On the Schrödinger-Maxwell equations under the effect of a general nonlinear term

A. Azzollini ${ }^{\text {a }}$, P. d'Avenia ${ }^{\text {b }}$, A. Pomponio ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Dipartimento di Matematica ed Informatica, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, I-85100 Potenza, Italy ${ }^{\text {b }}$ Dipartimento di Matematica, Politecnico di Bari, Via E. Orabona 4, I-70125 Bari, Italy

Received 14 May 2009; received in revised form 9 November 2009; accepted 9 November 2009
Available online 3 December 2009

Abstract

In this paper we prove the existence of a nontrivial solution to the nonlinear Schrödinger-Maxwell equations in \mathbb{R}^{3}, assuming on the nonlinearity the general hypotheses introduced by Berestycki and Lions. © 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on démontre l'existence d'une solution non-banale et positive pour les équations non-linéaires de SchrödingerMaxwell dans \mathbb{R}^{3} en supposant que le terme non-linéaire satisfait les hypothèses introduites par Berestycki et Lions.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the recent years, the following electrostatic nonlinear Schrödinger-Maxwell equations, also known as nonlinear Schrödinger-Poisson system,

$$
\begin{cases}-\Delta u+q \phi u=g(u) & \text { in } \mathbb{R}^{3} \tag{SM}\\ -\Delta \phi=q u^{2} & \text { in } \mathbb{R}^{3}\end{cases}
$$

have been object of interest for many authors. Indeed a similar system arises in many mathematical physics contexts, such as in quantum electrodynamics, to describe the interaction between a charge particle interacting with the electromagnetic field, and also in semiconductor theory, in nonlinear optics and in plasma physics. We refer to [4] for more details in the physics aspects.

The greatest part of the literature focuses on the study of the previous system for the very special nonlinearity $g(u)=-u+|u|^{p-1} u$, and existence, nonexistence and multiplicity results are provided in many papers for this particular problem (see [1,2,10,12-14,19-21,24,28]). In [9,11,27], also the linear and the asymptotic linear cases have

[^0]been studied, whereas in [22] the problem has been dealt with in a bounded domain, with Neumann conditions on the boundary.

The aim of this paper is to study the Schrödinger-Maxwell system assuming the same very general hypotheses introduced by Berestycki \& Lions, in their celebrated paper [7]. Actually, we assume that the following hold for g :
(g1) $g \in C(\mathbb{R}, \mathbb{R})$;
(g2) $-\infty<\liminf _{s \rightarrow 0^{+}} g(s) / s \leqslant \limsup _{s \rightarrow 0^{+}} g(s) / s=-m<0$;
(g3) $-\infty \leqslant \lim \sup _{s \rightarrow+\infty} g(s) / s^{5} \leqslant 0$;
(g4) there exists $\zeta>0$ such that $G(\zeta):=\int_{0}^{\zeta} g(s) d s>0$.
Using similar assumptions on the nonlinearity $g,[3,18]$ and [23] studied, respectively, a nonlinear Schrödinger equation in presence of an external potential and a system of weakly coupled nonlinear Schrödinger equations. We mention also [5] where the Klein-Gordon and in Klein-Gordon-Maxwell equations are considered.

The main result of the paper is
Theorem 1.1. If g satisfies (g1)-(g4), then there exists $q_{0}>0$ such that, for any $0<q<q_{0}$, problem (SM) admits a nontrivial positive radial solution $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$.

Some remarks on this result are in order:

- the assumptions are trivially satisfied by nonlinearities like $g(u)=-u+|u|^{p-1} u$, for any $\left.p \in\right] 1,5[$;
- hypotheses on g are almost necessary in the sense specified in [7, Subsection 2.2];
- the fact that the result is obtained for small q is not surprising for at least two reasons: first, because small q makes, in some sense, less strong the influence of the term ϕu, which constitutes, in the first equation, a perturbation with respect to the classical nonlinear Schrödinger equation treated in [7]; second, there is a nonexistence result for large q and $g(u)=-u+|u|^{p-1} u$ with $\left.\left.p \in\right] 1,2\right]$ (see [24]).

From the technical point of view, dealing with $(\mathcal{S M})$ under the effect of a general nonlinear term presents several difficulties. Indeed the lack of the following global Ambrosetti-Rabinowitz growth hypothesis on g :

$$
\text { there exists } \quad \mu>2 \text { such that } 0<\mu G(s) \leqslant g(s) s, \quad \text { for all } s \in \mathbb{R},
$$

brings on two obstacles to the standard Mountain Pass arguments both in checking the geometrical assumptions in the functional and in proving the boundedness of its Palais-Smale sequences. To overcome these difficulties, we will use a combined technique consisting in a truncation argument (see [17,21]) and a monotonicity trick à la Jeanjean [15] (see also Struwe [26]).

It is natural to ask about multiplicity of solutions of $(\mathcal{S M})$. However, our approach does not seem to work in this direction.

The paper is organized as follows. In Section 2 we introduce the functional framework for solving our problem by a variational approach. In Section 3 we define a sequence of modified functionals on which we can easily apply the Mountain Pass Theorem. Then we study the convergence of the sequence of critical points obtained. Finally Appendix A is devoted to prove a Pohozaev type identity which we use, in Section 3, as a fundamental tool in our arguments.

Notation.

- For any $1 \leqslant s \leqslant+\infty$, we denote by $\|\cdot\|_{s}$ the usual norm of the Lebesgue space $L^{s}\left(\mathbb{R}^{3}\right)$;
- $H^{1}\left(\mathbb{R}^{3}\right)$ is the usual Sobolev space endowed with the norm

$$
\|u\|^{2}:=\int_{\mathbb{R}^{3}}|\nabla u|^{2}+u^{2} ;
$$

- $\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ is completion of $C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ (the compactly supported functions in $C^{\infty}\left(\mathbb{R}^{3}\right)$) with respect to the norm

$$
\|u\|_{\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)}^{2}:=\int_{\mathbb{R}^{3}}|\nabla u|^{2} ;
$$

- for brevity, we denote $\alpha=12 / 5$.

