
Ann. I. H. Poincaré – AN 27 (2010) 447–469
www.elsevier.com/locate/anihpc

A relaxation process for bifunctionals of displacement-Young
measure state variables: A model of multi-material with

micro-structured strong interface

Anne Laure Bessoud a,∗, Françoise Krasucki b, Gérard Michaille c

a LMGC, UMR-CNRS 5508 and ACSIOM, UMR-CNRS 5149, Université Montpellier II, Case courier 048, Place Eugène Bataillon,
34095 Montpellier Cedex 5, France

b ACSIOM, UMR-CNRS 5149, Université Montpellier II, Case courier 051, Place Eugène Bataillon,
34095 Montpellier Cedex 5, France

c ACSIOM and AVA, UMR-CNRS 5149, Université Montpellier II et Université de Nîmes, Case courier 051, Place Eugène Bataillon,
34095 Montpellier Cedex 5, France

Received 1 September 2008; accepted 14 January 2009

Available online 18 January 2010

Abstract

The gradient displacement field of a micro-structured strong interface of a three-dimensional multi-material is regarded as a
gradient-Young measure so that the stored strain energy of the material is defined as a bifunctional of displacement-Young measure
state variables. We propose a new model by computing a suitable variational limit of this bifunctional when the thickness and the
stiffness of the strong material are of order ε and 1

ε respectively. The stored strain energy functional associated with the model
in pure displacements living in a Sobolev space is obtained as the marginal map of the limit bifunctional. We also obtain a new
asymptotic formulation in terms of Young measure state variable when considering the other marginal map.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In [1] and [10] a variational model of multi-material with a very rigid interface is obtained by identifying the
classical Γ -limit of the stored strain energy functional when the magnitude order ε of the interface thickness goes
to zero and the stiffness of the material occupying the interface grows as 1

ε
. In this paper we assume that the thin

structure is occupied by a material which undergoes reversible solid/solid phase transformation, while the strain of
the soft material occupying the complementary set of the layer can be high. As the main mechanical features are
high strain of the soft material and oscillations of gradient displacement in the layer of hight stiffness, we deal with
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the asymptotic analysis of the problem by means of a new variational convergence where competing objects are
pairs (u, ν) of displacements/gradient Young measures state variables. The advantage of using the second argument
lies in the fact that ν encodes the gradient oscillations of u restricted to the layer. We obtain a new formulation
(ū, ν̄) ∈ arg min F (u, ν) − L(u) of the problem by identifying the limit (u, ν) �→ F (u, ν) of the stored strain energy
functional u �→ Fε(u) rewritten as a bifunctional (u,μ) �→ Fε(u,μ) (we write L(u) for the exterior loading).

Let Ω be the reference configuration occupied by the material and S × ]0, ε[ the thin inclusion. The limit en-
ergy functional of Fε obtained in [10] is of the form u �→ F(u) := ∫

Ω
Qf (∇u)dx + ∫

S
Qg0(∇̂γS(u)) dx̂ for all

Sobolev-functions u with smooth trace γS(u) on the two-dimensional interface S, where Qf and Qg0 denote the qua-
siconvexifications of f and g0. As a straightforward consequence of our formulation we find the stored strain energy
F as to be the marginal map u �→ infν F (u, ν) of the energy functional F when the Young measure ν = νx̂ ⊗ dx̂ is
then regarded as an internal state variable. By comparing the two variational formulations ū ∈ arg min(F − L(u)) and
(ū, ν̄) ∈ arg min(F − L(u)), we obtain an integral representation with respect to the probability measure ν̄x̂ on the set
M3×2 of 3 × 2-matrices, of the significant macroscopic quantities ∇̂γS(ū) and Qg0(∇̂γS(ū)). In some sense we may
think the variable ν̄ as the microscopic description of ∇̂γS(ū) and Qg0(∇̂γS(ū)).

Another way for obtaining a variational formulation of the problem is to consider the marginal map G of
F − L when the displacement field u is now regarded as an internal variable. We show that the energy functional
ν �→ G(ν) := infu(F (u, ν) − L(u)) is a variational limit of μ �→ infu(Fε(u,μ) − L(u)) so that ν̄ ∈ arg minG is
a new formulation of the problem in terms of gradient Young measures parametrized on the interface S. By compar-
ing it with the formulation (ū, ν̄) ∈ arg min(F − L), we show that ū is a solution of the nonlinear Dirichlet problem
min(

∫
Ω\S Qf (∇u)dx − L(u)) subjected to the boundary condition ū(x̂) = ∇̂−1(

∫
M3×2 λ̂ dν̄x̂ ) on the interface S.

Consequently, one may think the surface energy
∫
S
Qg0(∇̂γS(u)) dx̂ obtained in [10] as a relaxation of the boundary

condition above (notice the analogy with the relaxation of boundary conditions in BV-spaces).
This paper illustrates, in the modeling of multi-materials, the following general strategy: in order to capture various

convergence phenomena on minimizing sequences regarded as Sobolev variables of a problem (Pε), one defines a suit-
able measure state variable μ connected to the Sobolev state variable u (Young measure, concentration measure. . .), an
energy bifunctional (u,μ) �→ Fε modeling (Pε), a suitable variational convergence process, and identify its limit F .
We recover the limit energy in terms of Sobolev variables as the marginal functional of F when μ is regarded as
an internal variable. This idea as already been used in the framework of relaxation theory for a reduction dimension
problem in [12], and for control problems in [22]. We also obtain a new asymptotic formulation in terms of measure
state variable by considering the marginal functional of F when u is an internal variable.

The paper is organized as follows. Section 2 provides the abstract setting of the problem. We introduce a suitable
variational convergence for bifunctionals and establish the variational convergence of their marginal maps. In Sec-
tion 3, after a brief exposition of the mechanical setting, according to Section 2, we set up notation and terminology
for the problem and prove the variational convergence of the bifunctional Fε to the bifunctional F (Theorem 2). The
two last sections are devoted to the asymptotic analysis of the marginal maps and their consequences (Theorem 3,
Corollaries 1 and 2). For making the paper as self contained as possible, we repeat the material from Young measures
without proofs in Appendix A.

2. A variational convergence of sequences of functionals defined on topological product spaces

2.1. The abstract setting

Given three first countable topological spaces, X, Y , Ŷ , a map A from Y to Ŷ , and extended real-valued function-
als Fn : X × Y → R ∪ {+∞}, F : X × Ŷ → R ∪ {+∞}, our purpose is to define a variational convergence of the
sequence (Fn)n∈N toward the functional F so that, under a suitable convergence process associated with A and some
compactness hypotheses, the following implication holds true when n → +∞:

Fn → F ⇒
{

infX×Y Fn → min
X×Ŷ

F ;
arg minX×Y Fn � (xn, yn) → (x, ŷ) ∈ arg min

X×Ŷ
F at least for a subsequence.

We begin by introducing a new weak notion of convergence between elements of Y and Ŷ , and next, between
elements of X × Y and X × Ŷ .
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Definition 1. Let (yn)n∈N be a sequence in Y and ŷ in Ŷ . We say that yn A-converges to ŷ and we write

yn
A
⇀ ŷ

iff there exists y in Y such that yn → y and ŷ = A(y).
Let ((xn, yn))n∈N be a sequence in X × Y and (x, ŷ) in X × Ŷ . We say that (xn, yn) converges to (x, ŷ) and we

write

(xn, yn)
I×A
⇀ (x, ŷ)

iff xn converges to x, and yn A-converges to ŷ.

We introduce now the variational convergence associated with the previous convergence.

Definition 2. We say that Fn Γ
X,Y,Ŷ

-converges to F and we write

Fn

Γ
X,Y,Ŷ−→ F

iff for all (x, ŷ) in X × Ŷ , both following assertions hold:

(i) ∀(xn, yn) ∈ X × Y s.t. (xn, yn)
I×A
⇀ (x, ŷ), F (x, ŷ) � lim infn→+∞ Fn(xn, yn),

(ii) ∃(xn, yn) ∈ X × Y s.t. (xn, yn)
I×A
⇀ (x, ŷ), F (x, ŷ) � lim supn→+∞ Fn(xn, yn).

Note that this convergence is closely related to the Γ -convergence. When X = {0} or, which is equivalent, when Fn

and F do not depend on x, we denote it briefly by Γ
Y,Ŷ

. When Y = {0} and Ŷ = {0̂} i.e. when Fn and F do not depend
on y and ŷ, we will write it simply ΓX and our definition agrees with the classical Γ -convergence (for more details on
Γ -convergence, see [5,16]). Note also that when Y = Ŷ and A is the identity map, ΓX,Y,Y is the ΓX×Y -convergence.
The proposition below expresses the variational nature of the Γ

X,Y,Ŷ
-convergence.

Proposition 1. Let us assume that (Fn)n∈N Γ
X,Y,Ŷ

-converges to F and let ((xn, yn))n∈N be a sequence of X × Y

satisfying

Fn(xn, yn) � inf
(x,y)∈X×Y

Fn(x, y) + 1

n
.

