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Abstract

Variational gluing arguments are employed to construct new families of solutions for a class of semilinear elliptic PDEs. The
main tools are the use of invariant regions for an associated heat flow and variational arguments. The latter provide a characterization
of critical values of an associated functional. Among the novelties of the paper are the construction of “hybrid” solutions by gluing
minima and mountain pass solutions and an analysis of the asymptotics of the gluing process.
© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

During the past 20 years, direct variational methods have been developed to treat functionals defined on unbounded
temporal or spatial domains. These methods lead to the existence of heteroclinic and homoclinic solutions of dynami-
cal systems, see e.g. [6,10,26,27,22,18,11] and so-called multibump and multitransition solutions of partial differential
equations [12,1,23,24,4,16]. The solutions are generally obtained as minima or mountain pass critical points of corre-
sponding functionals. Taking advantage of further properties of these problems, variational “gluing” arguments have
been developed to find more complex solutions of the equations which shadow (i.e. are near) formal concatenations of
the solutions mentioned above. In a sense this work goes back to the results of Poincaré and Birkhoff on homoclinic
orbits of Hamiltonian systems. Indeed in his work on the 3 body problem, Poincaré showed that if a time periodic
Hamiltonian system with 1 degree of freedom has an isolated homoclinic orbit to a hyperbolic periodic orbit, then
there exists an infinite number of homoclinic orbits. In volume 3 of New Methods of Celestial Mechanics, Poincaré
also classified homoclinic orbits with respect to their “Morse index”.

Poincaré’s method was geometrical. He obtained his orbits by looking at the tangle of homoclinic intersections
of the stable and unstable invariant curve, and the index of the orbits was related to the intersection index. In this
paper we will use gluing arguments to find homoclinic and heteroclinic solutions for a family of semilinear elliptic
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PDEs. Our approach is also geometrical, but instead of working in the phase space as did Poincaré, we employ the
configuration space and use variational methods.

Aside from the one dimensional case, the work we know of using variational gluing arguments only treats solutions
of the same type, i.e. minima are “glued” to minima and mountain pass solutions to mountain pass solutions. One of
the novelties of the problems studied in this paper is that “hybrid” solutions will be created by gluing minima and
mountain pass solutions. See also [8]. Another is that we can give a simple variational characterization of the solutions
we glue. The methods we use also provide geometrical information on the location of new solutions, namely we
construct invariant regions for the heat flow associated with our equation. This enables us to carry out the variational
arguments in these invariant regions. Moreover the shape of the region determines the form of the associated solution.
Such an approach has been used before in other settings by many authors, see e.g. [2,4,16].

The equation studied here is

−�u + Fu(x,u) = 0, x ∈R
n, (1.1)

where � is the Laplace operator. We assume that F is periodic, i.e. F ∈ C2(Tn+1), where T
n =R

n/Zn is the n-torus.
Eq. (1.1) is the Euler–Lagrange equation for the functional

F(u) =
∫
Tn

L(x,u,∇u)dx, u ∈ W 1,2(
T

n
)
,

where

L(x,u,∇u) = 1

2
|∇u|2 + F(x,u). (1.2)

Standard results from the calculus of variations and elliptic partial differential equations imply that F attains its
minimum on W 1,2(Tn) and the minimizer is a classical solution of (1.1). Any weak solution of (1.1) is a classical
solution, so when we refer to a solution of (1.1), we always mean a classical solution.

A standard example of (1.1) for n = 1 is a pendulum with an oscillating suspension point:

L(t, u, u̇) = 1

2
u̇2 + f (t)

(
1 − cos(2πu)

)
, f > 0. (1.3)

Then the set of minimizers of F is Z. For this example our results are strongly related to well known results in the
theory of dynamical systems, in particular in dynamics of area preserving maps (see e.g. [15]).

Another well known example is the Allen–Cahn Lagrangian:

F(x,u) = f (x)
(
u2 − 1

)2
, f > 0. (1.4)

This can be modified to put it into the above framework by redefining F outside of −1 � u � 1 making it 2-periodic
in u and solutions of the resulting equation are solutions of the original one if −1 � u � 1.

Returning to (1.2), note that if u is a minimizer, so is u +Z. By a result of Moser [20], the set of minimizers of F
on W 1,2(Tn) is ordered: if u,v are distinct minimizers, then u > v or v < u. Suppose there are minimizers u− < u+
such that there are no other minimizers between them. Then we refer to u− and u+ as a gap pair of periodic solutions
of (1.1).

Remark 1.5. In fact we do not need F to be periodic in u. What is needed, as for (1.4), is that F has a minimum and
the minimum is nonunique: there are at least two minimizers u− < u+. Then F can be modified outside the strip S

between u− and u+ to make it periodic in u. All solutions we study lie in S, so this modification does not change
anything.

We will study solutions of (1.1) which are periodic in all variables except x1 and lie in the gap between u− and u+.
Let N =R×T

n−1 and

W = {
u ∈ W

1,2
loc (N ): u− � u � u+

}
.

Here and in the sequel, inequalities between W
1,2
loc functions are understood in an a.e. sense. Let τ : N → N be the

right translation τ(x) = (x1 + 1, x2, . . . , xn). For a function u on N , let τu = u ◦ τ−1. Thus τ : W → W moves the
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graph of u to the right. We say that a solution u ∈ W of (1.1) is heteroclinic from u− to u+ if τ±ku → u∓ in the W
1,2
loc

topology as k → ∞.

Remark 1.6. By standard elliptic regularity results, the topology we use in the definition of a heteroclinic solution is
unimportant: if a solution u satisfies τ−ku → u± in the L2

loc topology, then τ−ku → u± in the C2
loc topology. Thus

the definition of a heteroclinic solution is equivalent to

lim
i→±∞‖u − u±‖L2(Ti )

= 0 or lim
i→±∞‖u − u±‖C2(Ti )

= 0, (1.7)

where Ti = [i, i + 1] ×T
n−1.

Let H(u−, u+) be the set of heteroclinic solutions from u− to u+ and H(u+, u−) the set of heteroclinic solutions
from u+ to u−. Similarly, let H(u±, u±) be the sets of homoclinic solutions to u+ and u− respectively.

As was shown by Bangert [5], we have:

Theorem 1.8. There exists a heteroclinic solution u ∈ H(u−, u+) of (1.1) which is minimal, i.e.∫
N

(
L

(
x,u,∇(u + φ)

) − L(x,u,∇u)
)
dx � 0.

for all φ ∈ W 1,2(N ) with compact support. This solution satisfies τu < u. The set M(u−, u+) of minimal heteroclinic
solutions is an ordered set.

Similarly, there exist minimal heteroclinics from u+ to u− which form an ordered set M(u+, u−) ⊂ H(u+, u−).
Solutions which satisfy τ±1u � u are called 1-monotone (in x1) and if the inequality is strict, are called strictly
1-monotone.

Theorem 1.8 is a PDE version of old results of Morse and Hedlund [19,14] on minimal heteroclinic geodesics.
To prove Theorem 1.8, Bangert used a limit argument based on Moser’s results on the existence of periodic and
quasiperiodic minimal solutions [20] of (1.1).

Remark 1.9. Bangert considered the more general types of heteroclinics and more general class of Lagrangians
studied by Moser [20]. In fact most of our results hold for more general Lagrangians L(x,u,∇u) on T

n × R
n+1

provided standard convexity assumptions are satisfied (see [20]). Moreover Tn can be replaced by any manifold with
a Z group action satisfying certain compactness conditions. However, to avoid technicalities, we consider only the
Lagrangians (1.2) on T

n.

To state our main results for (1.1) precisely requires a lengthy set of preliminaries. Therefore for now we will
just give an informal description. Suppose u− < u+ are a gap pair of periodic solutions of (1.1). By Bangert’s Theo-
rem 1.8, there is an ordered family of solutions lying between u− and u+ and heteroclinic from u− to u+. Likewise
there is a family of solutions heteroclinic from u+ to u−. If there is a gap pair v+ < w+ in M(u−, u+) and a gap
pair v− < w− in M(u+, u−), then as shown in [25], there exist an infinite number of homoclinic and heteroclinic
locally minimizing multitransition solutions between u− and u+. In [7], mountain pass heteroclinic solutions, U−,
between v− and w−, and U+, between v+ and w+, were found. The question we study in the present paper is the
existence of homoclinic and heteroclinic solutions of (1.1) that are obtained by gluing together τ k-translations of all
these heteroclinic solutions.

