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Abstract

We study the regularity for solutions of fully nonlinear integro differential equations with respect to nonsymmetric kernels.
More precisely, we assume that our operator is elliptic with respect to a family of integro differential linear operators where the
symmetric parts of the kernels have a fixed homogeneity σ and the skew symmetric parts have strictly smaller homogeneity τ . We
prove a weak ABP estimate and C1,α regularity. Our estimates remain uniform as we take σ → 2 and τ → 1 so that this extends
the regularity theory for elliptic differential equations with dependence on the gradient.
© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

We are interested in studying integro differential equations that arise when studying discontinuous stochastic pro-
cesses. By the Lèvy–Khintchine formula, the generator of an n-dimensional Lèvy process is given by

Lu(x) =
∑
i,j

ai,j ui,j +
∑

i

biui +
∫
Rn

(
u(x + y) − u(x) − ∇u(x) · yχB1(y)

)
dμx(y),

where μ is a positive measure such that
∫ |y|2/(|y|2 + 1) dμ(y) < ∞. The first and second terms correspond to the

diffusion and drift parts, and the third one corresponds to the jump. The effect of first term is already well understood
as it regularizes the solution. The type of equations that we will study comes from processes with only the jump part,

Lu(x) =
∫
Rn

(
u(x + y) − u(x) − ∇u(x) · yχB1(y)

)
dμx(y). (1.1)

More general than the linear operator are the fully nonlinear ones, which are also important in stochastic control as
seen in [9]. For example, a convex type of equation takes the form

Iu(x) = sup
α

Lαu(x). (1.2)
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Eq. (1.2) can be seen as a one player game, for which he can choose different strategies at each step to maximize the
expected value of some function at the first exit point of the domain. A natural extension for (1.2), when there are two
players competing is

Iu(x) = inf
β

sup
α

Lαβu(x).

We are mainly interested in studying interior regularity for solutions of

Iu(x) = f (x), in Ω, (1.3)

for f continuous, Ω a given domain and I a fully nonlinear operator of fractional order to be defined in the next
section. In [8] the regularity for this type of problem was already established by using analytic techniques. However
those estimates blow up as the order of the equation goes to the classical one, so it was expected that better estimates
could be possible. Those results are more elaborated and presented in [4–6] in the case that the kernels are symmetric.
We remove this symmetry hypothesis of the kernel and are able to obtain Cα regularity and C1,α regularity for
translation invariant equations.

The paper is divided as follows. In Section 2 we give most of the relevant definitions and point out some important
examples to keep in mind. Specifically we will introduce the notions of fully nonlinear, nonlocal operators, ellipticity
and viscosity solution. In Section 3 we state the main results of this work, which is Cα and C1,α regularity for solutions
of equations of the form (1.3) under different hypotheses on the kernels. In Section 4 we study the basic stability
properties of the elliptic integro differential operators, the comparison principle and prove existence of solution of the
Dirichlet problem by using Perron’s method. Sections 5 and 6 are the core of this paper. In Section 5 we prove a weak
ABP estimate which combined with a rescaling argument will allow us to prove, in Section 6, a point estimate lemma.
In Section 7 we deal with the Hölder regularity by applying the previous point estimate to show a geometric decay
of the oscillation of the solution. Finally in Section 8 we use that, for translation invariant equations, the incremental
quotients are also solutions of equations in the same ellipticity class in order to show Hölder regularity for the first
derivatives.

2. Preliminaries and viscosity solutions

In this work we restrict ourselves to measures dμx = K(x,y) dy. From Eq. (1.1) we formally can write

Lu(x) =
∫

δe(u, x;y)Ke(x;y)dy +
∫

δo(u, x;y)Ko(x;y)dy + b(x) · ∇u(x), (2.4)

where

δe(u, x;y) = u(x + y) + u(x − y) − 2u(x),

δo(u, x;y) = u(x + y) − u(x − y).

Ke,o are the even and odd parts of K with respect to y and b is a vector valued function given by

b(x) =
∫
B1

Ko(x;y)y dy.

Notice that if the total kernel K is even the last two terms in (2.4) disappear. This was convenient in [4] as these bring
additional difficulties with the scaling as can be noticed in [7].

The second term can be considered as a drift term, in the sense that it has a “direction”, Ko being odd. If the
singularity of Ko at the origin is of order n + τ , with τ → 1−, then this integral becomes a gradient term. For this
reason, one can consider studying the regularizing effect of the first two terms. The linear operators we are interested
are always of the form

Lu(x) = P.V.

∫
Rn

(
u(x + y) − u(x)

)
K(x;y)dy

:= lim
ε→0

∫
Rn\Bε

(
u(x + y) − u(x)

)
K(x;y)dy. (2.5)
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2.1. Integrability conditions

We want here to make sense of the decomposition (2.4). All we need for that is that the kernels are not too singular
whenever u ∈ C1,1(x0). The following definition is the same as in [4].

Definition 2.1. We say that a function u is C1,1 at the point x0 and write u ∈ C1,1(x0) if and only if there exist a vector
v ∈R

n and a number M > 0 such that∣∣u(x + y) − u(x) − v · y∣∣ < M|y|2 for |y| small enough.

This implies in particular that |δe(u, x0;y)| = O(|y|2) and |δo(u, x0;y)| = O(|y|) as |y| goes to zero.
With this notion at hand we ask for the kernel K , when decomposed in its symmetric and skew symmetric parts,

K = Ke + Ko respectively, to satisfy the following integrability conditions,
∫ |y|2

|y|2 + 1

∣∣Ke(y)
∣∣dy < ∞, (2.6)

∫ |y|
|y| + 1

∣∣Ko(y)
∣∣dy < ∞. (2.7)

These conditions allow us to write rigorously

Lu(x) =
∫

δe(u, x;y)Ke(y) dy +
∫

δo(u, x;y)Ko(y) dy,

for u ∈ C1,1(x) ∩ L∞(Rn).
We say that a family L of linear operators satisfies the integrability conditions uniformly when the upper bounds

in (2.6) and (2.7) can be taken independent of L ∈ L.

2.2. Nonlinear, nonlocal operators

Before defining what will be for us a fully nonlinear nonlocal operator we present some examples to keep in mind.
They are constructed from the linear operators in (2.5):

(Inf-sup type) Iu(x) = inf
β

sup
α

Lα,βu(x), (2.8)

(Maximal) M+
Lu(x) = sup

L∈L
Lu(x), (2.9)

(Minimal) M−
Lu(x) = inf

L∈L
Lu(x). (2.10)

Definition 2.2. We say that I is a nonlocal fully nonlinear operator if it satisfies the following:

(i) If u is any bounded C1,1(x) function then Iu(x) is well defined.
(ii) If u ∈ C1,1(Ω) for some open set Ω ⊆ R

n, then Iu is a continuous function in Ω .

Our examples satisfy immediately (i) in the definition above. In order to have the continuity stated in (ii) we need
to check a uniform integrability condition in the kernels.

Lemma 2.1. Let I be of the form (2.8) where L = {Lα,β} satisfy the integrability conditions (2.6) and (2.7) uniformly.
Then Iu ∈ C(Ω) for every u ∈ C1,1(Ω).

Proof. We need to prove that Lα,βu are equicontinuous over compact sets of Ω in order to conclude by Arzela–
Ascoli’s Theorem. Fix δ > 0 and let’s work over the points x ∈ Ω that are at least δ away from R

n \ Ω .
Let Lα,β have associated the kernels Kα,β(y) = (Kα,β)e(y) + (Kα,β)o(y), decomposed in its symmetric and skew

symmetric parts. Because u ∈ C1,1(Ω) we can write for x ∈ Ω ,
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Lα,βu(x) =
∫

δe(u, x;y)(Kα,β)e(y) dy +
∫

δo(u, x;y)(Kα,β)o(y) dy

=
∫
Br

δe(u, x;y)(Kα,β)e(y) dy +
∫

Rn\Br

δe(u, x;y)(Kα,β)e(y) dy

+
∫
Br

δo(u, x;y)(Kα,β)o(y) dy +
∫

Rn\Br

δo(u, x;y)(Kα,β)o(y) dy.

The first and third integrals can be smaller than any ε > 0 if r is small enough. Use that u is C1,1 to get that
|δe(u, x;y)| � C|y|2 and |δo(u, x;y)| � C|y| if r < δ and for some constant C independent of x. By the integrability
condition and the absolute continuity of the integral we get that, for even smaller radius r , the aforementioned terms
are smaller than ε, independently of x and Lα,β .

Now if we fix a radius r , we get that the second and fourth terms are equicontinuous in x. For this we just need to
apply Lemma 4.1 in [4].

As a consequence of the previous two paragraphs, we obtain that the difference |Lα,βu(x)−Lα,βu(x′)| is arbitrarily
small when |x − x′| is sufficiently small, independently of x, x′ (both at least δ away from R

n \ Ω) and Lα,β . �
2.3. Extremal operators comparable to the fractional Laplacians

An important family, that will be used for the study of regularity, is given by L0 = L0(σ, τ, λ,Λ,b) with all the
linear operators L such that the kernels Ke,o are comparable to those of the σ fractional Laplacian and some derivation
of order τ :

(2 − σ)
λ

|y|n+σ
� Ke � (2 − σ)

Λ

|y|n+σ
, (2.11)

|Ko|� (1 − τ)
b

|y|n+τ
. (2.12)

In order to satisfy the integrability conditions all we need is σ ∈ (0,2) and τ ∈ (0,1).
In this family the operators (2.9), (2.10) take the explicit form

M+
L0

v(x) =M+
σ v(x) + b(1 − τ)

∫
Rn

|δo(v, x, y)|
|y|n+τ

, (2.13)

M−
L0

v(x) =M−
σ v(x) − b(1 − τ)

∫
Rn

|δo(v, x, y)|
|y|n+τ

, (2.14)

where M±
σ are the extremal operators found in [4], i.e.