Assume furthermore that {(xn, yn): n ∈ N} is relatively compact for the convergence
I×A
⇀ defined above. Then any

cluster point (x̄, ¯̂y) ∈ X × Ŷ is a minimizer of F and

lim
n→+∞ inf

{
Fn(x, y): (x, y) ∈ X × Y

} = F (x̄, ¯̂y).

Proof. The proof is similar to that of Theorem 12.1.1 in [6] and left to the reader. �
2.2. The variational convergence of marginal functionals

Let us consider the following marginal functionals Fn,F :X → R ∪ {+∞}, Gn :Y → R ∪ {+∞}, and G : Ŷ →
R ∪ {+∞} defined by:

Fn(x) = inf
y∈Y

Fn(x, y), F (x) = inf
ŷ∈Ŷ

F (x, ŷ),

Gn(y) = inf
x∈X

Fn(x, y), G(ŷ) = inf
x∈X

F (x, ŷ).

The variational convergence of the functionals Fn yields the variational convergence of their marginal maps, precisely:
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Theorem 1. Let us assume that (Fn)n∈N Γ
X,Y,Ŷ

-converges to F . Assume furthermore that the following inf-
compactness property holds: for every sequence ((xn, yn))n∈N satisfying supn∈N Fn(xn, yn) < +∞, there exists a

subsequence (xσ(n), yσ(n)) in X × Y and (x, ŷ) in X × Ŷ such that (xσ(n), yσ(n))
I×A
⇀ (x, ŷ). Then

(i) Fn
ΓX−→ F ,

(ii) Gn

Γ
Y,Ŷ−→ G.

Proof. Proof of assertion (i). On account of Theorem 12.1.1 in [6], we are going to establish that for any subsequence
of Fn, one can extract a subsequence which ΓX-converges to F . Let (xn)n∈N be a sequence converging to x in X and
consider a sequence (yn)n∈N in Y such that

Fn(xn, yn) − 1

n
� inf

y∈Y
Fn(xn, y) := Fn(xn). (1)

We can assume that supn∈N Fn(xn) < +∞ (otherwise there is nothing to prove) so that supn∈N Fn(xn, yn) < +∞.
Thus, according to the inf-compactness assumption, there exist a subsequence (xσ(n), yσ(n)) and ŷ in Ŷ such that
xσ(n) converges to x, and yσ(n) A-converges to ŷ. Furthermore, since (Fn)n∈N Γ

X,Y,Ŷ
-converges to F , one has

F (x, ŷ) � lim inf
n→+∞ Fσ(n)(xσ(n), yσ(n)).

Since from (1) one has Fσ(n)(xσ(n)) � Fσ(n)(xσ(n), yσ(n)) − 1
σ(n)

, we deduce

F(x) � F (x, ŷ) � lim inf
n→+∞Fσ(n)(xσ(n)).

From now on, to shorten notation, we write n instead of σ(n). Let (ŷp)p∈N be a sequence in Ŷ satisfying

F(x) = inf
ŷ∈Ŷ

F (x, ŷ) = lim
p→+∞ F (x, ŷp). (2)

Combining (i) and (ii) of Definition 2, for every fixed p there exists a sequence ((x
p
n , yp,n))n∈N in X × Y such that{

x
p
n → x,

yp,n
A
⇀ ŷp

and satisfying

F (x, ŷp) = lim
n→+∞ Fn

(
x

p
n , yp,n

)
. (3)

From (2) and (3), we obtain

F(x) = lim
p→+∞ lim

n→+∞ Fn

(
x

p
n , yp,n

)
.

Then, using a standard diagonalization argument, there exists a map n �→ p(n) satisfying p(n) → +∞ whenever
n → +∞ for which one has

F(x) = lim
n→+∞ Fn

(
x

p(n)
n , yp(n),n

)
� lim sup

n→+∞
Fn

(
x

p(n)
n

)
.

The sequence defined by xn = x
p(n)
n then satisfies assertion (ii) of Definition 2 and the proof of (i) is complete. The

proof of assertion (ii) is very similar and left to the reader. �
2.3. A concrete example

In this section, we present a concrete example entering within the general framework described above. It is the
main subject of the paper which will be treated in details in the next section. We will deal with a second example
in a forthcoming paper where we will take into account the concentration gradient phenomenon. For the analysis of
concentration effects we refer the reader to [18] and [25].
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We denote the sets of 3 × 3 and 3 × 2 matrices with real numbers entries by M3×3 and M3×2 respectively. Con-
sidering the space M3×3 as the product M3×2 × R

3, we will denote by λ̂ the first coordinate in M3×2 of any element
λ of M3×3. We write PM3×2 to denote the projection mapping M3×3 to M3×2. In what follows, we use notation of
Theorem 4 in Appendix A.

Let Ω , B be two open bounded subsets of R
3, and S ⊂ R

2 such that B = S × (0,1), we define the sets of Young
measures Y3×3(B) and Y3×2(S) as follow:

μ ∈ Y3×3(B) ⇔ μ ∈ M+(
B × M3×3) and PB#μ = L,

ν ∈ Y3×2(S) ⇔ ν ∈ M+(
S × M3×2) and PS#ν = L̂

where PB#μ (resp. PS#ν) denotes the image of the measure μ (resp. ν) by the projection PB :B × M3×3 → B (resp.
PS :S × M3×2 → S) and L (resp. L̂) the Lebesgue measure on B (resp. S). For every probability measure P on M3×3

or M3×2, we write bar(P) for its barycenter, i.e. bar(P) = ∫
λdP(λ).

The map A is defined by:

A : Y3×3(B) → Y3×2(S),

μ = μx ⊗ dx �→ ν =
( 1∫

0

μ̂x̂,s ds

)
⊗ dx̂

where μ̂x = PM3×2 #μx , x ∈ Ω , and
∫ 1

0 μ̂x̂,s ds is the probability measure parametrized by x̂ ∈ S, which acts on all
ϕ ∈ C0(M3×2) as follows:〈 1∫

0

μ̂x̂,s ds, ϕ

〉
:=

1∫
0

∫
M3×2

ϕ(λ̂) dμ̂x̂,s ds.

Given a sequence (με)ε>0 in the space Y3×3(B) equipped with the narrow convergence (see Appendix A) and ν

in Y3×2(S), according to Definition 1 one has

με
A
⇀ ν ⇔ ∃μ ∈ Y3×3(B) s.t.

{
με

nar
⇀ μ,

ν = A(μ)

and, for (vε,με) in Lp(Ω,R
3) × Y3×3(B), and (v, ν) in Lp(Ω,R

3) × Y3×2(S):

(vε,με)
I×A
⇀ (v,ν) ⇔

{
vε → v in Lp(Ω,R

3),

με
A
⇀ ν.

Given two locally Lipschitz functions f,g : M3×3 → R
+ satisfying a growth condition of order p, we consider the

integral functional Fε defined by

Fε : Lp
(
Ω,R

3) × Y3×3(B) → R ∪ {+∞},

Fε(u,μ) :=
{∫

Ωε
f (∇u)dx + ∫

B×M3×3 g(λ̂ | 1
ε
λ3) dμ + Iε(u,μ) if u ∈ W

1,p
Γ0

(Ω,R
3),

+∞ otherwise,

where

Iε(u,μ) :=
{

0 if μ = δ∇v(x) ⊗ dx, v = 1
B
rεu,

+∞ otherwise.

and rεu is defined by rεu(x̂, x3) = u(x̂, εx3).
Let ∇̂Y3×2(S) denote the subset of Y3×2(S) made up of all Young measures generated by gradients of

W 1,p(S,R
3)-Sobolev functions, γS the trace operator from W 1,p(Ω \ S,R

3) into Lp(S,R
3) and define the func-

tion g0 : M3×2 → R for all λ̂ in M3×2 by g0(λ̂) := infξ∈R3 g(λ̂ | ξ). Setting X = Lp(Ω,R
3), Y = Y3×3(B) and
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Ŷ := Y3×2(S), in the next section we prove that the sequence (Fε)ε>0 Γ
X,Y,Ŷ

-converges to the functional F , defined
by

F : Lp
(
Ω,R

3) × Y3×2(S) → R ∪ {+∞},
F (u, ν) :=

{∫
Ω

Qf (∇u)dx + ∫
S×M3×2 g0(λ̂) dν + I (u, ν) if u ∈ W

1,p
Γ0

(Ω,R
3), γSu ∈ W 1,p(S,R

3),

+∞ otherwise,

where

I (u, ν) :=
{

0 if ν ∈ ∇̂Y3×2(S), bar(νx̂) = ∇̂γS(u)(x̂) a.e. in S,

+∞ otherwise.
Theorem 1 applied to the sequence of the two marginal maps sheds new light on the mechanical problem.

