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Compactness of immersions with local Lipschitz representation
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Abstract

We consider immersions admitting uniform representations as a λ-Lipschitz graph. In codimension 1, we show compactness for
such immersions for arbitrary fixed λ < ∞ and uniformly bounded volume. The same result is shown in arbitrary codimension
for λ� 1

4 .
© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

In [14] J. Langer investigated compactness of immersed surfaces in R
3 admitting uniform bounds on the second

fundamental form and the area of the surfaces. For a given sequence f i : Σi → R
3, there exist, after passing to a

subsequence, a limit surface f : Σ → R
3 and diffeomorphisms φi : Σ → Σi , such that f i ◦ φi converges in the

C1-topology to f . In particular, up to diffeomorphism, there are only finitely many manifolds admitting such an
immersion. The finiteness of topological types was generalized by K. Corlette in [6] to immersions of arbitrary di-
mension and codimension. Moreover, the compactness theorem was generalized by S. Delladio in [7] to hypersurfaces
of arbitrary dimension. The general case, that is compactness in arbitrary dimension and codimension, was proved by
the author in [4].

The proof strongly relies on a fundamental principle which we like to describe in the following. A simple con-
sequence of the implicit function theorem says that any immersion can locally be written as the graph of a function
u : Br → R

k over the affine tangent space. Moreover, for a given λ > 0 we can choose r > 0 small enough such that
‖Du‖C0(Br )

� λ. If this is possible at any point of the immersion with the same radius r , we call f an (r, λ)-immersion.
Using the Sobolev embedding it can be shown that a uniform Lp-bound for the second fundamental form with

p greater than the dimension implies that for any λ > 0 there is an r > 0 such that every immersion is an (r, λ)-
immersion.

Inspired by this result, it is a natural generalization to investigate compactness properties also for (r, λ)-immersions
with fixed r and λ; this is the topic of the present paper. In the proof of the theorem of Langer it is essential that λ can
be chosen very small. Then, using the local graph representation over Br , all immersions are close to each other and
nearly flat. These properties are used repeatedly, for example for the construction of the diffeomorphism φi .
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Here, we would first like to show compactness of (r, λ)-immersions in codimension 1 for any fixed λ. We do not re-
quire any smallness assumption for λ. Moreover, we do not only consider immersions with graph representations over
the affine tangent space, but also over other appropriately chosen m-spaces. Let F1(r, λ) be the set of C1-immersions
f : Mm → R

m+1 with 0 ∈ f (M), which may locally be written over an m-space as the graph of a λ-Lipschitz func-
tion u : Br → R (the precise definitions of all notations used in this paper are given in Section 2). Here all manifolds
are assumed to be compact. Moreover, let F1

V (r, λ) be the set of immersions in F1(r, λ) with vol(M) � V . Similarly,

we define the set F0(r, λ) by replacing C1-immersions in F1(r, λ) by Lipschitz functions. We obtain the following
compactness result:

Theorem 1.1 (Compactness of (r, λ)-immersions in codimension one). The set F1
V (r, λ) is relatively compact in

F0(r, λ) in the following sense:
Let f i : Mi → R

m+1 be a sequence in F1
V (r, λ). Then, after passing to a subsequence, there exist an f : M → R

m+1

in F0(r, λ) and a sequence of diffeomorphisms φi : M → Mi , such that f i ◦ φi is uniformly Lipschitz bounded and
converges uniformly to f .

Here the Lipschitz bound for f i ◦ φi is shown with respect to the local representations of some finite atlas of M .
For these representations, we obtain a Lipschitz constant L depending only on λ. As an immediate consequence of
Theorem 1.1 we deduce the following corollary:

Corollary 1.2. There are only finitely many manifolds in F1
V (r, λ) up to diffeomorphism.

The situation is slightly different when considering (r, λ)-immersions in arbitrary codimension. For the construc-
tion of the diffeomorphisms φi one uses a kind of projection in an averaged normal direction ν. In higher codimension,
the averaged normal ν cannot be constructed as in the case of hypersurfaces. We will give an alternative construction
involving a Riemannian center of mass. However, for doing so we have to assume here that λ is not too large. Let
F1

V (r, λ) and F0(r, λ) be defined as above, but this time for functions with values in R
m+k for a fixed k. We obtain the

following theorem:

Theorem 1.3 (Compactness of (r, λ)-immersions in arbitrary codimension). Let λ � 1
4 . Then F1

V (r, λ) is relatively

compact in F0(r, λ) in the sense of Theorem 1.1.

As in Corollary 1.2, we deduce for λ � 1
4 that there are only finitely many manifolds in F1

V (r, λ) up to diffeomor-

phism. Surely, the bound λ� 1
4 is not optimal; at the end of Section 6 we will discuss some possibilities how to prove

the theorem for bigger Lipschitz constant.
In [14] and [4] any sequence of immersions with Lp-bounded second fundamental form, p > m, is shown to be also

a sequence of (r, λ)-immersions (for some fixed r and λ). The same conclusion holds in many other situations, where
the geometric data (such as curvature bounds) ensure uniform graph representations with control over the slope of the
graphs. Hence it seems natural to unearth the compactness of (r, λ)-immersions as a theorem on its own. In any general
situation, where compactness of immersions is desired (e.g. when considering convergence of geometric flows), only
the condition of Definition 2.2 in Section 2 has to be verified. If in addition some bound for higher derivatives of the
graph functions is known (or for instance a C0,α-bound for Du), with methods as in [4] one easily derives additional
properties of the limit, such as higher order differentiability or curvature bounds. Hence, Theorems 1.1 and 1.3 can be
seen as the most general kind of compactness theorem in this context.

2. Definitions and preliminaries

We begin with some general notations: For n = m + k let Gn,m denote the Grassmannian of (non-oriented) m-
dimensional subspaces of Rn. Unless stated otherwise let B� denote the open ball in R

m of radius � > 0 centered at
the origin.

Now let M be an m-dimensional manifold without boundary and f : M → R
n a C1-immersion. Let q ∈ M and

let TqM be the tangent space at q . Identifying vectors X ∈ TqM with f∗X ∈ Tf (q)R
n, we may consider TqM as an
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m-dimensional subspace of Rn. Let (TqM)⊥ denote the orthogonal complement of TqM in R
n, that is

R
n = TqM ⊕ (TqM)⊥

and (TqM)⊥ is perpendicular to TqM . We may define the tangent-space field

τf : M → Gn,m,

q 
→ TqM, (2.1)

and the normal-space field

νf : M → Gn,k,

q 
→ (TqM)⊥. (2.2)

2.1. The notion of an (r, λ)-immersion

We call a mapping A : Rn → Rn a Euclidean isometry, if there is a rotation R ∈ SO(n) and a translation T ∈ Rn,
such that A(x) = Rx + T for all x ∈ R

n.
For a given point q ∈ M let Aq : Rn → R

n be a Euclidean isometry, which maps the origin to f (q), and the
subspace R

m × {0} ⊂ R
m × R

k onto f (q) + τf (q). Let π : Rn → R
m be the standard projection onto the first m

coordinates.
Finally let Ur,q ⊂ M be the q-component of the set (π ◦A−1

q ◦f )−1(Br). Although the isometry Aq is not uniquely
determined, the set Ur,q does not depend on the choice of Aq .

We come to the central definition (as first defined in [14]):

Definition 2.1. An immersion f is called an (r, λ)-immersion, if for each point q ∈ M the set A−1
q ◦ f (Ur,q) is the

graph of a differentiable function u : Br → R
k with ‖Du‖C0(Br )

� λ.

Here, for any x ∈ Br we have Du(x) ∈ R
k×m. In order to define the C0-norm for Du, we have to fix a matrix norm

for Du(x). Of course all norms on R
k×m are equivalent, therefore our results are true for any norm (possibly up to

multiplication by some positive constant). Let us agree upon

‖A‖ =
(

m∑
j=1

|aj |2
) 1

2

for A = (a1, . . . , am) ∈ R
k×m. For this norm we have ‖A‖op � ‖A‖ for any A ∈ R

k×m and the operator norm ‖ · ‖op.
Hence the bound ‖Du‖C0(Br )

� λ directly implies that u is λ-Lipschitz. Moreover the norm ‖Du‖C0(Br )
does not

depend on the choice of the isometry Aq .

2.2. The notion of a generalized (r, λ)-immersion

For any (r, λ)-immersion f : M →R
n and any q ∈ M , we have a local graph representation over the affine tangent

space f (q) + τf (q). It is natural to extend this definition to immersions with local graph representations over other
appropriately chosen m-spaces in R

n.
For a given q ∈ M and a given m-space E ∈ Gn,m let Aq,E : Rn → R

n be a Euclidean isometry, which maps the
origin to f (q), and the subspace R

m × {0} ⊂ R
m ×R

k onto f (q) + E.
Let UE

r,q ⊂ M be the q-component of the set (π ◦ A−1
q,E ◦ f )−1(Br). Again the isometry Aq,E is not uniquely

determined but the set UE
r,q does not depend on the choice of Aq,E .

Definition 2.2. An immersion f is called a generalized (r, λ)-immersion, if for each point q ∈ M there is an
E = E(q) ∈ Gn,m, such that the set A−1

q,E ◦ f (UE
r,q) is the graph of a differentiable function u : Br → R

k with
‖Du‖C0(B ) � λ.
r
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Obviously every (r, λ)-immersion is a generalized (r, λ)-immersion, as we can choose E(q) = τf (q) for any
q ∈ M .

For fixed dimension m and codimension k we denote by F1(r, λ) the set of generalized (r, λ)-immersions f : M →
R

m+k with 0 ∈ f (M), where M is any compact m-manifold without boundary. For V > 0 we denote by F1
V (r, λ) the

set of all immersions in F1(r, λ) with vol(M) � V . Here the volume of M is measured with respect to the volume
measure induced by the metric f ∗geucl. Note that M is not fixed in these sets (in order to obtain a set in a strict set
theoretical sense one may consider every manifold as embedded in R

N for an N = N(m)). The condition 0 ∈ f (M)

can be weakened in many applications to f (M) ∩ K = ∅ for a compact set K ⊂R
m+k .

The notion of a generalized (r, λ)-immersion has one major advantage: As the definition does not make use of
the existence of a tangent space, it allows us to define similar notions for functions into R

n which are not immersed.
For a given E ∈ Gn,m the set UE

r,q can be defined for any continuous function f : M → R
n. Moreover the condition

‖Du‖C0(Br )
� λ in the smooth case corresponds to a Lipschitz bound of the function u. Hence the following definition

can be seen as the natural generalization to continuous functions:

Definition 2.3. A continuous function f is called an (r, λ)-function, if for each point q ∈ M there is an E = E(q) ∈
Gn,m, such that the set A−1

q,E ◦ f (UE
r,q) is the graph of a Lipschitz continuous function u : Br → R

k with Lipschitz
constant λ.

We additionally assume here, that E can be chosen such that f is injective on UE
r,q . This property is not implied by

the preceding definition, if one reads the latter word for word.
We shall always consider (r, λ)-functions defined on compact topological manifolds (without boundary). Using

the local Lipschitz graph representation, any such manifold can be endowed with an atlas with bi-Lipschitz change of
coordinates. If the Lipschitz constant of the graphs is sufficiently small (and hence the coordinate changes are almost
isometric with bi-Lipschitz constant close to 1), by the results in [13] there exists even a smooth atlas. In our case, the
limit manifold both in Theorems 1.1 and 1.3 will be smooth.