M+
σ v(x) = (2 − σ)

∫
Rn

Λδ+
e (v, x;y) − λδ−

e (v, x;y)

|y|n+σ
,

M−
σ v(x) = (2 − σ)

∫
Rn

λδ+
e (v, x;y) − Λδ−

e (v, x;y)

|y|n+σ
.

δ±
e,o denote the positive and negative parts of δe,o respectively (δe,o = δ+

e,o − δ−
e,o).

For ease of notation we also introduce what we call the maximal τ derivative |Dτ |, given by

|Dτ |v(x) = (1 − τ)

∫
Rn

|δo(v, x;y)|
|y|n+τ

dy,

so that we can rewrite the operators as

M± v(x) =M±
σ v(x) ± b|Dτ |v(x).
L0
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The factors (2 − σ) and (1 − τ) become important as σ → 2, and τ → 1, as they will allow us to recover second
order differential equations with gradient terms as limits of integro differential equations.

Notice that this family admits kernels that could be positive and negative. The natural assumption, due the positivity
of the measure in the Lèvy–Khintchine formula, is to consider operators which are elliptic with respect to a family L
with nonnegative kernels. Because of this reason we consider also the family L̃0 ⊆ L0, given by all possible operators
L with total kernel K = Ke + Ko � 0 satisfying the conditions (2.11) and (2.12). We point out that given v smooth,
we have the following natural inequalities,

M+
L0

v(x)�M+
L̃0

v(x) �M−
L̃0

v(x) �M−
L0

v(x).

This control will be useful, since we have explicit formulas for the maximal operators in the larger class L0.

2.4. Ellipticity

The reason why we introduce extremal operators is because they are the ones that control elliptic nonlinear opera-
tors. Here is the definition of ellipticity for a general family L of linear operators.

Definition 2.3. Let L be a class of linear integro differential operators satisfying (2.6) and (2.7). We say that a fully
nonlinear operator I is elliptic with respect to the class L if

M−
L(u − v)(x) � Iu(x) − Iv(x) �M+

L(u − v)(x). (2.15)

2.5. Scaling

A tool we will be using frequently is the scaling. Consider a smooth bounded function u and an operator I , elliptic
with respect to L ⊆ L0(σ, τ, λ,Λ,b), such that

Iu = f in Ω.

If we rescale u by uα,β(x) = αu(βx) then the equation gets rescaled in the following way,

Iα,βuα,β = fα,β in β−1Ω,

where

(Iα,βv)(x) = αI
(
α−1v

(
β−1·))(βx),

fα,β(x) = αf (βx).

In particular, if I = L is linear with kernel K then the kernel Kα,β for Lα,β gets transformed according to the
change of variables formula,

Kα,β(x, y) = βnK(βx,βy).

The extremal operators M±
σ and |Dτ | scale with order σ and τ respectively, because by the change of variables

formula,

M±
σ uα,β(x) = αβ−σ

(
M±

σ u
)
(βx),

|Dτ |uα,β(x) = αβ−τ
(|Dτ |u

)
(βx).

This implies that, going back to I nonlinear, the operator Iα,β belongs to some rescaled family of linear operators
Lα,β ⊆ L0(σ, τ,β−σ λ,β−σ Λ,β−τ b).

At many points we will use that when σ > τ and β is small then the rescaled equation is dominated by the
derivatives of order σ .
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2.6. Viscosity solutions

Viscosity solutions provide the right framework to study fully nonlinear equations, as seen in the local case in [3],
and also in the nonlocal case in [1].

Definition 2.4. A bounded function u :Rn →R, upper (lower) semicontinuous in Ω̄ , is said to be a sub solution (super
solution) to Iu = f , and we write Iu� f (Iu � f ), if every time ϕ is a second order polynomial touching u by above
(below) at x in a neighborhood N , i.e.

(i) ϕ(x) = u(x),
(ii) ϕ(y) > u(y) (ϕ(y) < u(y)) for every x ∈ N \ {x},

then Iv(x)� f (x) (Iv(x) � f (x)), for v defined as

v =
{

ϕ in N,

u in R
n \ N.

Later in Section 4 we will see that in many cases this definition is equivalent to one which includes many more test
functions.

3. Statement of results

In this section we state the main results obtained in this paper. An important tool used to prove the following
theorems is a point estimate, also known as Lε Lemma. This comes from a partial ABP inequality similar to the one
in [4] and a scaling argument which decreases the effect of the lower order term.

In order to prove our regularity results we will need to impose some assumptions on σ and τ . Given
σ0, τ0,m,A0 > 0, considered as universal constants, we will assume that the following holds.

(H1) 2 > σ � σ0 > 0, min(1, σ ) > τ � τ0 > 0,
(H2) σ − τ �m > 0,
(H3) λA0(2 − σ)� b(1 − τ).

Theorem 3.1. Let σ0, τ0,m,A0 > 0 and assume that (H1), (H2) and (H3) hold. Let u be a bounded function in R
n

such that in B1,

M+
L̃0

u� −C0 and M−
L̃0

u� C0,

in the viscosity sense. Then there exists a universal exponent α > 0 such that u ∈ Cα(B1/2) and

‖u‖Cα(B1/2) � C
(‖u‖∞ + C0

)
for some universal constant C > 0.

An immediate corollary is the following.

Corollary 3.2. Let σ0, τ0,m,A0 > 0 and assume that (H1), (H2) and (H3) hold. Let I be an elliptic operator of the
inf-sup type as in (2.8) with all the linear operators in L̃0 and let f ∈ C(B̄1). Let u be a bounded function in R

n such
that in B1,

Iu = f,

in the viscosity sense. Then there exists a universal exponent α > 0 such that u ∈ Cα(B1/2) and

‖u‖Cα(B1/2) � C
(‖u‖∞ + ‖f ‖∞

)
for some universal constant C > 0.
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Coming back to Theorem 3.1, we would like to point out that our bounds remain uniform as σ → 2 and τ → 1,
which allows us to recover Hölder regularity for equations with bounded measurable coefficients including gradient
terms. For fixed σ and τ these results were proven in [8] and [2] by using analytic techniques. These estimates are not
uniform in σ and blow up as the order goes to the classical one.

The order α of our Hölder estimates deteriorates as τ → σ . In this critical case σ = τ , both terms in the equation
are of the same order and rescaling the equation doesn’t have any effect on the τ derivative, hence our argument
doesn’t work. It is known from the previous work in [8] and [2] that the same result holds even when σ = τ . By
combining both results, we can get regularity uniformly in σ and τ , disregarding the separation between σ and τ

(hypothesis (H2)).
To get higher regularity we will need to add an extra assumption to the kernels, which is a modulus of conti-

nuity of Ke and Ko in measure. More precisely, given ρ0 > 0, we define the class L1 = L1(σ, τ, λ,Λ,b,ρ0,C) ⊆
L̃0(σ, τ, λ,Λ,b) such that it contains all the linear operators L with kernels K = Ke + Ko � 0 such that Ke and Ko

satisfy (2.11) and (2.12) respectively and∫
Rn\Bρ0

|K(y) − K(y − h)|
|h| dy � C (3.16)

for every |h| � ρ0/2.
A sufficient condition for (3.16) is for example that |∇K(y)| � Λ/|y|n+1+σ .
In this smaller class we are able to get C1,α by studying the incremental quotients of solutions and using the a

priori Cα estimates given by Theorem 3.1. The proof follows the ideas of [3] and [4].

Theorem 3.3. Let σ0, τ0,m,A0 > 0 and assume that (H1), (H2) and (H3) hold. Let I be an elliptic operator of the
inf-sup type as in (2.8) with all the linear operators in L1. There is ρ0 > 0 small enough so that if u is a bounded
function in R

n such that in B1,

Iu = 0,

in the viscosity sense, then there is a universal α > 0 such that u ∈ C1,α(B1/2) and

‖u‖C1,α(B1/2)
� C‖u‖∞

for some universal C > 0.

In the proofs of our regularity results the odd part doesn’t have to be of a fixed order. We could ask for example

|Ko| � b max

(
1 − τ1

|y|n+τ1
,

1 − τ2

|y|n+τ2

)

with 0 < τ1 � τ2 < min(1, σ ). The reason is that the proofs will treat the lower order term as a perturbation term that
can be made small enough after a dilation large enough. For the sake of keeping the exposition simpler we decided to
restrict to the case of τ1 = τ2 = τ .

4. Qualitative properties

This section is devoted to prove basic results that concern the definition of viscosity solution. First we take a look to
the monotonicity properties which are inherited from assuming that the operator I is elliptic with respect to a family
L with nonnegative kernels. Second we see how the set of test functions can be enlarged in the definition of viscosity
solutions. We use these tools to prove the stability, comparison and maximum principle and existence of solutions for
the Dirichlet problem.

4.1. Monotonicity

Lemma 4.1 (Monotonicity). Let I be elliptic with respect to a family L of linear operators with nonnegative kernels.
Let u and v be two bounded functions in C1,1(x) such that v � u and v(x0) = u(x0), then

Iv(x0) � Iu(x0).
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Proof. By the ellipticity,

Iv(x0) − Iu(x0)�M−
L(v − u)(x0).

Let w(y) = (v − u)(x0 + y) such that w(y) � 0 with equality for y = 0. Then for any L ∈ L with kernel K � 0 we
have

Lw(0) = P.V.

∫
w(y)K(y) � 0.