3. A model in terms of displacement-Young measures: Analysis of microstructures of the strong material

In the three-dimensional Euclidean space E
3 referred to the orthonormal frame (0; e1, e2, e3), we consider a do-

main Ω with a C1 boundary Γ . Let Ω± = Ω ∩ [±x3 > 0], the interior S = {∂Ω+ ∩ ∂Ω−}◦ of the common part of
the boundaries of Ω± is assumed to have a positive H2-measure and, to shorten the proofs, included in the plane
[x3 = 0]. The set Ω is the physical reference configuration of the assembly of two materials. More precisely, given a
small dimensionless parameter ε and a global characteristic length h (for example the diameter of Ω), the set Bε =
{x + εz: 0 < z < h, x ∈ S} is the reference configuration of a strong material (whose stiffness is of order 1

ε
) while

Ωε = Ω \Bε is the reference configuration of a material with stiffness of order 1. (see Fig. 1). The structure is clamped
on a part Γ0 of Γ with a positive H2-measure, the complementary part Γψ of Γ0 is submitted to surface loads ψ and
we assume that H1(Γ0 ∩ S̄) > 0. Obviously one can there consider other type of boundary conditions (e.g. a combina-
tion of some components of the stress vector and of the displacement). Moreover the structure is submitted to applied
body forces Φ .

Let p � 1, we say that a Borel function W : M3×3 → R satisfies a (Cp) condition if{∃α,β,C ∈ R
+ s. t. ∀(λ,λ′) ∈ M3×3, α|λ|p � W(λ) � β(1 + |λ|p),

|W(λ) − W(λ′)| � C|λ − λ′|(1 + |λ|p−1 + |λ′|p−1).
(4)

We say that a quasiconvex function φ : M3×3 → R (resp. φ : M3×2 → R) satisfies a growth condition of order p if
there exists γ � 0 such that

∀λ ∈ M3×3,
∣∣φ(λ)

∣∣ � γ
(
1 + |λ|p) (

resp. ∀λ̂ ∈ M3×2,
∣∣φ(λ̂)

∣∣ � γ
(
1 + |λ̂|p))

.

The soft and the strong materials are modeled as hyperelastic and the bulk energy densities f , g of the two materials
occupying Ωε and Bε satisfy a (Cp) condition with p > 1. To shorten notation, we assume that (Cp) is satisfied with
the same constants α, β and C. We make the assumption that the strain of the soft material can be high and that the
thin structure Bε is occupied by a material which undergoes reversible solid–solid phase transformation as for instance
crystalline solids. In this context, the densities f and g are not convex and g entails a multi-well structure. It is worth
pointing out that the assumed growth condition violates the mechanical principle which asserts that it needs infinite
amount of energy to squeeze a small piece of material down to a point. We also do not take into account preservation
of orientation and injectivity conditions on the deformation fields so that the model presented in this section is a first
attempt to account large purely elastic deformation. We hope to deal with this much more complex situation in a future
work (for some results where these constraints are taken into account, we refer the reader to [20,3,4]).

We assume that the global characteristic length h is equal to 1 and the stored strain energy associated with a
displacement field u is given by the functional

Fε(u) :=
∫
Ωε

f (∇u)dx + 1

ε

∫
Bε

g(∇u)dx.

The equilibrium configuration of the structure is given by the displacement field ūε , solution-more generally ε-
approximate solution-of the problem

inf
{
Fε(u) − L(u): u ∈ W

1,p
Γ

(
Ω,R

3)}

0
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Fig. 1. Bonded assembly – left: the physical configuration – right: the rescaled layer – below: the limit configuration.

where L(u) = ∫
Ω

Φ dx + ∫
Γψ

ψ dH2. We want to analyze the behavior of ūε when ε tends to zero and to identify the
variational problem whose limit is a solution. But since the material in the layer Bε possesses a fine micro-structure, the
gradient minimizing sequence (∇ūε)ε>0 develops oscillations we would like to integrate into the variational problem.
This is why we write the strain energy 1

ε

∫
Bε

g(∇u)dx in terms of Young measures so that the limit problem also
accounts for a two-dimensional microstructure (for existence of microstructures see [9] and for microstructures in
thin films, we refer the reader to [11,17,21] and references therein).

Since the behavior of the displacement is radically different in Ωε and Bε , in a first stage, it is convenient to write
the energy functional Fε in terms of two arguments, one u, the displacement on Ωε , the other v, the displacement on
Bε occupied by the strong material. On the other hand, in order to work in a fixed space for the variable v, the change
of scale (x̂, x3) = (x̂, εy3) transforming (x̂, x3) ∈ Bε into (x̂, y3) ∈ B := S × (0,1) leads to consider the following
functional

Gε : Lp
(
Ω,R

3) × Lp
(
B,R

3) → R ∪ {+∞},
Gε(u, v) :=

{∫
Ωε

f (∇u)dx + ∫
B

g(∇̂v| 1
ε

∂v
∂x3

) dx + Iε(u, v) if u ∈ W
1,p
Γ0

(Ω,R
3),

+∞ otherwise,

where, for all (u, v) ∈ W
1,p
Γ0

(Ω,R
3) × W 1,p(B,R

3)

Iε(u, v) :=
{

0 if 1
B
rεu = v,

+∞ otherwise

and rεu(x̂, y3) := u(x̂, εy3). Now we write Gε in terms of pairs of displacements-Young measures by defining the
functional Fε as follows

Fε : Lp
(
Ω,R

3) × Y3×3(B) → R ∪ {+∞},



454 A.L. Bessoud et al. / Ann. I. H. Poincaré – AN 27 (2010) 447–469
Fε(u,μ) :=
{∫

Ωε
f (∇u)dx + ∫

B×M3×3 g(λ̂ | 1
ε
λ3) dμ + Iε(u,μ) if u ∈ W

1,p
Γ0

(Ω,R
3),

+∞ otherwise,

where

Iε(u,μ) :=
{

0 if μ = δ∇v(x) ⊗ dx, v = 1
B
rεu,

+∞ otherwise.

Clearly Fε is one way of writing Gε and from the strict variational point of view, it is equivalent to identify the
variational limit of Fε and that of Fε in the spirit of the previous section. Indeed we have

inf
u∈W

1,p
Γ0

(Ω,R3)

(
Fε(u) − L(u)

) = inf
(u,v)∈Lp(Ω,R3)×Lp(B,R3)

(
Gε(u, v) − L(u)

)
= inf

(u,μ)∈Lp(Ω,R3)×Y3×3(B)

(
Fε(u,μ) − L(u)

)
.

Nevertheless, we want to point out that the last formulation has the advantage to encode the gradient oscillations of
ε-minimizers in the layer Bε thanks to the Young measure state variable.

In order to apply Proposition 1 we begin by establishing the following compactness lemma

Lemma 1 (Compactness). Let ((uε, vε,με))ε>0 be a sequence in Lp(Ω,R
3) × Lp(B,R

3) × Y3×3(B) satisfying
supε>0 Gε(uε, vε) = supε>0 Fε(uε,με) < +∞. Then there exist (u, v) ∈ W

1,p
Γ0

(Ω,R
3)×W 1,p(B,R

3), ν ∈ ∇̂Y3×2(S)

and a subsequence not relabeled such that

(i) uε → u weakly in W
1,p
Γ0

(Ω,R
3) and strongly in Lp(Ω,R

3), vε → v weakly in W 1,p(B,R
3) and strongly in

Lp(B,R
3);

(ii) ∂vε

∂y3
→ 0 strongly in Lp(B,R

3), ∂v
∂y3

= 0 and v ∈ W 1,p(S,R
3);

(iii) γS(u) = v on S where γS denotes the trace operator from W 1,p(Ω \ S,R
3) into Lp(S);

(iv) (uε,με)
I×A
⇀ (u,ν), with ν = A(μ) where μ = (μ̂x ⊗ δ0

R3 ) ⊗ dx and μ̂ := μ̂x ⊗ dx is the Young measure

generated by (∇̂vε)ε>0. Moreover u and ν are connected as follows: bar(νx̂) = ∇̂γS(u)(x̂) for a.e. x̂ ∈ S.

Proof. Assertions (i) and (ii) are straightforward consequences of the coerciveness condition in (4), Poincaré’s
inequality and the isometry between W 1,p(S,R

3) and {v ∈ W 1,p(B,R
3): ∂v

∂y3
= 0}. We are going to establish as-

sertion (iii). For a.e. x ∈ B we have

vε(x̂, y3) = uε(x̂, εy3) = uε(x̂,0) +
εy3∫
0

∂uε

∂y3
(x̂, s) ds

where uε(x̂,0) must be taken in the trace sense. Let Qρ(x̂0) = Q̂ρ(x̂0) × (0, ρ) be the cylinder of R
3 where Q̂ρ(x̂0)

is the ball of R
2 centered at x̂0 ∈ S with ρ > 0 small enough so that Qρ(x̂0) ⊂ B . Integrating the previous equality

over Qρ(x̂0) yields

∫
–

Qρ(x̂0)

vε dx =
∫
–

Qρ(x̂0)

uε(x̂,0) dx +
∫
–

Qρ(x̂0)

εy3∫
0

∂uε

∂y3
(x̂, s) ds dx.