Finally, we define the set F0(r, λ) by replacing generalized (r, λ)-immersions in F1(r, λ) by (r, λ)-functions.

2.3. Geometry of Grassmann manifolds

For k,n ∈ N with 0 < k < n let Gn,k again be the set of (non-oriented) k-dimensional subspaces of Rn.
The set Gn,k may be endowed with the structure of a differentiable k(n − k)-dimensional manifold, see e.g. [15].

Moreover there is a Riemannian metric g on Gn,k being invariant under the action of O(n) in R
n. It is unique up to

multiplication by a positive constant (and — again up to multiplication by a positive constant — the only metric being
invariant under the action of SO(n) in R

n except for the case G4,2). For more details we refer the reader to [16].
In general, if (M,g) is a Riemannian manifold, the induced distance on M is defined by

d(p,q) = inf
{
L(γ )

∣∣ γ : [a, b] → M piecewise smooth curve with γ (a) = p, γ (b) = q
}
. (2.3)

Here L(γ ) := ∫ b

a
| dγ

dt
(t)|dt denotes the length of γ . If M is complete, by the theorem of Hopf–Rinow any two points

p,q ∈ M can be joined by a geodesic of length d(p,q). This applies to the Grassmannian as Gn,k is complete.
Now suppose that E,G ∈ Gn,k are two close k-planes; this means that the projection of each onto the other

is non-degenerate. Applying a transformation to principal axes, there are orthonormal bases {v1, . . . , vk} of E and
{w1, . . . ,wk} of G such that

〈vi,wj 〉 = δij cos θi with θi ∈
[

0,
π

2

)
for 1 � i, j � k. For given k-spaces E and G, the θ1, . . . , θk are uniquely determined (up to the order) and called
the principal angles between E and G. Under all metrics on Gn,k being invariant under the action of O(n), there is
exactly one metric g with

d(E,G) =
(

k∑
θ2
i

) 1
2

i=1
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for all close k-planes E and G, where d denotes the distance corresponding to g, and θ1, . . . , θk the principal angles
between E and G as defined above; see [2] and the references given there. We shall always use this distinguished
metric.

We will need the following estimate for the sectional curvatures of a Grassmannian:

Lemma 2.4. Let max{k,n − k} � 2. Let K(·, ·) denote the sectional curvature of Gn,k and let X,Y ∈ T
P
Gn,k be

linearly independent tangent vectors for a P ∈ Gn,k . Then

0 � K(X,Y ) � 2.

Proof. For min{k,n− k} = 1 all sectional curvatures are constant with K(X,Y ) = 1. For a proof see [16, p. 351]. For
min{k,n − k}� 2 we have 0 � K(X,Y ) � 2 by [17, Theorem 3]. �

The injectivity radius of Gn,k is π
2 (see [2, p. 53]). A subset U of a Riemannian manifold (M,g) is said to be

convex, if and only if for each p,q ∈ U the shortest geodesic from p to q is unique in M and lies entirely in U . For
the Grassmannian Gn,k , any open Riemannian ball B�(P ) around P ∈ Gn,k with � < π

4 is convex; see [8, p. 228].

2.4. The Riemannian center of mass

The well-known Euclidean center of mass may be generalized to a Riemannian center of mass on Riemannian
manifolds. This was introduced by K. Grove and H. Karcher in [9]. A simplified treatment is given in [13]. See
also [11]. We like to give a short sketch of this concept.

Let (M,g) be a complete Riemannian manifold with induced distance d as in (2.3). Let μ be a probability measure
on M , i.e. a nonnegative measure with

μ(M) =
∫
M

dμ = 1.

Let q be a point in M and B� = B�(q) a convex open ball of radius � around q in M . Suppose

sptμ ⊂ B�,

where sptμ denotes the support of μ. We define a function

P : B� → R,

P (p) =
∫
M

d(p,x)2 dμ(x).

Definition 2.5. A q ∈ B� is called a center of mass for μ if

P(q) = inf
p∈B�

∫
M

d(p,x)2 dμ(x).

The following theorem asserts the existence and uniqueness of a center of mass:

Theorem 2.6. If the sectional curvatures of M in B� are at most κ with 0 < κ < ∞ and if � is small enough such that
� < 1

4πκ−1/2, then P is a strictly convex function on B� and has a unique minimum point in B� which lies in B� and
is the unique center of mass for μ.

Proof. See [13, Theorem 1.2] and the following pages there. �
In the preceding theorem, we do not require the bound κ to be attained; in particular all sectional curvatures are

also allowed to be less than or equal to 0. The same applies to the following lemma:
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Lemma 2.7. Assume that the sectional curvatures of M in B� are at most κ with 0 < κ < ∞ and � < 1
4πκ−1/2. Let

μ1,μ2 be two probability measures on M with sptμ1 ⊂ B� , sptμ2 ⊂ B� with centers of mass q1, q2 respectively.
Then for a universal constant C = C(κ,�) < ∞

d(q1, q2) � C

∫
M

d(q2, x) d|μ1 − μ2|(x),

where |μ1 − μ2| denotes the total variation measure of the signed measure μ1 − μ2.

Proof. Let Pi(p) = 1
2

∫
M

d(p,x)2 dμi(x) for i = 1,2. By Theorem 1.5.1 in [13], with

C = C(κ,�) := 1 + (
κ1/2�

)−1 tan
(
2κ1/2�

)
, (2.4)

we have for all y ∈ B� the estimate

d(q1, y) � C
∣∣gradP1(y)

∣∣.
Using sptμi ⊂ B� , by Theorem 1.2 in [13] we have

gradPi(y) = −
∫
B�

exp−1
y (x) dμi(x), (2.5)

where exp−1
y : B� → TyM is considered as a vector valued function.

Moreover, as q2 is a center of mass,

gradP2(q2) = 0.

Then by the arguments of [11, Lemma 4.8.7] (where manifolds of nonpositive sectional curvature are considered), we
have

d(q1, q2) � C
∣∣gradP1(q2)

∣∣
= C

∣∣∣∣
∫
B�

exp−1
q2

(x) dμ1(x)

∣∣∣∣
= C

∣∣∣∣
∫
B�

exp−1
q2

(x) dμ1(x) −
∫
B�

exp−1
q2

(x) dμ2(x)

∣∣∣∣
� C

∫
M

d(q2, x) d|μ1 − μ2|(x),

where we used |exp−1
q2

(x)| = d(q2, x) and sptμi ⊂ B� in the last line. �
2.5. Basics for the proof

We like to fix some further notation and to deduce some basic facts that are needed in the proof.
First of all let us simplify the notation. For a given (r, λ)-immersion f : M → R

m+1 and for every q ∈ M we can
choose an Eq ∈ Gm+1,m with the properties of Definition 2.2. This yields a mapping E : M → Gm+1,m, q 
→ Eq . For
every (r, λ)-immersion we choose and fix such a mapping E . So every given (r, λ)-immersion f can be thought of as
a pair (f,E), even if E is not explicitly mentioned in the notation. With Aq,E(q) and U

E(q)
r,q as in Definition 2.2, we set

Aq := Aq,E(q)

and for 0 < � � r

U�,q := U
E(q)
�,q .

However, all properties shown below for U�,q are true for any admissible choice of E .
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As an analogue to Lemma 3.1 in [14] we obtain the following statement, where f is assumed to be a generalized
(r, λ)-immersion here:

Lemma 2.8. Let f : M →R
m+1 be an (r, λ)-immersion and p,q ∈ M .

a) If 0 < � � r and p ∈ U�,q , then |f (q) − f (p)| < (1 + λ)�.
b) If 0 < � � r and δ = [3(1 + λ)]−1� and Uδ,q ∩ Uδ,p = ∅, then Uδ,p ⊂ U�,q .

Proof. a) Pass to the graph representation, use the bound on the C0-norm of the derivative of the graph and the
triangular inequality.

b) Let x ∈ Uδ,p and y ∈ Uδ,q ∩ Uδ,p . With ϕq := π ◦ A−1
q ◦ f we have∣∣ϕq(x)

∣∣ � ∣∣f (x) − f (q)
∣∣

�
∣∣f (x) − f (p)

∣∣ + ∣∣f (p) − f (y)
∣∣ + ∣∣f (y) − f (q)

∣∣
< 3(1 + λ)δ

= �.

Hence Uδ,p ⊂ ϕ−1
q (B�). But Uδ,p ∪ Uδ,q is a connected set containing q , hence included in the q-component of

ϕ−1
q (B�), that is in U�,q . We conclude Uδ,p ⊂ U�,q . �

Now let r, λ > 0 be given. For l ∈ N0 define δl := [3(1 + λ)]−lr . For an (r, λ)-immersion f : M → R
m+1, by

Lemma 2.8 b) we have the following important property:

If p,q ∈ M and Uδl+1,q ∩ Uδl+1,p = ∅, then Uδl+1,p ⊂ Uδl,q . (2.6)

If f : M → R
m+1 is an (r, λ)-immersion and p ∈ M , we may use the local graph representation to conclude that the

set f (Ur,p) is homeomorphic to the ball Br . Hence we may choose a continuous unit normal νp : Ur,p → S
m with

respect to f |Ur,p . If q ∈ M is another point and νq : Ur,q → S
m a continuous unit normal on Ur,q , we note that νp

and νq do not necessarily coincide on Ur,p ∩ Ur,q . However, we have the following statement:

Lemma 2.9. Let f : M → R
m+1 be an (r, λ)-immersion and p,q ∈ M . Let νp : Uδ1,p → S

m, νq : Uδ1,q → S
m be

continuous unit normals. Suppose Uδ1,p ∩ Uδ1,q = ∅. Then exactly one of the following two statements is true:

• νp(x) = νq(x) for every x ∈ Uδ1,p ∩ Uδ1,q ,
• νp(x) = −νq(x) for every x ∈ Uδ1,p ∩ Uδ1,q .

Proof. Choose a ξ ∈ Uδ1,p ∩ Uδ1,q . First suppose that νp(ξ) = νq(ξ). As Ur,p is homeomorphic to Br and con-
nected, there are exactly two continuous unit normals on Ur,p . Let ν be the one with ν(ξ) = νp(ξ). Let W = {x ∈
Uδ1,p: ν(x) = νp(x)}. Then W is a nonempty subset of the connected set Uδ1,p . Moreover W is easily seen to be open
and closed in Uδ1,p . Therefore W = Uδ1,p and νp = ν on Uδ1,p . As Uδ1,q ⊂ Ur,p by (2.6), the preceding argumen-
tation can also be applied to νq . With ν(ξ) = νp(ξ) = νq(ξ) we conclude νq = ν on Uδ1,q . Hence νp = ν = νq on
Uδ1,p ∩ Uδ1,q , as in the claim above. If νp(ξ) = −νq(ξ), a similar argument yields νp = −νq on Uδ1,p ∩ Uδ1,q . �
Remark 2.10. The statement of the preceding lemma might seem to be obvious at first sight. However one can think
of a Möbius strip covered by two open sets U and V , each of which is homeomorphic to Br , such that U ∩ V has
exactly two components. If we choose continuous unit normals ν1, ν2 on U,V respectively, we have ν1 = ν2 on one
of the components, and ν1 = −ν2 on the other. Such a behavior of the normals is excluded by Lemma 2.9, irrespective
whether Uδ1,p ∩ Uδ1,q is connected or not.