In Section 2, some results of [25] and [7] will be reformulated in a form convenient for our goals. We will also
present slight improvements of these results which will be used in the sequel. In Section 3, we prove the existence
of hybrid solutions obtained by gluing a mountain pass heteroclinic, U+, and a translation, τ kw−, of a minimal
heteroclinic. In Section 4, the limit behavior of these hybrid solutions as k → ∞ is studied. In Section 5, the more
complex question of the existence of homoclinic solutions obtained by gluing of two mountain pass solutions U+
and τ kU− will be treated. The existence of k-transition homoclinics and heteroclinics will also be discussed briefly.
Lastly, some of the technical preliminaries of Section 2 will be proved in Appendix A.
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2. Preliminaries

For future use, a direct variational characterization of heteroclinic solutions given by Theorem 1.8 will be needed.
This characterization was obtained in [25]. Without loss of generality, assume

min
W 1,2(Tn)

F = 0. (2.1)

For any u ∈W and a measurable set A ⊂N , set

JA(u) =
∫
A

L(x,u,∇u)dx. (2.2)

Then JTi
(u±) = 0, where Ti = [i, i + 1] ×T

n−1. Define the functional J on W by

J (u) =
∞∑

i=−∞
JTi

(u) = lim
i→∞,j→−∞JNi

j
(u), Ni

j = [j, i] ×T
n−1. (2.3)

It was proved in [25] that for any u ∈ W , the series (2.3) either converges or diverges to +∞, and J is bounded from
below on W .

Let

Γ (u+, u+) =
{
u ∈ W : lim

i→±∞‖u − u+‖L2(Ti )
= 0

}
.

and define Γ (u−, u−) similarly. Then

inf
Γ (u±,u±)

J = 0. (2.4)

Moreover from [25], we have

Lemma 2.5. For any ε > 0, there exists a δ > 0 such that if J (u) < δ for some u ∈ Γ (u±, u±), then

‖u − u±‖W 1,2(Tj ) < ε for all j ∈ Z.

Next define

Γ+ = Γ (u−, u+) =
{
u ∈W : lim

i→±∞‖u − u±‖L2(Ti )
= 0

}
,

Γ− = Γ (u+, u−) =
{
u ∈W : lim

i→±∞‖u − u∓‖L2(Ti )
= 0

}
.

Then from [25], we have:

Proposition 2.6.

1. The functional J attains its minimum, c±, on Γ± and

c = c+ + c− > 0, c± = inf
u∈Γ±

J (u). (2.7)

2. Let M± = {u ∈ Γ±: J (u) = c±}. Any minimizer u ∈ M± is a solution of (1.1) heteroclinic from u∓ to u± and
τ±1u± < u±.

3. For any ε > 0, there exists a δ > 0 such that if J (v) < c± + δ for some v ∈ Γ±, then there is a u ∈ M± such that

‖u − v‖W 1,2(Tj ) < ε for all j ∈ Z.

It was further proved in [25] that the sets M± = M(u∓, u±) of minimizing heteroclinics are the same as given
by Bangert in Theorem 1.8. These sets are ordered and invariant under the translation group {τ k}k∈Z, and compact
modulo translations. The graphs of minimizers u ∈M± form laminations of the strip S = {(x,u) ∈ T

n ×R: u−(x) �
u � u+(x)}. We impose the following condition:
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(∗) No foliation assumption. The lamination of S by minimal heteroclinics in M± is not a foliation.

As was shown in [25], assumption (∗) is generic. If it holds, there are gaps in the sets of minimal heteroclinics. In
particular, there is a point in S through which no graphs of minimal heteroclinics pass. Every gap in M± is bounded
by a pair of minimal heteroclinics v± < w± which again we call a gap pair.

Remark 2.8. Condition (∗) never holds if L is independent of x. Indeed, then for any minimizer u ∈ M± and any
k ∈R, the translation τ ku is a minimizer, and the graphs of {τ ku}k∈R form a foliation of S.

Assuming condition (∗), in Section 3, it will be proved that there exists an infinite number of homoclinic and
heteroclinic solutions of mountain pass and other types in the strip S.

For the rest of this paper, it will be assumed that (∗) holds. Then there exists a gap pair, v± < w±, in M±. In [25],
it was proved that w± − v± ∈ W 1,2(N ). Set E = W 1,2(N ) equipped with the norm

‖ψ‖ = ‖ψ‖W 1,2(N ).

Let E± = v± + E be the affine space through v± and let

Λ± = {u ∈ E±: v± � u � w±}.
The sets Λ± can be identified with subsets of the Banach space E via the map u → u − v±. The W 1,2 topology in
Λ± inherited from E± will be used.

The following result was proved in [7].

Proposition 2.9. The functional J is C1 on E± and it satisfies the Palais–Smale condition (PS) in Λ±: if (uk) ⊂ Λ± is
a sequence such that J (uk) is bounded and ‖J ′(uk)‖ → 0 as k → ∞, then (uk) has a subsequence which is convergent
in the W 1,2 norm to some u ∈ Λ±.

Let I = [0,1] and let

b± = inf
h

max
h(I)

J, (2.10)

where the infimum is taken over all continuous paths h : I → Λ± connecting v± with w±. By item 3 of Proposi-
tion 2.6, b± > c±. Hence b± is a so-called mountain pass critical level. Equivalently, b± is the supremum of all a such
that v± and w± are in different path connected components of Λa± = {u ∈ Λ±: J (u) � a}.

It is convenient to introduce the following notation. For points v,w in a topological space Λ, we write v ∼ w if
v and w lie in the same path connected component of Λ and v � w if they lie in different components. Then (2.10)
yields:

Lemma 2.11. For any δ ∈ (0, b± − c±), v± � w± in Λ
b±−δ
± , but v± ∼ w± in Λ

b±+δ
± .

Furthermore it was shown in [7] that:

Proposition 2.12. There exists a critical point u ∈ Λ± of J with J (u) = b±.

Any u given by Proposition 2.12 will be called a mountain pass critical point since it lies in the mountain pass
critical level J−1(b±).

Proposition 2.12 was proved in [7] by a variant of the usual so-called Deformation Theorem [21]. However we will
give a proof here based on a heat flow argument since the same method will be used repeatedly throughout this paper.
First some preliminaries are required. Let Φt , t � 0, be the semiflow defined by the parabolic PDE

ut = �u − Fu(x,u). (2.13)

Thus u(t) = Φt(u0) is the solution of the initial value problem with u(0) = u0 for (2.13). Several facts about Φt will
be stated next. The details can be found in [7]. In particular:
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Proposition 2.14. For each u0 ∈W , there is a unique solution

u(t) = u(t, ·) = Φt(u0) ∈W, t � 0,

of (2.13). For t > 0, u(t) ∈ C2(N ) and the map t → u(t) is in C1((0,∞),C2(N )). If u0 ∈ E±, then u(t) ∈ E± for
t � 0 and the map (t, u0) → u(t) is in C0((0,∞) × E±,E±).

The parabolic flow is a standard tool for finding solutions of nonlinear elliptic PDEs (see e.g. [9]), but usually the
domain of definition is compact.

By a comparison principle for (2.13) (see e.g. [7]), if v± � u0 � w±, then v± � u(t) � w± for all t � 0. Thus
Φt(Λ±) ⊂ Λ±, t � 0. The semiflow Φt : Λ± → Λ± is continuous in the topology of Λ±.

An important property of Φt is that J is a Lyapunov function, i.e. if u(t) = Φt(u0),

d

dt
J
(
u(t)

) = −
∫
N

∣∣�u(t) − Fu

(
x,u(t)

)∣∣2
dx � 0. (2.15)

There is equality in (2.15) iff u0 is an equilibrium point of the flow, i.e. a solution of (1.1). Since J (u(t)) � 0,
(2.15) implies there is a sequence tk → ∞ such that∫

N

∣∣�u(tk) − Fu

(
x,u(tk)

)∣∣2
dx → 0.

Since for u ∈ Λ± (see e.g. [7]),
∥∥J ′(u)

∥∥ �
∫
N

∣∣�u − Fu(x,u)
∣∣2

dx,

it follows that ‖J ′(u(tk))‖ → 0 as k → ∞. Then by the (PS) condition (Proposition 2.9), we obtain:

Lemma 2.16. For any u0 ∈ Λ± and any sequence tk → ∞, there exists a subsequence such that Φtk (u0) converges in
W 1,2 to a critical point u ∈ Λ± of J with J (u) = limt→∞ J (Φt (u0)).

Remark 2.17. A similar statement holds for any Φt -invariant set Λ ⊂ W such that J is finite and differentiable at
every point in Λ and satisfies the (PS) condition in Λ. Such generalizations will be used several times in what follows.

Now the proof of Proposition 2.12 can be given.