Letting ε → 0, according to the continuity of the trace operator and to (i), (ii), we obtain∫
–

Q̂ρ(x̂0)

v dx̂ =
∫
–

Q̂ρ(x̂0)

γS(u) dx̂ + lim sup
ε→0

Iρ,ε (5)

where Iρ,ε := ∫
–

∫ εy3 ∂uε (x̂, s) ds dx. Let us estimate Iρ,ε . An easy calculation using Hölder’s inequality gives

Qρ(x̂0) 0 ∂y3
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|Iρ,ε| �
∫
–

Qρ(x̂0)

(εy3)
1− 1

p

( εy3∫
0

∣∣∣∣∂uε

∂y3
(x̂, s)

∣∣∣∣
p

ds

) 1
p

, dx̂ dy3

� (ερ)
1− 1

p

∫
–

Q̂ρ(x̂0)

( ερ∫
0

∣∣∣∣∂uε

∂y3
(x̂, s)

∣∣∣∣
p

ds

) 1
p

dx̂

� (ερ)
1− 1

p

( ∫
Q̂ρ(x̂0)

ερ∫
0

∣∣∣∣∂uε

∂y3
(x̂, s)

∣∣∣∣
p

ds dx̂

) 1
p

� (ερ)
1− 1

p

( ∫
Bε

|∇uε|p dx

) 1
p

.

But since supε>0 Gε(uε, vε) = supε>0 Fε(uε) < +∞, from the coerciveness property satisfied by g one has∫
Bε

|∇uε|p dx � ε
α

so that the previous estimate yields |Iρ,ε| � C(ρ,α)ε where C(ρ,α) is a positive constant de-
pending only on ρ and α. From this estimate, (5) becomes∫

–

Q̂ρ(x̂0)

v dx̂ =
∫
–

Q̂ρ(x̂0)

γS(u) dx̂

for all ρ > 0. Letting ρ → 0 finally gives γS(u)(x0) = v(x0) for a.e. x0 in S.
It remains to establish assertion (iv). Since Fε(uε,με) < +∞ we have με = δ∇vε(x) ⊗ dx and

supε>0

∫
B

|∇vε|p dx < +∞ so that the Young measures με and δ∇̂vε(x)
⊗ dx are tight. According to the Prokhorov

compactness theorem (Theorem 5 of Appendix A), there exist a subsequence that we do not relabel, and μ ∈
∇Y3×3(B), μ̂ ∈ Y3×2(B) such that

με = δ∇vε(x) ⊗ dx
nar
⇀ μ, δ∇̂vε(x)

⊗ dx
nar
⇀ μ̂. (6)

On the other hand, from assertion (ii)

δ ∂vε
∂x3

(x)
⊗ dx

nar
⇀ δ0

R3 ⊗ dx. (7)

Combining (6) and (7) one easily deduce that μx = μ̂x ⊗ δ0
R3 , and setting ν = νx̂ ⊗ dx̂ where νx̂ := ∫ 1

0 μ̂x̂,s ds, we

finally obtain that με
A
⇀ ν.

We have to prove that ν belongs to ∇̂Y3×2(S). According to the Kinderlehrer–Pedregal characterization theorem
(Theorem 6 of Appendix A), it is equivalent to establish the three following assertions:

(KP)1 there exists w ∈ W 1,p(S,R
3) such that bar(νx̂) = ∇̂w(x̂) for a.e. x ∈ S;

(KP)2
∫

M3×2 |λ̂|p dνx̂ < +∞ for a.e. x ∈ S;
(KP)3 for all quasiconvex function φ satisfying a growth condition of order p,

φ
(
bar(νx̂)

)
�

∫
M3×2

φ(λ̂) dνx̂ for a.e. x̂ ∈ S.

Proof of (KP)1: From assertion (i) and classical properties on Young measures, we have ∇̂v(x) = ∫
M3×2 λ̂ dμ̂x for

a.e. x ∈ B and since ∂v
∂x3

= 0,

∇̂v(x̂) =
1∫

0

∫
M3×2

λ̂ dμ̂x̂,s ds =
∫

M3×2

λ̂ dνx̂

for a.e. x̂ in S so that v is the suitable Sobolev-function w.
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Proof of (KP)2: From the definition of νx̂ and the lower semicontinuity property for Young measures (Proposition 5
of Appendix A) we have∫

S

∫
M3×2

|λ̂|p dνx̂ dx̂ =
∫
B

∫
M3×2

|λ̂|p dμ̂x dx

=
∫
B

∫
M3×3

|λ̂|p(dμ̂x ⊗ δ0
R3 ) dx

=
∫

B×M3×3

|λ̂|p dμ �
∫

B×M3×3

|λ|p dμ

� lim inf
ε→0

∫
B

|∇vε|p dx � sup
ε>0

Fε(uε,με) < +∞

which proves that
∫

M3×2 |λ̂|p dνx̂ is finit for a.e. x̂ in S.

Proof of (KP)3: Let φ : M3×2 → R be a quasiconvex function satisfying a growth condition of order p and define
the function φ̃ : M3×3 → R by φ̃(λ) = φ(λ̂). It is easy to check that φ̃ is quasiconvex and clearly satisfies the same
growth condition. Since μ ∈ ∇Y3×3(B) we have for a.e. x in B

φ
(∇̂v(x̂)

) = φ̃
(∇v(x)

)
�

∫
M3×3

φ̃(λ) dμx

=
∫

M3×3

φ(λ̂) dμ̂x ⊗ δ0
R3 =

∫
M3×2

φ(λ̂) dμ̂x

so that for a.e. x in S

φ
(∇̂v(x̂)

) =
1∫

0

φ
(∇̂v(x̂)

)
ds �

1∫
0

∫
M3×2

φ(λ̂) dμ̂x̂,s ds =
∫

M3×2

φ(λ̂) dνx̂ . �

Remark 1. In the proof above we established A(∇Y3×3(B)) ⊂ ∇̂Y3×2(S). In fact it is easy to check that
A(∇Y3×3(B)) = ∇̂Y3×2(S).

Consider the functional defined in Section 2.3:

F : Lp
(
Ω,R

3) × Y3×2(S) → R ∪ {+∞},
F (u, ν) :=

{∫
Ω

Qf (∇u)dx + ∫
S×M3×2 g0(λ̂) dν + I (u, ν) if u ∈ W

1,p
Γ0

(Ω,R
3), γSu ∈ W 1,p(S,R

3),

+∞ otherwise.
We establish the Γ

X,Y,Ŷ
-convergence of the sequence (Fε)ε>0 to the functional F by means of the two next proposi-

tions.

Proposition 2 (Lower bound). Let (u, ν) be any pair in Lp(Ω,R
3) × Y3×2(S). Then, for all sequence ((uε,με))ε>0

in Lp(Ω,R
3) × Y3×3(B) converging to (u, ν), we have

F (u, ν) � lim inf
ε→0

Fε(uε,με).

Proof. One can assume lim infε→0 Fε(uε,με) < +∞ otherwise there is nothing to prove. Consequently, from
Lemma 1 we have

u ∈ W
1,p
Γ0

(Ω,R
3);

ν ∈ ∇̂Y3×2(S); bar(νx̂) = ∇̂γS(u)(x̂) for a.e. x̂ ∈ S.
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This proves that I (u, ν) = 0 and it suffices to establish the two following estimates:∫
S×M3×2

g0(λ̂) dν � lim inf
ε→0

∫
B

g

(
∇̂vε

∣∣∣∣ 1

ε

∂vε

∂x3

)
dx; (8)

∫
Ω

Qf (∇u)dx � lim inf
ε→0

∫
Ωε

f (∇uε) dx. (9)

Proof of (8): From the lower semicontinuity property for Young measures (see Proposition 5 of Appendix A) and
assertion (iv) of Lemma 1, it follows that

lim inf
ε→0

∫
B×M3×3

g

(
λ̂

∣∣∣∣ 1

ε
λ3

)
dμε � lim inf

ε→0

∫
B×M3×3

g0(λ̂) dμε

�
∫

B×M3×3

g0(λ̂) dμ

=
∫

B×M3×3

g0(λ̂) d(μ̂x ⊗ δ03
R

) ⊗ dx

=
∫

S×M3×2

g0(λ̂) dνx̂ ⊗ dx̂ =
∫

S×M3×2

g0(λ̂) dν.

Proof of (9): For fixed η > ε we have∫
Ωε

f (∇uε) dx �
∫
Ωη

f (∇uε) dx �
∫
Ωη

Qf (∇uε) dx

and, since w �→ ∫
Ωη

Qf (∇w)dx is lower semicontinuous for the weak convergence in W 1,p(Ωη,R
3), we deduce

lim inf
ε→0

∫
Ωε

f (∇uε) dx �
∫
Ωη

Qf (∇u)dx.