We need the notion of a δ-net:

Definition 2.11. Let Q = {q1, . . . , qs} be a finite set of points in M and let 0 < δ < r . We say that Q is a δ-net for f ,
if M = ⋃s

j=1 Uδ,qj
.
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Note that every δ-net is also a δ′-net if 0 < δ < δ′ < r .
The following statement is a bit stronger than Lemma 3.2 in [14]. It bounds the number of elements in a δ-net by

an argumentation similar to that in the proof of Vitali’s covering theorem. Simultaneously, similarly to Besicovitch’s
covering theorem, it gives a bound (which does not depend on the volume) how often any fixed point in M is covered
by the net. More precisely, we have the following lemma:

Lemma 2.12. For l ∈N, every (r, λ)-immersion on a compact m-manifold M admits a δl-net Q with

|Q| � δ−m
l+1 vol(M),∣∣{q ∈ Q: p ∈ Uδ2,q}∣∣� [

3(1 + λ)
](l+1)m

for every fixed p ∈ M.

Proof. Let q1 ∈ M be an arbitrary point. Assume we have found points {q1, . . . , qν} in M with the property Uδl+1,qj
∩

Uδl+1,qk
= ∅ for j = k. Suppose Uδl,q1 ∪· · ·∪Uδl,qν does not cover M . Then choose a point qν+1 from the complement.

Then Uδl+1,qk
∩ Uδl+1,qν+1 = ∅ for k � ν, as otherwise Uδl+1,qν+1 ⊂ Uδl,qk

by (2.6). As

vol(M) �
s∑

j=1

vol(Uδl+1,qj
)

�
s∑

j=1

Lm(Bδl+1)

� sδm
l+1,

this procedure yields after at most δ−m
l+1 vol(M) steps a cover.

For the second relation let p ∈ M . Let Q = {q1, . . . , qs} be the net that we found above. Moreover let Z(p) =
{q ∈ Q: p ∈ Uδ2,q}. By Lemma 2.8 b) we have⋃

q∈Z(p)

Uδ2,q ⊂ Uδ1,p.

Hence we may estimate as above

vol(Uδ1,p) �
∑

q∈Z(p)

vol(Uδl+1,q )

�
∣∣Z(p)

∣∣δm
l+1Lm(B1). (2.7)

As the immersion is an (r, λ)-immersion, we have

vol(Uδ1,p) � (1 + λ)mδm
1 Lm(B1). (2.8)

Combining (2.7) and (2.8), we estimate∣∣Z(p)
∣∣ � (1 + λ)mδm

1 δ−m
l+1

= 3lm(1 + λ)(l+1)m,

which implies the statement. �
We would like to emphasize that the second estimate in the preceding lemma does not depend on the volume

vol(M). This will be necessary in order to obtain estimates for Lipschitz constants and for angles between different
spaces depending only on λ but not on vol(M).

Definition 2.13. Let f : M → R
m+1 be an (r, λ)-immersion. Let l ∈N and let Q = {q1, . . . , qs} be a δl-net for f . For

ι ∈ {0,1, . . . , l} and j ∈ {1, . . . , s} we define

Zι(j) := {1 � k � s: Uδι,qj
∩ Uδι,qk

= ∅}.
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For ν1, ν2 ∈ R
m+1\{0} let �(ν1, ν2) denote the non-oriented angle between ν1 and ν2, that is

0 ��(ν1, ν2)� π,

�(ν1, ν2) = arccos
〈ν1, ν2〉
|ν1||ν2| .

We consider the metric space (Sm,d), where S
m ⊂ R

m+1 is the m-dimensional unit sphere and d the intrinsic metric
on S

m, that is

d(·, ·) =�(·, ·). (2.9)

For A ⊂ S
m and x ∈ S

m let dist(x,A) = inf{d(x, y): y ∈ A}. For � > 0 let B�(A) = {x ∈ S
m: dist(x,A) < �}.

Moreover let S ⊂ P(Sm) denote the set of closed nonempty subsets of Sm. We denote by dH the Hausdorff metric
on S , given by

dH : S × S → R�0,

(S1, S2) 
→ inf
{
� > 0: S1 ⊂ B�(S2), S2 ⊂ B�(S1)

}
.

We will need the following well-known version of the theorem of Arzelà–Ascoli for the Hausdorff metric (see [1,
p. 125]):

Lemma 2.14. Let (X,d) be a compact metric space and A the set of closed nonempty subsets of X. Then (A, dH) is
compact, i.e. every sequence in A has a subsequence that converges to an element in A.

We will have to estimate the size of some tubular neighborhoods. To do this we need to introduce some more
notation. Suppose we are given � > 0 and u ∈ C1(B�) with ‖Du‖C0(B�) � λ. Moreover let T ∈ C1(B�,Rm+1) be

a mapping with |T (x)| = 1 for all x ∈ B� . Suppose that T is L-Lipschitz for an L with 0 < L < ∞. Let ω : B� →
Gm+1,1, q 
→ span{T (q)}. Finally, let ν : B� → S

m be a continuous unit normal with respect to the graph x 
→
(x,u(x)). We consider a vector bundle E over B� , given by

E = {
(x, y) ∈ B� ×R

m+1: y ∈ ω(x)
}
.

For ε > 0 let

Eε = {
(x, y) ∈ E: |y| < ε

} ⊂ E.

Moreover we define a mapping

F : E → R
m+1,

(x, y) 
→ (
x,u(x)

) + y, (2.10)

where y ∈ ω(x).

Lemma 2.15 (Size of tubular neighborhoods). Let γ < π
2 and ε = 1

L
cosγ . With the notation as above, assume that

�
(
T (p), ν(q)

)
� γ for every p,q ∈ B�. (2.11)

Then the following are true:

a) The mapping F |Eε is a diffeomorphism onto an open neighborhood of {(x,u(x)) ∈ R
m ×R: x ∈ B�}.

b) Let σ := min{�
2 cosγ,

cos2 γ
2L(1+λ)

}. Then

Bσ

({(
x,u(x)

) ∈R
m ×R: x ∈ B �

2

}) ⊂ F
(
Eε

)
,

where Bσ (A) = {x ∈ R
m+1: dist(x,A) < σ } for A ⊂R

m+1 with dist the Euclidean distance.
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Fig. 2.1. Tubular neighborhood around a graph.

The trivial but long proof is carried out in detail in Appendix A. (See Fig. 2.1.)
Finally we like to define a metric for graph systems. First of all let

Gs = {
(Aj ,uj )

s
j=1: Aj :Rm+1 → R

m+1 is a Euclidean isometry, uj ∈ C1(Br)
}
.

Every Euclidean isometry A : Rm+1 → R
m+1 splits uniquely into a rotation R ∈ SO(m + 1) and a translation T ∈

R
m+1. If ‖ · ‖ denotes the operator norm and if Γ = (Aj ,uj )

s
j=1 ∈ Gs , Γ̃ = (Ãj , ũj )

s
j=1 ∈Gs , we set

d(·, ·) :Gs ×Gs → R,

d(Γ, Γ̃ ) =
s∑

j=1

(‖Rj − R̃j‖ + |Tj − T̃j | + ‖uj − ũj‖C0(Br )

)
. (2.12)

This makes (Gs ,d) a metric space.

3. Transversality and tubular neighborhoods

In this section we like to construct lines in R
m+1, that intersect each (appropriately restricted) immersion f i

transversally — even in the case, that the Lipschitz constant λ of the graph functions is large. This yields local tubular
neighborhoods around f i and is the crucial step in the proof.

Let r > 0 and λ,V < ∞. Let f i : Mi → R
m+1 be a sequence of (r, λ)-immersions as in Theorem 1.1. By

Lemma 2.12 we can choose δ5-nets Qi = {qi
1, . . . , q

i
si } for Mi with si � δ−m

6 vol(Mi) and with

∣∣{q ∈ Qi : p ∈ Ui
δ2,q

}∣∣� [
3(1 + λ)

]6m for every fixed p ∈ Mi. (3.1)

As vol(Mi)� V , we may pass to a subsequence such that each net has exactly s points for a fixed s ∈N.
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For every i ∈N, ι ∈ {0,1, . . . ,5} and j ∈ {1, . . . , s} we have

Zi
ι (j) ⊂P

({1, . . . , s}).
Hence, by successively passing to subsequences, we may assume that Zi

ι (j) does not depend on i. Denote it by Zι(j).
To simplify the notation, for 0 < � � r we set Ui

�,j := Ui

�,qi
j

.

Moreover, we choose for every i ∈N and every j ∈ {1, . . . , s} a continuous unit normal νi
j : Ui

r,j → S
m with respect

to f i |Ui
r,j . Let these normal mappings be fixed from now on.

We set

Si
j := νi

j

(
Ui

δ1,j

) ⊂ S
m,

where the closure is taken with respect to the metric defined in (2.9).
For each fixed j , this yields a sequence (Si

j )i∈N in S . By Lemma 2.14, passing to a further subsequence (if need
be), we can assume

Si
j → S′

j in (S, dH) as i → ∞
for each fixed j ∈ {1, . . . , s}, where S′

j ∈ S . In particular for every j(
Si

j

)
i∈N is a Cauchy sequence in (S, dH). (3.2)

By (3.2) we may choose another subsequence such that for every j

dH
(
Sk

j , Sl
j

)
<

π

4
− 1

2
arctanλ for all k, l ∈ N. (3.3)

To each qi
j ∈ Qi we may assign a neighborhood Ui

r,j , a Euclidean isometry Ai
j and a differentiable function

ui
j :Br → R as in Definition 2.2. This yields the corresponding graph systems Γ i = (Ai

j , u
i
j )

s
j=1 ∈ Gs . As

‖Dui
j‖C0(Br )

� λ and as f i(Mi) is uniformly bounded, a subsequence of (Γ i)i∈N converges in (Gs ,d). In partic-
ular (

Γ i
)
i∈N is a Cauchy sequence in

(
Gs ,d

)
. (3.4)

Let constants L,γ and σ be defined by

L := [
3(1 + λ)

]6m+4
r−1, (3.5)

γ := π

4
+ 1

2
arctanλ, (3.6)

σ := cos2 γ

2L(1 + λ)
. (3.7)

By (3.4) we may pass to another subsequence such that

d
(
Γ k,Γ l

)
<

[
3(1 + λ)(1 + r)

]−1
σ for all k, l ∈N. (3.8)

For i = 1 we sometimes suppress the index 1 and write for instance qj and uj instead of q1
j and u1

j . For the immer-

sion f 1, let E1 : M1 → Gm+1,m be a mapping as explained above. We set Ej := E1(q1
j ) ∈ Gm+1,m (this means Ej is

an m-space for the point q1
j ∈ M1 as in Definition 2.2).