By taking the infimum we get that M−
Lw(x0) � 0 which concludes the proof. �

Lemma 4.2. Let I be an elliptic operator with respect to a class L of nonnegative kernels. Let u, v be viscosity
solutions of Iu� f , then w = min(u, v) is also a super solution.

Proof. Let ϕ be a function touching w by below at x in N and assume without loss of generality that w(x0) = u(x0).
Then ϕ also touches u by below at x0 in N and we use its equation. For

v =
{

ϕ in N,

u in R
n \ N,

we have Iv(x0) � f (x0).
Let ṽ be defined by

ṽ =
{

ϕ in N,

w in R
n \ N.

Then by the monotonicity Lemma 4.1 applied to v and ṽ at x0 we get I ṽ(x0) � Iv(x0) � f (x0) which concludes that
Iw � f . �
4.2. A larger class of test functions

Lemma 4.3. Let I be elliptic with respect to a class L of nonnegative kernels satisfying (2.6) and (2.7) uniformly.
Let u :Rn → R such that Iu � f in the viscosity sense and ϕ touching u by above at x in a neighborhood N . Then
Iv(x)� f (x) for v defined as

v =
{

ϕ in N,

u in R
n \ N,

given that ϕ ∈ C1,1(x).

Proof. Fix p and q second order polynomials that touch ϕ, by below and above respectively, at x in Br(x) ⊆ N . Let

w =
{

q in Br(x),

u in R
n \ Br(x),

vr =
{

q in Br(x),

v in R
n \ Br(x).

By the ellipticity

Iv(x) � Ivr(x) +M−
L(v − vr)(x),

and thanks to the monotonicity Lemma 4.1 applied to vr � w we have Ivr(x) � Iw(x), so that

Iv(x) � Iw(x) +M−
L(v − vr)(x).

Note that Iw(x) � f (x), so we only need to estimate the second term. Now, v − vr is supported in Br(x) and it is
equal to ϕ − q which is bounded by −(q − p) and zero. For L ∈ L with kernel K ,

L(v − vr)(x) =
∫
Br

δe

(
(v − vr), x;y)

Ke(y)dy +
∫
Br

δo

(
(v − vr), x;y)

Ko(y)dy

� −C

{ ∫
Br

|y|2Ke(y)dy +
∫
Br

|y|Ko(y)dy

}

� −Cε,
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for ε > 0 arbitrarily small if r = r(ε) is small enough (independent of L ∈ L). By taking the infimum above among
every L ∈ L we get that Iv(x) � f (x) − Cε and we just need to take ε → 0 to conclude. �

Next we have an even stronger result, that tells us that we can compute I classically every time we have a
ϕ ∈ C1,1(x) touching by below.

Lemma 4.4. Let I be an elliptic operator of the inf-sup (sup-inf ) type as in (2.8) with all the linear operators in
L̃0 satisfying (H1). Let u :Rn → R such that Iu � f in the viscosity sense and ϕ touching u by below at x in a
neighborhood N . Then Iu(x) is defined in the classical sense and we have Iu(x) � f (x) given that ϕ ∈ C1,1(x).

To prove Lemma 4.4 we need an interpolation result that will allow us to replace the τ derivative by the σ derivative
and a residue term evaluated at the test function ϕ. This result is also useful when the function touching by below is
the convex envelope as δ−

e (ϕ) = 0.

Lemma 4.5. Let u :Rn → R, x ∈R
n, 2 > σ > τ > 0 and r0 > 0 such that the following integrals are finite,∫

Br0

δ+
e (u, x;y)

|y|n+σ
dy and

∫
Br0

|δo(u, x;y)|
|y|n+τ

dy.

Let ϕ be a function defined in Br0(x) and touching u by below at x. Then∫
Br0

λ(2 − σ)
δ+
e (u, x;y)

|y|n+σ
− b(1 − τ)

|δo(u, x;y)|
|y|n+τ

dy

�
∫

Br0

αλ(2 − σ)
δ+
e (u, x;y)

|y|n+σ
− b(1 − τ)

δ−
e (ϕ, x;y) + |δo(ϕ, x;y)|

|y|n+τ
dy,

for α ∈ (0,1) given that

r0 �
(

(1 − α)λ(2 − σ)

b(1 − τ)

)1/(σ−τ)

. (4.17)

Proof. Since ϕ touches u by below, we have that for every y ∈ Br ,

δ+
e (u − ϕ,x;y) = (u − ϕ)(x + y) + (u − ϕ)(x − y)

�
∣∣(u − ϕ)(x + y) − (u − ϕ)(x − y)

∣∣
= ∣∣δo(u − ϕ,x;y)

∣∣,
and also,

δ+
e (u, x;y) � δ+

e (u − ϕ,x;y) − δ−
e (ϕ, x;y),∣∣δo(u − ϕ,x;y)

∣∣� ∣∣δo(u, x;y)
∣∣ − ∣∣δo(ϕ, x;y)

∣∣,
so that

δ+
e (u, x;y) − ∣∣δo(u, x;y)

∣∣ � −δ−
e (ϕ, x;y) − ∣∣δo(ϕ, x;y)

∣∣.
Now we can replace |δo| by δ+

e in the integral,∫
Br0

λ(2 − σ)
δ+
e (u)

|y|n+σ
− b(1 − τ)

|δo(u)|
|y|n+τ

dy

�
∫

Br

δ+
e (u)

{
λ(2 − σ)

|y|n+σ
− b(1 − τ)

|y|n+τ

}
− b(1 − τ)

δ−
e (ϕ) + |δo(ϕ)|

|y|n+τ
dy.
0
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By using that

r0 �
(

(1 − α)λ(2 − σ)

b(1 − τ)

)1/(σ−τ)

,

and that σ > τ we can substitute the difference of the fractions by α times |y|−(n+σ),∫
Br0

δ+
e (u)

{
λ(2 − σ)

|y|n+σ
− b(1 − τ)

|y|n+τ

}
dy � αλ(2 − σ)

∫
Br0

δ+
e (u)

|y|n+σ
. �

Proof of Lemma 4.4. We check first that Lu can be computed in the classical sense at x. Because u is bounded we
only care about the convergence of the integrals around the origin.

Let ϕ be defined in Br0(x) and for r � r0

vr(y) =
{

u in Br(x),

ϕ in R
n \ Br.

The differences δ−
e (vr , x;y), parametrized by r , decrease to δ−

e (u, x;y) as r goes to zero. Since∫
Br0

δ−
e (vr0, x;y)

|y|n+σ
dy < ∞,

we have by monotone convergence that∫
Br0

δ−
e (u, x;y)

|y|n+σ
dy < ∞.

By using f (x) �M−
L̃0

vr(x), which implies f (x) �M−
L0

vr(x), and the boundedness of u,

M �
∫

Br0

λ(2 − σ)
δ+
e (vr , x;y)

|y|n+σ
− b(1 − τ)

|δo(vr , x;y)|
|y|n+τ

dy

for some M independent of r . Use now Lemma 4.5 to keep only the term with δ+
e (vr ), this requires r0 sufficiently

small,

M + b(1 − τ)

∫
Br0

|δo(ϕ, x;y)| + δ−
e (ϕ, x;y)

|y|n+τ
dy � λ(2 − σ)

2

∫
Br0

δ+
e (vr , x;y)

|y|n+σ
dy.

The left hand side above is finite and independent of r . By Fatou’s Lemma,∫
Br0

δ+
e (u, x;y)

|y|n+σ
dy < ∞.

Now recall from the proof of Lemma 4.5 the identity∣∣δo(vr , x;y)
∣∣� ∣∣δo(ϕ, x;y)

∣∣ + δ+
e (vr , x;y) + δ−

e (ϕ, x;y).

The last two terms are integrable against |y|−(n+σ) around the origin and therefore they are also integrable against
|y|−(n+τ) around the origin as well as the whole right hand side. Moreover the integral can be bounded by above
independently of r . By Fatou’s Lemma we then get that |δo(u, x;y)| is integrable against |y|−(n+τ) in Br0 .

We have shown that each term δe(u, x;y)/|y|n+σ and |δo(u, x;y)|/|y|n+τ is integrable, then for every linear oper-
ator Lα,βu(x) is well defined. Therefore Iu(x) can be computed by being an inf-sup combination of Lα,β . To see that
Iu(x) � f (x) we use the ellipticity,

Iu(x) � Ivr(x) +M+
L(u − vr) � f (x) +M+

σ (u − vr)(x) + b|Dτ |(u − vr)(x).

Both integrals go to zero by absolute continuity. �
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4.3. Stability

We are interested in studying limit of sub or super solutions. To state the result we need first to recall the definition
of Γ convergence.

Definition 4.1. We say that a sequence of lower semicontinuous functions uk Γ -converge to u in a set Ω if the two
following conditions hold:

(i) For every sequence xk → x in Ω , lim infκ→∞ uk(xk)� u(x).
(ii) For every x ∈ Ω , there is a sequence xk → x in Ω such that

lim sup
k→∞

uk(xk) = u(x).

Lemma 4.6. Let I be an elliptic operator with respect to a class L with nonnegative kernels and satisfying the
integrability conditions (2.6) and (2.7) uniformly. Let uk be a sequence of functions that are uniformly bounded in R

n

and lower semicontinuous in Ω ⊆R
n such that

(i) Iuk � fk in Ω ,
(ii) uk → u in the Γ -sense in Ω ,

(iii) uk → u a.e. in R
n, and

(iv) fk → f locally uniformly in Ω for some continuous function f .

Then Iu� f in Ω .

Proof. Let ϕ be a test function touching u by below at x in N . Because uk − ϕ Γ -converges to (u − ϕ) there exists a
sequence xk → x such that

(uk − ϕ)(xk) = inf
N

(uk − ϕ) = dk.