2. Functional setting

We first recall the following well-known facts (see, for instance [4,6,12,24]).
Lemma 2.1. For every $u \in H^{1}\left(\mathbb{R}^{3}\right)$, there exists a unique $\phi_{u} \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ solution of

$$
-\Delta \phi=q u^{2}, \quad \text { in } \mathbb{R}^{3} .
$$

Moreover,

(i) $\left\|\phi_{u}\right\|_{\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)}^{2}=q \int_{\mathbb{R}^{3}} \phi_{u} u^{2}$;
(ii) $\phi_{u} \geqslant 0$;
(iii) for any $\theta>0$: $\phi_{u_{\theta}}(x)=\theta^{2} \phi_{u}(x / \theta)$, where $u_{\theta}(x)=u(x / \theta)$;
(iv) there exist $C, C^{\prime}>0$ independent of $u \in H^{1}\left(\mathbb{R}^{3}\right)$ such that

$$
\left\|\phi_{u}\right\|_{\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)} \leqslant C q\|u\|_{\alpha}^{2},
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \phi_{u} u^{2} \leqslant C^{\prime} q\|u\|_{\alpha}^{4} \tag{1}
\end{equation*}
$$

(v) if u is a radial function then ϕ_{u} is radial, too.

Following [7], define $s_{0}:=\min \left\{s \in\left[\zeta,+\infty[\mid g(s)=0\}\left(s_{0}=+\infty\right.\right.\right.$ if $g(s) \neq 0$ for any $\left.s \geqslant \zeta\right)$. We set $\tilde{g}: \mathbb{R} \rightarrow \mathbb{R}$ the function such that

$$
\tilde{g}(s)= \begin{cases}g(s) & \text { on }\left[0, s_{0}\right] ; \tag{2}\\ 0 & \text { on } \mathbb{R}_{+} \backslash\left[0, s_{0}\right] ; \\ (g(-s)-m s)^{+}-g(-s) & \text { on } \mathbb{R}_{-}\end{cases}
$$

By the strong maximum principle and by (ii) of Lemma 2.1, if u is a nontrivial solution of ($\mathcal{S M}$) with \tilde{g} in the place of g, then $0<u<s_{0}$ and so it is a positive solution of $(\mathcal{S M})$. Therefore we can suppose that g is defined as in (2), so that (g1), (g2), (g4) and then the following limit

$$
\begin{equation*}
\lim _{s \rightarrow \pm \infty} \frac{g(s)}{s^{5}}=0 \tag{3}
\end{equation*}
$$

hold.
We set

$$
\begin{aligned}
& g_{1}(s):= \begin{cases}(g(s)+m s)^{+}, & \text {if } s \geqslant 0, \\
0, & \text { if } s<0,\end{cases} \\
& g_{2}(s):=g_{1}(s)-g(s), \\
& \text { for } s \in \mathbb{R} .
\end{aligned}
$$

Since

$$
\begin{align*}
& \lim _{s \rightarrow 0} \frac{g_{1}(s)}{s}=0 \\
& \lim _{s \rightarrow \pm \infty} \frac{g_{1}(s)}{s^{5}}=0 \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
g_{2}(s) \geqslant m s, \quad \forall s \geqslant 0, \tag{5}
\end{equation*}
$$

by some computations, we have that for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
g_{1}(s) \leqslant C_{\varepsilon} s^{5}+\varepsilon g_{2}(s), \quad \forall s \geqslant 0 \tag{6}
\end{equation*}
$$

If we set

$$
G_{i}(t):=\int_{0}^{t} g_{i}(s) d s, \quad i=1,2
$$

then, by (5) and (6), we have

$$
\begin{equation*}
G_{2}(s) \geqslant \frac{m}{2} s^{2}, \quad \forall s \in \mathbb{R} \tag{7}
\end{equation*}
$$

and for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
G_{1}(s) \leqslant \frac{C_{\varepsilon}}{6} s^{6}+\varepsilon G_{2}(s), \quad \forall s \in \mathbb{R} \tag{8}
\end{equation*}
$$

The solutions $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ of $(\mathcal{S M})$ are the critical points of the action functional \mathcal{E} : $H^{1}\left(\mathbb{R}^{3}\right) \times$ $\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$, defined as

$$
\mathcal{E}_{q}(u, \phi):=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}-\frac{1}{4} \int_{\mathbb{R}^{3}}|\nabla \phi|^{2}+\frac{q}{2} \int_{\mathbb{R}^{3}} \phi u^{2}-\int_{\mathbb{R}^{3}} G(u) .
$$

The action functional \mathcal{E}_{q} exhibits a strong indefiniteness, namely it is unbounded both from below and from above on infinite dimensional subspaces. This indefiniteness can be removed using the reduction method described in $[4,6]$, by which we are led to study a one variable functional that does not present such a strongly indefinite nature. Hence, it can be proved that $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ is a solution of $(\mathcal{S M})$ (critical point of functional $\left.\mathcal{E}_{q}\right)$ if and only if $u \in H^{1}\left(\mathbb{R}^{3}\right)$ is a critical point of the functional $I_{q}: H^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ defined as

$$
I_{q}(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{q}{4} \int_{\mathbb{R}^{3}} \phi_{u} u^{2}-\int_{\mathbb{R}^{3}} G(u),
$$

and $\phi=\phi_{u}$.
We will look for critical points of I_{q} on $H_{r}^{1}\left(\mathbb{R}^{3}\right):=\left\{u \in H^{1}\left(\mathbb{R}^{3}\right) \mid u\right.$ is radial $\}$, which is a natural constraint.