Proof of Proposition 2.12. For any ε > 0, let h : I → Λ
b±+ε
± be a continuous path joining v± and w± in Λ

b±+ε
± . Let

ht = Φt ◦h : I → Λ
b±+ε
± . Then there exists θ∞ ∈ I such that J (ht (θ∞)) � b± for all t � 0. Indeed, for any t � 0 there

is θt ∈ I such that J (ht (θt )) � b±. Take a sequence tk → ∞ such that θtk → θ∞ ∈ I . Suppose that J (hτ (θ∞)) < b± for
some τ > 0. By the continuity of hτ , J (hτ (θtk )) < b± and tk > τ for large k. Then J (htk (θtk )) < b±, a contradiction.

By Lemma 2.16 with u0 = h(θ∞), there is a sequence sk → ∞ such that uk = hsk (θ∞) converges in W 1,2 to a
critical point vε ∈ Λ± such that

b± + ε � J (vε) = lim
t→∞J

(
ht (θ∞)

)
� b±.

Since ε > 0 is arbitrary, (PS) implies there is a sequence εj → 0 such that vεj
converges to a critical point u ∈

J−1(b±). �
Next we give two preliminaries that concern the existence of locally minimal 2-transition homoclinic solutions of

(1.1). These solutions are close to concatenations of two minimizing heteroclinics.
Let c = c− + c+ and wk = min(w+, τ kw−). Then J (wk) < c and J (wk) → c as k → ∞. Indeed, let w∗

k =
max(w+, τ kw−). Then J (wk) = J (w+)+ J (w−)− J (w∗

k ), where J (w∗
k ) � 0 by Lemma 2.5. In addition J (w∗

k ) → 0
as k → ∞.

Set

Na ≡ (−∞, a] ×T
n−1, Na ≡ [a,∞) ×T

n−1, Nb
a ≡ [a, b] ×T

n−1.
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Proposition 2.18. There is a K > 0 such that for any k ∈ N with k � K , there exists a homoclinic uk ∈ H(u−, u−)

such that

1. uk < wk and for large a > 0, uk > τw+ in N−a and uk > τ−1w− in Na .
2. J (uk) < J (wk) < c and J (v) � J (uk) for any v ∈W such that uk � v � wk .
3. J (uk) → c as k → ∞.
4. ‖uk − wk‖L∞(N ) → 0 as k → ∞.
5. For any a ∈ R, as k → ∞,

‖uk − w+‖W 1,2(Na) → 0,
∥∥τ−kuk − w−

∥∥
W 1,2(Na)

→ 0.

Proposition 2.18 is a variant of a result of [25]. It follows from a more precise Theorem A.12 which will be proved
in Appendix A.

A slight modification of Proposition 2.18 is also required to define a region invariant under the heat flow of (2.13).
Let v± � v± be the smallest minimizer in M± such that there are no gaps between v± and v±. Then the region
between v± and v± is foliated into minimal heteroclinics from M±, and v± is the upper boundary of a gap or
the limit of gaps below v±. Generically v± = v± = τ±1w±, but the case v± < v± cannot be ruled out. Set wk =
min(v+, τ kw−) � wk . Then we have a version of Proposition 2.18, with w+ replaced by v+.

Proposition 2.19. There is a K > 0 such that for all k ∈ N with k > K , there exists a homoclinic vk ∈ H(u−, u−)

such that

1. vk < wk .
2. J (vk) < J (wk) < c and J (v) � J (vk) for any v ∈W such that vk � v � wk .
3. J (vk) → c as k → ∞.
4. ‖vk − wk‖L∞(N ) → 0 as k → ∞.
5. For any a ∈ R, ‖vk − v+‖W 1,2(Na) → 0 and ‖τ−kvk − w−‖W 1,2(Na) → 0 as k → ∞.

Proof. Suppose first that v+ is an upper boundary of a gap. Then Proposition 2.18 applies with w+ replaced by v+.
If v+ is not the upper boundary of a gap, then there is a sequence of gap pairs

τw+ < Vj < Wj < v+
in M+ such that Vj → v+ pointwise. Lemma A.6 shows ‖Vj − v+‖W 1,2(N ) → 0 and ‖Wj − v+‖W 1,2(N ) → 0 as
j → ∞. Proposition 2.18 can be applied with the gap pair v+ < w+ replaced by the gap pair Vj < Wj . For each j ,
there exists a Kj such that for k > Kj , there is a homoclinic ujk � Ujk ≡ min(Wj , τ

kw−) satisfying the assertion of
Proposition 2.18 with ‖ujk − Ujk‖L∞(N ) → 0 as k → ∞. Thus for large j and k > Kj , ujk satisfies all assertions
of Proposition 2.19 except possibly item 2. Consider the functional J , on the set X = {u ∈ W | ujk � u � wk}. It
has a minimizer, vk ∈ X. Since X is invariant under the flow of (2.13), vk is either ujk or vk does not touch the
boundary of X. In particular J (vk) < J (wk). Thus vk is a homoclinic solution of (1.1) satisfying all of the assertions
of Proposition 2.19. �
3. Hybrid 2-transition homoclinics

In this and the following two sections, a heat flow method will be used to prove the existence of many minimax
homoclinic solutions of (1.1) in the strip S. In particular, we will prove that one can glue together minimal and
mountain pass heteroclinic solutions of (1.1) to form a multitransition homoclinic solution. In a future paper we will
show that whenever it makes sense geometrically, one can glue together an arbitrary number of minimal and mountain
pass heteroclinic solutions.

Gluing a minimal heteroclinic in H(u−, u+) as given by Theorem 1.8 and Proposition 2.6 corresponding to c+
to one in H(u+, u−) corresponding to c− was already carried out in [25]. The hybrid 2-transition cases of gluing
a mountain pass heteroclinic corresponding to b+ as given by Proposition 2.12 to a minimizer in H(u+, u−) from
Proposition 2.6 corresponding to c− (or gluing a minimizer to a mountain pass heteroclinic) will be treated in this
section. Gluing a pair of mountain pass heteroclinics corresponding to b+ and b− will be treated in Section 4.
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Let vk,wk be as in Section 2 and let

Σk = {u ∈W : vk � u � wk, u − wk ∈ E},
be the set of functions between vk and wk . Set

Σa
k = {

u ∈ Σk: J (u) � a
}
, Σa−

k = {
u ∈ Σk: J (u) < a

}
.

Let qk = min(v+, τ kw−) ∈ Σk . Define

dk = inf
{
a ∈R: qk ∼ wk in Σa

k

}
.

Our main goal in this section is to prove that dk is a mountain pass critical value:

Theorem 3.1. There exists a K > 0 such that for any k > K , the functional J has a critical point Uk ∈ Σk with
J (Uk) = dk .

To prove Theorem 3.1, a technical result is required. Set d = b+ + c−.

Proposition 3.2. For any δ ∈ (0, b+ − c−), there exists a K > 0 such that for k > K , qk and wk are in different path
connected components of Σd−δ

k but in the same path connected component of Σd+δ
k . Thus qk ∼ wk in Σd+δ

k and

qk � wk in Σd−δ
k .

Proposition 3.2 will be assumed for the moment. It immediately implies:

Corollary 3.3. There exists a K > 0 such that for any ε > 0 and any k > K , there is a path h : I → Σ
dk+ε
k with

h(∂I) ⊂ Σ
dk−
k and h is not homotopic to a path g satisfying

g(I) ⊂ Σ
dk−
k = {

u ∈ Σk: J (u) < dk

}
in the class of paths g : I → Σk with g(∂I) ⊂ Σ

dk−
k .

Proof of Theorem 3.1. Fix K as given by Corollary 3.3 and let k > K . Take a sequence εj → 0. Let hj : I → Σ
dk+εj

k

be the path given by Corollary 3.3. As was the case for Λ±, the functional J satisfies the (PS) condition in Σk and
Φt : Σk → Σk for t � 0. Hence an analogue of Lemma 2.16 holds in Σk . Let ht

j = Φt ◦ hj . Then ht
j (∂I ) ⊂ Σ

dk−
k

for t � 0. By Corollary 3.3, for any t � 0 there exists θ t
j ∈ [0,1] such that dk + εj � J (ht

j (θ
t
j )) � dk . Hence, arguing

as in the proof of Proposition 2.12, (a) there is θj ∈ I such that J (ht (θj )) � dk for all t � 0, (b) there exists tp → ∞
as p → ∞ such that htp (θj ) converges in the W 1,2 norm as p → ∞ to a critical point Uεj

∈ Σk with J (Uεj
) ∈

[dk, dk + εj ], and finally (c) as j → ∞, Uεj
→ Uk ∈ Σk with J (Uk) = dk . �

It remains to prove Proposition 3.2. This will be done with the aid of some auxiliary maps which will be introduced
and studied next. Define the maps φk : Λ+ → Σk and ψ : Σk → Λ+ by

φk(u) = min
(
u, τ kw−

)
, ψ(v) = max(v, v+).

