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Abstract

We provide isoperimetric Szegö–Weinberger type inequalities for the first nontrivial Neumann eigenvalue μ1(Ω) in Gauss space,
where Ω is a possibly unbounded domain of RN . Our main result consists in showing that among all sets Ω of RN symmetric
about the origin, having prescribed Gaussian measure, μ1(Ω) is maximum if and only if Ω is the Euclidean ball centered at the
origin.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let us consider the classical eigenvalue problem for the free membrane⎧⎨⎩
−�u = μu in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.1)

where Ω is a smooth connected subset of RN and ν is the outward normal to ∂Ω .
In [26] Kornhauser and Stakgold conjectured that among all planar simply connected domains, with fixed measure,

μ1(Ω), the first nontrivial eigenvalue of (1.1), achieves its maximum value if and only if Ω is a disk.
This conjecture was proved by Szegö in [33], by means of tools from complex analysis, in particular he used the

invariance of Dirichlet integrals under conformal transplantation.
Soon after (see [30]) Weinberger generalized this result to any bounded smooth domain Ω of RN . Weinberger

obtained from the eigenfunctions of the unit ball of RN , B1, test functions admissible in the variational characterization
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of μ1(Ω). His idea was to extend radially such eigenfunctions in RN , just setting their value constant outside B1.
Via the so-called “center of mass” arguments, he obtained N different functions having mean value zero on Ω .
At this point he is allowed to use all these functions as trial functions for μ1(Ω) and the result is finally achieved by
symmetrization arguments.

This last method turned out to be rather flexible. We recall indeed that, adapting Weinberger arguments, similar
inequalities for spaces of constant sectional curvature are derived. For instance in [3], see also [11], it is shown that if
Ω is a domain of SN , contained in a hemisphere, then

μ1(Ω) � μ1
(
Ω�

)
,

where Ω� is the cap (i.e. the geodesic ball in SN ) having the same measure as Ω .
On the other hand in [27] it is proved that the first nonzero Neumann eigenvalue is maximal for the equilateral

triangle among all triangles of given perimeter, and hence among all triangles of given area.
For further references see, e.g., the monographs [4,11,25] and the survey paper [2].
The present paper deals with the Neumann eigenvalue problem in Gauss space. More precisely we study the

problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

N∑
i=1

∂

∂xi

(
ϕN(x)

∂u

∂xi

)
= μϕN(x)u in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.2)

where Ω is a Lipschitz domain of RN , N � 1 and ϕN(x) = (2π)− N
2 e− |x|2

2 is the density of normalized N -dimensional
Gaussian measure dγN = ϕN(x)dx.

Since the first half of the last century problems of the type (1.2) have attracted attention among both pure math-
ematicians and physicists. There is indeed a tight connection between the eigenvalues of (1.2) and the energy levels
of the N -dimensional quantum harmonic oscillator. Related references are the classical Courant–Hilbert monographs
[16] (see also [20]). On the other hand the interest in probability is motivated, for instance, from the fact that the dif-
ferential operator L = −� + x · ∇ appearing at the left-hand side of (1.2) is the generator of the Ornstein–Uhlenbeck
semigroup, see, e.g., [8] and the references therein. Finally problems of the type (1.2) are related to some functional
inequalities as the well-known Gross’s Theorem on the Sobolev Logarithmic embedding (see [21,1,29,15,19,7]).

If Ω is the whole space RN the eigenfunctions of (1.2) are the Hermite polynomials. If instead Ω � RN then
sharp estimates for the eigenvalues and eigenfunctions of (1.2) with zero boundary conditions are contained, e.g., in
[17,6,5].

Our aim is to prove isoperimetric Szegö–Weinberger type inequalities for the first eigenvalue of (1.2) that, with an
abuse of notation, we still denote by μ1(Ω).

In this setting it appears natural to maximize μ1(Ω) keeping fixed the Gaussian measure of Ω . We recall that the
Gaussian measure in RN can be obtained as a limit, as k goes to infinity, of normalized surface measures on Sk+N+1√

k
,

the sphere in Rk+N+2 of radius
√

k, (a process known in literature as “Poincaré limit”). Using this limit process many
properties for the Gauss space (i.e. RN equipped with the measure dγN ) can be deduced from analogous properties
which hold true for the sphere. One of the most remarkable example is the Gaussian isoperimetric inequality, which
asserts that among all subsets G of RN with fixed Gaussian measure, the half-spaces achieve the smallest Gaussian
perimeter (see, e.g., [9,32,10]). We recall indeed, see, e.g., [18], that the half-spaces are the “Poincaré limit” of the
caps, which are in turn the optimal sets in the isoperimetric problem on the sphere. Another example is the Faber–
Krahn type inequality for Gauss space: the first Dirichlet Gaussian eigenvalue is minimum on the half-space (see, e.g.,
[18] and [6]).

There are therefore two clues that might lead one to think that the half-space would be a good candidate to maxi-
mize μ1. One reason is that the caps maximize the first Neumann eigenvalue on the sphere, the other is that in all the
classical situations, described before, it is always the isoperimetric set to maximize μ1.

This phenomenon here does not occur.
In one dimension we provide a detailed description of the behavior of μ1. Let Ω = (a, b) with −∞ � a < b � +∞

and γ1(a, b) = L ∈ (0,1). We prove that μ1(a, b) is minimum when the interval reduces to a half-line, it is maximum
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when it is centered at the origin and finally μ1(a, b) is strictly monotone as (a, b) slides between these extreme
positions. Therefore the set which gives the highest eigenvalue is the one which maximizes the weighted perimeter
and vice versa.

Our main result, which goes in the same direction of the previous one, concerns the N -dimensional case. We show
that among all connected and possibly unbounded domain Ω of RN , symmetric about the origin and with fixed
Gaussian measure, μ1(Ω) achieves its maximum value if and only if Ω is the Euclidean ball.