3. The perturbed functional

Kikuchi, in [21], considered $(\mathcal{S M})$, where $g(u)=-u+|u|^{p-1} u$, with $1<p<5$. To overcome the difficulty in finding bounded Palais-Smale sequences for the associated functional I_{q}, following [17], he introduced the cut-off function $\chi \in C^{\infty}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ satisfying

$$
\begin{cases}\chi(s)=1, & \text { for } s \in[0,1], \tag{9}\\ 0 \leqslant \chi(s) \leqslant 1, & \text { for } s \in] 1,2[, \\ \chi(s)=0, & \text { for } s \in[2,+\infty[, \\ \left\|\chi^{\prime}\right\| \infty \leqslant 2, & \end{cases}
$$

and studied the following modified functional $\widetilde{I_{q}^{T}}: H^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$

$$
\widetilde{I_{q}^{T}}(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{q}{4} \tilde{k}_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u^{2}-\int_{\mathbb{R}^{3}} G(u),
$$

where, for every $T>0$,

$$
\tilde{k}_{T}(u)=\chi\left(\frac{\|u\|^{2}}{T^{2}}\right) .
$$

With this penalization, for T sufficiently large and for q sufficiently small, he is able to find a critical point \bar{u} such that $\|\bar{u}\| \leqslant T$ and so he concludes that \bar{u} is a critical point of I_{q}.

Let us observe that if $g(u)=f(u)-u$ with f satisfying the Ambrosetti-Rabinowitz growth condition, the arguments of Kikuchi still hold with slide modifications.

On the other hand, in presence of nonlinearities satisfying Berestycki-Lions assumptions, further difficulties arise about the geometry of our functional and compactness. First of all, as in [21], we introduce a similar truncated functional $I_{q}^{T}: H_{r}^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$

$$
I_{q}^{T}(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{q}{4} k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u^{2}-\int_{\mathbb{R}^{3}} G(u),
$$

where, now,

$$
k_{T}(u)=\chi\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)
$$

The C^{1}-functional I_{q}^{T} satisfies the geometrical assumptions of the Mountain-Pass Theorem but, under our general assumptions on the nonlinearity, we are not able to obtain the boundedness of the Palais-Smale sequences. Therefore we use an indirect approach developed by Jeanjean. We apply the following slight modified version of [15, Theorem 1.1] (see [16]).

Theorem 3.1. Let $(X,\|\cdot\|)$ be a Banach space and $J \subset \mathbb{R}_{+}$an interval. Consider the family of C^{1} functionals on X

$$
I_{\lambda}(u)=A(u)-\lambda B(u), \quad \forall \lambda \in J,
$$

with B nonnegative and either $A(u) \rightarrow+\infty$ or $B(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty$ and such that $I_{\lambda}(0)=0$.
For any $\lambda \in J$ we set

$$
\Gamma_{\lambda}:=\left\{\gamma \in C([0,1], X) \mid \gamma(0)=0, I_{\lambda}(\gamma(1))<0\right\} .
$$

If for every $\lambda \in J$ the set Γ_{λ} is nonempty and

$$
\begin{equation*}
c_{\lambda}:=\inf _{\gamma \in \Gamma_{\lambda}} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))>0, \tag{10}
\end{equation*}
$$

then for almost every $\lambda \in J$ there is a sequence $\left(v_{n}\right)_{n} \subset X$ such that
(i) $\left(v_{n}\right)_{n}$ is bounded;
(ii) $I_{\lambda}\left(v_{n}\right) \rightarrow c_{\lambda}$;
(iii) $\left(I_{\lambda}\right)^{\prime}\left(v_{n}\right) \rightarrow 0$ in the dual X^{-1} of X.

In our case, $X=H_{r}^{1}\left(\mathbb{R}^{3}\right)$,

$$
\begin{aligned}
A(u) & :=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{q}{4} k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u^{2}+\int_{\mathbb{R}^{3}} G_{2}(u), \\
B(u) & :=\int_{\mathbb{R}^{3}} G_{1}(u),
\end{aligned}
$$

so that the perturbed functional we study is

$$
I_{q, \lambda}^{T}(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{q}{4} k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u^{2}+\int_{\mathbb{R}^{3}} G_{2}(u)-\lambda \int_{\mathbb{R}^{3}} G_{1}(u) .
$$

Actually, this functional is the restriction to the radial functions of a C^{1}-functional defined on the whole space $H^{1}\left(\mathbb{R}^{3}\right)$ and for every $u, v \in H^{1}\left(\mathbb{R}^{3}\right)$

$$
\begin{aligned}
\left\langle\left(I_{q}^{T}\right)^{\prime}(u), v\right\rangle= & \int_{\mathbb{R}^{3}}(\nabla u \mid \nabla v)+q k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u v \\
& +\frac{q \alpha}{4 T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi_{u} u^{2} \int_{\mathbb{R}^{3}}|u|^{\alpha-2} u v+\int_{\mathbb{R}^{3}} g_{2}(u) v-\lambda \int_{\mathbb{R}^{3}} g_{1}(u) v .
\end{aligned}
$$

In order to apply Theorem 3.1, we have just to define a suitable interval J such that $\Gamma_{\lambda} \neq \emptyset$, for any $\lambda \in J$, and (10) holds.

Observe that, according to [7], as a consequence of (g4), there exists a function $z \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} G_{1}(z)-\int_{\mathbb{R}^{3}} G_{2}(z)=\int_{\mathbb{R}^{3}} G(z)>0 . \tag{11}
\end{equation*}
$$

Then there exists $0<\bar{\delta}<1$ such that

$$
\begin{equation*}
\bar{\delta} \int_{\mathbb{R}^{3}} G_{1}(z)-\int_{\mathbb{R}^{3}} G_{2}(z)>0 . \tag{12}
\end{equation*}
$$

We define J as the interval $[\bar{\delta}, 1]$.
Lemma 3.2. $\Gamma_{\lambda} \neq \emptyset$, for any $\lambda \in J$.
Proof. Let $\lambda \in J$. Set $\bar{\theta}>0$ and $\bar{z}=z(\cdot / \bar{\theta})$.
Define $\gamma:[0,1] \rightarrow H_{r}^{1}\left(\mathbb{R}^{3}\right)$ in the following way

$$
\gamma(t)= \begin{cases}0, & \text { if } t=0, \\ \bar{z}(\cdot / t), & \text { if } 0<t \leqslant 1 .\end{cases}
$$