Then φk(v+) = qk and ψ(qk) = v+. It is known (see e.g. [12]) that the maps φk,ψ are continuous with respect to
W 1,2 norm.

Lemma 3.4. For u ∈ Λ+,

J
(
φk(u)

)
� J (u) + c−. (3.5)

For any ε > 0, there exists a K > 0 such that for k > K and any u ∈ Σk ,

J
(
ψ(u)

)
� J (u) − c− + ε. (3.6)
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Proof. To prove (3.5), set

A = {
x ∈N : u(x) � τ kw−(x)

}
, B = {

x ∈ N : u(x) > τkw−(x)
}

and let v = max(u, τ kw−). Then

J
(
φk(u)

) − J (u) =
∑
i∈Z

[
JTi∩A(u) + JTi∩B

(
τ kw−

) − JTi
(u)

]

=
∑
i∈Z

[
JTi∩B

(
τ kw−

) − JTi∩B(u)
]

=
∑
i∈Z

[
JTi

(
τ kw−

) − JTi∩A

(
τ kw−

) − JTi∩B(u)
]

= c− − J (v).

By (2.4), J (v) � 0 and (3.5) is proved.
To prove (3.6), now set

A = {
x ∈N : u(x) < v+(x)

}
, B = {

x ∈N : u(x) � v+(x)
}
,

and let v = min(u, v+). We claim that v ∈ Σk . Then arguing as above yields

J
(
ψ(u)

) − J (u) = J (v+) − J (v) = c+ − J (v) � c+ − inf
Σk

J.

and the result follows by item 3 of Proposition 2.19. To see that v ∈ Σk , it suffices to show that vk � v � wk . By its
definition, this is certainly true if v(x) = u(x) since u ∈ Σk . If v(x) = v+(x), then by item 1 of Proposition 2.19,

vk(x) � wk(x) � v+(x) � v+(x) = v(x) � u(x) � wk(x). �
Lemma 3.7. Let χk = ψ ◦ φk : Λ+ → Λ+. Then ‖w+ − χk(w+)‖ → 0 as k → ∞.

Proof. Set

A = {
x ∈N : w+(x) � τ kw−(x)

}
,

B = {
x ∈ N : v+(x) < τkw−(x) < w+(x)

}
,

C = {
x ∈ N : τ kw−(x) � v+(x)

}
.

Then N = A ∪ B ∪ C and χk(w+) = w+ on A. Hence∥∥χk(w+) − w+
∥∥ �

∥∥τ kw− − w+
∥∥

W 1,2(B)
+ ‖v+ − w+‖W 1,2(C). (3.8)

We have v+ − w+ ∈ E. Since B ∪ C ⊂ Nγk
with γk → ∞ as k → ∞, ‖v+ − w+‖W 1,2(B∪C) represents the tail of a

convergent integral and therefore ‖v+ − w+‖W 1,2(C) → 0 as k → ∞.
To estimate the B term, first we show that the measure of B , |B| � 1. It suffices to prove that τB ∩ B = ∅, where

τB denotes the translation of B by τ . For x ∈ τB , we have

v+
(
τ−1x

)
< τkw−

(
τ−1x

)
< w+

(
τ−1x

)
.

Since w+(x) < v+(τ−1x) and w−(τ−1x) < w−(x), we obtain w+(x) < τkw−(x). Thus x /∈ B and τB ∩ B = ∅.
Now estimating the B term crudely,∥∥τ kw− − w+

∥∥
W 1,2(B)

�
(|B| + 1

)∥∥τ kw− − w+
∥∥

C1(B)
. (3.9)

Let δ > 0. Since w± are heteroclinic solutions, by (1.7) there is an a = a(δ) such that u+(x) − δ < w+(x) < u+(x)

for x ∈ Na and u+(x) − δ < w−(x) < u+(x) for x ∈ N−a . Thus u+(x) − δ < τkw+(x) < u+(x) for x ∈ Nk−a . It can
be further assumed that B ⊂ Nk−a−1

a+1 . Therefore
∥∥τ kw− − w+

∥∥ ∞ �
∥∥u+ − w+

∥∥ ∞ k−a < δ. (3.10)

L (B) L (Na )
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Since u+, τ kw−, and w+ are solutions of (1.1), by Lemma A.1 in Appendix A,

‖u+ − w+‖
C2(Nk−a−1

a+1 )
� Mδ,

∥∥u+ − τ kw−
∥∥

C2(Nk−a−1
a+1 )

� Mδ. (3.11)

Combining (3.9)–(3.11) yields

lim sup
k→∞

∥∥χk(w+) − w+
∥∥

W 1,2(B)
�

(|B| + 1
)
Mδ

from which Lemma 3.7 follows. �
Corollary 3.12. For any ε > 0 and large enough k, χk(w+) ∼ w+ in Λ

c++ε
+ .

Proof. This follows from Lemma 3.7 and the continuity of J : for large k and all t ∈ [0,1],
J
(
(1 − t)w+ + tχk(w+)

) = J
(
w+ − t

(
w+ − χk(w+)

))
� c+ + ε. �

Finally we are ready for:

Proof of Proposition 3.2. By Lemma 3.4, for any δ > 0 and large k,

φk

(
Λ

b++δ/2
+

) ⊂ Σ
d+δ/2
k , ψ

(
Σd−δ

k

) ⊂ Λ
b+−δ/2
+ . (3.13)

Since v+ ∼ w+ in Λ
b++δ/2
+ and φk is continuous, qk = φk(v+) ∼ φk(w+) = wk in Σ

d+δ/2
k . To show that φk(v+) �

φk(w+) in Σd−δ
k , suppose to the contrary that φk(v+) ∼ φk(w+) in Σd−δ

k . By Lemma 3.4 with ε = δ/2, χk = ψ ◦φk :
Λ

c++δ/2
+ → Λ

c++δ
+ for large k. Since it can be assumed that c+ +δ < b+ −δ/2, we have χk(v+) ∼ χk(w+) in Λ

b+−δ/2
+ .

By Lemma 3.7, χk(w+) ∼ w+ in Λ
c++δ
+ ⊂ Λ

b+−δ/2
+ if k is large enough. Note that χk(v+) = v+. Thus v+ ∼ w+ in

Λ
b+−δ/2
+ , contrary to Lemma 2.11. �

4. Limit behavior

Next the behavior of the critical points, Uk , and critical values, dk , in Theorem 3.1 as k → ∞ will be studied. Let

Ω+ = {u ∈ E+: v+ � u � w+}. (4.1)

Theorem 4.2. For the critical point Uk of Theorem 3.1, as k → ∞, we have:

• limk→∞ dk = d .
• τ−kUk → w− in C2

loc.
• There exists a heteroclinic V ∈ Ω+ and a subsequence k → ∞ such that Uk → V in C2

loc.

Proof. The first item follows from Proposition 3.2. For the second, by Corollary A.5, the set of solutions of (1.1)
in W is compact in the C2

loc topology. Hence, along a subsequence, the functions τ−kUk and Uk converge in C2
loc to

solutions, W and V , of (1.1) as k → ∞. Since for any a and large k, τ−kwk = w− in Na , it follows that τ−kUk → w−
in L∞(Na) as k → ∞ and W = w−. Both τ−kUk and w− are solutions of (1.1). By Lemma A.1, τ−kUk → w− in
C2(Na) as k → ∞. To get the last item, since vk � Uk � wk , by item 5 of Proposition 2.19, v+ � V � w+. Thus
V ∈ Ω+ and is a heteroclinic solution of (1.1). �

It seems probable that V is a mountain pass heteroclinic, with J (V ) = b+, but we are unable to prove this without
a further nondegeneracy assumption which will be stated next.

(ND±) The minimizer, u±, of the functional, F , on W 1,2(Tn) is nondegenerate, i.e. the second variation quadratic
form

Q(φ) =F ′′(u±)(φ,φ), φ ∈ W 1,2(
T

n
)
,

is positive for φ �= 0.
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The nondegeneracy assumption will be used to improve Theorem 4.3 as follows. Again, Uk denotes the solution
of (1.1) given by Theorem 3.1.