Therefore ϕ + dk touches uk at xk in N , starting at some k sufficiently large.
Let

vk =
{

ϕ + dk in Br(x),

uk in R
n \ Br(x),

v =
{

ϕ in Br(x),

u in R
n \ Br(x).

By using the equation we know that Ivk(xk) � fk(xk).
For z ∈ Br/2(x) we have by ellipticity,∣∣Ivk(z) − Iv(z)

∣∣ � max
(∣∣M+

L(vk − v)
∣∣, ∣∣M+

L(vk − v)
∣∣)

� sup
L∈L

∣∣L(vk − v)(z)
∣∣.

For a given L ∈ L with kernel K we have

∣∣L(vk − v)(z)
∣∣ �

∫
Rn\Br/2

∣∣(vk − v)(x + y)
∣∣K(y)dy.

The integrand goes to zero a.e. when k → ∞ and it is dominated by(‖vk‖∞ + ‖v‖∞
)
K(y)χRn\Br/2 ∈ L1.

Then by dominated convergence |L(vk −v)(z)| → 0 as k → ∞ uniformly in z ∈ Br/2(x) and L ∈ L. This implies that
|Ivk(z) − Iv(z)| also goes to zero uniformly in z ∈ Br/2(x).

Finally, using that Iv is continuous in Br/2(x),∣∣Ivk(xk) − Iv(x)
∣∣� ∣∣Ivk(xk) − Iv(xk)

∣∣ + ∣∣Iv(xk) − Iv(x)
∣∣ → 0.
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Finally we have

Iv(x) � Ivk(xk) + ∣∣Ivk(xk) − Iv(x)
∣∣

� f (xk) + ∣∣Ivk(xk) − Iv(x)
∣∣

� f (x) + ∣∣Ivk(xk) − Iv(x)
∣∣ + ∣∣fk(xk) − f (x)

∣∣.
Take k → ∞ and use also that fk → f locally uniformly to conclude. �
4.4. Comparison and maximum principle for viscosity solutions

Lemma 4.7 says that the difference of two viscosity solutions is the solution of an equation in the same ellipticity
class. Theorem 4.10 is the comparison principle which implies in particular the maximum principle for sub solution.
Instead of having to prove an ABP type result, as it is used in Chapter 5 of [3], we take advantage of Lemma 4.4 in
order to evaluate the operators in the classical sense whenever is needed.

Lemma 4.7. Let I be an elliptic operator of the inf-sup type as in (2.8) with all the linear operators in L̃0 satis-
fying (H1). Let u and v be two bounded functions such that Iu � f and Iv � g in the viscosity sense in Ω . Then
M+

L̃0
(u − v)� f − g in the viscosity sense in Ω .

The proof is straightforward when either u or v is smooth because of the nonnegativity of the kernels. In the general
case we proceed by regularizing the functions by their inf or sup convolutions.

Definition 4.2. Given a lower (upper) semicontinuous function u and a parameter ε > 0 the inf (sup) convolution uε

(uε) is given by

uε(x) = inf
y

u(x + y) + |y|2
ε

(
uε(x) = sup

y
u(x + y) − |y|2

ε

)
.

The proof of the following property con be found for instance in the beginning of Chapter 5 in [3].

Lemma 4.8. If u is bounded and lower semicontinuous in R
n then uε Γ -converges to u.

Lemma 4.9. If f is a continuous function and I is elliptic with respect to a class L with nonnegative kernels, then if
Iu � f in the viscosity sense, Iuε � f − dε also in the viscosity sense, where dε → 0 as ε → 0 depending only on
the modulus of continuity ρ of f .

Proof. Let ϕ be a test function that touches uε by below at x in N .
For ε sufficiently small, there is some (x + h) ∈ N such that uε(y) � u(y + h) + |h|2/ε with equality at y = x.

(See the beginning of Chapter 5 in [3].)
Then ϕ − |h|2/ε touches u at x + h in N and Iv(x + h) � f (x + h) � f (x) + ρ(|h|) for

v =
{

ϕ − |h|2
ε

in Br/2(x + h),

u in R
n \ Br/2(x + h).

By ellipticity the value of Iv does not change by adding a constant, I (v + |h|2/ε)(x) � f (x) + ρ(|h|). Then by
the monotonicity Lemma 4.1 we also have that Iw(x) � f (x) + ρ(|h|) for

w =
{

ϕ in N,

uε in R
n \ N,

because as we already noticed uε(y) � u(y + h) + |h|2/ε. This concludes the proof. �
Proof of Lemma 4.7. Assume first that u is upper semicontinuous in R

n and v is lower semicontinuous in R
n.
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Thanks to Lemma 4.9, we have that Iuε � f − dε and Ivε � f + dε with −uε → −u and vε → v in the Γ -sense
and dε → 0. By the stability of viscosity solutions, Lemma 4.6, we just need to prove that M+

L̃0
(uε −vε) � f −g−2dε

in Ω in the viscosity sense.
Let ϕ be a test function touching uε −vε from above at a point x. For any ε > 0, uε , −vε and uε −vε are semiconvex

functions, hence there is a paraboloid for each of them touching then from below at x. If ϕ ∈ C1,1(x) then both uε

and vε are also C1,1(x). By Lemma 4.4 we can evaluate Iuε(x), Ivε(x) and M+
L̃0

(uε − vε)(x) in the classical sense

and they satisfy

M+
L̃0

(
uε − vε

)
(x) � Iuε(x) − Ivε(x) � f (x) − g(x) − 2dε.

Since ϕ touches uε − vε from above at x

M+
L̃0

ϕ(x) � f (x) − g(x) − 2dε.

This says that M+
L̃0

(uε − vε) � f − g − 2dε in the viscosity sense and completes the proof under the semicontinuity

assumptions in R
n.

Now we will not assume the lower and upper semicontinuity outside of Ω̄ . There are sequences uk and vk , upper
and lower semicontinuous respectively such that

(i) uk = u and vk = v in Ω̄ for every k,
(ii) uk → u and vk → v a.e. in R

n \ Ω̄ ,
(iii) Iuk � fk and Ivk � gk , with fk → f , gk → g locally uniformly in Ω .

By having such sequences we just have to apply the first part of this proof and the stability, Lemma 4.6, to conclude
the proof.

We can construct the sequences satisfying the first two items above by doing a standard mollification of u and v

away from Ω and then filling the gap in a semicontinuous way. The function uk −u vanishes in Ω , hence M−
L̃0

(uk −u)

is defined in the classical sense in Ω and

M−
L̃0

(uk − u)(x) � −
∫

Rn\Bdist(x,∂Ω)

∣∣uk(x + y) − u(x)
∣∣K(y)dy = hk(x),

where K = Λ 2−σ
|y|n+σ + b 1−τ

|y|n+τ .
The functions hk(x) are continuous in Ω and by dominated convergence hk → 0 locally uniformly in Ω as k → 0.

Let ϕ ∈ C1,1(x) touching uk from above at x in N and vk defined by

vk =
{

ϕ in N ,
uk in R

n \ N .

The functions vk + u − uk are also in C1,1(x) and touch u by above at x. By Lemma 4.3 we have that I (vk + u −
uk)(x) � f (x). By ellipticity

Ivk(x) � I (vk + u − uk)(x) +M−
L̃0

(u − uk)(x)

� f (x) + hk(x).

So we have that (iii) above is also satisfied. �
Theorem 4.10 (Comparison principle). Let I be an elliptic operator of the inf-sup type as in (2.8) with all the linear
operators in L̃0 satisfying (H1). Let Ω be a bounded open set and u, v two bounded functions such that

(i) Iu � f and Iv � f in Ω in the viscosity sense for some f ∈ C(Ω),
(ii) u � v in R

n \ Ω .

Then u� v in Ω .
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Here, as in [4], the proof is also based on using a barrier function as

ϕ(x) = min
(
1, |x|2/4

)
.

Lemma 4.11. Let s ∈ (0,1) and ϕs = ϕ(sx) for ϕ defined above. There exist δ > 0 and some s small enough such that

M−
L0

ϕs � δ in B1.

Proof. First take s = 1 to get that

M−
σ ϕ � δ1 in B1.

This inequality comes from the fact that δe(ϕ, x;y) � δ2 for x ∈ B1 and every y. In fact, if x ± y are both in B2 or
both outside B2 it is immediate. If only x + y is in B2 then we use that, ϕ(x) � 1/4 for x ∈ B1,

δe(ϕ, x;y) = 1 + ϕ(x + y) − 2ϕ(x) � 1/2.

On the other hand, since ϕ is smooth we have that |Dτ |ϕ � δ3 in B1, for some finite δ3 > 0. Now recall scaling
properties from Section 2. We have that

M−
σ ϕs(x) = s−σ

(
M−

σ ϕ
)
(sx) � s−σ δ1,

|Dτ |ϕs(x) = s−τ
(|Dτ |ϕ

)
(sx) � s−τ δ3,

which implies

M−
L0

ϕs � s−σ
(
δ1 − sτ−σ δ3

)
� δ

for s small enough. �
Proof of Theorem 4.10. By Lemma 4.7 we know that for w = u − v, M+

L̃0
w � 0 in the viscosity sense in Ω . We

will prove from here that supΩ w � supRn\Ω w := M .

Let Ω ⊆ BR (R � 1) and take ψ(x) = ϕs(x/R) for ϕs as in the previous lemma. Since L̃0 ⊆ L0,

M−
L̃0

ψ �M−
L0

ψ

� R−σ
(
M−

L0
ϕs

)
(x/R)

� R−σ δ,

in Ω . Fix ε > 0 and consider

ψε(x) = M + ε
(
1 − ψ(x)

)
,

which satisfies M+
L̃0

ψε � −εR−σ δ < 0 in Ω .