It is easy to see that γ is a continuous path from 0 to \bar{z}. Moreover, we have that

$$
\begin{aligned}
I_{q, \lambda}^{T}(\gamma(1)) \leqslant & \frac{\bar{\theta}}{2} \int_{\mathbb{R}^{3}}|\nabla z|^{2}+\frac{q}{4} \bar{\theta}^{5} \chi\left(\frac{\bar{\theta}^{3}\|z\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi_{z} z^{2} \\
& +\bar{\theta}^{3}\left(\int_{\mathbb{R}^{3}} G_{2}(z)-\bar{\delta} \int_{\mathbb{R}^{3}} G_{1}(z)\right)
\end{aligned}
$$

and then, if $\bar{\theta}$ is sufficiently large, by (12) and (9) we get $I_{q, \lambda}^{T}(\gamma(1))<0$.
Lemma 3.3. There exists a constant $\tilde{c}>0$ such that $c_{\lambda} \geqslant \tilde{c}>0$ for all $\lambda \in J$.
Proof. Observe that for any $u \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ and $\lambda \in J$, using (7) and (8) for $\varepsilon<1$, we have

$$
\begin{aligned}
I_{q, \lambda}^{T}(u) & \geqslant \frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{q}{4} k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u^{2}+\int_{\mathbb{R}^{3}} G_{2}(u)-\int_{\mathbb{R}^{3}} G_{1}(u) \\
& \geqslant \frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+(1-\varepsilon) \frac{m}{2} \int_{\mathbb{R}^{3}} u^{2}-\frac{C_{\varepsilon}}{6} \int_{\mathbb{R}^{3}}|u|^{6}
\end{aligned}
$$

and then, by Sobolev embeddings, we conclude that there exists $\rho>0$ such that, for any $\lambda \in J$ and $u \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ with $u \neq 0$ and $\|u\| \leqslant \rho$, it results $I_{q, \lambda}^{T}(u)>0$. In particular, for any $\|u\|=\rho$, we have $I_{q, \lambda}^{T}(u) \geqslant \tilde{c}>0$. Now fix $\lambda \in J$ and $\gamma \in \Gamma_{\lambda}$. Since $\gamma(0)=0$ and $I_{q, \lambda}^{T}(\gamma(1))<0$, certainly $\|\gamma(1)\|>\rho$. By continuity, we deduce that there exists $\left.t_{\gamma} \in\right] 0,1\left[\right.$ such that $\left\|\gamma\left(t_{\gamma}\right)\right\|=\rho$. Therefore, for any $\lambda \in J$,

$$
c_{\lambda} \geqslant \inf _{\gamma \in \Gamma_{\lambda}} I_{q, \lambda}^{T}\left(\gamma\left(t_{\gamma}\right)\right) \geqslant \tilde{c}>0
$$

We present a variant of the Strauss' compactness result [25] (see also [7, Theorem A.1]). It will be a fundamental tool in our arguments:

Theorem 3.4. Let P and $Q: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions satisfying

$$
\lim _{s \rightarrow \infty} \frac{P(s)}{Q(s)}=0
$$

$\left(v_{n}\right)_{n}, v$ and w be measurable functions from \mathbb{R}^{N} to \mathbb{R}, with z bounded, such that

$$
\begin{aligned}
& \sup _{n} \int_{\mathbb{R}^{N}}\left|Q\left(v_{n}(x)\right) w\right| d x<+\infty \\
& P\left(v_{n}(x)\right) \rightarrow v(x) \quad \text { a.e. in } \mathbb{R}^{N}
\end{aligned}
$$

Then $\left\|\left(P\left(v_{n}\right)-v\right) w\right\|_{L^{1}(B)} \rightarrow 0$, for any bounded Borel set B.
Moreover, if we have also

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \frac{P(s)}{Q(s)}=0 \\
& \lim _{x \rightarrow \infty} \sup _{n}\left|v_{n}(x)\right|=0
\end{aligned}
$$

then $\left\|\left(P\left(v_{n}\right)-v\right) w\right\|_{L^{1}\left(\mathbb{R}^{N}\right)} \rightarrow 0$.
In analogy with the well-known compactness result in [8], we state the following result
Lemma 3.5. For any $\lambda \in J$, each bounded Palais-Smale sequence for the functional $I_{q, \lambda}^{T}$ admits a convergent subsequence.

Proof. Let $\lambda \in J$ and $\left(u_{n}\right)_{n}$ be a bounded (PS) sequence for $I_{q, \lambda}^{T}$, namely
$\left(I_{q, \lambda}^{T}\left(u_{n}\right)\right)_{n} \quad$ is bounded ,

$$
\begin{equation*}
\left(I_{q, \lambda}^{T}\right)^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in }\left(H_{r}^{1}\left(\mathbb{R}^{3}\right)\right)^{\prime} \tag{13}
\end{equation*}
$$

Up to a subsequence, we can suppose that there exists $u \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ such that

$$
\begin{array}{ll}
u_{n} \rightharpoonup u & \text { weakly in } H_{r}^{1}\left(\mathbb{R}^{3}\right) \\
u_{n} \rightarrow u & \text { in } L^{p}\left(\mathbb{R}^{3}\right), \quad 2<p<6 \\
u_{n} \rightarrow u & \text { a.e. in } \mathbb{R}^{N} \tag{16}
\end{array}
$$

If we apply Theorem 3.4 for $P(s)=g_{i}(s), i=1,2, Q(s)=|s|^{5},\left(v_{n}\right)_{n}=\left(u_{n}\right)_{n}, v=g_{i}(u), i=1,2$ and $w \in$ $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, by (3), (4) and (16) we deduce that

$$
\int_{\mathbb{R}^{3}} g_{i}\left(u_{n}\right) w \rightarrow \int_{\mathbb{R}^{3}} g_{i}(u) w, \quad i=1,2
$$