Our next task is to find a mapping ω : M1 → Gm+1,1, which defines the direction in which we project from f 1(M1)

onto f i(Mi) in order to construct diffeomorphisms φi : M1 → Mi . First we would like to give a local construction.
In Lemma 3.5 we will show that ω is even globally well defined. The construction is similar to that in [14], but more
involved.

We choose a C∞-function g : R�0 → R with the following properties:

• g(t) = 1 for t < δ1
r

,

• 0 � g(t) � 1 for t ∈ [ δ1 ,1],

r
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• g(t) = 0 for t > 1,
• −2 � g′(t) � 0 for all t > 0.

We note that δ1
r

= [3(1 + λ)]−1 � 1
3 , hence such a function g exists.

Let

Z : M1 → P
({1, . . . , s}),

q 
→ {
1 � k � s: q ∈ U1

δ2,k

}
.

By (3.1) we have∣∣Z(q)
∣∣ � [

3(1 + λ)
]6m for every q ∈ M1. (3.9)

For every k ∈ {1, . . . , s} we choose a unit vector wk that is perpendicular to the subspace Ek defined above. Let these
vectors w1, . . . ,ws be fixed from now on.

Now let j ∈ {1, . . . , s}, q ∈ U1
δ3,j

and k ∈ Z(q). Lemma 2.8 b) yields

U1
δ1,j

⊂ U1
r,k.

In particular f 1(U1
δ1,j

) is the graph of a λ-Lipschitz function on a subset of Ek . This implies

either �
(
wk, ν

1
j (qj )

)
� arctanλ or �

(−wk, ν
1
j (qj )

)
� arctanλ. (3.10)

Set

νk :=
{

wk, if �(wk, ν
1
j (qj )) � arctanλ,

−wk, otherwise.
(3.11)

If we replace the point qj by any other point p ∈ U1
δ1,j

, the relation (3.10) will still be true. As ν1
j is continuous and

U1
δ1,j

is connected, we easily conclude

�
(
νk, ν

1
j (p)

)
� arctanλ for every p ∈ U1

δ1,j
, (3.12)

where νk is the fixed vector defined in (3.11). We finally define a function

S : U1
δ3,j

→R
m+1,

q 
→
∑

k∈Z(q)

g

( |f 1(q) − f 1(qk)|
δ2

)
νk.

Lemma 3.1. The following inequalities hold:

a) |S(q)| � (1 + λ)−1 for every q ∈ U1
δ3,j

.

b) �(S(q), νi
j (p)) � π

4 + 1
2 arctanλ for every q ∈ U1

δ3,j
and every p ∈ Ui

δ1,j
.

Proof. a) Let q ∈ U1
δ3,j

. As Q1 is a δ4-net for f 1, there is a k ∈ {1, . . . , s} with q ∈ U1
δ4,k

. By Lemma 2.8 a) we have

|f 1(q) − f 1(qk)| < δ3, hence

|f 1(q) − f 1(qk)|
δ2

<
δ3

δ2
= δ1

r
.

By the definition of g this yields

g

( |f 1(q) − f 1(qk)|
δ2

)
= 1.

Now let l ∈ Z(q). By (3.12) we have �(νl, ν
1(q)) � arctanλ. Hence
j
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〈
νl, ν

1
j (q)

〉 = |νl |
∣∣ν1

j (q)
∣∣ cos

(
�

(
νl, ν

1
j (q)

))
� cos(arctanλ)

= (
1 + λ2)− 1

2

� (1 + λ)−1.

We note that q ∈ U1
δ4,k

in particular implies k ∈ Z(q). Finally we estimate∣∣S(q)
∣∣ � 〈

S(q), ν1
j (q)

〉
= g

( |f 1(q) − f 1(qk)|
δ2

)〈
νk, ν

1
j (q)

〉 + ∑
l∈Z(q)\{k}

g

( |f 1(q) − f 1(ql)|
δ2

)〈
νl, ν

1
j (q)

〉

�
(

1 +
∑

l∈Z(q)\{k}
g

( |f 1(q) − f 1(ql)|
δ2

))
(1 + λ)−1

� (1 + λ)−1.

b) Let q ∈ U1
δ3,j

and p ∈ Ui
δ1,j

. By (3.3) there is a p′ ∈ U1
δ1,j

with

�
(
ν1
j

(
p′), νi

j (p)
)
� π

4
− 1

2
arctanλ. (3.13)

By (3.12), every νk with k ∈ Z(q) lies in the cone

C = {
v ∈R

m+1 \ {0}: �(
v, ν1

j

(
p′))� arctanλ

}
.

By the definition of S, also the non-zero vector S(q) lies in C, i.e.

�
(
S(q), ν1

j

(
p′)) � arctanλ. (3.14)

Using the triangular inequality, we conclude by (3.13) and (3.14) that

�
(
S(q), νi

j (p)
)
� π

4
+ 1

2
arctanλ. �

By Lemma 3.1 a) the mapping S does not vanish on U1
δ3,j

. We define T by normalizing S, that is

T : U1
δ3,j

→R
m+1,

q 
→ S(q)

|S(q)| .

Identifying U1
δ3,j

with Bδ3 by means of the diffeomorphism π ◦ A−1
j ◦ f 1 : U1

δ3,j
→ Bδ3 , we may consider T and S

as mappings defined on the ball Bδ3 . We show, that T considered as mapping on Bδ3 is Lipschitz with respect to the
Euclidean norm:

Lemma 3.2. The mapping T : Bδ3 →R
m+1 is L-Lipschitz with L = [3(1 + λ)]6m+4r−1.

Proof. Let x, y ∈ Bδ3 . Then there are unique p,q ∈ U1
δ3,j

with π ◦ A−1
j ◦ f 1(p) = x, π ◦ A−1

j ◦ f 1(q) = y.

Let k ∈ Z(p) \ Z(q). Then p ∈ U1
δ3,j

∩ U1
δ2,k

. Lemma 2.8 b) implies U1
δ3,j

⊂ U1
δ1,k

, so in particular q ∈ U1
δ1,k

. Now

assume |f 1(q)−f 1(qk)| < δ2. With ϕk = π ◦A−1
k ◦f 1 this implies ϕk(q) ∈ Bδ2 . Hence q ∈ U1

δ1,k
∩ϕ−1

k (Bδ2) = U1
δ2,k

.

But this contradicts k /∈ Z(q). Therefore |f 1(q)−f 1(qk)| � δ2 and hence g(
|f 1(q)−f 1(qk)|

δ2
) = 0 by the definition of g.

The same argument shows g(
|f 1(p)−f 1(ql )|

δ2
) = 0 for all l ∈ Z(q) \ Z(p).

Using the preceding considerations, ‖g′‖C0(R�0)
� 2 and |Z(p)| � [3(1 + λ)]6m, |Z(q)| � [3(1 + λ)]6m, we esti-

mate as follows:
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∣∣S(x) − S(y)
∣∣ =

∣∣∣∣ ∑
k∈Z(p)

g

( |f 1(p) − f 1(qk)|
δ2

)
νk −

∑
l∈Z(q)

g

( |f 1(q) − f 1(ql)|
δ2

)
νl

∣∣∣∣
=

∣∣∣∣ ∑
k∈Z(p)∪Z(q)

[
g

( |f 1(p) − f 1(qk)|
δ2

)
− g

( |f 1(q) − f 1(qk)|
δ2

)]
νk

∣∣∣∣
�

∑
k∈Z(p)∪Z(q)

∥∥g′∥∥
C0(R�0)

∣∣∣∣ |f 1(p) − f 1(qk)|
δ2

− |f 1(q) − f 1(qk)|
δ2

∣∣∣∣
�

∑
k∈Z(p)∪Z(q)

2

δ2

∣∣f 1(p) − f 1(q)
∣∣

� 4
[
3(1 + λ)

]6m+2
r−1

∣∣(x,uj (x)
) − (

y,uj (y)
)∣∣

� 4
[
3(1 + λ)

]6m+2
r−1(1 + λ)|x − y|.

By Lemma 3.1 a) we have |S(z)| � (1 + λ)−1 for every z ∈ U1
δ3,j

. Hence

∣∣T (x) − T (y)
∣∣ =

∣∣∣∣ S(x)

|S(x)| − S(y)

|S(y)|
∣∣∣∣� 4

[
3(1 + λ)

]6m+2
(1 + λ)2r−1|x − y|

�
[
3(1 + λ)

]6m+4
r−1|x − y|. �

Remark 3.3. Of course, T is also Lipschitz as a mapping on U1
δ3,j

with respect to the metric induced by f 1. The esti-
mate of the Lipschitz constant gets even better in this case. Moreover, we note that in the preceding lemma L depends
on r . However, we will see that the Lipschitz constant of f i ◦ φi does not depend on r in the end.

We set

ω : U1
δ3,j

→ Gm+1,1,

q 
→ span
{
S(q)

}
,

which is well defined as S(q) = 0 by Lemma 3.1 a).
We like to explain how ω locally forms a tubular neighborhood around f 1:
For that we consider the mapping

gk : U1
δ2,k

→ R,

q 
→ g

( |f 1(q) − f 1(qk)|
δ2

)
.

As g is smooth and g(t) = 0 for t � 1, it is easily seen that gk can be extended to a smooth function ḡk : M1 → R

by setting ḡk = 0 outside U1
δ2,k

. This implies that S : U1
δ3,j

→ R
m+1 is differentiable, even if the sum in the definition

of S depends on Z(q). Hence also T = S
|S| is differentiable. Moreover Lemma 3.2 says that T is L-Lipschitz with

L = [3(1 + λ)]6m+4r−1 and by Lemma 3.1 b) we have

�
(
T (p), ν1

j (q)
)
� π

4
+ 1

2
arctanλ for all p,q ∈ U1

δ3,j
.

Finally, after a rotation and a translation, f (U1
δ3,j

) may be written as the graph of a C1-function u1
j : Bδ3 →R. Let us

introduce some more notation:
We consider a vector bundle Êj over U1

δ3,j
, given by

Êj = {
(x, y) ∈ U1

δ3,j
×R

m+1: y ∈ ω(x)
}

with bundle projection π̂ . We may identify the zero section of Êj with U1 . For ε > 0 let
δ3,j
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Eε
j = {

(x, y) ∈ Êj : |y| < ε
} ⊂ Êj .

Finally we define a mapping

Fj : Êj → R
m+1,

(x, y) 
→ f (x) + y, (3.15)

where y ∈ ω(x).

Lemma 3.4. Let ε = 1
L

cosγ , where L and γ are as in (3.5), (3.6). Then the following are true:

• Fj |Eε
j is a diffeomorphism onto an open neighborhood of f 1(U1

δ3,j
),

• Fj |U1
δ3,j

= f 1|U1
δ3,j

,

• for each fibre Êq = π̂−1(q) it holds Fj (Êq) = ω(q).

Moreover for σ = cos2 γ
2L(1+λ)

we have the inclusion

Bσ

(
f 1(U1

δ4,j

)) ⊂ Fj

(
Eε

j

)
.

