∈ H 1

N , take a covering of the singular set of the free
boundary as in Lemma 5.2:

sing
(

F (u)
) ⊂

⋃
k

B rk
2
(xk) (5.19)

with ∑
k

rn−1
k � 1

2n
. (5.20)

By the uniform interior Lipschitz estimate, ∃δ(N) > 0, such that

sup⋃
k Brk

(xk)

∑
i

ui � δ(N). (5.21)

While for x ∈ B 1
2
∩ F (u) \ ⋃

k B rk
2
(xk)∑

i

|∇ui |2 � γ (N), (5.22)

so ∃C(N), such that ∀δ > 0

Hn−1
(

B 1
2
∩ {ui = δ} \

⋃
k

B rk
2
(xk)

)
� C(N).

Now we can rescale u in Brk :

û = Lku(xk + rkx).

If we choose Lk appropriately, û is still in H 1
N , and we can iterate the above procedure. This iteration will stop in

finite times and at last we get our original estimate. �
6. Uniqueness of the singular limit

In this section we prove Theorem 1.6.
In order to prove the energy minimizing property, we need to prove that for given Lipschitz map w : Ω → Σ such

that w ≡ u outside a compact set Ω ′ � Ω , we have∫
Ω ′

∑
i

|∇ui |2 dx �
∫
Ω ′

∑
i

|∇wi |2 dx.

In fact, we will prove that, if v minimizes {∫
Ω ′

∑
i |∇wi |2 dx: w ≡ u outside Ω ′}, then u ≡ v in Ω ′.

First, ∀i, in {ui > 0} (or {vi > 0}), ui (or vi ) is harmonic, thus real analytic. If we enlarge Ω ′, we can assume ∂Ω ′ is
real analytic and smooth (without singularity). Choose two constants δ > σ > 0, such that the level surfaces {ui = δ}
and {vi = δ}, ∀i, are regular real analytic hypersurface up to the boundary (that is, {ui = δ} ∩ ∂Ω ′ and {vi = δ} ∩ ∂Ω ′
are regular real analytic hypersurface in ∂Ω ′). With this setting, we know that the divergence theorem is valid for
domains separated by these hypersurfaces.

Define uδ
i := max{ui − δ,0} and vσ

i := max{vi − σ,0}. We consider the geodesic homotopy ut : Ω → Σ between
uδ and vσ for t ∈ [0,1], that is, ut (x) is the point on the unique geodesic between uδ(x) and vσ (x) which is charac-
terized uniquely by d(ut (x), uδ(x)) = td(uδ(x), vσ (x)). (Here d denotes the intrinsic distance of Σ .)

We can write down the expression of ut (x) explicitly from the concrete form of Σ , following the construction of
the test functions used in [5]. In the set Ai := {x: uδ

i (x) > 0, vσ
i (x) > 0}:

ut
i(x) = (1 − t)uδ

i (x) + tvσ
i (x); (6.1)
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in the set Bij := {x: uδ
i (x) > 0, vσ

j (x) > 0 and uδ
i (x) − t (uδ

i (x) + vσ
j (x)) > 0} for some j �= i:

ut
i(x) = uδ

i (x) − t
(
uδ

i (x) + vσ
j (x)

); (6.2)

in the set Cij := {x: uδ
j (x) > 0, vσ

i (x) > 0 and t (uδ
j (x) + vσ

i (x)) − uδ
j (x) > 0} for some j �= i:

ut
i(x) = t

(
uδ

j (x) + vσ
i (x)

) − uδ
j (x); (6.3)

in the set Di := {x: uδ
i (x) > 0, vσ

j (x) = 0, ∀j}:
ut

i(x) = (1 − t)uδ
i (x); (6.4)

in the set Ei := {x: vσ
i (x) > 0, uδ

j (x) = 0, ∀j}:
ut

i(x) = tvσ
i (x); (6.5)

on the remaining part ut
i(x) = 0.