Moreover, by (15) and [24, Lemma 2.1], we have

$$
\begin{aligned}
& k_{T}\left(u_{n}\right) \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n} w \rightarrow k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u w, \\
& \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{\frac{2}{5}} u_{n} w \rightarrow \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi_{u} u^{2} \int_{\mathbb{R}^{3}}|u|^{\frac{2}{5}} u w .
\end{aligned}
$$

As a consequence, by (13) and (14) we deduce $\left(I_{q, \lambda}^{T}\right)^{\prime}(u)=0$ and hence

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|\nabla u|^{2}+q k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u^{2}+\frac{q \alpha}{4 T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\|u\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{u} u^{2}+\int_{\mathbb{R}^{3}} g_{2}(u) u=\lambda \int_{\mathbb{R}^{3}} g_{1}(u) u . \tag{17}
\end{equation*}
$$

By weak lower semicontinuity we have:

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|\nabla u|^{2} \leqslant \liminf _{n} \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} \tag{18}
\end{equation*}
$$

Again, by (15) we have

$$
\begin{align*}
& k_{T}\left(u_{n}\right) \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} \rightarrow k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u^{2} \tag{19}\\
& \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\left\|u_{n}\right\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} \rightarrow \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\|u\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{u} u^{2} . \tag{20}
\end{align*}
$$

If we apply Theorem 3.4 for $P(s)=g_{1}(s) s, Q(s)=s^{2}+s^{6},\left(v_{n}\right)_{n}=\left(u_{n}\right)_{n}, v=g_{1}(u) u$, and $w=1$, by (3), (4) and (16), we deduce that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} g_{1}\left(u_{n}\right) u_{n} \rightarrow \int_{\mathbb{R}^{3}} g_{1}(u) u \tag{21}
\end{equation*}
$$

Moreover, by (16) and Fatou's lemma

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} g_{2}(u) u \leqslant \liminf _{n} \int_{\mathbb{R}^{3}} g_{2}\left(u_{n}\right) u_{n} \tag{22}
\end{equation*}
$$

By (17), (19), (20), (21) and (22), and since $\left\langle\left(I_{\lambda}\right)^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow 0$, we have

$$
\begin{align*}
\limsup _{n} \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}= & \limsup _{n}\left[\lambda \int_{\mathbb{R}^{3}} g_{1}\left(u_{n}\right) u_{n}-\int_{\mathbb{R}^{3}} g_{2}\left(u_{n}\right) u_{n}\right. \\
& \left.-q k_{T}\left(u_{n}\right) \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2}-\frac{q \alpha}{4 T^{\alpha}} \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\left\|u_{n}\right\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2}\right] \\
\leqslant & \lambda \int_{\mathbb{R}^{3}} g_{1}(u) u-\int_{\mathbb{R}^{3}} g_{2}(u) u-q k_{T}(u) \int_{\mathbb{R}^{3}} \phi_{u} u^{2}-\frac{q \alpha}{4 T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\|u\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{u} u^{2} \\
= & \int_{\mathbb{R}^{3}}|\nabla u|^{2} \tag{23}
\end{align*}
$$

By (18) and (23), we get

$$
\begin{equation*}
\lim _{n} \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}=\int_{\mathbb{R}^{3}}|\nabla u|^{2} \tag{24}
\end{equation*}
$$

hence

$$
\begin{equation*}
\lim _{n} \int_{\mathbb{R}^{3}} g_{2}\left(u_{n}\right) u_{n}=\int_{\mathbb{R}^{3}} g_{2}(u) u \tag{25}
\end{equation*}
$$

Since $g_{2}(s) s=m s^{2}+h(s)$, with h a positive and continuous function, by Fatou's lemma we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} h(u) \leqslant \liminf _{n} \int_{\mathbb{R}^{3}} h\left(u_{n}\right), \\
& \int_{\mathbb{R}^{3}} u^{2} \leqslant \liminf _{n} \int_{\mathbb{R}^{3}} u_{n}^{2} .
\end{aligned}
$$

These last two inequalities and (25) imply that, up to a subsequence,

$$
\int_{\mathbb{R}^{3}} u^{2}=\lim _{n} \int_{\mathbb{R}^{3}} u_{n}^{2},
$$

which, together with (24), shows that $u_{n} \rightarrow u$ strongly in $H_{r}^{1}\left(\mathbb{R}^{3}\right)$.
Lemma 3.6. For almost every $\lambda \in J$, there exists $u^{\lambda} \in H_{r}^{1}\left(\mathbb{R}^{3}\right), u^{\lambda} \neq 0$, such that $\left(I_{q, \lambda}^{T}\right)^{\prime}\left(u^{\lambda}\right)=0$ and $I_{q, \lambda}^{T}\left(u^{\lambda}\right)=c_{\lambda}$.
Proof. By Theorem 3.1, for almost every $\lambda \in J$, there exists a bounded sequence $\left(u_{n}^{\lambda}\right)_{n} \subset H_{r}^{1}\left(\mathbb{R}^{3}\right)$ such that

$$
\begin{align*}
& I_{q, \lambda}^{T}\left(u_{n}^{\lambda}\right) \rightarrow c_{\lambda} \tag{26}\\
& \left(I_{q, \lambda}^{T}\right)^{\prime}\left(u_{n}^{\lambda}\right) \rightarrow 0 \quad \text { in }\left(H_{r}^{1}\left(\mathbb{R}^{3}\right)\right)^{\prime} . \tag{27}
\end{align*}
$$

Up to a subsequence, by Lemma 3.5 , we can suppose that there exists $u^{\lambda} \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ such that $u_{n}^{\lambda} \rightarrow u^{\lambda}$ in $H_{r}^{1}\left(\mathbb{R}^{3}\right)$. By Lemma 3.3, (26) and (27) we conclude.