Proof. This is just a reformulation of Lemma 2.15. Note that
cosγ

L(1 + λ)
<

[
3(1 + λ)

]−3
r = δ3,

hence σ = min{ δ3
2 cosγ,

cos2 γ
2L(1+λ)

} = cos2 γ
2L(1+λ)

. �
Up to this point we have constructed for each j ∈ {1, . . . , s} a tubular neighborhood locally around f (U1

δ3,j
). Since

the mapping S depends on j , we should write more accurately Sj instead of S. In the same way we should write ωj

instead of ω. However, we can show that ω is globally well defined. More precisely we have the following lemma:

Lemma 3.5. Let j, k ∈ {1, . . . , s}. Then

ωj = ωk on U1
δ3,j

∩ U1
δ3,k

.

In particular there is a smooth mapping ω : M1 → Gm+1,1 with ω|U1
δ3,j

= ωj for each j ∈ {1, . . . , s}.

Proof. Let j, k ∈ {1, . . . , s}. For q ∈ U1
δ3,j

∩ U1
δ3,k

we show that either Sj (q) = Sk(q) or Sj (q) = −Sk(q), which
implies the statement.

Let q ∈ U1
δ3,j

∩ U1
δ3,k

and l ∈ Z(q). Lemma 2.8 b) implies

U1
δ1,j

⊂ U1
r,l ,

U1
δ1,k

⊂ U1
r,l .

As in (3.10) we conclude(
either �

(
wl, ν

1
j (qj )

)
� arctanλ or �

(−wl, ν
1
j (qj )

)
� arctanλ

)
and (

either �
(
wl, ν

1
k (qk)

)
� arctanλ or �

(−wl, ν
1
k (qk)

)
� arctanλ

)
.

We define vectors as in (3.11), the first time depending on j , the second time on k:

νj,l :=
{

wl, if �(wl, ν
1
j (qj )) � arctanλ,

−wl, otherwise,

νk,l :=
{

wl, if �(wl, ν
1
k (qk)) � arctanλ,
−wl, otherwise.



560 P. Breuning / Ann. I. H. Poincaré – AN 29 (2012) 545–572
Then

Sj (q) =
∑

l∈Z(q)

g

( |f 1(q) − f 1(ql)|
δ2

)
νj,l

and

Sk(q) =
∑

l∈Z(q)

g

( |f 1(q) − f 1(ql)|
δ2

)
νk,l .

By Lemma 2.9, we have ν1
j = ν1

k on U1
δ1,j

∩ U1
δ1,k

, or ν1
j = −ν1

k on U1
δ1,j

∩ U1
δ1,k

. Let us first assume

ν1
j = ν1

k on U1
δ1,j

∩ U1
δ1,k

. (3.16)

Since q ∈ U1
δ3,j

∩ U1
δ3,k

, we conclude with Lemma 2.8 b)

U1
δ3,j

⊂ U1
δ2,k

, U1
δ3,k

⊂ U1
δ2,j

,

in particular

{qj , qk} ⊂ U1
δ3,j

∪ U1
δ3,k

⊂ U1
δ1,j

∩ U1
δ1,k

. (3.17)

By (3.12) together with (3.17) we have

�
(
νj,l, ν

1
j (qk)

)
� arctanλ, (3.18)

by (3.16), (3.17) and (3.18) moreover

�
(
νj,l, ν

1
k (qk)

)
� arctanλ. (3.19)

We already know that νj,l = νk,l or νj,l = −νk,l , thus (3.19) allows us to conclude that

νj,l = νk,l .

Since this is true for all l ∈ Z(q), we conclude Sj (q) = Sk(q) and hence ωj (q) = ωk(q).
If ν1

j = −ν1
k on U1

δ1,j
∩ U1

δ1,k
, one similarly concludes νj,l = −νk,l for all l ∈ Z(q). This implies Sj (q) = −Sk(q)

and hence again ωj (q) = ωk(q). �
4. Intersection points and definition of φi

In this section we like to show that for p ∈ M1 the line f 1(p) + ω(p) intersects each appropriately restricted
immersion f i(Mi) in exactly one point. Using this, we are able to give a definition of the mappings φi : M1 → Mi .
Each φi will be shown to be a diffeomorphism. Moreover, it will be shown that f i ◦φi is uniformly Lipschitz bounded.

Lemma 4.1. For p ∈ U1
δ3,j

the line f 1(p) + ω(p) intersects the set f i(Ui
δ1,j

) in exactly one point. This point lies in

f i(Ui
δ2,j

).

Proof. Let p ∈ U1
δ3,j

. First we show that f 1(p) + ω(p) intersects f i(Ui
δ2,j

). By Lemma 3.1 b) we have

�
(
T (p), νi

j (q)
)
� π

4
+ 1

2
arctanλ for every q ∈ Ui

δ1,j
. (4.1)

Let G = {(x, y) ∈ Ui
δ2,j

× R
m+1: y ∈ ω(p)}. We note here that ω(p) does not depend on x. Let the function F be

defined by

F : G → R
m+1,

(x, y) 
→ f (x) + y, (4.2)
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where y ∈ ω(p). With arguments as in Lemma 3.4, using (4.1) and the fact that ω(p) is constant, we conclude that
F(G) forms a tubular neighborhood around f i(Ui

δ2,j
), and moreover Bσ (f i(Ui

δ3,j
)) ⊂ F(G) with σ as in (3.7).

We would like to show that f 1(U1
δ3,j

) ⊂ Bσ (f i(Ui
δ3,j

)). For that let p′ ∈ U1
δ3,j

. Then there is a unique x ∈ Bδ3 with

f 1(p′) = A1
j (x,u1

j (x)). Moreover there is a unique q ′ ∈ Ui
δ3,j

with f i(q ′) = Ai
j (x,ui

j (x)). We estimate

∣∣f i
(
q ′) − f 1(p′)∣∣ = ∣∣Ai

j

(
x,ui

j (x)
) − A1

j

(
x,u1

j (x)
)∣∣

= ∣∣Ri
j

(
x,ui

j (x)
) + T i

j − R1
j

(
x,u1

j (x)
) − T 1

j

∣∣
�

∣∣Ri
j

(
x,ui

j (x)
) − Ri

j

(
x,u1

j (x)
)∣∣ + ∣∣Ri

j

(
x,u1

j (x)
) − R1

j

(
x,u1

j (x)
)∣∣ + ∣∣T i

j − T 1
j

∣∣
= ∣∣Ri

j

((
x,ui

j (x)
) − (

x,u1
j (x)

))∣∣ + ∣∣(Ri
j − R1

j

)(
x,u1

j (x)
)∣∣ + ∣∣T i

j − T 1
j

∣∣
�

∣∣ui
j (x) − u1

j (x)
∣∣ + ∥∥Ri

j − R1
j

∥∥∣∣(x,u1
j (x)

)∣∣ + ∣∣T i
j − T 1

j

∣∣
<

σ

3
+ σ

3
+ σ

3
= σ,

where in the sixth line we used |(x,u1
j (x))| � (1 + λ)r and d(Γ 1,Γ i) < [3(1 + λ)(1 + r)]−1σ which follows

from (3.8). Hence f 1(U1
δ3,j

) ⊂ Bσ (f i(Ui
δ3,j

)), i.e. f 1(U1
δ3,j

) lies within the tubular neighborhood defined above.

But this means that there is a q ∈ Ui
δ2,j

such that f 1(p)+ω(p) equals f i(q)+ω(p). Hence f 1(p)+ω(p) intersects

f i(Ui
δ2,j

) in the point f i(q).

It remains to show that f 1(p) + ω(p) intersects f i(Ui
δ1,j

) in not more than one point. By (4.1) we have

�(T (p), νi
j (q)) < π

2 for every q ∈ Ui
δ1,j

. By the definition of ω this implies R
m+1 = τf i (q) ⊕ ω(p) for every

q ∈ Ui
δ1,j

. As f i is an (r, λ)-immersion, we conclude by Lemma A.1 in Appendix A that f 1(p) + ω(p) intersects

f i(Ui
δ1,j

) in at most one point. �
The following lemma will be needed in order to show that the mappings φi are well defined:

Lemma 4.2. Let p ∈ U1
δ3,j

∩ U1
δ3,k

. Let S1 be the intersection point of f 1(p) + ω(p) with f i(Ui
δ1,j

), and S2 the

intersection point of f 1(p) + ω(p) with f i(Ui
δ1,k

). Finally let σ1 ∈ Ui
δ1,j

with f i(σ1) = S1, and σ2 ∈ Ui
δ1,k

with

f i(σ2) = S2. Then σ1 = σ2.

Proof. By Lemma 4.1 we have S2 ∈ f i(Ui
δ2,k

), hence σ2 ∈ Ui
δ2,k

. As p ∈ U1
δ3,j

∩ U1
δ3,k

, we have in particular U1
δ2,j

∩
U1

δ2,k
= ∅ and hence U1

δ2,k
⊂ U1

δ1,j
by Lemma 2.8 b). By Lemma 4.1 the set f 1(p) + ω(p) has exactly one point of

intersection with f i(Ui
δ1,j

). We conclude σ1 = σ2. �
Now we are able to define the mappings φi : M1 → Mi . Let p ∈ M1. Then p ∈ U1

δ3,j
for some j . The line

f 1(p) + ω(p) intersects f i(Ui
δ1,j

) in exactly one point Sp . Moreover there is exactly one point σp ∈ Ui
δ1,j

with

f i(σp) = Sp . We set φi(p) := σp . The mappings φi are well defined by Lemma 4.2. Clearly we have f i ◦φi(p) = Sp .
We like to show that each φi is a diffeomorphism. For that we follow in parts the argumentation of [4]:

Lemma 4.3. Each of the mappings φi : M1 → Mi is surjective.

Proof. Let q ∈ Mi . As Qi is a δ4-net for f i , there is a j ∈ {1, . . . , s} with q ∈ Ui
δ4,j

. By Lemma 3.4, for ε = 1
L

cosγ

the set F(Eε
j ) forms a tubular neighborhood around f 1(U1

δ3,j
), and moreover Bσ (f 1(U1

δ4,j
)) ⊂ Fj (E

ε
j ) with σ as

in (3.7). With (3.8) and an estimation completely analogous to that in the proof of Lemma 4.1, one shows f i(Ui
δ4,j

) ⊂
Bσ (f 1(U1

δ4,j
)). Hence, for every q ∈ Ui

δ4,j
there is a p ∈ U1

δ3,j
with f i(q) ∈ f 1(p) + ω(p). By the definition of φi

this yields φi(p) = q . �
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Lemma 4.4. Each of the mappings φi : M1 → Mi is injective.

Proof. First we note that for every j ∈ {1, . . . , s} we have φi(U1
δ5,j

) ⊂ Ui
δ4,j

. This is shown by the same arguments

as in Lemma 4.1. Moreover, by the proof of Lemma 4.3, we know that f i(Ui
δ4,j

) ⊂ Fj (E
ε
j ). Using that Q1 is a

δ5-net for f 1, we conclude f i ◦ φi(x) ∈ Fj (Êx ∩ Eε
j ) for every x ∈ U1

δ3,j
(where Êx = π̂−1(x)). As Fj |Eε

j is a

diffeomorphism, we conclude that φi is injective on U1
δ3,j

.