Theorem 4.3. Suppose (ND+) holds. Then the solution V ∈ Ω+ in Theorem 4.3 is of mountain pass type with
J (V ) = b+ and, along a subsequence k → ∞,

‖Uk − Vk‖ → 0, Vk = min
(
V, τkw−

)
. (4.4)

A similar but simpler result holds for the solutions uk given by Proposition 2.18.

Theorem 4.5. Suppose condition (ND+) holds. Then ‖uk − wk‖W 1,2(N ) → 0 as k → ∞.

To prove Theorem 4.3, the following consequence of (ND+) is required.

Proposition 4.6. For any ε > 0, there exists a δ > 0 such that if a < b are integers and u is a solution of (1.1) on Nb
a

satisfying u+ − δ � u � u+, then:

• u minimizes JNb
a

in the class of functions which equal u on ∂Nb
a ,

• if a < b − 2, then

‖u − u+‖
W 1,2(Nb−1

a+1 )
� ε.

The proof of Proposition 4.6 is given at the end of this section.

Proof of Theorem 4.3. Once we obtain (4.4), it follows that

d = b+ + c− = lim
k→∞J (Uk) = lim

k→∞J (Vk) = J (V ) + c−

so J (V ) = b+ and Theorem 4.3 follows from Theorem 4.3. Hence to prove Theorem 4.3, it suffices to show that for
any ν > 0,

lim sup
k→∞

‖Uk − Vk‖W 1,2(N ) � ν. (4.7)

By Lemma A.6 in Appendix A, for any a > 0,

lim
k→∞‖Uk − Vk‖W 1,2(Na∪Nk−a) = 0.

Thus to prove (4.7), it suffices to prove that for any ε > 0, there exist an a ∈ Z such that for all large k,

‖Uk − Vk‖W 1,2(Nk−a
a )

� 3ε.

Observe that

‖Uk − Vk‖W 1,2(Nk−a
a )

� ‖Uk − u+‖
W 1,2(Nk−a

a )

+ ‖V − u+‖
W 1,2(Nk−a

a )

+ ∥∥τ kw− − u+
∥∥

W 1,2(Nk−a
a )

.

Each of the terms on the right can be estimated in a similar way so only the first one will be treated. To begin, note
that

‖Uk − u+‖
L∞(Nk−a+1

a−1 )
� ‖vk − u+‖

L∞(Nk−a+1
a−1 )

. (4.8)

Let δ > 0. By item 4 of Proposition 2.19, for k large,

‖vk − wk‖L∞(Nk−a+1)
� δ/2 (4.9)
a−1
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and if a is large enough, then increasing k further if needed,

‖wk − u+‖
L∞(Nk−a+1

a−1 )
� δ/2. (4.10)

Then

‖Uk − u+‖
L∞(Nk−a+1

a−1 )
� δ.

If δ > 0 is sufficiently small, applying Proposition 4.6 gives

‖Uk − u+‖
W 1,2(Nk−a

a )
� ε.

and the proof is complete. �
Proof of Theorem 4.5. Let ε > 0 and a > 0. By item 4 of Proposition 2.18, for k sufficiently large, ‖uk −
wk‖W 1,2(Na∪Nk−a) � ε. Thus, it suffices to find a such that

‖uk − wk‖W 1,2(Nk−a
a )

� 2ε (4.11)

for large k.
Let δ > 0 be as in Proposition 4.6. We can choose a ∈ N so that ‖u+ − w+‖L∞(Na

a−1)
� δ/2 and similarly ‖u+ −

w−‖
L∞(N1−a−a )

� δ/2. By the 1-monotonicity of w±, ‖u+ − w+‖L∞(Na−1) � δ/2 and ‖u+ − τ kw−‖L∞(Nk−a+1) � δ/2.

Therefore ‖u+ − wk‖L∞(Nk−a+1
a−1 )

� δ/2. Again by Proposition 2.18, for large k, we have ‖uk − wk‖L∞(Nk−a+1
a−1 )

�
δ/2. Consequently, ‖u+ − uk‖L∞(Nk−a+1

a−1 )
� δ. Lastly applying Proposition 4.6 again for u = w+ and u = τ kw− and

combining gives

‖uk − u+‖
W 1,2(Nk−a

a )
� ε.

from which (4.11) follows. �
It remains to prove Proposition 4.6. Towards that end, we deduce some consequences of the nondegeneracy as-

sumptions (ND±). For simplicity we work with (ND+). Recall it means that the second variation bilinear form:

Q(φ) = F ′′(u+)(φ,φ) =
∫
Tn

(|∇φ|2 + a(x)φ2)dx, a(x) = Fuu

(
x,u+(x)

)

is positive definite on W 1,2(Tn). Let λ be the smallest eigenvalue of the operator −�+ a(x) in W 1,2(Tn). By (ND+),
λ > 0. Then for all φ ∈ W 1,2(Tn),

Q(φ) � λ

∫
Tn

φ2 dx.

Next we will prove an iterated inequality. Set Tn
m = (R/mZ)×T

n−1. Thus if φ is a function on T
n
m, then τmφ = φ,

so φ is m-periodic in x1.

Proposition 4.12. For any φ ∈ W 1,2(Tn
m), we have

Qm(φ) =
∫
Tn

m

(|∇φ|2 + a(x)φ2)dx � λ

∫
Tn

m

φ2 dx. (4.13)

Consequently the smallest eigenvalue, λm, of −� + a on T
n
m equals the smallest eigenvalue, λ, of −� + a on T

n.

Proof. Set

Q̂(φ) = Qm(φ) − λm

∫
Tn

φ2 dx.
m
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Thus Q̂(φ) � 0 for any φ ∈ W 1,2(Tn
m) and the minimal value of Q̂ is 0. It is straightforward to prove that nonzero

minimizers exist, any such minimizer is an eigenfunction of −� + a on T
n
m corresponding to λm, and choosing φ to

be an eigenfunction corresponding to λ shows λ � λm. By results and arguments of Moser [20] – see also [25] – the
set of minimizers of Q̂ is ordered. If φ is a minimizer, so is τφ. If e.g. τφ � φ, then

φ = τmφ � · · · � τφ � φ.

Thus τφ = φ and so φ ∈ W 1,2(Tn). Similarly φ is 1-periodic if τφ � φ. Hence φ ∈ W 1,2(Tn) and Q̂(φ) � 0 implies
λm � λ, so we must have equality. �
Remark 4.14. This is a scalar phenomenon; a similar result is not true for vector valued φ. For n = 1, an analogue
of Proposition 4.12 was known to Poincaré and repeatedly used by Morse and Hedlund [19,14]. It is a basis for
Aubry–Mather theory [3,17]. In the PDE setting, a similar result was used by Moser [20].

The next result is standard.

Corollary 4.15. There is a constant, μ > 0, such that for all φ ∈ W 1,2(Tn
m),

Qm(φ) � 2μ‖φ‖2
W 1,2(Tn

m)
(4.16)

Proof. Let θ ∈ (0,1). Then

Qm(φ) = θ

∫
Tn

m

(|∇φ|2 + a(x)φ2)dx + (1 − θ)

∫
Tn

m

(|∇φ|2 + a(x)φ2)dx

� θ

∫
Tn

m

(|∇φ|2 + a(x)φ2)dx + (1 − θ)λ

∫
Tn

m

φ2 dx

� θ

∫
Tn

m

|∇φ|2 dx + (
(1 − θ)λ − θ‖a‖L∞(Tn)

) ∫
Tn

m

φ2 dx

= θ‖φ‖2
W 1,2(Tn

m)

provided

θ = (1 − θ)λ − θ‖a‖L∞(Tn).

Thus (4.16) holds with

2μ = θ = λ
(
1 + λ + ‖a‖L∞(Tn)

)−1
. �

Corollary 4.17. Let b ∈ L∞(Nm
0 ) with

‖b − a‖L∞(Nm
0 ) � μ. (4.18)

Then for any φ ∈ W 1,2(Tn
m),∫

Nm
0

(|∇φ|2 + b(x)φ2)dx � μ‖φ‖2
W 1,2(Tn

m)
. (4.19)

Proof. This is immediate from Corollary 4.15. �
Proposition 4.20. Let δ > 0 be sufficiently small. Then for any m ∈ N and any solutions u,v of (PDE) such that
u+ − δ � u,v � u+ on Nm

0 and u = v on ∂Nm
0 , we have u = v on Nm

0 .

Remark 4.21. Note that δ is independent of m. This will be important below.



116 S. Bolotin, P.H. Rabinowitz / Ann. I. H. Poincaré – AN 31 (2014) 103–128
Proof. Set φ = v − u on Nm
0 and extend φ periodically so that φ ∈ W 1,2(Tn

m). Subtracting �u = Fu(x,u) from
�v = Fu(x, v) shows

∫
Nm

0

φ�φ dx =
∫

Nm
0

1∫
0

Fuu(x,u + sφ)φ2 ds dx.