Since, obviously, the half-spaces are not symmetric about the origin, the above result cannot exclude the possibility
that the half-spaces maximize μ1(Ω) in dimension greater then one. We are able to exclude this possibility providing
a suitable counterexample, see Remark 4.3.

We finally note that, as well known, a distinctive feature of Gauss measure is that its density has both radial
symmetry and product structure. Hence in the problem under consideration the former feature prevails on the latter.

2. Notation and preliminary results

Here and in the sequel Ω will denote a connected, smooth, open subset of RN such that γN(Ω) := ∫
Ω

dγN < 1.
The natural functional space associated to problem (1.2) is H 1(Ω,γN) which is the weighted Sobolev space defined
as follows

H 1(Ω,γN) = {
u ∈ W

1,1
loc (Ω):

(
u, |Du|) ∈ L2(Ω,γN) × L2(Ω,γN)

}
,

endowed with the norm

‖u‖H 1(Ω,γN ) = ‖u‖L2(Ω,γN ) + ‖Du‖L2(Ω,γN ) =
(∫

Ω

u2 dγN

) 1
2 +

(∫
Ω

|Du|2 dγN

) 1
2

. (2.1)

In [19], among other things, it is proved that the subspace of H 1(Ω,γN) made of those functions having mean value
zero in Ω it is compactly embedded in L2(Ω,γN). This circumstance allows us to use standard spectral theory for
self-adjoint compact operator. In particular the variational characterization of μ1(Ω) will be used throughout

μ1(Ω) = min
v �=0∫

Ω v dγN=0

∫
Ω

|Dv|2 dγN∫
Ω

v2 dγN

. (2.2)

We recall, see, e.g., [16], that when Ω = RN the eigenfunctions to problem (1.2) are combinations of homogeneous
Hermite polynomials. The Hermite polynomials in one variable are defined by

Hn(t) = (−1)net2/2 dn

dtn
e−t2/2, n ∈ N ∪ {0}, (2.3)

and they constitute a complete set of eigenfunctions to problem (1.2) with Ω = R, more precisely it holds

−(
ϕ1(t)H

′
n(t)

)′ = nϕ1(t)Hn(t).

Since Ω is a smooth set, its Gaussian perimeter is simply given by

PγN
(Ω) =

∫
∂Ω

γN(x)HN−1(dx),

where HN−1(x) is the (N − 1)-dimensional Hausdorff measure.
As already mentioned in the introduction, for the Gaussian measure an isoperimetric inequality holds true. Consider

the half-space

Ω� = {
x ∈ RN : x1 > Φ−1(γN(Ω)

)}
, (2.4)

where Φ(t) is the complementary error function

Φ(t) = 1√
2π

∞∫
t

e− s2
2 ds. (2.5)

In other words Ω� is the half-space orthogonal to the x1-axis having the same Gaussian measure as Ω .
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The isoperimetric inequality for Gaussian measure (see [32,9,17,10]) states that

PγN
(Ω) � PγN

(
Ω�)

, (2.6)

where equality holds in (2.6) if and only if Ω = Ω�, modulo a rotation.
Now we recall a few definitions and properties about Gaussian rearrangement, whose notion was introduced by

Ehrhard in [17]. For exhaustive treatment on rearrangements we refer, e.g., to [4,14,24,31].
Let u : x ∈ Ω → R be a measurable function. We denote by μ(t) the distribution function of |u(x)| i.e.

μ(t) = γN

({
x ∈ Ω:

∣∣u(x)
∣∣ > t

})
, t � 0,

while the decreasing rearrangement and the increasing rearrangement of u, with respect to the Gaussian measure, are
defined respectively by

u∗(s) = inf
{
t � 0: μ(t) � s

}
, s ∈ ]

0, γN(Ω)
]

and

u∗(s) = u∗(γN(Ω) − s
)
, s ∈ [

0, γN(Ω)
[
.

Finally u�, the Gaussian rearrangement of u, is given by

u�(x) = u∗(Φ(x1)
)
, x ∈ Ω�.

By its very definition u� depends on one variable only and it is an increasing function, therefore its level sets are
parallel half-spaces. Since, by definition, u and u� are equimisurable, Cavalieri’s principle ensures

‖u‖Lp(Ω,γN ) = ∥∥u�∥∥
Lp(Ω�,γN )

, ∀p � 1.

We will also make use of the Hardy–Littlewood inequality, which states that

γN (Ω)∫
0

u∗(s)v∗(s) ds �
∫
Ω

∣∣u(x)v(x)
∣∣dγN �

γN (Ω)∫
0

u∗(s)v∗(s) ds. (2.7)

We finally recall the Polya–Szegö principle which asserts that the weighted L2-norms of a nonnegative function
vanishing on ∂Ω decreases under Gaussian symmetrization. More precisely let H 1

0 (Ω,γN) be the closure of C∞
0 (Ω)

in H 1(Ω,γN). It holds that∫
Ω

∣∣Du(x)
∣∣2

dγN �
∫

Ω�

∣∣Du�(x)
∣∣2

dγN,

for any nonnegative u in H 1
0 (Ω,γN).

3. The one-dimensional case

Let a, b ∈ R with −∞ � a < b � +∞ and γ1(a, b) < 1. In this case problem (1.2) becomes{
−u′′ + xu′ = μu in (a, b),

u′(a) = u′(b) = 0.
(3.1)

We will denote by μ1(a, b) the first nontrivial eigenvalue of (3.1), clearly its value is given by

μ1(a, b) = min
u �=0:

∫ b
udγ1=0

∫ b

a
(u′)2 dγ1∫ b
u2 dγ1

. (3.2)

a a
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Here we are interested in studying the behavior of μ1(a, b) when the interval (a, b) slides along the x-axis, keeping
fixed its Gaussian measure. In other words, we impose the constraint

γ1(a, b) = L ∈ (0,1). (3.3)

Obviously, under these conditions, b can be expressed in terms of a as follows

b(a) = √
2 erf−1

[
2L + erf

(√
2

2
a

)]
, (3.4)

where

erf(x) = 2√
π

x∫
0

e−t2
dt

is the error function.
Since condition (3.3) is in force, the function

f : a ∈ R → μ1
(
a, b(a)

)
(3.5)

is defined on the interval [−∞,
√

2 erf−1(1 − 2L)] and it is even with respect to x = −√
2 erf−1(L).