Now we have (note that in {uδ
i (x) > 0}, ∇uδ

i (x) = ∇ui(x) a.e.)∫
Ω

∣∣∇ut
i(x)

∣∣2
dx =

∫
Ai

∣∣(1 − t)∇ui(x) + t∇vi(x)
∣∣2

dx +
∑
j �=i

∫
Bij

∣∣(1 − t)∇ui(x) − t∇vj (x)
∣∣2

dx

+
∑
j �=i

∫
Cij

∣∣−(1 − t)∇uj (x) + t∇vi(x)
∣∣2

dx +
∫
Di

∣∣(1 − t)∇ui(x)
∣∣2

dx

+
∫
Ei

∣∣t∇vi(x)
∣∣2

dx. (6.6)

We need to compute dE
dt

|t=0. Noticing that in the first term of (6.6) the domain is fixed, and �ui = 0 in the open set
{ui > δ}, we can integrate by parts to get

2
∫
Ai

∇ui(x)
(∇vi(x) − ∇ui(x)

)
dx = 2

∫
∂Ai

∂ui

∂ν

[
vi(x) − ui(x)

]
. (6.7)

Now we have

∂Ai = Ai,1 ∪ Ai,2 ∪ Ai,3,

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ai,1 = {ui = δ} ∩ {vi > σ },
Ai,2 = {vi = σ } ∩ {ui > δ},
Ai,3 = ∂Ω ′ ∩ {vi > σ } ∩ {ui > δ},
Ai,4 = {ui = δ, vi = σ }.

(6.8)

On Ai,3 we have ui = vi , while the n − 1 dimension Hausdorff measure of Ai,4 is 0 (it lies in the interior of Ω ′), so
they do not appear in (6.7). On Ai,1 we have ui = δ and on Ai,2 we have vi = σ . Thus we get

2
∫

Ai,1

∂ui

∂ν−
i,1

vi − 2
∫

Ai,2

∂ui

∂ν−
i,2

ui − 2δ

∫
Ai,1

∂ui

∂ν−
i,1

+ 2σ

∫
Ai,2

∂ui

∂ν−
i,2

. (6.9)

Here ν−
i,1 and ν−

i,2 are the outward unit normal vector to ∂{ui > δ} and ∂{vi > δ} respectively.
Next let’s consider the second term in (6.6). Here we must be careful because the domain changes as t changes.

That is

Bij := {
x: ui(x) > δ, vj (x) > σ

} \
{
uδ

i (x) <
t

vσ
j (x)

}
.

1 − t
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So the second term of (6.6) can be written as∑
j �=i

∫
{x: ui(x)>δ, vj (x)>σ }

∣∣(1 − t)∇ui(x) − t∇vj (x)
∣∣2

dx

−
∑
j �=i

∫
{x: uδ

i (x)� t
1−t

vσ
j (x)}

∣∣(1 − t)∇ui(x) − t∇vj (x)
∣∣2

dx. (6.10)

In the first term, the domain is fixed, and the derivative can be calculated directly. The second term can be written in
another form using the Co-Area formula (see, for example, [14]):

∑
j �=i

t
1−t∫
0

[ ∫
{x:

uδ
i

vσ
j

=τ }

|(1 − t)∇ui(x) − t∇vj (x)|2
|∇ uδ

i

vσ
j
|

]
dτ. (6.11)

Its derivative at t = 0 is∑
j �=i

∫
{x:

uδ
i

vσ
j

=0}

|∇ui(x)|2
|∇ uδ

i

vσ
j
|

. (6.12)

After calculation we get∑
j �=i

∫
{x: ui=δ, vj >σ }

∣∣∇ui(x)
∣∣vσ

j (x). (6.13)

At last we get that the derivative of the second term of (6.6) at t = 0 is

−2
∫

{ui>δ, vj >σ }
∇ui(x)

(∇vj (x) + ∇ui(x)
)
dx −

∫
{ui=δ}∩{vj >σ }

∣∣∇ui(x)
∣∣vσ

j . (6.14)