For showing global injectivity, let x, y ∈ M1 with x = y. As Q1 is a δ5-net for f 1, there are j, k with x ∈ U1
δ5,j

⊂
U1

δ4,j
, y ∈ U1

δ5,k
⊂ U1

δ4,k
.

Case 1. U1
δ4,j

∩ U1
δ4,k

= ∅.

By the considerations at the beginning of this proof, we have φi(x) ∈ Ui
δ4,j

, φi(y) ∈ Ui
δ4,k

. As U1
δ4,j

∩ U1
δ4,k

= ∅,

we also have Ui
δ4,j

∩ Ui
δ4,k

= ∅. This implies φi(x) = φi(y).

Case 2. U1
δ4,j

∩ U1
δ4,k

= ∅.

By Lemma 2.8 b) we have U1
δ4,k

⊂ U1
δ3,j

. By the considerations of above, φi is injective on U1
δ3,j

. Again we

conclude φi(x) = φi(y). �
Corollary 4.5. Each mapping φi : M1 → Mi is a diffeomorphism.

Proof. As in Lemma 4.4 we have f i ◦ φi(x) ∈ Fj (Êx ∩ Eε
j ) for every x ∈ U1

δ3,j
. Using a trivialization of the trivial

bundle Êj , one easily concludes that f i ◦ φi : M1 →R
m+1 is an immersion (see also [4]). Moreover, the mapping φi

is surjective by Lemma 4.3, and injective by Lemma 4.4. We conclude that φi is a diffeomorphism. �
Finally we would like to prove that the reparametrizations f i ◦ φi are uniformly Lipschitz bounded. As above, for

j ∈ {1, . . . , s} we can consider f i ◦ φi |U1
δ3,j

also as a mapping defined on Bδ3 . This mapping shall be denoted by

f̂ i : Bδ3 →R
m+1.

Lemma 4.6. Let j ∈ {1, . . . , s}. Let f̂ i : Bδ3 → R
m+1 be the local representation of f i ◦ φi |U1

δ3,j
as explained above.

Then f̂ i is Λ-Lipschitz for a finite constant Λ = Λ(λ).

Proof. Let x, y ∈ Bδ3 . Then there are unique μ1,μ2 ∈ R such that

f̂ i (x) = (
x,u1

j (x)
) + μ1T (x), f̂ i(y) = (

y,u1
j (y)

) + μ2T (y).

By the construction of the mappings φi we have |μ1|, |μ2| < ε, where ε = 1
L

cosγ < r . Let E ∈ Gm+1,m be the
m-space perpendicular to T (x). We define an affine subspace Ẽ := (x,u1

j (x)) + E. Let π̃ : Rm+1 → Ẽ denote the

orthogonal projection onto Ẽ. As

π̃
((

x,u1
j (x)

) + μT (x)
) = (

x,u1
j (x)

)
for any μ ∈ R, we may estimate as follows:∣∣π̃(

f̂ i (x)
) − π̃

(
f̂ i (y)

)∣∣ = ∣∣π̃((
x,u1

j (x)
) + μ1T (x)

) − π̃
((

y,u1
j (y)

) + μ2T (y)
)∣∣

= ∣∣π̃((
x,u1

j (x)
) + μ2T (x)

) − π̃
((

y,u1
j (y)

) + μ2T (y)
)∣∣

�
∣∣(x,u1

j (x)
) − (

y,u1
j (y)

) + μ2
(
T (x) − T (y)

)∣∣
� |x − y| + ∣∣u1

j (x) − u1
j (y)

∣∣ + r
∣∣T (x) − T (y)

∣∣
� (1 + λ + rL)|x − y|. (4.3)
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By Lemma A.1 together with Lemma 3.1 b), the set f i(Ui
δ1,j

) is the graph of a function ũ on an open subset U of Ẽ.

In the same manner, f i(Ui
δ2,j

) is the graph of the same function restricted to a subset V �U . Again by Lemma 3.1 b),
on convex subsets of U the function ũ is λ′-Lipschitz with λ′ = tanγ , where γ is as in (3.6). Let � > 0 be small
enough, such that B�(ξ) ⊂ U for any ξ ∈ V (where here B�(ξ) denotes an open ball in Ẽ).

Now assume |x − y| <
�

1+λ+rL
. By Lemma 4.1 we have f̂ i (z) ∈ f i(Ui

δ2,j
) for any z ∈ Bδ3 . Hence by (4.3) the

points π̃(f̂ i (x)) and π̃ (f̂ i(y)) lie both in the convex subset B�(π̃(f̂ i(x))) of U . We conclude∣∣f̂ i (x) − f̂ i (y)
∣∣ = ∣∣(π̃(

f̂ i (x)
)
, ũ

(
π̃

(
f̂ i (x)

))) − (
π̃

(
f̂ i (y)

)
, ũ

(
π̃

(
f̂ i (y)

)))∣∣
� (1 + tanγ )(1 + λ + rL)|x − y|. (4.4)

If x, y ∈ Bδ3 are arbitrary points, let N ∈N with N > 1+λ+rL
�

|x −y|. We define xι = x + ι
y−x
N

∈ Bδ3 for ι = 0, . . . ,N .
Then, using a telescoping sum and (4.4), we have

∣∣f̂ i (x) − f̂ i (y)
∣∣ � N−1∑

ι=0

∣∣f̂ i (xι) − f̂ i (xι+1)
∣∣

� (1 + tanγ )(1 + λ + rL)|x − y|.
By the definitions of L and γ , the quantities rL and γ depend only on λ. Hence f̂ i is Λ-Lipschitz with Λ = Λ(λ) =
(1 + tanγ )(1 + λ + rL). �
Remark 4.7. If we choose some of the constants more carefully, we can give a better bound for Λ in the preceding
lemma. Choosing the right hand side in (3.3) extremely small, we can replace γ by a number γ̃ which is slightly greater
than arctanλ. Moreover, we can choose ε with |μ1|, |μ2| < ε so small, that the term εL can almost be neglected. With
these constants, we finally obtain Λ = (1 + tan γ̃ )(1 + λ + εL) < 2(1 + λ)2. In particular, Λ does not depend on the
dimension m here, although L depends on m.

Finally, by Lemma 4.6, we may pass to a subsequence such that f i ◦ φi converges uniformly to a limit function
f : M1 → Rm+1. As limit manifold we define M := M1. Thus the limit manifold is a compact differentiable m-
manifold.

5. The limit function lies in F0(r,λ)

Up to this point we have found a subsequence and diffeomorphisms φi : M1 → Mi , such that f i ◦ φi is uniformly
Lipschitz bounded and converges uniformly to an f : M1 → R

m+1. In this section we will show that the limit function
f lies in F0(r, λ).

For that we have to show, that for each point q ∈ M1 there is an E = E(q) ∈ Gm+1,m, such that f is injective on
UE

r,q and the set A−1
q,E ◦ f (UE

r,q) is the graph of a Lipschitz continuous function u : Br →R with Lipschitz constant λ.

So let q ∈ M1. Let qi = φi(q) ∈ Mi . As each f i is an (r, λ)-immersion, there are Ei ∈ Gm+1,m such that for each i

the set (Ai
qi ,Ei )

−1 ◦ f i(UEi

r,qi ) is the graph of a differentiable function ui : Br → R with ‖Dui‖C0(Br )
� λ.

Passing to another subsequence, we may assume

ui → u uniformly,

Ei → E for the metric d defined in (2.3),

as i → ∞, where u : Br → R and E ∈ Gm+1,m. In particular, u is Lipschitz continuous with Lipschitz constant λ.
Let Aq,E be a Euclidean isometry, which maps the origin to f (q), and the subspace R

m × {0} ⊂ R
m × R onto

f (q) + E. Then we have in any case Aq,E({(x,u(x)): x ∈ Br}) ⊂ f (M1).
To finish the proof, we show that f is injective on UE

r,q and that A−1
q,E ◦ f (UE

r,q) is the graph of the function u. This

is true, if and only if for every � with 0 < � < r the function f is injective on UE
�,q and the set A−1

q,E ◦ f (UE
�,q) is the

graph of the function u|B� .
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We first show the graph property. Let a � with 0 < � < r be given. Let ε > 0 with ε < min{�, r − �}. Moreover,
let Ui

� ⊂ M1 be the q-component of the set (π ◦ A−1
qi ,Ei ◦ f i ◦ φi)−1(B�). Again, UE

�,q ⊂ M1 is the q-component of

(π ◦A−1
q,E ◦f )−1(B�). By the definition of Ui

� , we have A−1
qi ,Ei ◦f i ◦φi(Ui

�) = {(x,ui(x)): x ∈ B�}. As A−1
qi ,Ei ◦f i ◦

φi → A−1
q,E ◦ f uniformly, we conclude by the definitions of Ui

� and UE
�,q that Ui

�−ε ⊂ UE
�,q ⊂ Ui

�+ε for i sufficiently
large, in particular{(

x,ui(x)
)
: x ∈ B�−ε

} ⊂ A−1
qi ,Ei ◦ f i ◦ φi

(
UE

�,q

) ⊂ {(
x,ui(x)

)
: x ∈ B�+ε

}
.

Letting i → ∞, we obtain{(
x,u(x)

)
: x ∈ B�−ε

} ⊂ A−1
q,E ◦ f

(
UE

�,q

) ⊂ {(
x,u(x)

)
: x ∈ B�+ε

}
.

As this is true for every ε > 0 with ε < min{�, r − �}, we conclude by the definition of UE
�,q that A−1

q,E ◦ f (UE
�,q) =

{(x,u(x)): x ∈ B�}. This is the desired graph property.
Similarly, one shows that f is injective on UE

�,q . We have f (x) = limi→∞ f i ◦φi(x) for all x ∈ UE
�,q , and moreover

UE
�,q ⊂ Ui

�+ε for i sufficiently large. The functions f i ◦φi are injective on Ui
�+ε and it holds A−1

qi ,Ei ◦f i ◦φi(Ui
�+ε) =

{(x,ui(x)): x ∈ B�+ε}. Using Aqi,Ei → Aq,E , one easily concludes that A−1
q,E ◦ f and hence also f is injective

on UE
�,q .

This shows that the limit function f lies in F0(r, λ).

6. Compactness in higher codimension

In the final section we want to prove Theorem 1.3, that is compactness of (r, λ)-immersions in higher codimension
with λ � 1

4 . Our main task here is to give an analogous construction of the averaged normal projection for arbitrary
codimension. For that we shall use a Riemannian center of mass, which was introduced in Section 2.

So let f i be a sequence as in Theorem 1.3 with λ � 1
4 . For all objects of the preceding sections that are defined

also in arbitrary codimension, we shall use precisely the same notation. We note that Lemmas 2.8 and 2.12 are true
also in higher codimension. For q ∈ M1 we set

λ
q
j := g

( |f 1(q) − f 1(qj )|
δ2

)
.