Since φ|∂Nm
0

= 0, integrating by parts gives

0 =
∫

Nm
0

(|∇φ|2 + φ2b(x)
)
dx, b(x) =

1∫
0

Fuu(x,u + sφ)ds. (4.22)

For δ small (independently of m due to the periodicity of F ), b satisfies (4.18). Thus by Corollary 4.17 and (4.22),
φ ≡ 0. �

Next, we consider the nonquadratic functional JNm
0

on W 1,2(Nm
0 ). Observe that if e.g. ψ ∈ Cα(∂Nm

0 ), then JNm
0

has a minimizer, v, in the class of W 1,2(JNm
0
) functions which equal ψ on ∂Nm

0 . If v satisfies u+ − δ � v � u+, then
any solution u such that u+ − δ � u � u+ on Nm

0 is a minimizer for the boundary conditions u|∂Nm
0

= ψ . Namely by
Proposition 4.20, u = v. Therefore we obtain

Corollary 4.23. Any solution, u, of (PDE) satisfying u+ − δ � u � u+ on Nm
0 is a minimizer of the functional, JNm

0
,

in the class of functions φ ∈ W 1,2(Nm
0 ) with u+ − δ � φ � u+ and φ|∂Nm

0
= u|∂Nm

0
.

Corollary 4.24. There exists a δ > 0 such that for any m ∈ N and any u ∈ W 1,2(Tn
m) satisfying u+ − δ � u � u+, we

have

JNm
0
(u) � μ‖u − u+‖2

W 1,2(Tn
m)

.

Note that δ is independent of m.

Proof. Let φ = u − u+. Since JNm
0
(u+) = 0 and J ′

Nm
0
(u+) = 0, expanding Jm about u+ shows

JNm
0
(u) =

1∫
0

J ′′
Nm

0
(u+ + sφ)(φ,φ)(1 − s) ds

=
∫
Tn

m

(|∇φ|2 + φ2b(x)
)
dx, b(x) =

1∫
0

Fuu(x,u+ + sφ)(1 − s) ds.

If δ > 0 is sufficiently small (independently of m), then b satisfies (4.18). Thus by Corollary 4.17,

JNm
0
(u) � μ‖φ‖2

W 1,2(Tn
m)

. �
Next we prove an analogue of Corollary 4.24 for non-periodic functions on Nm

0 .

Proposition 4.25. Let δ > 0 be as in Corollary 4.24. For any ε > 0, there exists a ρ > 0 such that for any m ∈ N and
any u ∈ C1(Nm

0 ) with ‖u+ − u‖C1(Nm
0 ) � ρ, we have

JNm
0
(u) � μ‖u − u+‖2

W 1,2(Nm
0 )

− ε. (4.26)
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Proof. Define a periodic function ψ ∈ W 1,2(Tn
m) with ψ = u on Nm

1 by linear interpolation on T0:

ψ(x) = u+(x) − u+(0, x2, . . . , xn) + (1 − x1)u(m,x2, . . . , xn) + x1u(1, x2, . . . , xn).

For x ∈ N1
0 , we obtain |ψ − u| � ρ and |∇ψ − ∇u| � ρ. Thus

‖u+ − ψ‖C1(Nm
0 ) = ‖ψ − u+‖L∞(Nm

0 ) + ‖∇ψ − ∇u+‖L∞(Nm
0 ) � 2ρ.

For ρ < δ/2, by Corollary 4.24,

Jm(ψ) � μ‖ψ − u+‖2
W 1,2(Tm

0 )
.

Now

‖ψ − u+‖2
W 1,2(Tn

m)
= ‖u − u+‖2

W 1,2(Nm
0 )

+ ‖ψ − u+‖2
W 1,2(T0)

− ‖u − u+‖2
W 1,2(T0)

.

Therefore

JNm
0
(ψ) = JNm

0
(u) + JT0(ψ) − JT0(u)

� μ
(‖u − u+‖2

W 1,2(Nm
0 )

+ ‖ψ − u+‖2
W 1,2(T0)

− ‖u − u+‖2
W 1,2(T0)

)
.

For ρ small enough,∣∣JT0(ψ)
∣∣ � ε/4,

∣∣JT0(u)
∣∣ � ε/4,

‖ψ − u+‖2
W 1,2(T0)

� ε/4μ, ‖u − u+‖2
W 1,2(T0)

� ε/4μ.

Consequently (4.26) follows. �
Corollary 4.27. For any σ > 0, there exists a δ > 0 such that for any integers a < b, and any solution, u, on Nb+1

a−1
with u+ − δ � u � u+, we have

JNb
a
(u) � μ‖u − u+‖2

W 1,2(Nb
a )

− σ. (4.28)

Proof. By Proposition 4.25, it suffices to show that if δ is sufficiently small and u is as in the hypothesis, then
‖u+ − u‖C1(Nb

a ) � ρ. Since ‖u − u+‖
L∞(Nb+1

a−1 )
� δ, this follows from Lemma A.1. �

Proof of Proposition 4.6. The first item follows from Corollary 4.23. The second follows from Corollary 4.27.
Indeed, the minimization property of u in Nb+1

a−1 yields the estimate:

JNb
a
(u) � Mδ,

where M > 0 is independent of δ. By (4.28),

‖u − u+‖W 1,2(Nb
a ) �

√
(σ + Mδ)/μ � ε.

provided that δ and σ are sufficiently small. �
5. Gluing two mountain pass heteroclinics

Next a minimax heteroclinic, ûk , with J (ûk) close to b = b+ + b− will be obtained. Since v± are both upper
boundaries of gaps or limits of upper boundaries for a sequence of gaps, using Proposition 2.18 as in the proof of
Proposition 2.19, we find:

Proposition 5.1. There exists a constant, K > 0, such that for all k > K , there is a homoclinic v∗
k ∈ H(u−, u−) such

that

• v∗
k � uk = min(v+, τ kv−).

• J (v∗) < J (uk) < c.
k
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• J (v) � J (v∗
k ) for any v such that v∗

k � v � uk .
• As k → ∞, J (v∗

k ) → c,
• ‖v∗

k − uk‖C0(N ) → 0.
• For any a ∈R, as k → ∞,∥∥v∗

k − v+
∥∥

W 1,2(Na)
→ 0,

∥∥τ−kv∗
k − v−

∥∥
W 1,2(Na)

→ 0.

• If (ND+) holds,

‖vk − v+‖W 1,2(N ) → 0, k → ∞.

With wk = min(w+, τ kw−) as earlier, let

Ωk = {
u ∈ W : v∗

k � u � wk, u − v∗
k ∈ E

}
.

Then Σk ⊂ Ωk and

lim
k→∞ inf

Ωk

J = c = c+ + c−. (5.2)

Indeed, if not, there is δ > 0 such that for arbitrary large k there is w ∈ Ωk with J (w) � c− δ. Since Ωk is invariant
under the heat flow, we may assume that w is a solution of (PDE). For arbitrary small ε > 0 and large k, there is a ∈ Z

such that u+ − ε � v∗
k � w � u+ in Na+2

a−1 . Then by Lemma A.1, ‖w − u+‖
W 1,2(Na+1

a )
� Cε. If ε is small enough, we

can glue w to u+ in Na+1
a to obtain functions, q± ∈ Γ±, with

c � J (q+) + J (q−) < J (w) + δ,

a contradiction. �
Following standard notation, we write g : (A,B) → (X,Y ) if B ⊂ A, Y ⊂ X, and g : A → X is a continuous map

such that g(B) ⊂ Y . Let I 2 = [0,1] × [0,1]. Then we claim:

Proposition 5.3. Let δ ∈ (0, b − c). For any ε > 0, there is a constant, K > 0, such that for any k > K , there exists
a continuous map g : (I 2, ∂I 2) → (Ωb+ε

k ,Ωb−δ
k ) which is not homotopic to a map (I 2, ∂I 2) → (Ωb−

k ,Ωb−δ
k ) in the

class of maps (I 2, ∂I 2) → (Ωk,Ω
b−δ
k ).

Again, let Ωb−
k = {u ∈ Ωk: J (u) < b}. The proof of Proposition 5.3 will be postponed until later.

Take δ ∈ (0, b − c) and define

ak = inf
h

max
h(I 2)

J, (5.4)

where the infimum is taken over all maps h : (I 2, ∂I 2) → (Ωk,Ω
b−δ
k ) homotopic to g in the class of maps (I 2, ∂I 2) →

(Ωk,Ω
b−δ
k ).