We end the proof by letting η → 0. �
For establishing the upper bound in the definition of our variationel convergence, we need to prove the following

relaxation result

Lemma 2. Let (u, ν) in W
1,p
Γ0

(Ω,R
3) × ∇̂Y3×2(S) with ∇̂γS(u)(x̂) = bar(νx̂) for a.e. x in S and a sequence

((un, vn))n∈N in W
1,p
Γ0

(Ω,R
3) × W 1,p(S,R

3) such that un weakly converges to u in W
1,p
Γ0

(Ω,R
3), δ∇̂vn(x̂)

⊗ dx
nar
⇀ ν

in Y3×2(S) and

lim
n→+∞

∫
Ω

f (∇un)dx =
∫
Ω

Qf (∇u)dx,

lim
n→+∞

∫
S

g0(∇̂vn) dx̂ =
∫

S×M3×2

g0(λ̂) dν. (10)

Then there exists a sequence (ũn)n∈N satisfying all the conditions fulfilled by (un)n∈N and furthermore which satisfies
γS(ũn) = vn.

Proof. Such a sequence ((un, vn))n∈N exists, consult for instance [6, Theorem 11.2.1 and Theorem 11.4.2]. Note that
one may assume (|∇un|p)n∈N uniformly integrable. Indeed, consider the sequence (ũn)n∈N whose gradients generate



458 A.L. Bessoud et al. / Ann. I. H. Poincaré – AN 27 (2010) 447–469
the same Young measure μ and such that (|∇ũn|p)n∈N is uniformly integrable (see Proposition 7 of Appendix A). By
using Propositions 5, 6 of Appendix A and standard lower semicontinuity results in Sobolev spaces we have∫

Ω

Qf (∇u)dx = lim
n→+∞

∫
Ω

f (∇un)dx

�
∫

Ω×M3×3

f (λ)dμ

= lim
n→+∞

∫
Ω

f (∇ũn) dx

�
∫
Ω

Qf (∇u)dx

so that

lim
n→+∞

∫
Ω

f (∇ũn) dx = lim
n→+∞

∫
Ω

f (∇un)dx =
∫
Ω

Qf (∇u)dx

which proves the thesis. In what follows, we still denote by (un)n∈N the sequence (ũn)n∈N. We are going to modify
the function un near S so that the constraint γS(un) = vn holds. The function vn will be indifferently considered as a
W 1,p(S,R

3)-function or a W 1,p(Ω,R
3)-function with ∂vn

∂x3
= 0.

By coerciveness of g0,
∫
S
|∇̂vn|p dx̂ is bounded, thus vn strongly converges in Lp(S,R

3) to a function v which

classically satisfies ∇̂v(x̂) = bar(νx̂) for a.e. x̂ in S. Then γS(u) = v on S. Let η > 0 intended to go to 0 and set
Ση := S × (− η

2 ,
η
2 ). We are going to modify un on Ση in order that the trace on S of the new function be equal to vn,

and in such a way to decrease limn→+∞
∫
Ω

f (∇un)dx. Let ϕ ∈ C∞
c (R) satisfying

ϕη = 1 on Ω \ Σ2η, ϕη = 0 on Ση, 0 � ϕη � 1,

|∇ϕi | � 1

η

and define

un,η = ϕη(un − vn) + vn. (11)

Clearly un,η belongs to W
1,p
Γ0

(Ω,R
3) and γs(un,η) = vn. Moreover∫

Ω

f (∇un,η) dx =
∫
Ση

f (∇un,η) dx +
∫

Σ2η\Ση

f (∇un,η) dx +
∫

Ω\Σ2η

f (∇un,η) dx

�
∫
Ση

f (∇vn) dx +
∫

Σ2η\Ση

f (∇un,η) dx +
∫
Ω

f (∇un)dx.

Thus, from the growth condition in (4),∫
Ω

f (∇un,η) dx � C

(
η + 1

ηp

∫
Σ2η

|un − vn|p dx +
∫

Σ2η

(|∇un|p
)
dx

)
+

∫
Ω

f (∇un)dx

where, from now on, C denotes various positive constants depending only on β , p and Ω . Letting n → +∞, from
(10) we obtain

lim sup
n→+∞

∫
Ω

f (∇un,η) dx � C

(
η + 1

ηp

∫
Σ

|u−v
p
| dx + sup

n∈N

∫
Σ

(|∇un|p
)
dx

)
+

∫
Ω

Qf (∇u)dx.
2η 2η
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But since γS(u) = v on S, the following Poincaré inequality holds∫
Σ2η

|u − v|p dx � ηp

∫
Σ2η

∣∣∣∣ ∂u

∂x3

∣∣∣∣
p

dx

so that, letting η → 0, from the uniform integrability of (|∇un|)n∈N

lim sup
η→+∞

lim sup
n→∞

∫
Ω

f (∇un,η) dx �
∫
Ω

Qf (∇u)dx.

We conclude by a standard diagonalization argument: there exists n �→ η(n) such that

lim sup
n→+∞

∫
Ω

f (∇un,η(n)) dx �
∫
Ω

Qf (∇u)dx.

It is easily checked that sequence (ũn)n∈N defined by ũn = un,η(n)) strongly converges to u in Lp(Ω,R
3) which

completes the proof. �
Proposition 3 (Upper bound). For all (u, ν) ∈ Lp(Ω,R

3) × Y3×2(S) there exists a sequence ((uε,με))ε>0 in
Lp(Ω,R

3) × Y3×3(B) converging to (u, ν) and satisfying

F (u, ν) � lim sup
ε→0

Fε(uε,με).

Proof. One can assume F (u, ν) < +∞ so that (u, ν) ∈ W
1,p
Γ0

(Ω,R
3) × ∇̂Y3×2(S). Classically, there exists vn ∈

W 1,p(S,R
3) such that (|∇̂vn|p)n∈N is uniformly integrable and δ∇̂vn(x̂)

⊗ dx̂
nar
⇀ ν in Y3×2(S) (Proposition 7 of

Appendix A). Note that we also have

(δ∇̂vn(x̂)
⊗ δ0

R3 ) ⊗ dx
nar
⇀ (νx̂ ⊗ δ0

R3 ) ⊗ dx (12)

in Y3×3(B) when n → +∞. Since g0 satisfies a growth condition of order p, we have (Proposition 6 of Appendix A)

lim
n→+∞

∫
S

g0(∇̂vn) dx̂ =
∫

S×M3×2

g0(λ̂) dν.

But, according to a classical interchange argument between infimum and integrals (see [2])∫
S

g0(∇̂vn) dx̂ = inf
ξ∈D(S,R3)

∫
S

g(∇̂vn | ξ) dx̂.

Let ξn in D(S,R
3) satisfying∣∣∣∣

∫
S

g(∇̂vn | ξn) dx̂ −
∫
S

g0(∇̂vn) dx̂

∣∣∣∣ � 1

n
,

then

lim
n→+∞

∫
S

g(∇̂vn | ξn) dx̂ =
∫

S×M3×2

g0(λ̂) dν. (13)

Consider the function vn,ε in W 1,p(B,R
3) defined by

vn,ε(x) = vn(x̂) + εx3ξn(x̂).

For fixed n, we first claim that

μn,ε := δ∇vn,ε(x) ⊗ dx
nar
⇀ (δ ˆ ⊗ δ0 3 ) ⊗ dx (14)
∇vn(x̂) R
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in Y3×3(B) when ε → 0. Indeed, setting ṽn(x) := vn(x̂), since ∇vn,ε − ∇ṽn → 0 strongly in Lp(B,M3×3), ∇vn,ε

and ∇ṽn generates the same Young measure (δ∇̂vn(x̂)
⊗ δ0

R3 ) ⊗ dx in Y3×3(B).

On the other hand, according to the classical relaxation theory in Sobolev spaces, there exists un ∈ W
1,p
Γ0

(Ω,R
3)

strongly converging to u in Lp(Ω,R
3) such that

lim
n→+∞

∫
Ω

f (∇un)dx =
∫
Ω

Qf (∇u)dx (15)

and we can modify un near S in such a way that γS(un) = vn (see Lemma 2 of Section 3). Let η > ε and consider the
function un,ε,η defined for all x in Ω by

un,ε,η(x̂, x3) := θ(x3)vn,ε

(
x̂,

x3

ε

)
+ (

1 − θ(x3)
)
un(x̂, x3)

where θ is a C 1-function satisfying 0 � θ � 1, | ∂θ
∂x3

| � 1
η−ε

and

θ =
{

1 in Bε,

0 in Ω \ Bη.