Through an integration by parts (and the same remark as before concerning this procedure of integration by parts),
the first term of (6.14) can be transformed into the boundary term, and notice that on {ui = δ} we have ui = δ and on
{vj = σ } we have vj = σ , so the first term of (6.14) is

−2
∫

{ui=δ}∩{vj >σ }

∂ui

∂ν−
i,1

vj − 2
∫

{vj =σ }∩{ui>δ}

∂ui

∂ν−
i,2

ui − 2δ

∫
{ui=δ}∩{vj >σ }

∂ui

∂ν−
i,1

− 2σ

∫
{vj =σ }∩{ui>δ}

∂ui

∂ν−
i,2

. (6.15)

Here ν−
i,1 and ν−

i,2 are the outward normal vectors to ∂{ui > δ} and ∂{vj > δ} respectively.
The third term can be calculated similarly (notice that the domain is enlarged so here the positive sign comes out):∫

{uj =δ}∩{vi>σ }

∣∣∇uj (x)
∣∣vσ

i . (6.16)

The result from the fourth term is

d

dt

∫
Ei

(1 − t)2|∇ui |2 = −2
∫

{ui>δ}∩(
⋃

j {vj <σ })
|∇ui |2

= −2
∫

{ui=δ}∩(
⋃

j {vj <σ })

∂ui

∂ν−
i,1

ui − 2
∑
j

∫
{ui>δ}∩{vj =σ }

∂ui

∂ν+
i,2

ui, (6.17)

where ν− and ν+ are the outward normal vectors to ∂{ui > δ} and ∂{vj < δ} respectively.
i,1 i,2
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The fifth term is of the order t2, so there is no contribution. Now put all of these terms for all i together:

2
∑

i

∫
{ui=δ}∩{vi>σ }

∂ui

∂ν−
i,1

vi − 2
∑

i

∫
{vi=σ }∩{ui>δ}

∂ui

∂ν−
i,2

ui − 2
∑

i

δ

∫
{ui=δ}∩{vi>σ }

∂ui

∂ν−
i,1

+ 2
∑

i

σ

∫
{vi=σ }∩{ui>δ}

∂ui

∂ν−
i,2

−
∑
i �=j

∫
{ui=δ}∩{vj >σ }

∣∣∇ui(x)
∣∣vσ

j − 2
∑
i �=j

∫
{ui=δ}∩{vj >σ }

∂ui

∂ν−
i,1

vj

− 2
∑
i �=j

∫
{vj =σ }∩{ui>δ}

∂ui

∂ν−
i,2

ui − 2
∑
i �=j

δ

∫
{ui=δ}∩{vj >σ }

∂ui

∂ν−
i,1

− 2
∑
i �=j

σ

∫
{vj =σ }∩{ui>δ}

∂ui

∂ν−
i,2

+
∑
i �=j

∫
{uj =δ}∩{vi>σ }

∣∣∇uj (x)
∣∣vσ

i − 2
∑
i,j

δ

∫
{ui=δ}∩{vj <σ }

∂ui

∂ν−
i,1

− 2
∑
i,j

∫
{ui>δ}∩{vj =σ }

∂ui

∂ν+
i,2

ui. (6.18)

In these twelve terms, let’s see the second, the seventh and the twelfth terms (modulo the constant −2):

∑
i

∫
{vi=σ }∩{ui>δ}

∂ui

∂ν−
i,2

ui +
∑
i �=j

∫
{vj =σ }∩{ui>δ}

∂ui

∂ν−
i,2

ui +
∑
i,j

∫
{ui>δ}∩{vj =σ }

∂ui

∂ν+
i,2

ui

=
∑

i

∑
j

∫
{vi=σ }∩{uj>δ}

∂ui

∂ν−
i,2

ui +
∑
i,j

∫
{vi=σ }∩{uj >δ}

∂ui

∂ν+
i,2

ui

= 0,

because the normal vector field ν+
i,2 and ν−

i,2 on {vi = σ } have opposite directions.
The fourth and the ninth terms are

2
∑

i

σ

∫
{vi=σ }∩{ui>δ}

∂ui

∂ν−
i,2

and

−2
∑
i �=j

σ

∫
{vj =σ }∩{ui>δ}

∂ui

∂ν−
i,2

.