The following result holds.

Theorem 3.1. Let L ∈ (0,1) and let −∞ � a < b � +∞, with γ1(a, b(a)) = L. Then

min
a

μ1
(
a, b(a)

) = μ1
(−∞,

√
2 erf−1(2L − 1)

) = μ1
(√

2 erf−1(1 − 2L),+∞)
, (3.6)

and

max
a

μ1
(
a, b(a)

) = μ1
(−√

2 erf−1(L),
√

2 erf−1(L)
)
. (3.7)

Furthermore the function f defined in (3.5) is increasing in the interval [−∞,−√
2 erf−1(L)].

Proof. We denote by λ1(a, b(a)) the first eigenvalue of the problem{
−v′′ + xv′ = λv in

(
a, b(a)

)
,

v(a) = v
(
b(a)

) = 0.
(3.8)

It is easy to verify that

λ1
(
a, b(a)

) = μ1
(
a, b(a)

) − 1. (3.9)

Since they differ by a constant, in place of the Neumann eigenvalue we can equivalently study the behavior of the
Dirichlet eigenvalue.

As a first consequence of this observation we note that the Faber–Krahn inequality for Gaussian measure (see [18]
and [6]) directly gives (3.6).

The isoperimetric properties of the half-space (see, e.g., [9] and [32]) reads as follows

min
a

Pγ1

(
a, b(a)

) = Pγ1

(−∞,
√

2 erf−1(2L − 1)
) = Pγ1

(√
2 erf−1(1 − 2L),+∞)

.

A straightforward application of Lagrange multipliers rule tells us that the function Pγ1(a, b) admits just one stationary
point on the constraint γ1(a, b)−L = 0. Moreover, as it is immediate to verify, such a point occurs at a = −b = −√

2
erf−1(L). Now since the function Pγ1(a, b(a)) is smooth on the interval (−∞,

√
2 erf−1(1 − 2L)), from (3.6) we get

maxPγ1

(
a, b(a)

) = Pγ1

(−√
2 erf−1(L),

√
2 erf−1(L)

)
. (3.10)
a
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These considerations allow us to say that

d

da
Pγ1

(
a, b(a)

)
> 0, ∀a ∈ (−∞,−√

2 erf−1(L)
)

(3.11)

and by symmetry reasons

d

da
Pγ1

(
a, b(a)

)
< 0, ∀a ∈ (−√

2 erf−1(L),
√

2 erf−1(1 − 2L)
)
. (3.12)

Now we can finally turn our attention on the monotonicity properties of the eigenvalue μ1(a, b(a)). Let a1, a2 ∈
(−∞,−√

2 erf−1( L)) with a1 < a2. Our aim is to prove that

μ1
(
a1, b(a1)

)
< μ1

(
a2, b(a2)

)
(3.13)

or equivalently

λ1
(
a1, b(a1)

)
< λ1

(
a2, b(a2)

)
.

Let us denote by φi(x), with i = 1,2, the first Dirichlet eigenfunctions corresponding to λ1(Ii), where Ii = (ai, b(ai)),
with i = 1,2, normalized in such a way that they are positive and

b(ai )∫
ai

φ2
i (x) dγ1 = 1.

For any fixed t ∈ (0,1) we denote by I t
2 the set {x ∈ I2: φ2(x) > t}. From the level sets of φ2(x) we want to build a

function defined in I1 admissible as test function for λ1(I1). This auxiliary function, denoted with φ̃(x), is the function
uniquely defined by the following relationships:

(i) φ̃ : x ∈ I1 → [0,maxφ2],
(ii) γ1{x: φ̃(x) > t} = γ1{x: φ2(x) > t}, ∀t ∈ [0,maxφ2],

(iii) {x: φ̃(x) > t} are intervals (̃at , b̃t ), denoted with Ĩt , centered at a1+b(a1)
2 , ∀t ∈ [0,maxφ2].

By construction φ̃ is even with respect to a1+b(a1)
2 and it is increasing in (a1,

a1+b(a1)
2 ). Furthermore it is equimea-

surable with φ2, therefore μφ̃(t) = μφ2(t) and

b(a1)∫
a1

φ̃2 dγ1 =
b(a2)∫
a2

φ2
2 dγ1 = 1.

Coarea formula and Cauchy–Schwarz inequality ensure that

λ1(I2) = 1√
2π

b(a2)∫
a2

(
dφ2

dx

)2

e− x2
2 dx = 1√

2π

maxφ2∫
0

( ∫
{φ2=t}

∣∣∣∣dφ2

dx

∣∣∣∣e− x2
2 dH0

)
dt

� 1√
2π

maxφ2∫
0

(
∫
{φ2=t} e

− x2
2 dH0)2∫

{φ2=t} | dφ2
dx

|−1e− x2
2 dH0

dt =
maxφ2∫

0

(Pγ1{φ2 > t})2

−μ′
φ2

(t)
dt. (3.14)

At this point we note that by (3.11) and by the construction of φ̃ we have

Pγ1{φ2 > t} > Pγ1{φ̃ > t} = Pγ1(Ĩt ), ∀t ∈ (0,maxφ2) (3.15)

and

μ′
φ (t) = μ′̃ (t), a.e. t ∈ (0,L). (3.16)
2 φ
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So by (3.14), (3.15) and (3.16) we have