If inf(ψε − w) < 0 then there is some translation ψε + d such that ψε + d touches w by above in x ∈ Ω . This
cannot happen because of Lemma 4.3 which says that in that case M+

L̃0
(ψε + d)(x) = M+

L̃0
ψε(x) � 0. Therefore

ψε � w and by letting ε → 0 we get to the conclusion of the theorem. �
4.5. Existence of solutions for the Dirichlet problem

Theorem 4.12. Let I be an elliptic operator of the inf-sup type as in (2.8) with all the linear operators in L̃0 satisfy-
ing (H1). Let Ω ⊂R

n be an open bounded set satisfying the exterior ball condition. Let g :Rn \ Ω →R be a function
which is globally bounded and continuous on ∂Ω . Then there exists a viscosity solution u ∈ C(Ω̄) of

Iu(x) = 0, in Ω,

u = g, in R
n \ Ω.
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The proof is based on the Perron’s method. The first two lemmas account to the construction of a solution and the
third one regards with achieving the boundary data.

Lemma 4.13. Let I be an elliptic operator with respect to a class L with nonnegative kernels and satisfying the
integrability conditions (2.6) and (2.7) uniformly. Let S be a set of viscosity solutions of Iv � 0 in Ω . Then ū, the
upper semicontinuous envelope in Ω of the function u defined by

u(x) = sup
v∈S

v(x),

also satisfies I ū � 0 in Ω in the viscosity sense.

Proof. Let ϕ be a test function touching ū by above at x ∈ Ω in a neighborhood N .
The fact that ū is defined as the upper semicontinuous envelope of u(y) = supv∈S v(y) implies that for our given x

there exists a sequence {(xk, vk)} ⊆ (N ∩ Ω) × S such that

(i) (xk, v(xk)) → (x, ū(x)) as k → ∞,
(ii) for any yk → x we have that lim infk→∞ vk(yk) � ū(x).

These are the two sufficient conditions to prove the stability Lemma 4.6. The same proof applies here to show that
Iϕ(x) � 0 and then conclude that Iu� 0 in the viscosity sense. �
Lemma 4.14. Let I be an elliptic operator with respect to a class L with nonnegative kernels and satisfying the
integrability conditions (2.6) and (2.7) uniformly. Let u be a viscosity sub solution of Iu � 0 in Ω such that u, its
lower semicontinuous envelope, is not a viscosity super solution of Iu� 0. Then there is function U such that

(i) U is a viscosity sub solution of IU � 0 in Ω ,
(ii) U = u in R

n \ Ω ,
(iii) supx∈Ω(U − u)(x) > 0.

Proof. Let ϕ be a test function touching u by below in x0 ∈ Br0(x0) ⊆ Ω such that Iv(x0) > 0 for

v =
{

ϕ in Br0(x0),
u in R

n \ Br0(x0).

By continuity we also have that Iv > δ > 0 in Br1(x0) ⊆ Br0/2(x0).
Let ε1, ε2 > 0 be fixed and

ψ(y) = ϕ(y) − ε1|y − x0|2 + ε2.

We have that ψ � u in R
n \ Br1(x0) ⊆ R

n \ Ω if ε2 < r2
1 . We want to choose ε1 and ε2 such that U = min(ψ,u)

satisfies IU � 0.
Let η be a test function touching U by above at x1 ∈ Ω in a neighborhood N . If U(x1) = u(x1) then the inequality

follows from Lemma 4.3. If U(x1) = ψ(x1) > u(x1) then necessarily x1 ∈ Br1(x0). By the lower semicontinuity,
ψ > u in some open neighborhood around x1 and contained in Br1(x0). Because ψ is smooth, IU(x0) is classically
defined and we just have to check that it is nonnegative.

Let

w =
{

ψ in Br0(x0),
u in R

n \ Br0(x0).

By monotonicity and ellipticity,

IU(x1) � Iw(x1)

� Iv(x1) +M−
L(w − v)(x1)

� δ + inf L(w − v)(x1).

L∈L
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Notice that w − v = ε2 − ε1|y − x0|2 in Br0(x0) and it is zero outside. Recall that x1 ∈ Br0/2(x0), so for any L ∈ L
with kernel K ,

L(w − v)(x1) =
∫

δ(w − v, x1;y)K(y)dy

� −ε1

∫
B2r0

δ
(| · −x0|2, x1;y

)
K(y)dy − min

(
ε1r

2
0 , ε2

) ∫
Rn\Br0/2

K(y)dy.

The second term in the inequality appears since

δ(w − v, x1, y) � −min
(
ε1r

2
0 , ε2

)
for any x1 in Br0/2(x0) and |y| � Br0/2. Therefore,

L(w − v)(x1) �−C
(
ε1 + min

(
ε1r

2
0 , ε2

))
.

Then we choose ε2 = r2
1/2 and ε1 sufficiently small to make L(w−v)(x) � −δ/2 uniformly in L ∈ L and x ∈ Br1(x0).

This finally implies that IU � 0 and concludes the proof of the lemma. �
Lemma 4.15. Let ϕ(x) = min(1,C(|x| − 1)α+), where C and α have been chosen as in [5]. Then for any pair σ , τ

satisfying (H1) we have

M+
L̃0

ϕ(x)� 0, x ∈R
n \ B1.

Moreover,

M+
L̃0

ϕ(x)� −δ < 0, x ∈ B2 \ B1.

Proof. Let r0 and α be the radius and exponent from Lemma 3.1 in [5]. We know that M+
σ v(x0) = −d (d > 0) and

|Dτ |v(x0) = e < ∞ for every x0 ∈ ∂B1+r0 .
Let s ∈ (0,1) and rescale v by

vs(x) = s−αv(sx) = (|x| − s−1)α

+.

Recall the scaling remarks in Section 2. For L ∈ L̃0(σ, τ, λ,Λ,b) with kernel K we consider Ls ∈ L̃0(σ, τ, s−σ λ,

s−σ Λ, s−τ b) with kernel Ks(y) = snK(sy) such that

Lsvs(x) = s−α(Lv)(sx).

Let x be such that (1 + r0)x = (1 + sr0)x0 and translate vs such that it remains below v but touches it in a whole
ray passing through x and x0. We still denote the translation vs . By the scaling,

Lv(x) = sα(Lsvs)(x0) � (Lsvs)(x0).

By the monotonicity Lemma 4.1 applied to v and vs at x0,

Lsvs(x0)� Lsv(x0).

Since Ls ∈ L̃0(σ, τ, s−σ λ, s−σ Λ, s−τ b) ⊆ L0(σ, τ, s−σ λ, s−σ Λ, s−τ b),

Lsv(x0) � s−σM+
σ v(x0) + s−τ b|Dt |v(x0)

� s−σ
{−d + sσ−τ be

}
� −d/2,

if s is small enough. By transitivity Lv(x) � −d/2 for any x with |x| = 1 + sr0 with s ∈ (0, s0). Finally we just
multiply v by a constant C big enough such that Cv(s0r0) � 1 and use Lemma 4.2 to conclude the lemma for the
truncation of v. �
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Proof of Theorem 4.12. Let S be the set of all viscosity sub solutions of Iv � 0 with boundary data smaller than g,

S = {
v ∈ USC(Ω) ∩ L∞(

R
n
)
: Iv � 0 in viscosity in Ω and v � g in R

n \ Ω
}
.

The set S is nonempty because the constant function u = −‖g‖∞ satisfies Iu = 0 given that I is of the inf-sup type.
The first lemma assures us that ū, defined as the upper semicontinuous envelope in Ω of u(x) = supv∈S v(x), is

a viscosity sub solution of I ū � 0. Then ū ∈ S and ū = u is a sub solution too. By the second lemma the lower
semicontinuous envelope u, is a super solution. If not that would contradict the fact that u is the biggest sub solution.
We conclude, by the comparison principle, that u� u and therefore both have to be equal and u is a viscosity solution
of Iu = 0 in Ω .

The next step is to prove that we actually attain the boundary values in a continuous way. We have to show that for
any x ∈R

n \ Ω and any ε > 0 we can find continuous barriers v and w such that

(i) Iw � 0 and Iv � 0 in Ω in the viscosity sense,
(ii) w � g and v � g in R

n \ Ω ,
(iii) w(x) � g(x) + ε and v(x) � g(x) − ε.

We just prove it for w.
If x belongs to the interior of R

n \ Ω then a function w which is equal to ‖g‖∞ for every y �= x and equal
to g(x) for y = x is in USC(Ω) and is a super solution. If x ∈ ∂Ω then there is a ball Br0(x + r0η) such that
B̄r0(x + r0η) ∩ ∂Ω = {x}, where η is a unitary vector and r0 less than one. Let

w(y) = 2‖g‖∞ϕ

(
y − (x + rη)

r

)
+ g(x) + ε

with ϕ from Lemma 4.15 and some r < r0. By the construction of ϕ we already have that (i) and (iii) are satisfied.
To check (ii) let δ > 0 such that |g(y) − g(x)| � ε whenever |x − y| � δ. Take r such that B2r (x + rη) ⊆ Bδ(x).

If y ∈ Bδ(x) ∩ (Rn \ Ω) then w(y) = g(x) + ε � g(y). If y ∈ R
n \ Bδ(x) ⊆ R

n \ B2r (x + rη) then ϕ � 1 and
w(y)� ‖g‖∞ � g(y). �
5. Partial ABP estimates

The classical ABP theorem states that for a super solution, positive in ∂B3, the supremum of u− is controlled by
the Ln norm of the right hand side, integrated only over the contact set for the convex envelope. These estimates are
useful to get lower bounds in the measure of the contact set which are then needed to get point estimates.