We show that the integration in these terms are uniformly bounded in σ , thus as σ → 0, these two terms converge
to 0. We only calculate the first, the second is similar. First

∫
{vi=σ }∩{ui>δ}

∂ui

∂ν−
i,2

=
∫

{vi>σ }∩{ui>δ}
�ui −

∫
{vi>σ }∩{ui=δ}

∂ui

∂ν−
i,1

−
∫

{vi>σ }∩{ui>δ}∩∂Ω ′

∂ui

∂ν
,

where ν is the outward unit normal vector field to ∂Ω ′. In the right-hand side, the first term is less than the total mass
of the measure �ui on Ω ; the second term can be controlled by

∫
{ui=δ}

|∇ui |,

at the end of this subsection we will show this is uniformly bounded in δ; the third term is also uniformly bounded by
the area of ∂Ω ′ times the sup norm of ∇ui , and we conclude.
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The eleventh term in Eq. (6.18) converges to 0 as σ → 0. Now we can take the limit in the remaining terms as
σ → 0 to get:

2
∑

i

∫
{ui=δ}∩{vi>0}

∂ui

∂ν−
i,1

vi − 2δ
∑

i

∫
{ui=δ}∩{vi>0}

∂ui

∂ν−
i,1

−
∑
i �=j

∫
{ui=δ}∩{vj >0}

∣∣∇ui(x)
∣∣vj

− 2
∑
i �=j

∫
{ui=δ}∩{vj>0}

∂ui

∂ν−
i,1

vj − 2δ
∑
i �=j

∫
{ui=δ}∩{vj >0}

∂ui

∂ν−
i,1

+
∑
i �=j

∫
{uj =δ}∩{vi>0}

∣∣∇uj (x)
∣∣vi. (6.19)

Noting that on {ui = δ}, ∂ui

∂ν−
i,1

= −|∇ui |, so we have

−2
∑

i

∫
{ui=δ}∩{vi>0}

|∇ui |vi −
∑
i �=j

∫
{ui=δ}∩{vj>0}

∣∣∇ui(x)
∣∣vj + 2

∑
i �=j

∫
{ui=δ}∩{vj >0}

|∇ui |vj

+
∑
i �=j

∫
{uj =δ}∩{vi>0}

∣∣∇uj (x)
∣∣vi + 2δ

∑
i �=j

∫
{ui=δ}∩{vj >0}

|∇ui | + 2δ
∑

i

∫
{ui=δ}∩{vi>0}

|∇ui |. (6.20)

The integration in the last two terms will be shown to be uniformly bounded in δ at the end of this subsection, thus as
δ → 0, they converge to 0.

As δ → 0, the remaining terms converge to (see the end of this subsection, too)

−2
∑

i

∫
∂{ui>0}∩{vi>0}

|∇ui |vi −
∑
i �=j

∫
∂{ui>0}∩{vj >0}

∣∣∇ui(x)
∣∣vj

+ 2
∑
i �=j

∫
∂{ui>0}∩{vj >0}

|∇ui |vj +
∑
i �=j

∫
∂{uj>0}∩{vi>0}

∣∣∇uj (x)
∣∣vi. (6.21)

In {vi > 0}, if ∂{ui > 0} ∩ ∂{uj > 0} �= ∅, then ∂ui

∂νi,1
= ∂uj

∂νj,1
, so the first term cancels some terms in the third term,

with ∑
i

∑
j,k �=i

∫
∂{uj>0}∩∂{uk>0}∩{vi>0}

∣∣∇uj (x)
∣∣vi

left. The integral
∫
∂{uj >0}∩{vi>0} |∇uj (x)|vi appears twice in the second term and the fourth term with different signs,

so these terms cancel each other, too.
So we have

dE

dt

∣∣∣∣
t=0

� 0.