λ1(I2) >

max φ̃∫
0

(Pγ1{φ̃ > t})2

−μ′̃
φ
(t)

dt. (3.17)

Since the function φ̃ is, by construction, even with respect to a1+b(a1)
2 we have∣∣∣∣dφ̃

dx

(̃
at

)∣∣∣∣ =
∣∣∣∣dφ̃

dx

(
b̃t

)∣∣∣∣, a.e. t ∈ (0,maxφ2),

and therefore the Cauchy–Schwarz inequality used in (3.14) for φ̃ reduces to an equality. This consideration together
with (3.17), yields

λ1(I2) � 1√
2π

b(a1)∫
a1

(
dφ̃

dx

)2

e− x2
2 dx � λ1(I1). (3.18)

That is the claim (3.13). Note finally that if λ1(a1, b(a1)) = λ1(a2, b(a2)) then all the above inequalities reduce to
equalities. In particular equality in (3.15) implies that a1 = a2 and b(a1) = b(a2). �
Remark 3.1. Theorem 3.1, together with the shape derivative formula for one-dimensional Neumann eigenvalues,
allows to get some qualitative information on u1. Let us consider two smooth functions a(t) and b(t), such that
γ1(a(t), b(t)) = L and (a(0), b(0)) = (a, b). Let us denote by μ1(t) = μ1(a(t), b(t)) the first eigenvalue of problem⎧⎪⎪⎨⎪⎪⎩

− d2

dx2
u(x, t) + x

d

dx
u(x, t) = μ(t)u(x, t) in

(
a(t), b(t)

)
,

d

dx
u(x, t)

∣∣∣∣
x=a(t),b(t)

= 0,

and by u1(x, t) a corresponding eigenfunction such that
∫ b(t)

a(t)
u2

1(x, t) dγ1 = 1. Then, see, e.g., [22,23], it is easy to
verify that

μ′
1(0) = μ1(a, b)e− a2

2
(
u2(a) − u2(b)

)
. (3.19)

Therefore if a < −√
2 erf−1( L) then, by Theorem 3.1, we have that |u(a)| > |u(b)|, conversely if a ∈ (−√

2 erf−1(L),√
2 erf−1(1 − 2L)) then |u(a)| < |u(b)|.

4. The N -dimensional case

Let us examine, by means of the separation of variables method, problem (1.2) when Ω is the ball of RN centered
at the origin of radius R, throughout denoted by BR , that is⎧⎨⎩

−�u + x · Du = μu in BR,

∂u

∂r
= 0 on ∂BR.

(4.1)

The equation in (4.1) can be rewritten, using polar coordinates, as

1

rN−1

∂

∂r

(
rN−1 ∂u

∂r

)
+ 1

r2
�SN−1

(
u|SN−1

r

) − r
∂u

∂r
+ μu = 0, (4.2)

where SN−1
r is the sphere of radius r in RN , u|SN−1

r is the restriction of u on SN−1
r and finally �SN−1(u|SN−1

r ) is the
standard Laplace–Beltrami operator relative to the manifold SN−1

r .
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Setting u(x) = Y(θ)f (r) in Eq. (4.2), where θ belongs to SN−1
1 , we have

Y
1

rN−1

(
rN−1f ′)′ + �SN−1Y

f

r2
− Yrf ′ + μYf = 0,

and hence

1

rN−3f

(
rN−1f ′)′ − r3 f ′

f
+ μr2 = −�SN−1Y

Y
= k. (4.3)

As well known, see, e.g., [28] and [12], the last equality is fulfilled if and only if

k = k(k + N − 2) with k = N ∪ {0}.
Multiplying the left-hand side of Eq. (4.3) by f

r2 , we get

f ′′ + f ′
(

N − 1

r
− r

)
+ μf − k(k + N − 2)

f

r2
= 0 in (0,R).

The eigenfunctions are either purely radial

ui(r) = f0(μi; r), if k = 0, (4.4)

or in the form

ui(r, θ) = fk(μi; r)Y (θ), if k ∈ N. (4.5)

The functions fk , with k ∈ N ∪ {0}, clearly satisfy⎧⎨⎩ f ′′
k + f ′

k

(
N − 1

r
− r

)
+ μifk − k(k + N − 2)

fk

r2
= 0 in (0,R),

fk(0) = 0, f ′
k(R) = 0.

(4.6)

In the sequel we will denote by τn(R), with n ∈ N ∪ {0}, the sequence of eigenvalues of (4.1) whose corresponding
eigenfunctions are purely radial, i.e. in the form (4.4) or equivalently solutions to problem (4.6) with k = 0. Clearly
in this case the first eigenfunction is constant and the corresponding eigenvalue τ0(R) is trivially zero. We will denote
by νn(R), with n ∈ N, the remaining eigenvalues of (4.1).

Lemma 4.1. It holds that

ν1(R) < τ1(R), ∀R > 0. (4.7)

Proof. We recall that τ1 = τ1(R) is the first nontrivial eigenvalue of⎧⎨⎩ g′′ + g′
(

N − 1

r
− r

)
+ τg = 0 in (0,R),

g′(0) = g′(R) = 0,

(4.8)

and ν1 = ν1(R) is the first eigenvalue of⎧⎨⎩ w′′ + w′
(

N − 1

r
− r

)
+ νw − (N − 1)

w

r2
= 0 in (0,R),

w(0) = w′(R) = 0.

(4.9)

First of all we observe that the first eigenfunction w1 of (4.9) does not change its sign in (0,R), thus we can assume
that w1 > 0 in (0,R).