To shorten notation, we do not indicate the dependence on η and ε for θ . Note that vn,ε,η ∈ W
1,p
Γ0

(Ω,R
3) and

rεun,ε,η = vn,ε on B . From the local Lipschitz property in (4) satisfied by g one can easily establish

lim
ε→0

∫
B

g

(
∇̂vn,ε

∣∣∣∣ 1

ε

∂vn,ε

∂x3

)
dx =

∫
S

g(∇̂vn | ξn) dx̂. (16)

Let us write∫
Ωε

f (∇un,ε,η) dx =
∫

Ω\Bη

f (∇un)dx +
∫

Bη\Bε

f (∇un,ε,η) dx. (17)

We claim that limη→0 limε→0
∫
Bη\Bε

f (∇un,ε,η) dx. = 0. Indeed since

∇̂un,ε,η = θ(∇̂vn + x3∇̂ξn) + (1 − θ)∇̂un,

∂un,ε,η

∂x3
= ∂θ

x3
(vn − un) + x3ξn

∂θ

x3
+ θξn + (1 − θ)

∂un

x3
,

the following estimate holds:∣∣∣∣
∫

Bη\Bε

f (∇un,ε,η) dx

∣∣∣∣ � C

( ∫
Bη\Bε

h

(
ξn, ∇̂ξn, ∇̂un, ∇̂vn

∂un

∂x3

)
dx

+
∫

Bη\Bε

∣∣∣∣∂θ

x3

∣∣∣∣
p

|vn − un|p dx +
∫

Bη\Bε

∣∣∣∣x3ξn

∂θ

x3

∣∣∣∣
p

dx

)
(18)

where h is Lebesgue integrable and does not depend on ε and η. Clearly the first term in (18) tend to 0 when ε then η

go to 0. We estimate the two last terms. Since γS(un) = vn on S, Poincaré’s inequality yields∫
Bη\Bε

∣∣∣∣∂θ

x3

∣∣∣∣
p

|vn − un|p dx � 1

(η − ε)p

∫
Bη

|vn − un|p dx

� ηp

(η − ε)p

∫
B

∣∣∇(vn − un)
∣∣p dx
η
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which tends to 0 when ε then η goes to 0. On the other hand∫
Bη\Bε

∣∣∣∣x3ξn

∂θ

x3

∣∣∣∣
p

dx � ηp

(η − ε)p

∫
Bη

|ξn|p dx

which tends to 0 for the same reason. Therefore, combining (16), (17) and (18) we obtain

lim
η→0

lim
ε→0

Fε(un,ε,η,μn,ε) =
∫
Ω

f (∇un)dx +
∫
S

g(∇̂vn | ξn) dx̂.

Then, using a standard diagonalization argument, there exists a map ε �→ η(ε) satisfying η(ε) → 0 whenever ε → 0
and, setting un,ε := un,ε,η(ε),

lim
ε→0

Fε(un,ε,μn,ε) =
∫
Ω

f (∇un)dx +
∫
S

g(∇̂vn | ξn) dx̂ (19)

for all fixed n ∈ N. Moreover, going back to the expression of un,ε we have∫
Ω

|un,ε − un|p dx �
∫

Bη(ε)

|vn + x3ξn − un|p dx,

thus un,ε strongly converges to un in Lp(Ω,R
3) when ε → 0.

Collecting (12), (13), (14), (15) and (19), we deduce the following convergence scheme where the first arrow
indicates a convergence with respect to ε and the second to n:

μn,ε
nar
⇀ (δ∇̂vn(x̂)

⊗ δ0
R3 ) ⊗ dx

nar
⇀ (νx̂ ⊗ δ0

R3 ) ⊗ dx;
un,ε → un → u strongly in Lp

(
Ω,R

3);
Fε(un,ε,μn,ε) →

∫
Ω

f (∇un)dx +
∫
S

g(∇̂vn | ξn) dx̂ →
∫
Ω

Qf (∇u)dx +
∫
S

g0(λ̂) dν.

The conclusion of Proposition 3 then follows by using a standard diagonalization argument1 in the product space
Lp(Ω,R

3) × Y3×3(B) × R and noticing that A((νx̂ ⊗ δ0
R3 ) ⊗ dx) = ν. �

On account of Definition 2, Proposition 1, Lemma 1 and Propositions 2, 3 above, we can state the main theorem of
this section.

Theorem 2. The sequence of functionals (Fε − L)ε>0 Γ
X,Y,Ŷ

-converges to the functional F − L. In addition, if

(ūε, μ̄ε) ∈ Lp(Ω,R
3) × Y3×3(B) is a ε-minimizer of Fε − L, i.e. satisfies

Fε(ūε, μ̄ε) − L(ūε) � ε + inf
(u,μ)∈Lp(Ω,R3)×Y3×3(B)

(
Fε(u,μ) − L(u)

)
,

then there exists a subsequence of ((ūε, μ̄ε))ε>0 converging to (ū, ν̄) which is a minimizer of
inf(u,ν)∈Lp(Ω,R3)×Y3×2(S)(F (u, ν) − L(u)). Moreover γS(ū) belongs to W 1,p(S,R

3) and, for a.e. x̂ in S bar(ν̄x̂ ) =
∇̂γS(ū)(x̂).

Proof. The proof is a straightforward consequence of Lemma 1, Propositions 2 and 3. Indeed, L is easily seen to be

a continuous perturbation of Fε , so that Fε

Γ
X,Y,Ŷ−→ F �⇒ Fε − L

Γ
X,Y,Ŷ−→ F − L. �

1 Such an argument is valid because the set Y3×3(B) endowed with the narrow topology is first countable (see [13, Proposition 2.3.1]).



462 A.L. Bessoud et al. / Ann. I. H. Poincaré – AN 27 (2010) 447–469
4. The Young measure considered as an internal variable: The formulation in terms of displacements

In this section, we derive the classical model obtained in [1] in the context of the linear elasticity or in [10] in a more
general setting, from the model obtained in Section 3. We show that the stored strain energy functional associated with
the classical model is the marginal map of the functional limit F obtained in the previous section when we consider
the Young measure ν, which represents the fine microstructure of the layer, as an internal variable. In some sense the
formulation in terms of displacement can be regarded as the macroscopic version of the model suggested in Section 3
(see Corollary 1). With the notations of Sections 2, 3 we define the two functionals

Hε,H : Lp
(
Ω,R

3) → R ∪ {+∞}
by

Hε(u) :=
{∫

Ωε
f (∇u)dx + ∫

B
g(∇̂rεu | 1

ε
∂rεu
∂x3

) dx if u ∈ W
1,p
Γ0

(Ω,R
3),

+∞ otherwise
and

H(u) :=
{∫

Ω
Qf (∇u)dx + ∫

S
Qg0(∇̂γS(u)) dx̂ if u ∈ W

1,p
Γ0

(Ω,R
3), γS(u) ∈ W 1,p(S,R

3),

+∞ otherwise.

Clearly, Hε is the marginal map associated with the functional Fε , i.e., for all u ∈ Lp(Ω,R
3) we have

Hε(u) = inf
μ∈Y3×3(B)

Fε(u,μ).

On the other hand H is the stored strain energy functional obtained in [10] in nonlinear elasticity, or in [1] in the
linear elasticity framework where we have to replace ∇u with the linearized strain tensor e(u) = 1

2 (∇u +t ∇u) and
the quasiconvexifications of f and g0 with their convexifications. In the next proposition, we establish that H is the
marginal map associated with the limit functional F .

Proposition 4. The functional H is the marginal map associated with the functional F when the Young measure ν is
considered as an internal variable. More precisely, for all u ∈ Lp(Ω,R

3) we have

H(u) = inf
ν∈Y3×2(S)

F (u, ν).

Proof. We begin by introducing various sets. For every Â in M3×2 we define the set adm(Â) of probability measures
on M3×2 by:

P ∈ adm(Â) ⇐⇒

⎧⎪⎨
⎪⎩

Â = ∫
M3×2 λ̂ dP;∫

M3×2 |λ̂|p dP < +∞;
φ(Â) �

∫
M3×2 φ(λ̂) dP

for all quasiconvex function φ satisfying a growth condition of order p. On the other hand, for each fixed u ∈
W

1,p
Γ0

(Ω,R
3) such that γS(u) ∈ W 1,p(S,R

3) we define the subset Adm(u) of Y3×2(S) by:

ν ∈ Adm(u) ⇐⇒
{

ν ∈ ∇̂Y3×2(S);
bar(νx̂) = ∇̂γS(u)(x̂) for a.e. x̂ ∈ S.

The proof is based on the following localization lemma.

Lemma 3. With the notations above we have

(i) inf

{ ∫
M3×2

g0(λ̂) dP: P ∈ adm(Â)

}
= Qg0(Â) for all Â ∈ M3×2;

(ii) inf
ν∈Adm(u)

∫
3×2

g0(λ̂) dν =
∫
S

inf
P∈adm(∇̂γS(u)(x̂))

( ∫
3×2

g0(λ̂) dP
)

dx̂.
S×M M



A.L. Bessoud et al. / Ann. I. H. Poincaré – AN 27 (2010) 447–469 463
Proof of Lemma 3. Proof of (i): For every P ∈ adm(Â) one has∫
M3×2

g0(λ̂) dP �
∫

M3×2

Qg0(λ̂) dP � Qg0(Â)

so that inf{∫M3×2 g0(λ̂) dP: P ∈ adm(Â)} � Qg0(Â).

For the converse inequality, set Ŷ = ]0,1[2, fix ψ ∈ W
1,p

0 (Ŷ ,R
3) and define the probability measure Pψ by

Pψ :=
∫
Ŷ

δ
Â+∇ψ(ŷ)

dŷ

which acts on every continuous function ϕ : M3×2 → R satisfying a growth condition of order p as follows:∫
M3×2

ϕ(λ̂) dPψ :=
∫
Ŷ

ϕ
(
Â + ∇ψ(ŷ)

)
dŷ.