As in the proof of Lemma 3.1 a) we conclude that there is a k ∈ Z(q) with λ
q
k = 1. For each j ∈ {1, . . . , s} let

Nj ∈ Gn,k be the k-space perpendicular to Ej . We define for each q ∈ M1 a probability measure μq on Gn,k by

μq =
( ∑

j∈Z(q)

λ
q
j

)−1 ∑
j∈Z(q)

λ
q
j δNj

,

where δN denotes the Dirac measure on Gn,k supported at N ∈ Gn,k .
Moreover, let

ν : M1 → Gn,k,

q 
→ (
TqM1)⊥

be the normal-space field of f 1 as defined in (2.2). Now consider

P : B π
6

(
ν(q)

) → R,

P (p) =
∫

Gn,k

d(p, x)2 dμq(x),

where B π
6
(ν(q)) ⊂ Gn,k is the closed ball of radius π

6 around ν(q). Here the radius is measured with respect to the
canonical distance d on Gn,k as defined in (2.3).
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Lemma 6.1. For every q ∈ M1 it holds sptμq ⊂ B π
12

(ν(q)).

Proof. By the definition of μq it is sufficient to show that Nj lies in B π
12

(ν(q)) for every j ∈ Z(q). So let j ∈ Z(q).

By the definition of Z(q) we have q ∈ U1
δ2,j

. We deduce that Nj is the graph of a linear function h over ν(q)

with ‖Dh‖ = (
∑k

i=1 |∂ih|2) 1
2 � λ � 1

4 . Let θ1, . . . , θk be the principal angles between Nj and ν(q). After a suitable
rotation we may assume that tan θi = |∂ih| for every i ∈ {1, . . . , k}. Using θ � tan θ for θ ∈ [0, π

2 ), we estimate

d(Nj , ν(q)) = (
∑k

i=1 θ2
i )

1
2 � (

∑k
i=1(tan θi)

2)
1
2 = (

∑k
i=1 |∂ih|2) 1

2 � λ� 1
4 < π

12 . Hence Nj lies in B π
12

(ν(q)). �
In particular we have sptμq ⊂ Bπ

6
(ν(q)). Hence we conclude by Lemma 2.4 and Theorem 2.6, that there is exactly

one center of mass N(q) ∈ Bπ
6
(ν(q)) ⊂ Gn,k for μq . In this way we may define a mapping

N : M1 → Gn,k,

q 
→ N(q).

An important property of the averaged normal N constructed in this way is its differentiability. It is needed in order
to obtain diffeomorphisms φi : M1 → Mi . We will show that N is in Ck if the function f 1 is in Ck (here we denote
by k the degree of differentiability, and by k the codimension). First, for functions defined on manifolds, we need the
following variation of the implicit function theorem:

Lemma 6.2. Let M be a smooth m-manifold, (N,g) be a smooth Riemannian n-manifold and f : M × N → R be a
mapping. For every fixed x ∈ M , assume that

hx : N →R, hx = f (x, ·)
is in C2(N) and is strictly convex. Let k � 1 be an integer. Denoting by gradhx the gradient of the fixed function hx

defined above, assume that

H : M × N → T N, (x, y) 
→ gradhx(y)

is in Ck(M × N,T N). Let (x0, y0) ∈ M × N be a point with H(x0, y0) = 0 ∈ Ty0N .
Then there are open neighborhoods U ⊂ M of x0 and V ⊂ N of y0, and moreover a function F ∈ Ck(U,V ), such

that {(x, y) ∈ U × V : H(x,y) = 0 ∈ TyN} = {(x,F (x)): x ∈ U}.

Proof. Let ϕ1 : U1 → ϕ(U1) be a coordinate chart of M with x0 ∈ U1, and let ϕ2 : V1 → ϕ2(V1) be a coordinate chart
of N with y0 ∈ V1. For fixed x ∈ M , in the local coordinates ϕ2 we have

gradhx =
n∑

i,j=1

gij ∂jhx∂i, (6.1)

and, with the corresponding Christoffel symbols Γ k
ij = 1

2

∑n
l=1 gkl(∂igjl + ∂jgil − ∂lgij ), the components of the

Hessian D2
ij hx = ∂i∂jhx − ∑n

k=1 Γ k
ij ∂khx . If we assume ϕ2 to be Riemannian normal coordinates centered in y0, we

obtain

D2
ij hx(y0) = ∂i∂jhx(y0). (6.2)

Let us now consider the local representations of hx and f in the coordinates ϕ2 and ϕ1 × ϕ2 respectively. We denote
these representations simply by hx and f again. Moreover, we identify x0 and y0 with ϕ1(x0) and ϕ2(y0) respectively.
The condition on hx to be strictly convex means that the Hessian D2hx is positive definite in every point. Hence,
by (6.2), the Hessian matrix D2hx(y0) of the local representation is positive definite, in particular

D2hx0(y0) is invertible. (6.3)

The Jacobian Df may be considered as a mapping Df : Ω → R
m+n, where Ω = ϕ1(U1) × ϕ2(V1) ⊂ R

m ×R
n. We

write Df = (Dxf,Dyf ) ∈ R
m ×R

n and consider the mapping Dyf : Ω → R
n. Similarly, for the Jacobian of Dyf ,
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we write D(Dyf ) = (Dx(Dyf ),Dy(Dyf )) ∈R
n×m ×R

n×n. As Dyf (x0, y0) = Dhx0(y0) and as H(x0, y0) = 0, we
conclude

Dyf (x0, y0) = 0. (6.4)

Similarly, as Dy(Dyf )(x0, y0) = D2hx0(y0), we know by (6.3) that

Dy(Dyf )(x0, y0) is invertible. (6.5)

The assumption on H to be in Ck implies by (6.1) that also Dyf : Ω → R
n is in Ck. Hence we may use (6.4), (6.5)

and apply the usual implicit function theorem to the function Dyf . From this we deduce the statement. �
Using the preceding lemma, we are able to deduce that the mapping N is differentiable:

Lemma 6.3. Let N : M1 → Gn,k be the averaged normal corresponding to f 1 : M1 → R
n, as constructed above.

Assume that f 1 ∈ Ck(M1,Rn) for a k � 1. Then N ∈ Ck(M1,Gn,k).

Proof. Let q0 ∈ M1 be a point. We show that N is Ck in a neighborhood of q0 . Let W ⊂ M1 be an open neighborhood
of q0 with ν(W) ⊂ B π

12
(ν(q0)). By Lemma 6.1 we have sptμq ⊂ Bπ

6
(ν(q0)) for every q ∈ W ; this will be implicitly

used in the following argumentation. Let

G : W × Bπ
6

(
ν(q0)

) → R,

(q,p) 
→
∫

Gn,k

d(p, x)2 dμq(x).

Moreover, for fixed q ∈ W let hq : Bπ
6
(ν(q0)) →R, hq := G(q, ·). By this definition, hq is smooth on Bπ

6
(ν(q0)) and

by Theorem 2.6 strictly convex. We denote by gradhq the gradient of the fixed function hq , and define

H : W × Bπ
6

(
ν(q0)

) → T Bπ
6

(
ν(q0)

)
, (q,p) 
→ gradhq(p).

With (2.5) and the definition of μq , we calculate

H(q,p) = −2

( ∑
j∈Z(q)

λ
q
j

)−1 ∑
j∈Z(q)

λ
q
j exp−1

p (Nj ). (6.6)

As λ
q
j = g(

|f 1(q)−f 1(qj )|
δ2

) and by the definition of g, the mapping q 
→ λ
q
j is in Ck if f is in Ck. Moreover, as for

every j ∈ Z(q) the mapping p 
→ exp−1
p (Nj ) is smooth, we conclude that H is in Ck. Note that g is smooth with

g(1) = 0, hence H is Ck even if the sums in (6.6) depend on Z(q).
As N(q) ∈ Bπ

6
(ν(q0)) is the center of mass for μq , we have H(q,N(q)) = 0 for every q ∈ W , in particular

H(q0,N(q0)) = 0.
Now we are in a position to apply Lemma 6.2. We conclude that there are open neighborhoods U ⊂ W of q0 ,

V ⊂ Bπ
6
(ν(q0)) of N(q0), and a function F ∈ Ck(U,V ) with {(x, y) ∈ U × V : H(x,y) = 0} = {(x,F (x)): x ∈ U}.

By Theorem 2.6 we deduce, that N coincides with F on U . Hence N is in Ck on U . �
Remark 6.4. In particular, the preceding lemma shows that the averaged normal N can be used for the projection
in the case of immersions with Lp-bounded second fundamental form, which was the case considered in [4]. For an
(r, λ)-immersion f ∈ Ck, the normal νf is in Ck−1, while the averaged normal N is in Ck. In particular, the averaged
normal of a C1-immersion is differentiable and forms locally a tubular neighborhood around the immersion. Thus it
is possible to construct diffeomorphisms φi : M1 → Mi using the averaged normal. However, if one likes to show
convergence as in [14] and in [4], we require N even to be in C2. For that purpose, an additional smoothing of f is
unavoidable; this was also performed by Langer (see the first paragraph on p. 229 in [14], where a C1-perturbation is
made in order to smooth the immersion). On the other hand, a pure smoothing argument would not suffice to prove
Theorems 1.1 and 1.3. As in general the limit is not even differentiable, one has to project from f i0(Mi0) for a fixed
and sufficiently large i0. The averaged normal is needed then in order to estimate the size of the tubular neighborhood.
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As in the case of codimension 1, we may consider the restriction of N to U1
δ3,j

as a mapping defined on Bδ3 . As an
analogue of Lemma 3.2 we show the following statement:

Lemma 6.5. If we consider Gn,k as a metric space with the geodesic distance d , the mapping N : Bδ3 → Gn,k is
L-Lipschitz with L = 412m+6r−1.

Proof. Let x, y ∈ Bδ3 . Then there are unique p,q ∈ U1
δ3,j

with π ◦ A−1
j ◦ f 1(p) = x, π ◦ A−1

j ◦ f 1(q) = y. By

the arguments at the beginning of the proof of Lemma 3.2, one shows λ
p
j = 0 for j ∈ Z(q) \ Z(p) and λ

q
j = 0 for

j ∈ Z(p) \ Z(q). Again as in Lemma 3.2, we estimate∣∣λp
j − λ

q
j

∣∣� 36(1 + λ)3r−1|x − y|
� 72r−1|x − y|, (6.7)

where we used λ� 1
4 . Now we note that

∑
k∈Z(p)∪Z(q) λ

p
k � 1 and

∑
k∈Z(p)∪Z(q) λ

q
k � 1. Moreover |Z(p) ∪ Z(q)| �

2[3(1 + λ)]6m � 2 · 46m for λ� 1
4 by (3.9). Using all this, we obtain

∣∣∣∣
( ∑

k∈Z(p)

λ
p
k

)−1

−
( ∑

k∈Z(q)

λ
q
k

)−1∣∣∣∣� ∑
k∈Z(p)∪Z(q)

∣∣λp
k − λ

q
k

∣∣
� 9 · 46m+2r−1|x − y|. (6.8)

Using (6.7) and (6.8), one easily concludes∣∣∣∣
( ∑

k∈Z(p)

λ
p
k

)−1

λ
p
j −

( ∑
k∈Z(q)

λ
q
k

)−1

λ
q
j

∣∣∣∣ � 10 · 46m+2r−1|x − y|. (6.9)