By Proposition 5.3, ak → b as k → ∞. The above preliminaries yield:

Proposition 5.5. There exists a constant, K > 0, such that for any k > K , J has a critical point ûk ∈ Ωk such that
J (ûk) = ak .

Proof. By Proposition 5.3, for k > K and for any ε ∈ (0, δ), there exists a map g : (I 2, ∂I 2) → (Ω
ak+ε
k ,Ωb−δ

k )

which is not contractible to a map (I 2, ∂I 2) → (Ω
ak−
k ,Ωb−δ

k ). The set Ωk is invariant under the parabolic semiflow
Φt : Ωk → Ωk , t � 0. Let gt = Φt ◦ g. Then gt (∂I 2) ⊂ Ωb−δ

k for all t � 0, and hence gt (I
2) �⊂ Ω

ak−ε
k . Then the heat

flow argument of e.g. Theorem 3.1 gives a critical point in Ωk with ak � J � ak + ε. Letting ε → 0, we obtain a
critical point in J−1(ak) as in earlier proofs. �
Remark 5.6. If there is just one critical point in J−1(ak) and it is nondegenerate, then its Morse index will be 2.
Abusing terminology a bit, we say that ak is a critical level of index 2. With this terminology, mountain pass critical
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levels have index 1. More generally, we say that a is a critical level of index i if for arbitrary small δ > 0, we have
Hi(Ω

a+δ,Ωa−δ) �= 0. Thus there is an i-cycle C in Ωa+δ such that ∂C ⊂ Ωa−δ and C is not homologically equivalent
to a cycle in Ωa−δ . This implies the existence of a critical point u with |J (u) − a| < δ for all small δ > 0, and hence
with J (u) = a. If all critical points in J−1(a) are nondegenerate, then at least one will have Morse index i. Thus the
name.

Remark 5.7. For each large k we have constructed 7 homoclinics in Ωk . Four of them are given by local minimizers
of J with J close to c+ + c−, two are of mountain pass type with J close to c± + b∓, and one has J close to b+ + b−.
Generically, 4 have Morse index 0, 2 have Morse index 1, and one has Morse index 2.

Next the proof of Proposition 5.3 will be given. It follows from the next proposition. In it all homology groups are
taken with coefficients in Z2 and 1 is the generator of H2(I

2, ∂I 2) = Z2.

Proposition 5.8. For any ε ∈ (0, δ) and sufficiently large k, there exists a continuous map g : (I 2, ∂I 2) →
(Ωb+ε

k ,Ωb−δ
k ) which defines a nonzero element [g] = g∗(1) ∈ H2(Ωk,Ω

b−ν
k ) for any ν > 0.

Using Proposition 5.8, we have the:

Proof of Proposition 5.3. If a homotopy of g into a map (I 2, ∂I 2) → (Ωb−ν
k ,Ωb−δ

k ), ν > 0, in the class of maps
(I 2, ∂I 2) → (Ωk,Ω

b−δ
k ) were to exist, then [g] = 0 in H2(Ωk,Ω

b−ε
k ), contrary to Proposition 5.8. �

It remains to prove Proposition 5.8. Let X = Λ+ × Λ− with the product norm. Define continuous maps
φk : X → Ωk and ψ± = ψk± : Ωk → Λ± by

φk(u, v) = min
(
u, τ kv

)
, ψ+(u) = max(u, v+), ψ−(u) = τ−k max

(
u, τ kv−

)
.

Let ψk = (ψ+,ψ−) : Ωk → X. Arguing somewhat as in Section 3, we will show the maps ψk and φk are almost
inverses in the following sense. Let χk = ψk ◦ φk : X → X. Then we have:

Lemma 5.9. For any compact set A ⊂ X,

sup
(u,v)∈A

∥∥χk(u, v) − (u, v)
∥∥ → 0 as k → ∞.

Proof. Let χk± = ψ± ◦ φk . Then χk = (χk+, χk−) and

χk+(u, v) = max
(
min

(
u, τ kv

)
, v+

)
,

and similarly for χk−. We will show that

sup
(u,v)∈A

∥∥χk+(u, v) − u
∥∥ → 0 as k → ∞.

Let

Bk(u) = {
x ∈N : u(x) > τkv−(x)

} ⊂ Ck = {
v+ > τkv−

}
.

Then it is easy to see that χk+(u, v) = u in N \ Bk(u). In Bk(u) we have χk+(u, v) = v+ or χ+
k (u, v) = τ kv. But

‖u − v+‖W 1,2(Ck)
→ 0 as k → ∞

uniformly on any compact set of u ∈ Λ+. So only the set where χ+
k (u, v) = τ kv needs some care. This set is contained

in Dk = {v+ < τkv < w+} which has measure less than one: Dk ∩ τDk = ∅. �
Next define a functional F on X = Λ+ × Λ− by F(u, v) = J (u) + J (v).
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Lemma 5.10. For any u ∈ Λ+ and any v ∈ Λ−,

J
(
φk(u, v)

)
� F(u, v).

In addition, for any ε > 0, there exists a constant, K > 0, such that for k � K ,

F
(
ψk(u)

)
� J (u) + ε, u ∈ Ωk.

More briefly,

J ◦ φk � Fk and F ◦ ψk � J + ε for large k.

Thus F is a good approximation for J .

Proof of Lemma 5.10. The proof is similar to that of Lemma 3.4. The first inequality is easy:

J
(
φk(u, v)

) = J (u) + J (v) − J (w), where w = max
(
u, τ kv

)
,

and J (w) � 0 for all w ∈W .
To prove the second inequality, set U+ = {u < v+}, U− = {u < τkv−} and define

wk = max
(
v+, τ kv−

)
, wk = min

(
v+, τ kv−

)
.

Then formally

F
(
ψ(u)

) − J (u) = J
(
ψ+(u)

) + J
(
ψ−(u)

) − J (u)

= JU+(v+) + JU−
(
τ kv−

) − JU+∩U−(u) + JN\(U+∪U−)(u)

= JU+∪U−(wk) + JU+∩U−(wk) − JU+∩U−(u) + JN\(U+∪U−)(u).

For a more precise proof, argue as in the proof of Lemma 3.4. Next define

w = max(u,uk), z = min(u,uk).

Then

F
(
ψk(u)

) − J (u) = J (w) + J (wk) − J (z),

where again J (w) � 0. Since z ∈ Ωk , (5.2) implies that for any ε > 0 and large k (independent of u),

J (z) � c − ε/2, J (uk) � c + ε/2.

Thus F(ψk(u)) − J (u) � ε. �
Now the proof of Proposition 5.8 can be given.

Proof of Proposition 5.8. The idea goes back to Séré [26,27]. For any ε > 0 and large k, let h± : (I, ∂I ) →
(Λ

b±+ε/2
± ,Λ

c±± ) be mountain pass paths joining v± and w±. Define a map h : I 2 → X = Λ+ × Λ− by h(t, s) =
(h+(t), h−(s)). For sufficiently small ε > 0 and sufficiently large k,

F |h(I 2) � b + ε and F |h(∂I 2) � max{c+ + b−, c− + b+} + ε � b − 3δ.

Thus h : (I 2, ∂I 2) → (Xb+ε,Xb−3δ), where Xa = {u ∈ X: F(u) � a}. For any ν ∈ (0,3δ), h defines an element [h]
in H2(X,Xb−ν).

We claim that

[h] �= 0 in H2
(
X,Xb−ν

)
. (5.11)

Indeed by the Kunneth formula, nonzero elements [h±] ∈ H1(Λ±,Λ
b±−ν/2
± ) define a nonzero element [h+]⊗ [h−] in

H2
(
X,

(
Λ

b+−ν/2
+ × Λ−

) ∪ (
Λ+ × Λ

b−−ν/2
−

)) ∼= H1
(
Λ+,Λ

b+−ν/2
+

) ⊗ H1
(
Λ−,Λ

b−−ν/2
−

)
.
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Consider the inclusion

j : (X,Xb−ν
) → (

X,
(
Λ

b+−ν/2
+ × Λ−

) ∪ (
Λ+ × Λ

b−−ν/2
−

))
and let

j∗ : H2
(
X,Xb−ν

) → H2
(
X,

(
Λ

b+−ν/2
+ × Λ−

) ∪ (
Λ+ × Λ

b−−ν/2
−

))
be the corresponding homomorphism of homology groups. Then [h+] ⊗ [h−] = j∗([h]) �= 0. Hence [h] �= 0 in
H2(X,Xb−ν). �

By Lemma 5.10, φk : (Xb+ε,Xb−3δ) → (Ωb+ε
k ,Ωb−3δ

k ). Set g = φk ◦ h. Then g : (I 2, ∂I 2) → (Ωb+ε
k ,Ωb−3δ

k ).
We will show that for any ε > 0 and large k the map g satisfies the condition of Proposition 5.8, i.e. φ∗[h] = [g] �= 0
in H2(Ωk,Ω

b−ε
k ). For large k, we have ψk : (Ωk,Ω

b−3δ
k ) → (X,Xb−2δ) and ψk(Ω

b−ε
k ) ⊂ Xb−ε/2. If [g] = 0 in

H2(Ωk,Ω
b−ε
k ), then (ψk)∗[g] = (χk)∗[h] = [χk ◦ h] = 0 in H2(X,Xb−ε/2).