We denote by Γ the convex envelope supported in B3. For a lower semicontinuous function u� 0 in R
n \ B1,

Γ (x) = sup
{
v(x): v :B3 →R is convex and v � u−}

.

We get the same definition if v is only affine. Every time we refer to ∇Γ (x) we are actually referring to a sub
differential of Γ at x which always exists.

In the next lemma we see that we can almost put a paraboloid above Γ , with the opening controlled by f (x), the
supremum of u outside B1 and the τ derivative of Γ at x.

Lemma 5.1. Let u� 0 in R
n \ B1 be a globally bounded viscosity solution of

M−
L̃0

u� f in B1,

and x ∈ {u = Γ }. Assume (H1) holds (2 > σ > σ0 and min(1, σ ) > τ > τ0) and 2b � λ(2 − σ)/(1 − τ). Let ρ0 =
1/(128

√
n), rk = ρ02−1/(2−σ)−k and Rk = Brk \ Brk+1 . Then there is a constant C0 such that for any M > 0 there is

a k such that∣∣{y ∈ Rk: u(y + x) > u(x) + y · ∇Γ (x) + Mr2
k

}∣∣ � C0
F(x)

M
|Rk|,

where

F(x) = f (x) + (1 − τ)b

∫
B2

|δ0(Γ, x;y)|
|y|n+τ

dy + 1 − τ

τ
b
∥∥u+∥∥

L∞(Rn\B1)
.
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Proof. Notice that δ−
e (u, x;y) = 0. If x ± y ∈ B3 then we use that there is a plane touching u by below in B3.

If x + y /∈ B3 then x − y /∈ B1 and the boundary value gives that u(x ± y) � 0 and then δe(u, x;y) � 0 because
u(x) � 0.

By Lemma 4.4 the following quantities can be computed and satisfy

∫
Br0

(2 − σ)λ
δ+
e (u, x;y)

|y|n+σ
− (1 − τ)b

|δo(u, x;y)|
|y|n+τ

dy

� f (x) + (1 − τ)b

∫
Rn\Br0

|δo(u, x;y)|
|y|n+τ

dy

� f (x) + C(n)b
1 − τ

τ

∥∥u+∥∥
L∞(Rn\B1)

.

We want to use Lemma 4.5 with Γ as the test function. The assumption 2b � λ(2 − σ)/(1 − τ) guarantees (4.17)
with α = 1/2,

∫
Br0

(2 − σ)λ
δ+
e (u, x;y)

|y|n+σ
− (1 − τ)b

|δo(u, x;y)|
|y|n+τ

dy

�
∫

Br0

(2 − σ)λ

2

δ+
e (u, x;y)

|y|n+σ
dy − (1 − τ)b

∫
Br0

|δ0(Γ, x;y)|
|y|n+τ

dy.

Adding what we have so far

(2 − σ)

∫
Br0

δ+
e (u, x;y)

|y|n+σ
dy � CF(x). (5.18)

The rest of the proof goes as in [4]. Fix M and assume that none of the dyadic rings satisfies the conclusion of the
lemma for C0 still to be fixed. For every y ∈ Rk where

u(y + x) > u(x) + y · ∇Γ (x) + Mr2
k ,

we have that

δe(u, x;y) = u(x + y) + u(x − y) − 2u(x)

> y · ∇Γ (x) + Mr2
k + u(x − y) − u(x)

� Mr2
k ,

because by the convexity of Γ ,

−y · ∇Γ (x) + u(x) = −y · ∇Γ (x) + Γ (x) � Γ (x − y) � u(x − y).

Adding all the contributions into the estimate (5.18) we get

(2 − σ)

∫
Br0

δ+
e (u, x;y)

|y|n+σ
� (2 − σ)C0M

F(x)

M

∞∑
k=0

r2−σ
k � C0F(x)r2−σ

0
2 − σ

1 − 2−(2−σ)
.

Now it just a matter to take C0 large enough to get a contradiction. Notice that the quotient (2 − σ)/(1 − 2−(2−σ)) is
uniformly bounded by above and away from zero when σ varies in (0,2). �

The following is just a modification of the previous lemma. The aim is to replace the second term in F(x) by ‖u‖∞.
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Remark 5.2. By the intermediate value theorem, for each x ∈ B1 and y ∈ B2, |δ0(Γ, x;y)| is equal to 2|∇Γ (x′)||y|
for x′ an intermediate point in the segment between x + y and x − y. So that∫

B2

|δ0(Γ, x, y)|
|y|n+τ

dy � C(n)

1 − τ
‖∇Γ ‖∞.

By the geometry of the convex envelope ‖∇Γ ‖∞ � ‖u−‖∞/2. We can also consider that τ > τ0 > 0 for τ0 universal,
so that F(x) can be simplified to

F(x) = f (x) + b‖u‖∞.

Notice that we haven’t absorb the constant b into the universal constants of the estimate. The importance of this choice
will be seen in the results of the next sections.

Corollary 5.3. Under the assumptions of Lemma 5.1 there exist a small fraction ε0 > 0 and a constant M0 > 0 such
that for some radius r and R = Br \ Br/2:

(i) |{y ∈ R: u(y + x) > u(x) + y · ∇Γ (x) + M0F(x)r2}| � ε0|R|.
(ii) Γ (y + x) � u(x) + y · ∇Γ (x) + M0F(x)r2 for y ∈ Br/2.

(iii) |∇Γ (Br/4(x))| � C|Br/4|F(x)n.

Proof. Let A be the following set

A = (B1 \ B1/2) ∩ {x1 > 1/2}.
Take

ε0 = |A|
2|B1 \ B1/2| and M0 = C0

ε0
,

with C0 from Lemma 5.1. Apply Lemma 5.1 with M = F(x)M0 to get a radius r(= rk) such that
∣∣{y ∈ R: u(y + x) > u(x) + y · ∇Γ (x) + M0F(x)r2}∣∣� ε0|R|. (5.19)

By convexity we can assume without loss of generality that Γ attains its maximum N on Br/2(x) at the point
(r/2)e1 + x and

Γ (y + x) � Γ
(
(r/2)e1 + x

)
,

for every y ∈ R with y · e1 � r/2. Therefore,

2ε0|R| � ∣∣{y ∈ R: Γ (y + x) � N
}∣∣� ∣∣{y ∈ R: u(y + x)� N

}∣∣.
Then N has to be smaller than or equal to u(x) + y · ∇Γ (x) + M0F(x)r2 because otherwise we get a contradiction
with (5.19). This implies (ii).

Finally, by Γ being trapped between two planes in Br/2, separated by a distance M0F(x)r2, we get by the geometry
of convex functions a control in the oscillation of ∇Γ in Br/4. Namely ∇Γ (Br/4) is contained in the ball of radius
4M0F(x)r with center at ∇Γ (x). This concludes the proof. �

Now we are able to state and prove an ABP type estimate.

Theorem 5.4. Let u� 0 in R
n \ B1 be a globally bounded viscosity solution of

M−
L̃0

u� f in B1.

Assume (H1) holds and 2b � λ(2−σ)/(1−τ). There is a disjoint family of cubes Qj with diameters dj � ρ02−1/(2−σ)

(ρ0 = 1/(32
√

n)) which covers the contact set {Γ = u} such that the following holds
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(i) {u = Γ } ∩ Q̄j �= ∅ for any Qj ,
(ii) |{y ∈ 8

√
nQj : u(y) < Γ (y) + C(maxx∈Qj ∩{Γ =u} F(x))d2

j }| � μ|Qj |,
(iii) |∇Γ (Q̄j )| � C(maxx∈Qj ∩{Γ =u} F(x))n|Qj |,

where μ (= (1 − ε0) from Corollary 5.3) and C above are universal (independent of σ and τ ) and

F(x) = f (x) + (1 − τ)b

∫
B2

|δ0(Γ, x;y)|
|y|n+τ

dy + 1 − τ

τ
b
∥∥u+∥∥

L∞(Rn\B1)
.

Proof. Let’s proceed as in [4] and cover B1 with a tiling of cubes of diameter ρ02−1/(2−σ). We discard all those that
do not intersect the contact set {u = Γ }. Whenever a cube does not satisfy (ii) and (iii), we split it into 2n congruent
cubes of half diameter and discard those whose closure does not intersect {u = Γ }. We want to prove that eventually
this procedure finishes.

Let’s assume that the covering process does not stop. We end up getting a sequence of nested cubes intersecting at
a point x0 ∈ {u = Γ }. We will prove that there is a cube in the family that did not split, reaching then a contradiction.

Due to Corollary 5.3 there is a radius 0 < r < ρ02−1/(2−σ) such that for R = Br \ Br/2,∣∣{y ∈ R: u(y + x) > u(x) + y · ∇Γ (x) + CF(x0)r
2}∣∣� ε0|R|,

and ∣∣∇Γ
(
Br/4(x0)

)∣∣� CF(x0)
n|Br/4|.

There is a cube Qj with diameter r/8 � dj < r/4 such that Br/4(x0) ⊃ Q̄j and Br(x0) ⊂ 32
√

nQj .
Using the fact that the diameter of the cube and the radius are comparable and that, by the convexity of Γ , Γ (y) �

u(x0) + (y − x0) · ∇Γ (x0), we get∣∣∣{y ∈ 32
√

nQj : u(y) � Γ (y) + C
(

max
Qj ∩{Γ =u}F

)
d2
j

}∣∣∣
�

∣∣∣{y ∈ 32
√

nQj : u(y) � u(x0) + (y − x0) · ∇Γ (x0) + C
(

max
Qj ∩{Γ =u}F

)
d2
j

}∣∣∣
� (1 − ε0)|R| � μ|Qj |.