Clearly Pψ ∈ adm(Â), consequently

E (Â) := {
Pψ : ψ ∈ W

1,p

0

(
Ŷ ,R

3)} ⊂ adm(Â).

It follows that

inf

{ ∫
M3×2

g0(λ̂) dP: P ∈ adm(Â)

}
� inf

{ ∫
M3×2

g0(λ̂) dP: P ∈ E (Â)

}

= inf
φ∈W

1,p
0 (Ŷ ,R3)

∫
Ŷ

g0
(
Â + φ(ŷ)

)
dŷ

= Qg0(Â).

In the last equality we have used the quasiconvex envelop formula for real-valued functions satisfying a growth
condition of order p (see [15]).

Proof of (ii): Since ν ∈ Adm(u) yields νx̂ ∈ adm(∇̂γS(u)(x̂)), clearly we have

inf
ν∈Adm(u)

∫
S

∫
M3×2

g0(λ̂) dνx̂ dx̂ �
∫
S

inf
P∈adm(∇̂γS(u)(x̂))

( ∫
M3×2

g0(λ̂) dP

)
dx̂.

Conversely, for all η > 0, and x̂ ∈ S, let Pη

x̂
in adm(∇̂γS(u)(x̂)) satisfying

inf
P∈adm(∇̂γS(u)(x̂))

( ∫
M3×2

g0(λ̂) dP
)

�
∫

M3×2

g0(λ̂) dPη

x̂
− η. (20)

We can assume that the map x̂ �→ Pη

x̂
is measurable (see [14]). Set ν := Pη

x̂
⊗dx̂. As Pη

x̂
∈ adm(∇̂γS(u)(x̂)), the Young

measure ν belongs to Adm(u) so that (20) yields, since η is arbitrary,∫
S

inf
P∈adm(∇̂γS(u)(x̂))

( ∫
M3×2

g0(λ̂) dP
)

dx̂ � inf
ν∈Adm(u)

∫
S

∫
M3×2

g0(λ̂) dνx̂ dx̂

which completes the proof of Lemma 3. �
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Proof of Proposition 4 continued. According to Lemma 3 we obtain

inf
ν∈Y3×2(S)

F (u, ν) =
∫
Ω

Qf (∇u)dx + inf
ν∈Adm(u)

∫
S×M3×2

g0(λ̂) dν

=
∫
Ω

Qf (∇u)dx +
∫
S

inf
P∈adm(∇̂γS(u)(x̂))

( ∫
M3×2

g0(λ̂) dP
)

dx̂

=
∫
Ω

Qf (∇u)dx +
∫
S

Qg0
(∇̂γS(u)

)
dx̂

which proves the proposition. �
Applying Proposition 4, Lemma 1 and Theorem 1 we recover the classical nonlinear model of multimaterial with

strong interface obtained in [1] and [10]. Precisely

Theorem 3. Let us equip the space X = Lp(Ω,R
3) with the strong convergence. Then the sequence of functionals

(Hε)ε>0 ΓX-converges to the functional H . In addition, if ūε ∈ Lp(Ω,R
3) is a ε-minimizer of Hε − L, i.e. which

satisfies

Hε(ūε) − L(ūε) � ε + inf
u∈Lp(Ω,R3)

(
Hε − L(u)

)
,

then there exists a subsequence of (ūε)ε>0 which strongly converges in Lp(Ω,R
3) and weakly in W

1,p
Γ0

(Ω,R
3) to

some ū which is a minimizer of the classical nonlinear problem

inf
u∈Lp(Ω,R3)

(
H(u) − L(u)

)
.

Let (ū, ν̄) be a minimizer of inf(u,ν)∈Lp(Ω,R3)×Y3×2(S)(F (u, ν) − L(u)). The next corollary states that ū is a mini-
mizer of the classical nonlinear problem and that at a.e. x̂ in S, one may think ν̄ as the microscopic description of the
macroscopic quantities ∇̂γS(ū)(x̂) and Qg0(∇̂γS(ū)(x̂)).

Corollary 1. Let (ū, ν̄) be a minimizer of inf(u,ν)∈Lp(Ω,R3)×Y3×2(S)(F (u, ν) − L(u)), then ū is a minimizer of
infu∈Lp(Ω,R3)(H(u) − L(u)). Moreover for a.e. x̂ in S one has

∇̂γS(ū)(x̂) =
∫

M3×2

λ̂ dν̄x̂;

Qg0
(∇̂γS(ū)(x̂)

) =
∫

M3×2

g0(λ̂) dν̄x̂ .

Proof. We begin by proving the two equalities. The proof of the first one is straightforward since ν̄ ∈ Adm(ū). For
the same reason, for a.e. x̂ in S we have

Qg0
(∇̂γS(ū)(x̂)

)
�

∫
M3×2

Qg0(λ̂) dν̄x̂

�
∫

M3×2

g0(λ̂) dν̄x̂ .

The converse inequality is more involved and requires a localization argument. Let x̂0 be a fixed point of S,

Qρ(x̂0) = Q̂ρ(x̂0) × (−ρ,ρ) the cylinder of R
3 where Q̂ρ(x̂0) is the ball of R

2 centered at x̂0 ∈ S. Write F ρ,x̂0
ε ,

F ρ,x̂0 , H
ρ,x̂0
ε , Hρ,x̂0 for the functionals Fε , F , Hε , H localized at Qρ(x̂0) where the constraint u ∈ W

1,p
Γ (Ω,R

3)

0
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is replaced by the constraint u ∈ ū + W
1,p

0 (Qρ(x̂0),R
3). It is easy to check that (ū, ν̄) restricted to Qρ(x̂0) is also a

minimizer of the localized problem

inf
{

F ρ,x̂0(u, ν): u ∈ Lp
(
Qρ(x̂0),R

3), ν ∈ Y3×2
(
Q̂ρ(x̂0)

)}
.

On the other hand, analysis similar to that in the proofs of Theorem 2 and Theorem 3 shows that F ρ,x̂0
ε

Γ
X,Y,Ŷ−→ F ρ,x̂0

and H
ρ,x̂0
ε

ΓX−→ Hρ,x̂0 . From the second variational convergence process
ΓX−→, there exists a sequence (uε)ε>0 strongly

converging to ū in Lp(Qρ(x̂0),R
3) such that

lim
ε→0

(
Hρ,x̂0

ε (uε) − L(uε)
) =

∫
Qρ(x̂0)

Qf (∇ū) dx +
∫

Q̂ρ(x̂0)

Qg0
(∇̂γS(ū)

)
dx̂ − L(ū). (21)

Moreover, according to the Prokhorov compactness theorem, με = δ∇uε(x) ⊗dx
A
⇀ ¯̄ν where ¯̄ν is some Young measure

in ∇̂Y3×2(S). Now, from the first variational convergence process
Γ

X,Y,Ŷ−→ , we obtain

lim
ε→0

(
Hρ,x̂0

ε (uε) − L(uε)
) = lim

ε→0

(
F ρ,x̂0

ε (uε,με) − L(uε)
)

�
∫

Qρ(x̂0)

Qf (∇ū) dx +
∫

Q̂ρ(x̂0)

( ∫
M3×2

g0(λ̂) d ¯̄νx̂

)
dx̂ − L(ū)

�
∫

Qρ(x̂0)

Qf (∇ū) dx +
∫

Q̂ρ(x̂0)

( ∫
M3×2

g0(λ̂) dν̄x̂

)
dx̂ − L(ū). (22)

Combining (21) and (22) we deduce∫
Q̂ρ(x̂0)

Qg0
(∇̂γS(ū)

)
dx̂ �

∫
Q̂ρ(x̂0)

( ∫
M3×2

g0(λ) dν̄x̂

)
dx̂.

By choosing x̂0 outside a suitable H2-negligible subset of S (take x̂0 a Lebesgue point of each two integrands in
each two members), dividing the two members by H2(Q̂ρ(x̂0)) and letting ρ → 0, we obtain Qg0(∇̂γS(ū)(x̂0)) �∫

M3×2 g0(λ) dν̄ ¯̂x0
which completes the proof of the second equality.