Moreover w′
1 � 0 in (0,R). Indeed, assume, by contradiction, that we can find two values r1, r2, with r1 < r2, such

that w′′
1(r1) � 0, w′

1(r1) = 0 and w′′
1(r2) � 0, w′

1(r2) = 0. By evaluating the equation in (4.9)

w′′
1 + w′

1
(

N − 1 − r

)
+ ν1 − N − 1

2
= 0
w1 w1 r r
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at r1 and r2, we get

ν1 − N − 1

r2
2

� 0 and ν1 − N − 1

r2
1

� 0,

that means r1 � r2 and this is a contradiction.
On the other hand, the first nontrivial eigenfunction of problem (4.8), g1 = g1(r), has mean value zero i.e.

∫
BR

g1 dγN = NωN

(2π)N/2

R∫
0

g1(r)e
− r2

2 rN−1 dr = 0,

where, here and in the sequel, ωN will denote the volume of the unit ball in RN .
This implies that g1(r) must change its sign in (0,R). Let us suppose g1(r) > 0 in (0, r0) and g1(r0) = 0. We

observe that g′
1(r) < 0 in (0,R). Moreover evaluating the equation of problem (4.8) at r0, we have

g′′
1 (r0) + g′

1(r0)

(
N − 1

r0
− r0

)
= 0. (4.10)

Now we consider the following intervals J1 := (0,
√

N − 1 ], J2 := (
√

N − 1,
√

N − 1 + π√
8
] and J3 := (

√
N − 1 +

π√
8
,+∞). Clearly

⋃3
i=1 Ji = (0,+∞) for any N ∈ N. The proof of (4.7) requires different arguments depending on

the interval Ji in which the radius R of the ball BR lies.

Case 1: R ∈ J1 = (0,
√

N − 1 ].
Since r0 < R �

√
N − 1, from (4.10) we get

g′′
1 (r0) � 0. (4.11)

Moreover if we set ψ = g′
1, then problem (4.8) becomes⎧⎨⎩ ψ ′′ + ψ ′

(
N − 1

r
− r

)
+ ψ

(
−N − 1

r2
− 1

)
+ τ1ψ = 0 in (0,R),

ψ(0) = ψ(R) = 0,

and in particular⎧⎨⎩ ψ ′′ + ψ ′
(

N − 1

r
− r

)
− N − 1

r2
ψ + τ1ψ � 0 in (0, r0),

ψ(0) = 0, ψ ′(r0) � 0.

(4.12)

Now we multiply equation in (4.9) by rN−1ψ ϕN and equation in (4.12) by rN−1w1 ϕN , respectively. Hence, by
subtracting, we obtain

rN−1ϕN

(
ψw′′

1 − w1ψ
′′) + rN−1ϕN

(
N − 1

r
− r

)(
ψw′

1 − w1ψ
′) + (ν1 − τ1)w1r

N−1ψϕN � 0 in (0, r0).

Integrating by parts the above inequality on (0, r0), we get

(ν1 − τ1)

r0∫
0

w1r
N−1ψϕN >

r0∫
0

ϕNw1
(
rN−1ψ ′)′ − ϕNψ

(
rN−1w′

1

)′ + rNϕN

(
ψw′

1 − w1ψ
′)dr

= rN−1
0 ϕN(r0)

(
ψ ′(r0)w(r0) − ψ(r0)w

′(r0)
)
> 0.

In other words

ν1(R) < τ1(R), ∀R ∈ J1.

Case 2: R ∈ J2 = (
√

N − 1,
√

N − 1 + π√ ].

8
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The above proof does not work in J2. This because when r >
√

N − 1 one cannot exclude a priori that r0 >
√

N − 1
too. Hence (4.10) does no longer guarantee (4.11). Clearly we may assume here that

√
N − 1 < r0 < R, (4.13)

indeed, if not (i.e. if r0 �
√

N − 1 ), we can get the claim by repeating the arguments of Case 1.
By (4.8) we get{

g′′
1 + τ1g1 < 0 in (r0,R),

g1(r0) = g′
1(R) = 0.

(4.14)

Multiplying the equation in (4.14) by g1(r) < 0 and integrating between r0 and R, we get

R∫
r0

(
g′

1

)2
dr < τ1

R∫
r0

(g1)
2 dr,

that implies

τ1(R) > min
v �=0: v(r0)=v′(R)=0

∫ R

r0
(v′)2 dr∫ R

r0
v2 dr

= π2

4(R − r0)2
.

Finally, taking into account that we are under the assumption (4.13), we get the following:

τ1(R) >
π2

4(R − r0)2
>

π2

4(R − √
N − 1 )2

:= h(R), ∀R ∈ J2. (4.15)

Now we want to provide an estimate from above for ν1(R), namely ν1(R) < k(R). To this aim we firstly note that for
the values of R ∈ J2 such that ν1(R) � τ1(R) we have

ν1 = min
v∈H 1(BR), v �=0∫

BR
v dγN=0

∫
BR

|Dv|2 dγN∫
BR

|v|2 dγN

. (4.16)

While for the remaining values of R we have to impose also the orthogonality with g1, that is

ν1 = min
v∈H 1(BR), v �=0∫

BR
v dγN=0,

∫
BR

vg1 dγN=0

∫
BR

|Dv|2 dγN∫
BR

|v|2 dγN

. (4.17)

In both cases v = xi for i = 1, . . . ,N are admissible trial functions for ν1 and hence

ν1 � γN(BR)∫
BR

x2
1 dγN

, . . . , ν1 � γN(BR)∫
BR

x2
N dγN

.

So

N

ν1
�

∫
BR

(x2
1 + · · · + x2

N)dγN

γN(BR)
;

and

ν1 = ν1(R) �
N

∫ R

0 e− s2
2 sN−1 ds∫ R

0 e− s2
2 sN+1 ds

:= k(R). (4.18)

At this point we observe that k(R) is a decreasing function, indeed

k′(R) = Ne− R2
2 RN−1

(
∫ R

e− s2
2 sN+1 ds)2

[ R∫
e− s2

2 sN+1 ds − R2

R∫
e− s2

2 sN−1 ds

]
< 0,
0 0 0
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where the quantity in the square brackets is negative because

R∫
0

e− s2
2 sN+1 ds =

R∫
0

s2e− s2
2 sN−1 ds < R2

R∫
0

e− s2
2 sN−1 ds.