Therefore there exist $\left(\lambda_{n}\right)_{n} \subset J$ and $\left(u_{n}\right)_{n} \subset H_{r}^{1}\left(\mathbb{R}^{3}\right)$ such that

$$
\begin{equation*}
I_{q, \lambda_{n}}^{T}\left(u_{n}\right)=c_{\lambda_{n}}, \quad\left(I_{q, \lambda_{n}}^{T}\right)^{\prime}\left(u_{n}\right)=0 . \tag{28}
\end{equation*}
$$

Lemma 3.7. Let u_{n} be a critical point for $I_{q, \lambda_{n}}^{T}$ at level $c_{\lambda_{n}}$. Then, for $T>0$ sufficiently large, there exists $q_{0}=q_{0}(T)$ such that for any $0<q<q_{0}$, up to a subsequence, $\left\|u_{n}\right\|_{\alpha} \leqslant T$, for any $n \geqslant 1$.

Proof. We will argue by contradiction.
First of all, since $\left(I_{q, \lambda_{n}}^{T}\right)^{\prime}\left(u_{n}\right)=0, u_{n}$ satisfies the following Pohozaev type identity

$$
\begin{align*}
& \frac{1}{2} \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}+\frac{5 q}{4} k_{T}\left(u_{n}\right) \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2}+\frac{3 q}{T^{\alpha}} \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\left\|u_{n}\right\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} \\
& \quad=3 \lambda_{n} \int_{\mathbb{R}^{3}} G_{1}\left(u_{n}\right)-3 \int_{\mathbb{R}^{3}} G_{2}\left(u_{n}\right) \tag{29}
\end{align*}
$$

(see Appendix A for the proof).
Moreover, combining (29) with the first of (28) and by (1), we get

$$
\begin{align*}
\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} & =3 c_{\lambda_{n}}+\frac{q}{2} k_{T}\left(u_{n}\right) \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2}+\frac{3 q}{T^{\alpha}} \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\left\|u_{n}\right\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} \\
& \leqslant 3 c_{\lambda_{n}}+C_{1} q^{2} k_{T}\left(u_{n}\right)\left\|u_{n}\right\|_{\alpha}^{4}+C_{2} \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \frac{q^{2}}{T^{\alpha}}\left\|u_{n}\right\|_{\alpha}^{4+\alpha} . \tag{30}
\end{align*}
$$

We are going to estimate the right part of the previous inequality. By the min-max definition of the Mountain Pass level, we have

$$
\begin{aligned}
c_{\lambda_{n}} & \leqslant \max _{\theta} I_{q, \lambda_{n}}^{T}(z(\cdot / \theta)) \\
& \leqslant \max _{\theta}\left\{\frac{\theta}{2} \int_{\mathbb{R}^{3}}|\nabla z|^{2}+\theta^{3}\left(\int_{\mathbb{R}^{3}} G_{2}(z)-\bar{\delta} \int_{\mathbb{R}^{3}} G_{1}(z)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\max _{\theta}\left\{\frac{q}{4} \theta^{5} \chi\left(\frac{\theta^{3}\|z\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi_{z} z^{2}\right\} \\
= & A_{1}+A_{2}(T)
\end{aligned}
$$

where z is the function such that (11) holds.
Now, if $\theta^{3} \geqslant 2 T^{\alpha} /\|z\|_{\alpha}^{\alpha}$ then $A_{2}(T)=0$, otherwise we compute

$$
A_{2}(T) \leqslant \frac{q}{4}\left(\frac{2 T^{\alpha}}{\|z\|_{\alpha}^{\alpha}}\right)^{\frac{5}{3}} \int_{\mathbb{R}^{3}} \phi_{z} z^{2}=C_{3} q^{2} T^{4}
$$

We also have

$$
\begin{aligned}
& C_{1} q^{2} k_{T}\left(u_{n}\right)\left\|u_{n}\right\|_{\alpha}^{4} \leqslant C_{4} q^{2} T^{4} \\
& C_{2} \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \frac{q^{2}}{T^{\alpha}}\left\|u_{n}\right\|_{\alpha}^{4+\alpha} \leqslant C_{5} q^{2} T^{4} .
\end{aligned}
$$

Then, from (30) we deduce that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} \leqslant 3 A_{1}+C_{6} q^{2} T^{4} . \tag{31}
\end{equation*}
$$

On the other hand, since $\left\langle\left(I_{q, \lambda_{n}}^{T}\right)^{\prime}\left(u_{n}\right),\left(u_{n}\right)\right\rangle=0$, by (6) we have that

$$
\begin{align*}
& \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}+q k_{T}\left(u_{n}\right) \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2}+\frac{q \alpha}{4 T^{\alpha}} \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\left\|u_{n}\right\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2}+\int_{\mathbb{R}^{3}} g_{2}\left(u_{n}\right) u_{n} \\
& \quad=\lambda_{n} \int_{\mathbb{R}^{3}} g_{1}\left(u_{n}\right) u_{n} \leqslant C_{\varepsilon} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{6}+\varepsilon \int_{\mathbb{R}^{3}} g_{2}\left(u_{n}\right) u_{n} . \tag{32}
\end{align*}
$$

Now, by (5) and (32), we obtain

$$
\begin{align*}
m(1-\varepsilon) \int_{\mathbb{R}^{3}} u_{n}^{2} & \leqslant(1-\varepsilon) \int_{\mathbb{R}^{3}} g_{2}\left(u_{n}\right) u_{n} \\
& \leqslant C_{\varepsilon} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{6}-\frac{q \alpha}{4 T^{\alpha}} \chi^{\prime}\left(\frac{\left\|u_{n}\right\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\left\|u_{n}\right\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi_{n} u_{n}^{2} \\
& \leqslant C\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2}\right)^{3}+\bar{C} q^{2} T^{4} \\
& \leqslant C\left(3 A_{1}+C_{6} q^{2} T^{4}\right)^{3}+\bar{C} q^{2} T^{4} \tag{33}
\end{align*}
$$

where in the last inequality we have used (31).
We suppose by contradiction that there exists no subsequence of $\left(u_{n}\right)_{n}$ which is uniformly bounded by T in the α-norm. As a consequence, for a certain \bar{n} it should result that

$$
\begin{equation*}
\left\|u_{n}\right\|_{\alpha}>T, \quad \forall n \geqslant \bar{n} . \tag{34}
\end{equation*}
$$