It remains to establish that ū is a minimizer of the classical nonlinear problem. Indeed, from the second equality
previously established we infer∫

Ω

Qf (∇ū) dx +
∫
S

Qg0
(∇̂γS(ū)

)
dx̂ − L(ū) = F (ū, ν̄) − L(ū)

= inf
u∈Lp(Ω,R3)

(
inf

ν∈Y3×2(S)
F (u, ν) − L(u)

)
= inf

u∈Lp(Ω,R3)

(
H(u) − L(u)

)
which completes the proof of the corollary. �
5. The displacement considered as an internal variable: The formulation in terms of Young measure

Since H1(Γ0 ∩ S̄) > 0, for each ν ∈ ∇̂Y3×2(S) there exists a unique function u in W 1,p(S,R
3) satisfying u = 0 on

Γ0 ∩ S̄, defined for a.e. x̂ in S by u(x̂) = ∇̂−1(bar(νx̂)). For every fixed measure ν in ∇̂Y3×2(S), we consider the set

W(ν) := {
u ∈ W

1,p
Γ0

(
Ω,R

3): γS(u)(x̂) = ∇̂−1(bar(νx̂)
)

for a.e. x̂ in S
}

and define the functional G : Y3×2(S) → R ∪ {+∞} by

G(ν) :=
{

infu∈W(ν)(
∫
Ω

Qf (∇u)dx − L(u)) + ∫
S×M3×2 g0(λ̂) dν if ν ∈ ∇̂Y3×2(S),
+∞ otherwise.
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It is straightforward to see that G is the marginal map of the functional F when u is considered as an internal variable,
namely G := infu∈Lp(Ω,R3) F (u, .). It is also interesting to notice that G is a sum of a bulk and surface energy,
precisely:

G(ν) =
∫
Ω

h
(
x,bar(νx̂)

)
dx +

∫
S

( ∫
M3×2

g0(λ̂) dνx̂

)
dx̂.

(Take h := Qf ◦ ∇ū where ū is a solution of infu∈W(ν)(
∫
Ω

Qf (∇u)dx − L(u)).)

Applying Theorem 1, we deduce that Gε := infu∈Lp(Ω,R3) Fε(u, .)
Γ

Y,Ŷ−→ G. The formulation of the model in terms
of Young measure is then given by the problem ν̄ ∈ arg minG. From this formulation, we deduce that a minimizer
ū of the classical formulation is solution of a Dirichlet problem (in a variational form) with the following boundary
condition: ū(x̂) = ∇̂−1(bar(νx̂)) on S. Precisely

Corollary 2. Let (ū, ν̄) be a minimizer of inf(u,ν)∈Lp(Ω,R3)×Y3×2(S)(F (u, ν) − L(u)), then ū is a minimizer of the
Dirichlet problem

inf

{ ∫
Ω\S

Qf (∇u)dx − L(u): u ∈ W
1,p
Γ0

(
Ω,R

3), u(x̂) = ∇̂−1(bar(νx̂)
)

a.e. on S

}
.

Proof. On account of the Γ
Y,Ŷ

-convergence of Gε to G, there exists a sequence με ∈ Y3×3(B) satisfying με
A
⇀ ν̄ and

lim
ε→0

Gε(με) = inf
u∈W(ν̄)

( ∫
Ω

Qf (∇u)dx − L(u)

)
+

∫
S×M3×2

g0(λ̂) dν̄. (23)

But since Gε(με) < +∞, there exists uε in W
1,p
Γ0

(Ω,R
3) such that με = δ∇(rεuε) ⊗ dx in Y3×3(B) and Gε(με) =

Fε(uε,με). From Lemma 1, a subsequence of (uε)ε>0 strongly converges to some ¯̄u in Lp(Ω,R
3). Then, according

to the Γ
X,Y,Ŷ

convergence of Fε − L to F − L, we deduce

lim
ε→0

Gε(με) = lim
ε→0

Fε(uε,με) − L(uε) � lim inf
ε→0

Fε(uε,με) − L(uε)

�
∫
Ω

Qf (∇ ¯̄u)dx − L( ¯̄u) +
∫

S×M3×2

g0(λ̂) dν̄

�
∫
Ω

Qf (∇ū) dx − L(ū) +
∫

S×M3×2

g0(λ̂) dν̄. (24)

Combining (23) and (24) we see that

inf
u∈W(ν̄)

( ∫
Ω

Qf (∇u)dx − L(u)

)
=

∫
Ω

Qf (∇ū) dx − L(ū)

which ends the proof. �
Appendix A

For a general exposition of the theory of Young measures, we refer the reader to [7,8,26,27] and the references
therein. In all the appendix, Ω is an open bounded subset of R

N and E = R
d , d = m × N so that R

d is canonically
isomorphic to the space Mm×N of m × N matrices.

Definition 3. We call Young measure on Ω ×E, any positive measure μ ∈ M+(Ω ×E) whose image by the projection
πΩ on Ω is the Lebesgue measure L on Ω : for every Borel subset B of Ω

πΩ#μ(B) := μ(B × E) = L(B).
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We denote by Y (Ω;E) the set of all Young measures on Ω × E and equip Y (Ω;E) with the narrow topology,
that is the weakest topology which makes the maps

μ �→
∫

Ω×E

ϕ dμ

continuous, where ϕ runs through Cb(Ω;E). This topology induces the narrow convergence of Young measures
defined as follows: let (μn)n∈N be a sequence of measures in Y (Ω;E) and μ ∈ Y (Ω;E), then

μn
nar
⇀ μ ⇐⇒

{∀ϕ ∈ Cb(Ω;E),

limn→+∞
∫
Ω×E

ϕ(x,λ)dμn(x,λ) = ∫
Ω×E

ϕ(x,λ)dμ(x,λ).

The following slicing property, is a generalization of Fubini’s theorem.

Theorem 4. Let μ be any Young measure in Y (Ω;E). There exists a family of probability measure (μx)x∈Ω on E,
unique up to equality L-a.e. such that

(i) x �→ ∫
E

ψ(x,Λ)dμx is L-measurable,
(ii)

∫
Ω×E

ψ(x,Λ)dμ(x,Λ) = ∫
Ω

(
∫
E

ψ(x,Λ) dμx(Λ))dx

for each function μ-integrable ψ . The family (μx)x∈Ω is called a disintegration of the Young measure μ and we write
μ = μx ⊗ L.

Let us define the tightness notion for Young measures

Definition 4. A subset H of Y (Ω;E) is said to be tight if

∀ε > 0, ∃Kε compact subset of E such that sup
μ∈H

μ(Ω × E \ Kε) < ε.

Theorem below may be considered as the parametrized version of the classical Prokhorov compactness theorem

Theorem 5 (Prokhorov’s compactness theorem). Let (μn)n∈N be a tight sequence in Y (Ω;E). Then, there exists a
subsequence (μnk )k∈N of (μn)n∈N and μ in Y (Ω;E) such that

μnk

nar
⇀ μ in Y (Ω;E).

Let (un)n∈N be a sequence of functions un : Ω → E and consider the sequence of their associated Young measures

(μn)n∈N, μn = δun(x) ⊗ L. If μn
nar
⇀ μ in Y (Ω;E), the Young measure μ is said to be generated by the sequence of

functions (un)n∈N. In general, μ is not associated with a function.
The next proposition is a semicontinuity result related to nonnegative functions.

Proposition 5. Let ϕ : Ω × E → [0,+∞] be a B(Ω) ⊗ B(E) measurable function such that λ �→ ϕ(x,λ) is lsc for
a.e. x in Ω . Let moreover (μn)n∈N be a sequence of Young measures in Y (Ω;E) narrowly converging to some Young
measure μ in Y (Ω;E). Then∫

Ω×E

ϕ(x,λ)dμ(x,λ) � lim inf
n→+∞

∫
Ω×E

ϕ(x,λ)dμn(x,λ).

Let us recall the notion of uniform integrability: a sequence (fn)n∈N, fn : Ω → R is said to be uniformly integrable
if

lim
R→+∞ sup

n∈N

∫
[|fn|>R]

|fn| = 0.

One may extend the set Cb(Ω,R
m) of test functions related to the narrow convergence as follows:
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Proposition 6. Let (μn)n∈N be a sequence of Young measures associated with a sequence of functions (un)n∈N,
narrowly converging to some Young measure μ. On the other hand let ϕ : Ω ×E → R be a B(Ω)⊗ B(E) measurable
function such that λ �→ ϕ(x,λ) is continuous for a.e. x in Ω . Assume moreover that x �→ ϕ(x,un(x)) is uniformly
integrable. Then∫

Ω×E

ϕ(x,λ)dμ(x,λ) = lim
n→+∞

∫
Ω

ϕ
(
x,un(x)

)
dx.

In order to apply Proposition 6, the following result is fundamental. For a proof, we refer the reader to [18,23].

Proposition 7. Let (un)n∈N be a bounded sequence in W
1,p
Γ0

(Ω,R
m) whose gradients generate a W 1,p-Young mea-

sure μ. Then there exists another sequence (vn)n∈N in W
1,p
Γ0

(Ω,R
m), whose gradients generate the same Young

measure μ, and such that (|∇vn|p)n∈N is uniformly integrable.

We end this section with the following characterization theorem for W 1,p-Young measures (Young measures gen-
erated by gradients of W 1,p-functions), established by D. Kinderlehrer and P. Pedregal (see [19,23,24]).

Theorem 6. Let p > 1. Then μ ∈ Y (Ω;E) is a W 1,p-Young measure iff there exists u ∈ W 1,p(Ω,R
m) such that the

three following assertions hold:

(i) ∇u(x) = ∫
E

λdμx(λ),
(ii) for all quasiconvex function φ satisfying a growth condition of order p one has

φ
(∇u(x)

)
�

∫
E

φ(λ)dμx(λ) for a.e. x ∈ Ω.

(iii)
∫
E

|λ|p dμ(x) < +∞ for a.e.x ∈ Ω.
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