This is (ii) in the statement of the theorem. Since Q̄j is contained in Br we conclude also that (iii) holds and Qj did
not split. �

As τ and σ go to one and two respectively in a controlled way (recall the hypothesis 2b � λ(2 − σ)/(1 − τ)), this
theorem recovers a sufficient step to complete the proof of the classical ABP estimate. However, to prove regularity
for u it will be sufficient to use a weaker version where F(x) = f (x) + b‖u‖∞ (see Remark 5.2).

We also point out that the condition on b is not too restrictive. By the scaling discussion in Section 2 we can always
consider a dilation of u to make the assumption valid.

6. Point estimate

The point estimate for nonlinear operators works in someway like the mean value theorem for super harmonic
functions. If a nonnegative super harmonic function is bigger than or equal to 1 in half of the points in B1 (in measure)
then it gets automatically separated from zero at B1/4 a fixed quantity. This is the key step to prove a decay of
oscillation and then Hölder regularity for the solutions of our equations. For nonlocal operators, point estimates were
already given in [8]. Those estimates are easier to obtain than in the local case because the definition of the nonlocal
operators already involve some sort of averaging. However, the estimates in [8] blow up when the order of the equation
goes to the classical one. Our goal here is to see that the same estimates still hold with constant that remains uniform
when σ → 2 and τ → 1 in a controlled way.

From this point on we will always assume that, for σ0, τ0,m,A0 > 0 given, the set of hypotheses (H1), (H2) and
(H3) holds.
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(H1) 2 > σ � σ0 > 0, min(1, σ ) > τ � τ0 > 0,
(H2) σ − τ � m > 0,
(H3) λA0(2 − σ)� b(1 − τ).

We recall the special function constructed in [4].

Lemma 6.1. Let 2 > σ0 > 0; there is a function Φ such that

(i) Φ is continuous in R
n,

(ii) Φ(x) = 0 for x outside B2
√

n,
(iii) Φ(x) < −2 for x in Q3, and
(iv) M+

σ Φ �ψ(x) in R
n for some nonnegative function ψ(x) supported in B̄1/4

for every σ > σ0.

The following lemma provides the first and also the inductive step towards an inductive proof of the point estimate.

Lemma 6.2. Let σ0, τ0,m,A0 > 0 and assume (H1), (H2) and (H3). There exist constants μ ∈ (0,1), ε0 > 0 and
M > 1, such that if

(i) u � 0 in R
n,

(ii) infQ3κ
u� 1,

(iii) M−
L̃0

u� 1 in Q4
√

nκ ,

then ∣∣{u� M} ∩ Qκ

∣∣ > μ|Qκ |,
for

κ = ε0

(1 + ‖u‖∞)1/(σ−τ)
.

Proof. Consider ũ(x) = u(κx) and note that by the scaling of the equation ũ satisfies (i), (ii) in the cube of side 3 and

ML̃0(b̃)
uũ � κσ in Q4

√
n,

where L̃0(b̃) = L̃0(σ, τ, λΛ, b̃), for b̃ = κσ−τ b. We will prove that the lemma holds for ũ in Q1, which implies the
desired result. The proof follows as in [4] but we point out that the ABP type results that we have are different.

First thing we require from εm
0 is to be small enough, with respect to A0, such that the condition of smallness on

b̃ � εm
0 b from Lemma 5.1 and Theorem 5.4 holds. Namely, 2εm

0 � A−1
0 .

Consider v = ũ + Φ , where Φ is the special function given in [4]. We have that v satisfies in Q4
√

n (since L̃0(b̃) ⊆
L0(b̃))

M−
σ v − b̃|Dτ |v � κσ +M+

σ Φ + κσ−τ b|Dτ |Φ
� κσ + ψ + κσ−τ bC,

for a universal constant C.
Let Γ be the concave envelope of v supported in the ball B6

√
n. Let Qj be the cubes from a rescaled version of our

partial ABP estimate. We have

max
B2

√
n

v− � C
∣∣∇Γ (B2

√
n)

∣∣1/n � C

(∑
j

∣∣∇Γ (Q̄j )
∣∣)1/n

� C

(∑(
max
Qj

ψ + κσ + κσ−τ b
(
1 + ‖v‖∞

))n
)

|Qj |1/n.
j
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We can make the terms κσ + κσ−τ b(1 + ‖v‖∞) small enough by choosing ε0 small enough,

κσ + κσ−τ b
(
1 + ‖v‖∞

)
� C

(
εσ

0 + εσ−τ
0

)
� Cεm

0 .

Using that Φ � −2 in Q3

1 � Cεm
0 + C

(∑
j

(
max
Qj

ψ+)n|Qj |
)1/n

,

which implies then, for ε0 small enough, the following inequality,

1

2
� C

(∑
j

(
max
Qj

ψ+)n|Qj |
)1/n

.

Since ψ is supported in B̄1/4 and is bounded, we get
∑

Qj ∩B̄1/4 �=∅
|Qj |� c, (6.20)

where c is universal. Now, the diameters of all cubes Qj are bounded by ρ02−1/(2−σ), which is smaller than ρ0 =
1/(128

√
n). So, every time we have that Qj intersects B1/4 the cube 32

√
nQj will be contained in B1/2.

Since ε0 is universal, the partial ABP estimates translate into
∣∣{x ∈ 32

√
nQj : v(x) � Γ (x) + Cd2

j

}∣∣� c|Qj |, (6.21)

for C universal and Cd2
j < Cρ2

0 . Let us consider now the cubes 32
√

nQj for every Qj that intersects B1/4. This

provides an open cover of the union of the corresponding cubes Q̄j and it is contained in B1/2. Taking a subcover
with finite overlapping and using (6.20) and (6.21) we get∣∣{x ∈ B1/2: v(x) � Γ (x) + Cρ2

0

}∣∣� c.

Hence, if we let −M0 = minB1/2 Φ we get
∣∣{x ∈ B1/2: ũ(x) �M0 + Cρ2

0

}∣∣� c.

Finally let M = M0 + Cρ2
0 and μ = c. Since B1/2 ⊂ Q1,∣∣{x ∈ Q1: ũ(x) �M
}∣∣� c,

which concludes the result for ũ. �
Remark 6.3. In the previous proof the scaling is necessary to have:

(i) b̃(1 + ‖u‖∞)� εm
0 ,

(ii) right hand side smaller than εm
0 .

In future references we will use that if these identities hold, then the conclusion also holds without any further scaling.

Remark 6.4. Consider for u and ũ as before and 0 < r � 1, v(x) = ũ(rx). Then v satisfies

ML̃0(b(rκ)σ−τ )
v � (rκ)σ ,

and in particular

M−
σ v(x) − b(rκ)σ−τ |Dτv|� (rκ)σ .

From the previous remark we check that b(rκ)σ−τ (1 + ‖v‖∞) � εm
0 and that the right hand side is also smaller than

or equal to εm if r � 1.
0
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In particular, the transformations required to prove the full Lε Lemma are of the form

v(y) = u(x0 + 2−iy)

Mk
.

The previous lemma can still be applied and we can iterate by means of a Calderón–Zygmund decomposition as in [3].

Lemma 6.5. Let σ0, τ0,m,A0 > 0 and u � 0, ũ as in Lemma 6.2. Then we have∣∣{ũ > Mk
} ∩ Q1

∣∣� (1 − μ)k,

for k = 1,2, . . . where M and μ are as in Lemma 6.2. As a consequence we have the following inequality,∣∣{ũ > t} ∩ Q1
∣∣� dt−ε, ∀t > 0,

where d and ε are positive universal constants.

By standard covering arguments one can pass from cubes to balls.

Corollary 6.6. Let σ0, τ0,m,A0 > 0 and u � 0, ũ as in Lemma 6.2 with u super solution of M−
L̃0

u � 1 in B2κ and

u(0) � 1. Then we have∣∣{ũ > t} ∩ B1
∣∣� ct−ε, ∀t > 0,

where c and ε are positive universal constants.

By using Remark 6.4 one more time we can prove a rescaled version of Corollary 6.6.

Corollary 6.7. Let σ0, τ0,m,A0 > 0, u � 0, ũ as in Lemma 6.2 with u super solution of M−
L̃0

u � C0 in B2κr , for

r � 1. Then we have
∣∣{ũ > t} ∩ Br

∣∣� Crn
(
u(0) + C0r

σ
)ε

t−ε, ∀t > 0, (6.22)

where C and ε are positive universal constants.

7. Hölder regularity

The first lemma in this section is the decay of oscillation, that follows from the point estimate already proved,
applied at every scale. It is well known that when the oscillation of a function decays geometrically in geometrically
decaying balls it implies a Hölder modulus of continuity at the center of such ball. By applying it at every point of a
ball strictly contained in the domain we get Hölder regularity.

We still assume the general hypotheses, (H1), (H2) and (H3), of the previous section.

Lemma 7.1. Let σ0, τ0,m,A0 > 0 and assume (H1), (H2) and (H3). Let u be a function such that:

(i) −1
2 � u� 1

2 in R
n,

(ii) M+
L̃0

u� −1 and M−
L̃0

u � 1 in Bκ ,

in the viscosity sense. Let ũ(x) = u(κx) for

κ = ε1

(1 + ‖u‖∞)1/(σ−τ)
.

Then there are universal α,C > 0 such that∣∣ũ(x) − ũ(0)
∣∣ � C|x|α.
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Our proof relies in noticing that a dilation powerful enough puts us in the same hypothesis as in the proof of [4].
The detail is that the rescaling considered in such proof consists of a dilation of the domain, which as we already
saw are good for our situation, times some constants that grow geometrically which compete against the smallness
condition on the coefficient b. We want to check that by making α small enough we can control the effect of this
second multiplication.