Without any loss of generality, we are supposing that (34) is true for any u_{n}.
Therefore, by (31) and (33), we conclude that

$$
T^{2}<\left\|u_{n}\right\|_{\alpha}^{2} \leqslant C\left\|u_{n}\right\|^{2} \leqslant C_{7}+C_{8} q^{2} T^{4}+C_{9} q^{4} T^{8}+C_{10} q^{6} T^{12}
$$

which is not true for T large and q small enough: indeed we can find $T_{0}>0$ such that $T_{0}^{2}>C_{7}+1$ and $q_{0}=q_{0}\left(T_{0}\right)$ such that $C_{8} q^{2} T_{0}^{4}+C_{9} q^{4} T_{0}^{8}+C_{10} q^{6} T_{0}^{12}<1$, for any $q<q_{0}$, and we find a contradiction.

Proof of Theorem 1.1. Let T, q_{0} be as in Lemma 3.7 and fix $0<q<q_{0}$. Let u_{n} be a critical point for $I_{q, \lambda_{n}}^{T}$ at level $c_{\lambda_{n}}$. We prove that $\left(u_{n}\right)_{n}$ is a H^{1}-bounded Palais-Smale sequence for I_{q}.

Since by Lemma 3.7

$$
\begin{equation*}
\left\|u_{n}\right\|_{\alpha} \leqslant T \tag{35}
\end{equation*}
$$

the boundedness in the H^{1}-norm trivially follows from arguments such as those in (31) and (33). Finally, by (35), certainly we have that

$$
I_{q, \lambda_{n}}^{T}\left(u_{n}\right)=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{q}{4} \int_{\mathbb{R}^{3}} \phi_{u} u^{2}+\int_{\mathbb{R}^{3}} G_{2}(u)-\lambda_{n} \int_{\mathbb{R}^{3}} G_{1}(u),
$$

and then, since $\lambda_{n} \nearrow 1$, we can prove that $\left(u_{n}\right)_{n}$ is a (PS) sequence for I_{q} by similar argument as in [3, Theorem 1.1].
Now we conclude arguing as in Lemma 3.5.

Appendix A. A Pohozaev type identity

In this section we show that if $u, \phi \in H_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$ solve

$$
\begin{cases}-\Delta u+q k_{T}(u) \phi u+q \frac{\alpha}{T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)|u|^{2 / 5} u \int_{\mathbb{R}^{3}} \phi u^{2}=g(u) & \text { in } \mathbb{R}^{3} \tag{36}\\ -\Delta \phi=q u^{2} & \text { in } \mathbb{R}^{3}\end{cases}
$$

then the following Pohozaev type identity

$$
\begin{equation*}
\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{5 q}{4} k_{T}(u) \int_{\mathbb{R}^{3}} \phi u^{2}+\frac{3 q}{T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right)\|u\|_{\alpha}^{\alpha} \int_{\mathbb{R}^{3}} \phi u^{2}=3 \int_{\mathbb{R}^{3}} G(u) \tag{37}
\end{equation*}
$$

holds.
Indeed, by [13, Lemma 3.1], for every $R>0$, we have

$$
\begin{align*}
& \int_{B_{R}}-\Delta u(x \cdot \nabla u)=-\frac{1}{2} \int_{B_{R}}|\nabla u|^{2}-\frac{1}{R} \int_{\partial B_{R}}|x \cdot \nabla u|^{2}+\frac{R}{2} \int_{\partial B_{R}}|\nabla u|^{2}, \tag{38}\\
& \int_{B_{R}} \phi u(x \cdot \nabla u)=-\frac{1}{2} \int_{B_{R}} u^{2}(x \cdot \nabla \phi)-\frac{3}{2} \int_{B_{R}} \phi u^{2}+\frac{R}{2} \int_{\partial B_{R}} \phi u^{2}, \tag{39}\\
& \int_{B_{R}} g(u)(x \cdot \nabla u)=-3 \int_{B_{R}} G(u)+R \int_{\partial B_{R}} G(u), \tag{40}\\
& \int_{B_{R}}|u|^{2 / 5} u(x \cdot \nabla u)=-\frac{3}{\alpha} \int_{B_{R}}|u|^{\alpha}+\frac{R}{\alpha} \int_{\partial B_{R}}|u|^{\alpha}, \tag{41}
\end{align*}
$$

where B_{R} is the ball of \mathbb{R}^{3} centered in the origin and with radius R.
Multiplying the first equation of (36) by $x \cdot \nabla u$ and the second equation by $x \cdot \nabla \phi$ and integrating on B_{R}, by (38), (39), (40) and (41) we get

$$
\begin{aligned}
& -\frac{1}{2} \int_{B_{R}}|\nabla u|^{2}-\frac{1}{R} \int_{\partial B_{R}}|x \cdot \nabla u|^{2}+\frac{R}{2} \int_{\partial B_{R}}|\nabla u|^{2} \\
& \quad-\frac{q}{2} k_{T}(u) \int_{B_{R}} u^{2}(x \cdot \nabla \phi)-\frac{3 q}{2} k_{T}(u) \int_{B_{R}} \phi u^{2}+\frac{R q}{2} k_{T}(u) \int_{\partial B_{R}} \phi u^{2}
\end{aligned}
$$

$$
\begin{align*}
& -\frac{3 q}{T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi u^{2} \int_{B_{R}}|u|^{\alpha}+\frac{R q}{T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi u^{2} \int_{\partial B_{R}}|u|^{\alpha} \\
= & -3 \int_{B_{R}} G(u)+R \int_{\partial B_{R}} G(u) \tag{42}
\end{align*}
$$

and

$$
\begin{equation*}
q \int_{B_{R}} u^{2}(x \cdot \nabla \phi)=-\frac{1}{2} \int_{B_{R}}|\nabla \phi|^{2}-\frac{1}{R} \int_{\partial B_{R}}|x \cdot \nabla \phi|^{2}+\frac{R}{2} \int_{\partial B_{R}}|\nabla \phi|^{2} \tag{43}
\end{equation*}
$$