Now assume k ∈ Z(p). Then U1
δ3,j

∩ U1
δ2,k

= ∅, hence U1
δ3,j

⊂ U1
δ1,k

by Lemma 2.8 b). This implies q ∈ U1
δ1,k

. By
a calculation as in Lemma 6.1 we deduce Nk ∈ B π

12
(ν(q)). We conclude that both sptμp and sptμq are a subset of

B π
12

(ν(q)). This enables us to apply Lemma 2.7 with μ1 = μp and μ2 = μq .
With Lemma 2.7, the definitions of μp and μq , and (6.9) we estimate

d
(
N(x),N(y)

)
� C

∫
Gn,k

d
(
N(q), z

)
d|μp − μq |(z)

= C
∑

j∈Z(p)∪Z(q)

d
(
N(q),Nj

)∣∣∣∣
( ∑

k∈Z(p)

λ
p
k

)−1

λ
p
j −

( ∑
k∈Z(q)

λ
q
k

)−1

λ
q
j

∣∣∣∣
� C · 10 · 46m+2

∑
j∈Z(p)∪Z(q)

d
(
N(q),Nj

)
r−1|x − y|

� 412m+6r−1|x − y|,
where in the last line we used d(N(q),Nj ) < π

6 , |Z(p) ∪ Z(q)| � 2 · 46m and C = 1 + (κ1/2�)−1 tan(2κ1/2�) < 16
for κ = 2 and � = π

6 by (2.4). �
Now the remainder of the proof is analogous to the case of codimension 1. First we note that by the preceding

lemma one easily derives an estimate for the size of the tubular neighborhood around f 1 formed by N . This is
done by using elementary geometry in much the same way as in Appendix A (where the case of codimension 1 is
considered); as we assumed λ to be small and hence N nearly to be perpendicular to f 1, it is even easier here as
we can estimate rather roughly (and do not need an analogue of Lemma 3.1 b) for that). Moreover, we can show the
existence and uniqueness of intersection points of f 1(p) + N(p) with an appropriate restriction of f i(Mi) by the
fixed point argument of [4]. To show surjectivity of φi one uses the estimate for the size of the tubular neighborhood
and shows that f i(Mi) lies within this neighborhood. The rest of the proof is the same as in the case of codimension 1.
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The question arises, whether compactness in higher codimension, that is Theorem 1.3, can also be shown for an
arbitrary Lipschitz constant λ (as in the case of codimension 1). Surely, the bound λ� 1

4 is not optimal. One could try
to find the largest possible bound for λ, and — in the case that it is finite — to give a counterexample for immersions
exceeding this bound. We would like to suggest two possibilities for extending the construction in this section to
immersions with Lipschitz constant larger than the ones considered here: First, as proposed in the remark on p. 511
in [13], one could use another definition for the center of mass, which allows one to define centers in larger balls. The
second is to find a center of mass not in a convex ball, but in a larger convex subset of Gn,k . Such kind of subsets of
Grassmannians have been detected by J. Jost and Y.L. Xin in [12].
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Appendix A. Size of tubular neighborhoods

In this appendix we like to prove Lemma 2.15, that is we estimate the size of a tubular neighborhood around a graph
depending on different quantities such as angles and Lipschitz constants. We shall use the notations introduced in the
paragraph preceding Lemma 2.15. For a general treatise on the existence of tubular neighborhoods see [5] and [10].
Moreover, in Lemma A.1 we will show a result needed for proving that the projection in Section 4 has at most one
point of intersection with an appropriate subset of f i(Mi).

Proof of Lemma 2.15. a) We like to start with the following initial consideration:
Let q ∈ B� . Let f (x) = (x,u(x)) and τf (q) ∈ Gm+1,m be the tangent space at q as in (2.1). In particular τf (q)

is an m-space in R
m+1 perpendicular to ν(q). Furthermore let K ⊂ τf (q) be a 1-dimensional subspace of τf (q). Let

p ∈ B� and let α � π
2 be the smaller angle enclosed by the lines ω(p) and K . From (2.11) we deduce

α � π

2
− γ > 0. (A.1)

Now let us come to the main part of the proof:
Let x, y ∈ B� be points with x = y. Without loss of generality we may assume x − y ∈ R

1 × {0} ⊂ R
m. By the

mean value theorem there is a z ∈ {(1 − t)x + ty: t ∈ (0,1)} ⊂ B� with

∂1u(z) = u(x) − u(y)

x1 − y1
,

where x1, y1 are the first coordinate of the vectors x, y respectively. Let {e1, . . . , em} be the standard basis of Rm. We
set

K := span
{(

e1, ∂1u(z)
)} ⊂ τf (z).

Let α � π
2 be the smaller angle enclosed by the lines ω(y) and K . By (A.1) we have α � π

2 − γ . In particular
the smaller angle between ω(y) and the line through (x,u(x)) and (y,u(y)) is greater than or equal to π

2 − γ (see
Fig. A.1).

Let π⊥((x,u(x))) denote the orthogonal projection of (x,u(x)) onto F({y} × ω(y)) = (y,u(y)) + ω(y). Then

∣∣(x,u(x)
) − π⊥((

x,u(x)
))∣∣ � ∣∣(x,u(x)

) − (
y,u(y)

)∣∣ sin

(
π

2
− γ

)

� |x − y| sin

(
π

2
− γ

)
= |x − y| cosγ. (A.2)

Now we distinguish two cases:
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Fig. A.1. Calculation of the distance between (x,u(x)) and π⊥((x,u(x))). Note that, unlike the rest of the figure, the line (y,u(y)) + ω(y) does
not necessarily lie in the plane (R1 × {0}) ×R1 ⊂ Rm+1.

Case 1.[(
x,u(x)

) + ω(x)
] ∩ [(

y,u(y)
) + ω(y)

] = ∅. (A.3)

In this case we do not need any further estimations.

Case 2.[(
x,u(x)

) + ω(x)
] ∩ [(

y,u(y)
) + ω(y)

] = ∅. (A.4)

We now have to consider the following two subcases 2.i and 2.ii:

2.i. The case |x − y| � 1
L

.

Let θ =�(T (x), T (y)). By the assumption (A.4) we have θ > 0. Using |T (x)| = |T (y)| = 1, we estimate

θ = 2 arcsin

( |T (x) − T (y)|
2

)

� 2 arcsin

(
L

2
|x − y|

)

<
π

2
. (A.5)

Now let ξ ∈R
m+1 denote the intersection point of (x,u(x)) + ω(x) with (y,u(y)) + ω(y). (See Fig. A.2.)

Then, using (A.2) and (A.5),

∣∣(x,u(x)
) − ξ

∣∣ = |(x,u(x)) − π⊥((x,u(x)))|
sin θ

� |x − y| cosγ

sin(2 arcsin(L |x − y|))
2
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Fig. A.2. Calculation of the distance between (x,u(x)) and ξ . Again, (y,u(y)) + ω(y) does not necessarily lie in (R1 × {0}) ×R
1.

= 1

L

cosγ√
1 − L2

4 |x − y|2

>
1

L
cosγ.

2.ii. The case |x − y| > 1
L

.

Let ξ be as in Case 2.i. Then (A.2) directly implies∣∣(x,u(x)
) − ξ

∣∣ >
1

L
cosγ.

Let ε = 1
L

cosγ . Summarizing Case 1, Case 2.i and 2.ii, we conclude that F is injective on Eε . Applying
well-known results from elementary differential topology, we deduce that F |Eε is a diffeomorphism onto an open
neighborhood of {(x,u(x)) ∈ R

m ×R: x ∈ B�}. This proves part a) of Lemma 2.15.
b) Let ∂(F (Eε)) denote the boundary of F(Eε) in R

m+1, where ε = 1
L

cosγ as in part a). Let x ∈ B �
2

. We have to
show

dist
((

x,u(x)
)
, ∂

(
F

(
Eε

)))
� σ

with σ = min{�
2 cosγ,

cos2 γ
2L(1+λ)

} as in Lemma 2.15 b).

So let ζ ∈ ∂(F (Eε)) ⊂R
m+1. Then there are two cases:

Case 1. ζ = (y,u(y)) + ϑ for a y ∈ B� and a ϑ ∈ ω(y) with |ϑ | = ε.

We distinguish two subcases 1.i and 1.ii:

1.i. The case |x − y| � cosγ
L(1+λ+cosγ )

.

As u is λ-Lipschitz, we have∣∣(x,u(x)
) − (

y,u(y)
)∣∣� (1 + λ)|x − y|
� (1 + λ) cosγ

.

L(1 + λ + cosγ )
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Then ∣∣(x,u(x)
) − ζ

∣∣ � ∣∣ζ − (
y,u(y)

)∣∣ − ∣∣(x,u(x)
) − (

y,u(y)
)∣∣

� 1

L
cosγ − (1 + λ) cosγ

L(1 + λ + cosγ )

= cos2 γ

L(1 + λ + cosγ )
.

1.ii. The case |x − y| > cosγ
L(1+λ+cosγ )

.

Again let π⊥((x,u(x))) be the orthogonal projection of (x,u(x)) onto (y,u(y)) + ω(y). With (A.2) we estimate∣∣(x,u(x)
) − ζ

∣∣ � ∣∣(x,u(x)
) − π⊥((

x,u(x)
))∣∣

� |x − y| cosγ

>
cos2 γ

L(1 + λ + cosγ )
. (A.6)

Both in Case 1.i and Case 1.ii we have

∣∣(x,u(x)
) − ζ

∣∣� cos2 γ

2L(1 + λ)
. (A.7)

Case 2. ζ = (z, u(z)) + υ for a z ∈ ∂B� and υ ∈ ω(z) with |υ|� ε.

As x ∈ B �
2

we have |x − z| � �
2 . Considering the orthogonal projection onto (z, u(z)) + ω(z), we estimate as

in (A.6)∣∣(x,u(x)
) − ζ

∣∣� �

2
cosγ. (A.8)

With (A.7) and (A.8) we have in any case

∣∣(x,u(x)
) − ζ

∣∣� min

{
�

2
cosγ,

cos2 γ

2L(1 + λ)

}
.

This proves part b) of Lemma 2.15. �
Lemma A.1. Let f : Mm → R

m+1 be an (r, λ)-immersion, q ∈ M and 0 < � � r . Let ω ∈ Gm+1,1 with R
m+1 =

τf (p) ⊕ ω for all p ∈ U�,q . Then for every x ∈ R
m+1 the set x + ω intersects f (U�,q) in at most one point.

Proof. After a rotation and a translation we may assume f (U�,q) = {(y,u(y)): y ∈ B�} with a C1-function
u :B� → R. Suppose the assertion of the lemma is false. Then there is an x ∈R

m+1 such that x +ω intersects f (U�,q)

in (y,u(y)) and in (z, u(z)) with y = z. We may assume y − z ∈ R
1 × {0} ⊂ R

m. With the same argument as in the
paragraph after (A.1) we conclude that there is a ξ ∈ {(1 − t)y + tz: t ∈ (0,1)} ⊂ B� with ω = span{(e1, ∂1u(ξ))}.
Moreover there is a unique ζ ∈ U�,q with τf (ζ ) = span{(e1, ∂1u(ξ)), . . . , (em, ∂mu(ξ))}. Hence ω ⊂ τf (ζ ). But this
contradicts Rm+1 = τf (p) ⊕ ω for all p ∈ U�,q . �
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