Proof of Lemma 7.1. Let εm
1 � εm

0 /2 to start such that the estimates from the previous section are valid with the same
constants.

We will show that there exist sequences mk and Mk such that mk � ũ� Mk in B4−k and

Mk − mk = 4−αk

so that result holds for C = 4α .
For k = 0 we choose m0 = −1/2 and M0 = 1/2 and by (i) we have m0 � ũ �M0 in R

n. We construct the sequence
by induction. Assume then that we have the sequences up to some k and then we want to find mk+1 and Mk+1. In the
ball B4−(k+1) , either ũ � (Mk + mk)/2 in at least half the points (in measure) or we have the other inequality. Let’s
assume, without loss of generality, that∣∣∣∣

{
ũ� Mk + mk

2

}
∩ B4−(k+1)

∣∣∣∣� |B4−(k+1) |
2

.

Consider now

v(x) = ũ(4−kx) − mk

(Mk − mk)/2
,

so that v � 0 in B1 and |{v � 1} ∩ B1/4| � |B1/4|/2.
From the inductive hypothesis, we have that for any index j between 1 and k,

v � mk−j − mk

(Mk − mk)/2
� mk−j − Mk−j + Mk − mk

(Mk − mk)/2

� 2
(
1 − 4αj

)
,

in B4j . Therefore v(x) � −2(|4x|α − 1) outside B1. Let w = v+, it satisfies

M−
L̃0(4−k(σ−τ )κσ−τ b)

w � 4−kακσ +M+
σ v− + 4−k(σ−τ)κσ−τ b|Dτ |v−

� εm
1 +M+

σ v− + εm
1 b|Dτ |v−. (7.23)

We still have |{w � 1} ∩ B1/4| � |B1/4|/2. Use the other bound v− � 2(|4x|α − 1) outside B1, also proved by in-
duction, and v− = 0 in B1 to get that the right hand side can be made smaller than εm

0 in B3/4 by choosing a small
exponent α.

We recall the conditions in Remark 6.3. So far we have shown the second one which is satisfied with a right hand
side εm

0 . For the first condition note that

4−k(σ−τ)κσ−τ b
(
1 + ‖w‖∞

)
� 4−k(σ−τ)εm

0

(
1 + 4αk

)
� 4−k(m−α)εm

0

so we have to choose α � m.
Now, given any x ∈ B1/4 we can apply Corollary 6.7 in B1/2(x) to get

C
(
w(x) + ε1

)ε �
∣∣{w > 1} ∩ B1/2(x)

∣∣ � |B1/4|
2

,

hence, since ε1 can be made even smaller, we conclude w � θ > 0 in B1/4 for some θ > 0. If we let Mk+1 = Mk and
mk+1 = mk + θ(Mk − mk)/2 we have the inductive step

mk+1 � ũ � Mk+1, in B4−(k+1) .

Moreover Mk+1 −mk+1 = (1−θ/2)4−αk , so choosing α and θ such that 1−θ/2 = 4−α we conclude Mk+1 −mk+1 =
4−α(k+1). �
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As a result we get that ũ is Cα . Here is the proof of Theorem 3.1.

Proof of Theorem 3.1. Let u be as in Theorem 3.1 and consider now

v(x) = u(x)

2(‖u‖∞ + C0)
.

Since the equation is homogeneous of degree 1 we are now under the hypothesis of the previous lemma. Hence we
conclude that the dilation ṽ of v satisfies∣∣ṽ(x) − ṽ(0)

∣∣ � C|x|α,

where C is a universal constant. Coming back to v, this translates to

∣∣v(x) − v(0)
∣∣ � C|x|ακ−α = C

εα
0

(‖v‖∞ + 1
)α/(σ−τ)|x|α,

since ‖v‖∞ � 1/2, σ − τ � m and ε0 is universal we get∣∣v(x) − v(0)
∣∣ � C|x|α,

for a different universal C. In terms of u we recover the estimate∣∣u(x) − u(0)
∣∣ � C

(‖u‖∞ + C0
)|x|α.

Hence u is Cα at 0 and its Cα seminorm is controlled as desired. This concludes the proof. �
8. C1,α regularity

For translation invariant equations, C1,α regularity comes by proving Cα regularity for the incremental quotients
of a given solution. This procedure allows to improve the regularity from Cα to C2α and so forth all the way up to
C0,1 and then to C1,α , see [3]. We need to use the comparison principle to see that these incremental quotients satisfy
a uniformly elliptic equation with bounded measurable coefficients and zero right hand side, for which we already
have Cα estimates. The difficulty in this case is that we need, in each step, these incremental quotients to be uniformly
bounded in R

n. The previous regularity only guarantees this on Br−δ , given that the equation is satisfied in Br .
Recall the class L1 = L1(σ, τ, λ,Λ,b,ρ0) ⊆ L̃0(σ, τ, λ,Λ,b) of all possible linear operators L with nonnegative

kernels K such that they satisfy (2.11) and (2.12), and the following integrability assumption for some radius ρ0,∫
Rn\Bρ0

|K(y) − K(y − h)|
|h| dy � C every time |h| < ρ0

2
.

Theorem 8.1. Let σ0, τ0,m,A0 > 0 and assume that (H1), (H2) and (H3) hold. There is ρ0 > 0 small enough so that
if I is an elliptic operator of the inf-sup type as in (2.8) with all the linear operators in L1 and u a bounded viscosity
solution of Iu = 0 in B1, then there is a universal α > 0 such that u ∈ C1,α(B1/2) and

‖u‖C1,α(B1/4)
� C‖u‖∞

for some universal C > 0.

Proof. Let ᾱ be the Hölder exponent obtained by Theorem 3.1 and assume that it is not the reciprocal of an integer
by making it smaller if necessary. Let δ = 1/(4[1/ᾱ]). We want to see that, for k = 0,1, . . . , [1/ᾱ] − 1, the estimate

‖u‖C0,kᾱ (B3/4−kδ)
� C(k)‖u‖∞ (8.24)

implies the next estimate,

‖u‖C0,(k+1)ᾱ (B3/4−(k+1)δ)
� C(k + 1)‖u‖∞. (8.25)

Fix a unit vector e ∈ R
n and η a smooth cut-off function supported in B(3/4−kδ)−δ/4 and equal to one in

B(3/4−kδ)−δ/2. For given h ∈ (−δ/8, δ/8) we define the following incremental quotients
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wh(x) = u(x + he) − u(x)

|h|ᾱk
,

wh
1 (x) = (ηu)(x + he) − (ηu)(x)

|h|ᾱk
,

wh
2 (x) = ((1 − η)u)(x + he) − ((1 − η)u)(x)

|h|ᾱk
.

When x ∈ B(3/4−kδ)−δ/8, |wh
1 (x)| is bounded above by C(k,η)‖u‖∞. By interpolation and (8.24),∣∣wh

1 (x)
∣∣ � ‖ηu‖C0,kᾱ (B3/4−kδ)

� ‖u‖C0,kᾱ (B3/4−kδ)
+ ‖u‖∞‖η‖C0,kᾱ (B3/4−kδ)

� C(k,η)‖u‖∞.

If x ∈ R
n \ B(3/4−kδ)−δ/8 then wh

1 (x) just cancels.
By using that the equation is translation invariant we have that u and u(· + he) satisfy equations in the same

ellipticity family, with positive kernels. Then wh also satisfies an equation in the same ellipticity family by Lemma 4.7.
The function wh

1 satisfies a similar equation as wh, the difference is on the right hand side introduced by the cut-off,

M+
L1

wh
1 � −M+

L1
wh

2 and M−
L1

wh
1 � −M−

L1
wh

2 .

For x ∈ B(3/4−kδ)−3δ/4 the terms |M±
L1

wh
2 | are controlled by ‖u‖∞ by using that∫

Rn\Bρ0

|K(y) − K(y − h)|
|h| dy � C every time |h| < ρ0

2

with ρ0 = δ/8. Indeed, for L ∈ L1 with kernel K and x ∈ B(3/4−kδ)−3δ/4 and |y| � δ/8, wh
2 (x + y) = 0 and

∣∣Lwh
2 (x)

∣∣ =
∣∣∣∣
∫

wh
2 (x + y)K(y)dy

∣∣∣∣
=

∣∣∣∣
∫

Rn\Bδ/8

(1 − η)u(x + y + h) − (1 − η)u(x + y)

|h|ᾱk
K(y)dy

∣∣∣∣

=
∣∣∣∣

∫
Rn\Bδ/8

(1 − η)u(x + y)|h|1−ᾱk K(y) − K(y − h)

|h| dy

∣∣∣∣
� C‖u‖∞.

We get then the equations for w1
h in B(3/4−kδ)−3δ/4

M+
L1

wh
1 � C‖u‖∞ and M−

L1
wh

1 � −C‖u‖∞.

By applying Theorem 3.1 to wh
1 from B(3/4−kδ)−3δ/4 to B3/4−(k+1)δ we conclude that for a constant C(k + 1) inde-

pendent of h,∥∥w1
h

∥∥
C0,ᾱ (B3/4−(k+1)δ)

� C(k + 1)‖u‖∞.

This implies the estimate (8.25) by using Lemma 5.6 in [3].
From k = [1/ᾱ] − 1 to k + 1 = [1/ᾱ] we get that u is Lipschitz in B3/4 with the estimate

‖u‖C0,1(B3/4)
� C‖u‖∞.

By applying the previous step one more time to the Lipschitz quotient we conclude the theorem. �
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