Substituting (43) into (42) we obtain

$$
\begin{aligned}
& -\frac{1}{2} \int_{B_{R}}|\nabla u|^{2}-\frac{3 q}{2} k_{T}(u) \int_{B_{R}} \phi u^{2}+\frac{1}{4} k_{T}(u) \int_{B_{R}}|\nabla \phi|^{2} \\
& \quad-\frac{3 q}{T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi u^{2} \int_{B_{R}}|u|^{\alpha}+3 \int_{B_{R}} G(u) \\
& =\frac{1}{R} \int_{\partial B_{R}}|x \cdot \nabla u|^{2}-\frac{R}{2} \int_{\partial B_{R}}|\nabla u|^{2}-\frac{1}{2 R} k_{T}(u) \int_{\partial B_{R}}|x \cdot \nabla \phi|^{2} \\
& \quad+\frac{R}{4} k_{T}(u) \int_{\partial B_{R}}|\nabla \phi|^{2}-\frac{R q}{2} k_{T}(u) \int_{\partial B_{R}} \phi u^{2} \\
& \quad-\frac{R q}{T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi u^{2} \int_{\partial B_{R}}|u|^{\alpha}+R \int_{\partial B_{R}} G(u) .
\end{aligned}
$$

As in [13], the right-hand side goes to zero as $R \rightarrow+\infty$ and so we get

$$
\begin{aligned}
& -\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}-\frac{3 q}{2} k_{T}(u) \int_{\mathbb{R}^{3}} \phi u^{2}+\frac{1}{4} k_{T}(u) \int_{\mathbb{R}^{3}}|\nabla \phi|^{2} \\
& \quad-\frac{3 q}{T^{\alpha}} \chi^{\prime}\left(\frac{\|u\|_{\alpha}^{\alpha}}{T^{\alpha}}\right) \int_{\mathbb{R}^{3}} \phi u^{2} \int_{\mathbb{R}^{3}}|u|^{\alpha}+3 \int_{\mathbb{R}^{3}} G(u)=0 .
\end{aligned}
$$

If $\left(u, \phi_{u}\right) \in H^{1}\left(\mathbb{R}^{3}\right) \times \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ is a solution of (36), by standard regularity results, $u, \phi_{u} \in H_{l o c}^{2}\left(\mathbb{R}^{3}\right)$ and, by (i) of Lemma 2.1, we get (37).

References

[1] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math. 10 (2008) $391-404$.
[2] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl. 345 (2008) $90-108$.
[3] A. Azzollini, A. Pomponio, On the Schrödinger equation in \mathbb{R}^{n} under the effect of a general nonlinear term, Indiana Univ. Math. J. 58 (2009) 1361-1378.
[4] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998) $283-293$.
[5] V. Benci, D. Fortunato, Existence of hylomorphic solitary waves in Klein-Gordon and in Klein-Gordon-Maxwell equations, Rend. Accad. Lincei 20 (2009) 243-279.
[6] V. Benci, D. Fortunato, A. Masiello, L. Pisani, Solitons and the electromagnetic field, Math. Z. 232 (1999) 73-102.
[7] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983) $313-345$.
[8] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82 (1983) 347-375.
[9] G.M. Coclite, A multiplicity result for the linear Schrödinger-Maxwell equations with negative potential, Ann. Polon. Math. 79 (2002) $21-30$.
[10] G.M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal. 7 (2003) 417-423.
[11] G.M. Coclite, V. Georgiev, Solitary waves for Maxwell-Schrödinger equations, Electron. J. Differential Equations 94 (2004) 1-31.
[12] T. D'Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 893-906.
[13] T. D'Aprile, D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud. 4 (2004) $307-322$.
[14] P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud. 2 (2002) 177-192.
[15] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^{n}, Proc. Roy. Soc. Edinburgh Sect. A Math. 129 (1999) 787-809.
[16] L. Jeanjean, Local condition insuring bifurcation from the continuous spectrum, Math. Z. 232 (1999) 651-664.
[17] L. Jeanjean, S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations 11 (2006) 813-840.
[18] L. Jeanjean, K. Tanaka, A positive solution for a nonlinear Schrödinger equation on \mathbb{R}^{n}, Indiana Univ. Math. J. 54 (2005) $443-464$.
[19] Y. Jiang, H.S. Zhou, Bound states for a stationary nonlinear Schrödinger-Poisson system with sign-changing potential in \mathbb{R}^{n}, preprint.
[20] H. Kikuchi, On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal. Theory Methods Appl. 67 (2007) 1445-1456.
[21] H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud. 7 (2007) $403-437$.
[22] L. Pisani, G. Siciliano, Neumann condition in the Schrödinger-Maxwell system, Topol. Methods Nonlinear Anal. 29 (2007) $251-264$.
[23] A. Pomponio, S. Secchi, A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities, preprint.
[24] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Func. Anal. 237 (2006) 655-674.
[25] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162.
[26] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985) 558-581.
[27] Z. Wang, H.S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in \mathbb{R}^{3}, Discrete Contin. Dyn. Syst. 18 (2007) 809-816.
[28] L. Zhao, F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl. 346 (2008) 155-169.

[^0]: * The authors are supported by M.I.U.R.-P.R.I.N. "Metodi variazionali e topologici nello studio di fenomeni non lineari".
 * Corresponding author.

 E-mail addresses: antonio.azzollini@unibas.it (A. Azzollini), p.davenia@poliba.it (P. d'Avenia), a.pomponio@ poliba.it (A. Pomponio).