Furthermore the function h(R), defined in (4.15), is obviously a decreasing function.

Let us consider the case N = 2 first. Let R be the unique positive zero of the function f (t) = t2 + 1 − e
t2
2

(R  1.585). If 1 < R < R then by (4.15), (4.18) and by the monotonicity properties of the functions k(R) and
h(R) we get

ν1(R) < k(R) < sup
(1,R)

k(R) = k(1), ∀R ∈ (1,R) (4.19)

and

h(R) = inf
(1,R)

h(R) < h(R) < τ1(R), ∀R ∈ (1,R). (4.20)

Now since

k(1) = 2
∫ 1

0 e− t2
2 t dt∫ 1

0 e− t2
2 t3 dt

= 2 − 2e− 1
2

2 − 3e− 1
2

 4.362 (4.21)

and

h(R) = π2

4(R − 1)2
 7.210, (4.22)

taking into account of (4.19) and (4.20), we get

ν1(R) < τ1(R), ∀R ∈ (1,R).

Let us consider the remaining interval [R,1 + π√
8
]. Since

k(R) = 2 − 2e− R
2

2 − 3e− R
2

 1.705 < h

(
1 + π√

8

)
= 2,

arguing as before we get

ν1(R) < τ1(R), ∀R ∈
[
R,1 + π√

8

]
.

Now let N � 3. If
√

N − 1 < R <
√

N + 2, by (4.15) and (4.18) we get

ν1(R) < k(R) < sup
(
√

N−1,
√

N+2 )

k(R) = k(
√

N − 1 ). (4.23)

We claim that

k(
√

N − 1) � 2N + 1

N − 1
. (4.24)

Indeed by an integration by parts the claim becomes

k(
√

N − 1 ) = (N − 1)
N
2 e− N−1

2 + ∫ √
N−1

0 e− s2
2 sN+1 ds∫ √

N−1
0 e− s2

2 sN+1 ds

� 2N + 1

N − 1
.

In order to prove the above inequality it suffices to show that
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e
N−1

2

√
N−1∫
0

e− s2
2 sN+1 ds � (N − 1)

N
2 +1

N + 2
. (4.25)

Inequality (4.25), and hence the claim (4.24), easily follows by observing that

e
N−1

2

√
N−1∫
0

e− s2
2 sN+1 ds > e

N−1
2

√
N−1∫
0

sN+1 ds = e
N−1

2
(N − 1)

N+2
2

N + 2
>

(N − 1)
N
2 +1

N + 2
.

Now we want to prove that

2N + 1

N − 1
< h(

√
N + 2 ) = π2

4(
√

N + 2 − √
N − 1 )2

, ∀N � 3. (4.26)

It is elementary to verify that (4.26) is true for N = 3. On the other hand observe that (4.26) is false for N = 2, that is
the reason we were forced to split Case 2 in the proof of Lemma 4.1 in these subcases.

Finally we get (4.26) since the sequences 2N+1
N−1 and π2

4(
√

N+2−√
N−1 )2 are decreasing and increasing respectively.

Therefore, from the monotonicity of the functions k(R) and h(R), (4.23), (4.24) and (4.26) yield

ν1(R) < k(R) < k(
√

N − 1 ) � 2N + 1

N − 1
< h(

√
N + 2 ) < h(R) < τ1(R), ∀R ∈ (

√
N − 1,

√
N + 2 ).

Finally let R ∈ [√N + 2,
√

N − 1 + π√
8
]. We claim that

k(
√

N + 2 ) � 2. (4.27)

Indeed arguing as before we have

k(
√

N + 2 ) − 2 = (N + 2)
N
2 e− N+2

2 − ∫ √
N+2

0 e− s2
2 sN+1 ds∫ √

N+2
0 e− s2

2 sN+1 ds

<
(N + 2)

N
2 e− N+2

2 − ∫ √
N+2

0 sN+1 ds∫ √
N+2

0 e− s2
2 sN+1 ds

= (N + 2)
N
2 (e− N+2

2 − 1)∫ √
N+2

0 e− s2
2 sN+1 ds

< 0.

Finally we have

ν1(R) < k(R) < k(
√

N + 2 ) < 2 = h

(√
N − 1 + π√

8

)
< h(R) < τ1(R),

∀R ∈
(√

N + 2,
√

N − 1 + π√
8

]
.

Case 3: R ∈ J3 = (
√

N − 1 + π√
8
,+∞).

Before addressing this last case let us remark that the above method cannot be used for large values of R. Indeed
when N = 2, for instance, we have

lim
R→+∞k(R) = lim

R→+∞
2 − 2e− R2

2

2 − (R2 + 2)e− R2
2

= 1 and lim
R→+∞h(R) = 0.

Therefore the inequality k(R) < h(R), we have used in Case 2, does not hold for any R ∈ J3.
In order to analyze the problem for large value of the radius R it appears natural to consider the solution to problem

(4.8) with R = +∞. Its first radial eigenfunction, as well known, is

g∞(r) =
N∑

H2(xi) = r2 − N,
i=1
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where H2 is the Hermite polynomial defined in (2.3). More explicitly we have⎧⎪⎪⎨⎪⎪⎩
g′′∞ + g′∞

(
N − 1

r
− r

)
+ τ1(∞)g∞ = 0 in (0,+∞),

g′∞(0) = lim
r→+∞

(
g′∞(r)e− r2

2
) = 0,

(4.28)

where τ1(∞) = 2.
Let us denote, according to the notation used in Section 3, with λ1(Br) the first eigenvalue of the problem⎧⎪⎪⎨⎪⎪⎩

−
N∑

i=1

∂

∂xi

(
ϕN(x)

∂u

∂xi

)
= λϕN(x)u in Br,

u = 0 on ∂Br .