However, E(t) is a convex function of t , so 0 is its minimal point. But from our choice of v we also have 1 is its
minimal point. Therefore we must have E(t) ≡ const., this implies u is the energy minimizer and u ≡ v.

6.1. Verification of the convergence of the integration

Here we will show the uniform boundedness and the convergence of the various integrations appearing before.
We only consider the integration∫

{ui=δ}∩{vi>0}
|∇ui |vi,

others can be treated similarly.
We know that the singular set of ∂{ui > 0} is of Hausdorff dimension n − 2, so its (n − 1)-dimensional Hausdorff

measure is 0. In particular, ∀ε > 0, there exist some balls B(xk, rk), such that
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Sing
(
∂{ui > 0}) ⊂

⋃
B(xk, rk),

with ∑
k

rn−1
k � ε.

Outside
⋃

B(xk, rk), ∂{ui > 0} is a regular smooth hypersurface where inf |∇ui | > 0, then it is easily seen that (noting
that the integrand are continuous up to ∂{ui > 0} outside

⋃
B(xk, rk)), there exists a δ0 > 0, such that for any δ < δ0

(if the level surface {ui = δ} is regular)∣∣∣∣
∫

{ui=δ}\(⋃B(xk,rk))

|∇ui |vi(x) −
∫

∂{ui>0}\(⋃B(xk,rk))

|∇ui |vi(x)

∣∣∣∣ � ε. (6.22)

On the other hand, in B(xk, rk), we have

0 =
∫

{ui>ε}∩B(xk,rk)

�ui

= −
∫

{ui=ε}∩B(xk,rk)

∣∣∇ui(x)
∣∣ +

∫
{ui>ε}∩∂B(xk,rk)

∂ui

∂ν
,

where ν is the unit outward normal vector of ∂B(xk, rk). We also have on {ui > ε} ∩ ∂B(xk, rk)∣∣∣∣∂ui

∂ν

∣∣∣∣ � |∇ui | � C.

Combing these two facts we get∫
{ui=δ}∩B(xk,rk)

∣∣∇ui(x)
∣∣ � Crn−1

k . (6.23)

Sum these to get∑
k

∫
{ui=δ}∩B(xk,rk)

∣∣∇ui(x)
∣∣ � Cε.

From Hn−1(∂{ui > 0} ∩ Ω ′) < ∞, we can select balls B(xk, rk) small enough so that (here the integration, as usual,
is understood as on the regular part)∑

k

∫
∂{ui>0}∩B(xk,rk)

∣∣∇ui(x)
∣∣ � ε.

In view of the arbitrary choice of ε, now it is clear that as δ → 0,∫
{ui=δ}∩{vi>0}

|∇ui |vi(x) →
∫

∂{ui>0}∩{vi>0}
|∇ui |vi(x).

Then the left-hand side is also uniformly bounded in δ.

7. Uniqueness and asymptotics of the singular parabolic system

In this section we prove Theorem 1.7.
First, we prove the uniqueness of the solution. If there exist two solutions of (1.4), u and v, define the distance

d(u, v)(x, t) :=
∑∣∣ui(x, t) − vi(x, t)

∣∣.

i
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Because ∀i, ui and vi are Lipschitz continuous with respect to the parabolic distance, d is Lipschitz too. Now we
claim that in {d > 0}(

� − ∂

∂t

)
d � 0. (7.1)

We prove this case by case:

1. Where ui > 0 and vi > 0 with ui − vi > 0, we have

d = ui − vi,

so (� − ∂
∂t

)d = 0.

2. Where ui > 0 and vi > 0 with vi − ui > 0, we have

d = vi − ui,

so (� − ∂
∂t

)d = 0.

3. Where ui > 0 and vj > 0 for some j �= i, we have

d = vj + ui,

so (� − ∂
∂t

)d = 0.