We claim that

τ1(R) > τ1(∞). (4.29)

To this aim we may assume that r0 �
√

N . Indeed if r0 <
√

N we have

τ1(R) = λ1(Br0) > λ1(B√
N) = 2 = τ1(∞).

Now multiplying the equation in problem (4.8) by rN−1 ϕNg∞ and equation in problem (4.28) by rN−1 ϕNg1
respectively and hence subtracting, we get

rN−1ϕN

(
g∞g′′

1 − g′′∞g1
) + rN−1ϕN

(
N − 1

r
− r

)(
g∞g′

1 − g1g
′∞

)
+ (

τ1(R) − τ1(∞)
)
g∞g1r

N−1ϕN = 0 in (r0,R).

Integrating between r0 and R, we get

(
τ1(∞) − τ1(R)

) R∫
r0

g∞g1r
N−1ϕN dr =

R∫
r0

ϕNg∞
(
rN−1g′

1

)′ − ϕNg1
(
rN−1g′∞

)′ + rNϕN

(
g1g

′∞ − g∞g′
1

)
dr

= −ϕN(r0)r
N−1
0

(
r2

0 − N
)
g′

1(r0) − 2RNϕN(R)g1(R) > 0.

The last inequality, since we are assuming that r0 �
√

N , implies the claim (4.29).
Now, recalling that k(R) is a decreasing function, from (4.27), we deduce

k(R) < k

(√
N − 1 + π√

8

)
< k(

√
N + 2 ) � 2, ∀R >

√
N − 1 + π√

8
.

The last inequalities and (4.18) imply

ν1(R) < k(R) < 2 < τ1(R) for R >
√

N − 1 + π√
8
. �

Remark 4.1. Note that the upper bound for μ1(R) given in (4.18) is asymptotically sharp, as R goes to +∞. Indeed,
as it is easy to verify, it holds

lim
R→+∞ν1(R) = N

∫ +∞
0 e− s2

2 sN−1 ds∫ +∞
0 e− s2

2 sN+1 ds

= 1 = μ1
(
RN

)
, ∀N ∈ N.

Lemma 4.1 ensures that the first eigenfunction associated to the first eigenvalue of problem (1.2) with Ω = BR ,
is in the form u(x) = w(|x|)Y (θ), where θ belongs to SN−1

1 and the radial function w has one sign in BR and it
satisfies the following problem:
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⎧⎨⎩ w′′(r) + w′(r)
(

N − 1

r
− r

)
+ μ1(BR)w(r) − N − 1

r2
w(r) = 0, for r ∈ (0,R),

w(0) = w′(R) = 0.

(4.30)

Multiplying the equation in (4.30) by w ϕN and integrating over BR,, we get

μ1(BR)

∫
BR

w
(|x|)2

dγN

= −NωN

R∫
0

(
w′rN−1)′

w(r)e− r2
2 dr + NωN

R∫
0

rNw(r)w′(r)e− r2
2 dr +

∫
BR

1

|x|2 w
(|x|)2

dγN

=
∫
BR

(
w′(|x|))2

dγN +
∫
BR

1

|x|2 w
(|x|)2

dγN .

Thus

μ1(BR) =
∫
BR

((w′(|x|))2 + N−1
|x|2 w(|x|)2) dγN∫

BR
w(|x|)2 dγN

. (4.31)

Now we are able to prove our main result.

Theorem 4.1. The ball maximizes the first Neumann eigenvalue among all Lipschitz open sets Ω of RN of prescribed
Gaussian measure and symmetric about the origin. Moreover, it is the unique maximizer in this class.

Proof. Let BR the ball centered at the origin having the same Gaussian measure as Ω . We define

G(r) =
{

w(r) for 0 < r < R,

w(R) for r � R,
(4.32)

where w is the solution of (4.8) satisfying (4.31). By the results stated above the function G is nondecreasing and
nonnegative. We introduce the functions

Pi(x) = G
(|x|) xi

|x| for 1 � i � N.

The assumption on the symmetry of Ω guarantees∫
Ω

Pi(x) dγN = 0, ∀i = 1, . . . ,N. (4.33)

Hence each function Pi is admissible in the variational formulation (2.2).
Since

∂Pi

∂xj

= G′(|x|)xixj

|x|2 − G
(|x|)xixj

|x|3 + δij

G(|x|)
|x| ,

where δij is the Kronecker symbol, summing over j = 1, . . . ,N , we get

μ1(Ω) �
∫
Ω

((G′(|x|))2 x2
i

|x|2 − G2(|x|) x2
i

|x|4 + G2(|x|)
|x|2 ) dγN∫

Ω
G(|x|)2 x2

i

|x|2 dγN

. (4.34)

Set

N(r) = (
G′(r)

)2 + N − 1

r2
G2(r)

and

D(r) = G2(r).
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Summing up inequalities (4.34) over i = 1, . . . ,N , the angular dependence drops out and we finally get

μ1(Ω) �
∫
Ω

((G′(|x|))2 + N−1
|x|2 G2(|x|)) dγN∫

Ω
G(|x|)2 dγN

=
∫
Ω

N(|x|) dγN∫
Ω

D(|x|) dγN

. (4.35)

It is straightforward to verify that

d

dr
N(r) < 0.

Now we claim that∫
Ω

N
(|x|)dγN �

∫
BR

N
(|x|)dγN . (4.36)

Hardy–Littlewood inequality (2.7) ensures

∫
Ω

N
(|x|)dγN �

γN (Ω)∫
0

N∗(s) ds =
γN (BR)∫

0

N∗(s) ds, (4.37)

where N∗ is the decreasing rearrangement of N . Setting s = γN(Br) = NωN

(2π)N/2

∫ r

0 e− s2
2 sN−1 ds, we get

γN (BR)∫
0

N∗(s) ds = NωN

(2π)N/2

R∫
0

N∗(γN(Br)
)
rN−1e− r2

2 dr.