4. Where ui(X0) > 0 and vj (X0) = 0, ∀j , then in a neighborhood of X0, we have

d = ui − vi +
∑
j �=i

vj ,

so (
� − ∂

∂t

)
d =

(
� − ∂

∂t

)(
−vi +

∑
j �=i

vj

)
� 0.

5. Where vi(X0) > 0 and uj (X0) = 0, ∀j , then in a neighborhood of X0, we have

d = vi − ui +
∑
j �=i

uj ,

so (
� − ∂

∂t

)
d =

(
� − ∂

∂t

)(
−ui +

∑
j �=i

uj

)
� 0.

Take an ε > 0, and define

d̂ = e−εt d,

then (
� − ∂

∂t

)
d̂ > 0, (7.2)

strictly on the open set {d > 0}. Now from the boundary condition we have

d̂ = d = 0, on ∂p

(
Ω × (0,+∞)

)
.

By the maximum principle we get d̂ ≡ 0, or in other words

ui ≡ vi.

That is, the solution is unique.



760 K. Wang, Z.T. Zhang / Ann. I. H. Poincaré – AN 27 (2010) 739–761
Next, let’s consider the singular limit of the following system (this was considered by Caffarelli and Lin in [4]):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂vi,κ

∂t
− �vi,κ = −κvi,κ

∑
j �=i

v2
j,κ , in Ω × (0,+∞),

vi,κ = ϕi, on ∂Ω × (0,+∞),

vi,κ = φi, on Ω × {0}.

(7.3)

This system is the decreasing gradient flow of the functional∫
Ω

2
∑

i

|∇vi |2 + κ
∑
i �=j

v2
i v

2
j .

We claim that its singular limit vi as κ → +∞ satisfy the inequalities in (1.4). We know that the singular limit satisfy

∂vi

∂t
− �vi = −

∑
j �=i

μij , (7.4)

where μij are positive Radon measure supported on ∂{vi > 0} ∩ ∂{vj > 0}. We just need to show

μij = μji, ∀j �= i.

This comes from the regularity theory of the free boundary, which shows that

μij = |∇vi |Hn−1⌊
∂{vi>0} ∧ dt.

But on ∂{vi > 0} ∩ ∂{vj > 0}, we have

|∇vi | = |∇vj |, Hn−1 a.e.

Then our claim is proven.
From the above proof of the uniqueness, we know this singular limit v coincide with u, the solution of (1.4). But v

has an energy identity induced from (7.3):

d

dt

∫
Ω

∑
i

|∇vi |2 = −
∫
Ω

∑
i

∣∣∣∣∂vi

∂t

∣∣∣∣
2

. (7.5)

Of course, this is also valid for u. Now it is easy to conclude that as t → +∞, u converge to the unique stationary
solution. This is because, for any sequence ti → +∞, the translation u(ti + t) has a subsequence converges to a
solution w of (1.4) defined on (−∞,+∞). However, from the energy decreasing property, we know

d

dt

∫
Ω

∑
i

|∇wi |2 = −
∫
Ω

∑
i

∣∣∣∣∂wi

∂t

∣∣∣∣
2

= 0. (7.6)

So

∂wi

∂t
= 0, a.e.

that is, w is a stationary solution of (1.4), or solution of (1.3). From Theorem 1.6, we know such w is unique, thus we
proved that for any sequence ti → +∞

u(ti) → w,

with w the unique solution of (1.3).

Remark 7.1. The above method can be easily generalized to systems with the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
− �ui � fi(ui), in Ω × (0,+∞),(

∂

∂t
− �

)(
ui −

∑
j �=i

uj

)
� fi(ui) −

∑
j �=i

fj (uj ), in Ω × (0,+∞),

uiuj = 0, in Ω × (0,+∞),

ui = ϕi, on ∂Ω × (0,+∞),

ui = φi, on Ω × {0},

(7.7)

where fi(ui) are Lipschitz continuous function on R.
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