Note that

N∗(γN(Br)
) = N(r),

since N∗(γN(Br)) and N(r) are equimeasurable and both radially decreasing functions. Therefore

NωN

(2π)N/2

R∫
0

N∗(γN(Br)
)
rN−1e− r2

2 dr = NωN

(2π)N/2

R∫
0

N(r)rN−1e− r2
2 dr =

∫
BR

N
(|x|)dγN . (4.38)

Combining (4.37) and (4.38), we obtain the claim (4.36). Analogously it is possible to prove that∫
Ω

D
(|x|)dγN �

∫
BR

D
(|x|)dγN . (4.39)

Indeed since D is an increasing function, we have

∫
Ω

D
(|x|)ϕN

(|x|)dx �
γN (BR)∫

0

D∗(s) ds = NωN

(2π)N/2

R∫
0

D∗
(
1 − e− r2

2
)
rN−1e− r2

2 dr =
∫
BR

D
(|x|)ϕN

(|x|)dx,

where D∗ is the increasing rearrangement of D. By (4.32), (4.36) and (4.39), the equality (4.35) becomes

μ1(Ω) �
∫
BR

((w′(|x|))2 + N−1
|x|2 w(|x|)2) dγN∫

BR
w(|x|)2 dγN

= μ1(BR),

which is the desired inequality. Moreover, from the monotonicity properties of the functions N and D, it easy to
realize that inequalities (4.36) and (4.39) reduce to equalities only when Ω is the ball BR . �
Remark 4.2. Note that the assumption on the symmetry of Ω is used solely to guarantee the orthogonality condi-
tions (4.33).
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Remark 4.3. Since the half-spaces are not symmetric about the origin, Theorem 4.1 cannot exclude the possibility
that such a domain maximizes μ1(Ω) in dimension greater than one. This phenomenon does not occur since any
half-space has first Neumann eigenvalue equal to 1, independently of its measure. It is easy to show an example of a
set which is not symmetric about the origin whose first Neumann eigenvalue is bigger than 1. Consider, for instance,

in R2 the square T = (
√

3 − √
6,

√
3 + √

6 )2. As it is immediate to verify, μ1(T ) = 5 and it is a double eigenvalue.
A corresponding eigenfunction is u1(x, y) = u1(x) = H5(x) = x5 − 10x3 + 15x. This simply follows by observing

that H ′
5(x) < 0, ∀x ∈ (

√
3 − √

6,
√

3 + √
6 ) and H ′

5(
√

3 − √
6 ) = H ′

5(
√

3 + √
6 ) = 0. Let us round a corner of this

square by considering the family of domains

Tδ = {
(x, y) ∈ R2:

√
3 − √

6 � x �
√

3 + √
6 and

√
3 − √

6 � y � fδ(x)
}
,

with δ � 1 and

fδ(x) =
⎧⎨⎩

√
3 + √

6 if
√

3 − √
6 � x �

√
3 + √

6 − δ,√
3 + √

6 − δ +
√

δ2 − (x − (
√

3 + √
6 − δ))2 if

√
3 + √

6 − δ < x �
√

3 + √
6.

Now the first nontrivial Neumann eigenfunction relative to Tδ cannot depend on one variable only. The sequence of
compact sets Tδ converges, in the Hausdorff distance, to T , and therefore, see [13], we have that μ1(Tδ) → μ1(T ).
Therefore for δ small enough we have

5 + O(1) = μ1(Tδ) > 1 = μ1
(
T �)

,

where T � is the half-space having the same Gaussian measure as T .
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Appendix A

Here we want to show that τk(R), the nontrivial eigenvalues of (4.8), are all decreasing functions. To this aim we
apply, in this simple case, the shape derivative formula for Neumann eigenvalues, see, e.g., [22] and [23].

Let R(t) = R + t , with t > 0, and let μk(t) = μk(0,R(t)) be the k-th eigenvalue of problem⎧⎨⎩ −urr(r, t) + rur(r, t) − N − 1

r
ur(r, t) = μk(t)u(r, t) in

(
0,R(t)

)
,

ur(r, t)|r=0,R(t) = 0,

(A.1)

and, finally, let u(r, t) be an eigenfunction corresponding to μk(t) such that

‖u‖2
L2(BR(t),γN )

= NωN

(2π)N/2

R(t)∫
0

u2(r, t)rN−1e− r2
2 dr = 1. (A.2)

We have:

Proposition A.1. It holds that

μ′
k(0) = − NωN

(2π)N/2
μk(0)u2(R)RN−1e− R2

2 (A.3)

where u(r) = u(r,0) is the eigenfunction of problem (A.1) in (0,R).
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Proof. Differentiating (A.2) we have for t = 0,

2

R∫
0

u(r)ut (r,0)rN−1e− r2
2 dr = −e− R2

2 RN−1u2(R). (A.4)

Multiplying the equation in (A.1) by u(r, t) rN−1e− r2
2 , we get

μk(t)u
2(r, t)rN−1e− r2

2 = −(
rN−1ur(r, t)

)
r
u(r, t)e− r2

2 + rNu(r, t)ur (r, t)e
− r2

2 .

Integrating the above equality on (0,R(t)) and recalling condition (A.2) we get

μk(t) = NωN

(2π)N/2

R(t)∫
0

u2
r (r, t)r

N−1e− r2
2 dr. (A.5)

Differentiating we obtain

μ′
k(0) = 2NωN

(2π)N/2

R∫
0

ur(r,0)urt (r,0)rN−1e− r2
2 dr = 2NωN

(2π)N/2
μk(0)

R∫
0

u(r)ut (r,0)rN−1e− r2
2 dr.

So by (A.4) we obtain the claim (A.3). �
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