Since h(I 2) ⊂ X is compact, Lemma 5.9 implies that for any σ > 0 and large enough k, we have ‖χ(u) − u‖ < σ

for all u ∈ h(I 2). Thus for large k there is a homotopy joining χ ◦ h and h in the class of maps (I 2, ∂I 2) →
(X,Xb−ε/2). Then [h] = 0 in H2(X,Xb−ε/2), a contradiction to (5.11) for large k. �

Next we consider the limit of a critical point ûk ∈ Ωk given by Proposition 5.3 as k → ∞. Let

Ω± = {u ∈ E+: v± � u � w±}.

Proposition 5.12. As k → ∞,

• J (ûk) = ak → b = b− + b+.
• There is a subsequence, k → ∞, and heteroclinics z± ∈ Ω± such that ûk and τ−kûk converge in C2

loc to z±
respectively.

Proof. By Corollary A.5 the sequence ûk contains a subsequence convergent in C2
loc to a solution z+ ∈ Ω+. It is

evident that z+ is a homoclinic solution. The same argument works for τ−kûk . �
It is natural to suspect that J (z±) = b±. We pose this as:

Conjecture. Suppose condition (ND+) holds. Then

• J (z±) = b±.
• Along a subsequence k → ∞, we have

‖ζk − ûk‖ → 0, ζk = min
(
z+, τ kz−

)
.

Remark 5.13. As we will show in a future paper, the same ideas used in the study of the 2-transition cases in
Sections 3–5 can be employed to find multitransition homoclinic or heteroclinic solutions of (1.1). E.g. to get multi-
transition homoclinics, choose k ∈ N, let Ak be the set of a = (a+

1 , a−
1 , . . . , a+

k , a−
k ) such that a±

i = c± or b± for
i = 1, . . . , k and for P > 0, let MP,k be the set of m = (m+

1 ,m−
1 , . . . ,m+

k ,m−
k ) ∈ Z

2k such that m−
i − m+

i � P for
i = 1, . . . , k and m+

i+1 − m−
i � P for i = 1, . . . , k − 1. Then we can show that if P is large enough, there exists a

homoclinic solution, u = uam, of (1.1) with J (u) near
∑p

i=1(a
+
i + a−

i ). The proof again involves the construction of
an invariant region for the heat flow and a variational argument.

Appendix A

This appendix consists of 3 parts. First in Appendix A.1 some technical results which are used several times
in the paper will be presented. Then in Appendix A.2, we state and prove a result, Theorem A.12, that contains
Proposition 2.18. Lastly in Appendix A.3, the proof of one of the technical tools required in Appendix A.2 will be
given.
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A.1. Technical results

Let α ∈ (0,1).

Lemma A.1. Let a < b−2 be integers and u,v any solutions of (1.1) in Nb+1
a−1 . Then there is a constant, C > 0, which

is independent of a, b,u, v such that φ = u − v satisfies

‖φ‖W 2,2(Nb
a ) � C‖φ‖

L2(Nb+1
a−1 )

, (A.2)

‖φ‖C2,α(Nb
a ) � C‖φ‖

L2(Nb+1
a−1 )

, (A.3)

‖φ‖C2,α(Nb
a ) � C‖φ‖

L∞(Nb+1
a−1 )

. (A.4)

Proof. Standard linear elliptic estimates will be used. Since F is 1-periodic it suffices to prove (A.2) for a = 0 and
b = 1. Subtracting the equations for u,v, we obtain an expression of the form �φ = f , where |f | � M1|φ| and
M1 = ‖Fuu‖L∞ . Using the L

p

loc linear elliptic estimates [13] yields for some constant M2,

‖φ‖W 2,p(N1
0 ) � M2

(‖f ‖Lp(N2−1)
+ ‖φ‖Lp(N2−1)

)
� M2(M1 + 1)‖φ‖L2(N2−1)

.

For p = 2 this gives (A.2).
To prove (A.3), take p > n. The Sobolev inequality provides a C1,α(N2−1) bound for φ in terms of the W 2,p(N2−1)

norm of φ. Then the local linear Schauder estimate gives a C2,α(N1
0 ) estimate for φ.

In fact (A.3) implies (A.2) and (A.4). �
Combining Lemma A.1 and the Arzela–Ascoli Theorem, we immediately find:

Corollary A.5. Any sequence (uk) ⊂ W of solutions to (PDE) contains a subsequence converging in C2
loc(N ) to a

solution u ∈W .

To get W 1,2 convergence, additional conditions are needed.

Lemma A.6. Let (uk) be a sequence of solutions of (PDE) such that τw+ � uk � w+ in Na . Then (uk) contains a
subsequence convergent in W 1,2(Na−1) and C2(Na−1).

Proof. By Corollary A.5, there is a solution, U , of (1.1) such that along a subsequence, uk → U in C2
loc(N

a). Because
of this C2

loc convergence and (A.3), it suffices to show that for any ε > 0, ‖uk − U‖L2(Nb) � ε for some b near −∞
and large k.

We have

‖uk − U‖L2(Nb+1) =
∫

Nb+1

(uk − U)2 dx � max(u+ − u−)

∫

Nb+1

|U − uk|dx.

Now since τw+ � U � w+,∫

Nb+1

|U − uk|dx �
∫

Nb+1

(w+ − τw+) dx =
∫

Nb+1
b

w+ dx −
∫
T0

u− dx → 0

as b → −∞ and the result follows. �
Remark. A similar statement holds for solutions in Na .
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A.2. Proof of Proposition 2.18

Our main goal in this section is to give the proof of Proposition 2.18. A result related to parts of Proposition 2.18
was already proved in [25]. However unlike [25] where the goal was simply to construct a 2-transition homoclinic
solution of (1.1), here we seek one that shadows two particular heteroclinics. This requires a somewhat different
construction that can also be used to simplify the argument of [25]. Thus below, we present Theorem A.12 which
implies both Theorem 6.8 of [25] and Proposition 2.18. First some preparation is required.

Let c = c− + c+ and wk = min(w+, τ kw−). The solution uk in Proposition 2.18 will be found by minimizing the
functional J on a set Yk ⊂W which will be defined next. For simplicity, let

ρ(u) = ‖u − u+‖L2(T0)
.

Set m = (m+,m−) ∈ Z
2 and r = (r+, r−) with

0 < r± < ρ(u−)

For k ∈ N, define

Yk = Yk,m,r = {
u ∈W

∣∣ u � wk, ρ
(
τm+u

)
� r+, ρ

(
τm−+ku

)
� r−

}
.

and set

ck = inf
u∈Yk

J (u). (A.7)

The parameters m,r will be selected so that J attains its minimum ck in Yk , and any minimizer uk lies in the interior
of Yk . Hence uk ∈ H(u−, u−) is a homoclinic solution of (1.1).

To choose m and r , note first that the sets, M±, of minimal heteroclinics are ordered and ρ(u) is a strictly mono-
tone function on M±. Therefore ρ(τνv±) < ρ(τνw±) for all ν ∈ Z and as ν → ±∞, ρ(τνv±) → 0. For any m±,
a corresponding r± can be chosen so that

ρ
(
τm±v±

)
< r± < ρ

(
τm±w±

)
. (A.8)

If m+ > 0 and −m− > 0 are sufficiently large, then r± will be as close to 0 as we please.
Let

Γ ∗± = {
u ∈ Γ±

∣∣ ρ(u) = r±
}
.

By item 3 of Proposition 2.6, we have:

Proposition A.9.

c∗± = inf
Γ ∗±

J (u) > c±.

One further smallness condition will be imposed on r± and then any pair m,r satisfying (A.8) is suitable for our
purposes. Before imposing the condition, the following proposition is needed.

Set

Ar = {
u ∈ Γ (u−, u−)

∣∣ ρ(u) � r
}

and define

β(r) = inf
Ar

J.

Then 0 < β(r) < c. Indeed, for appropriate j and large k, τ−jwk ∈ Ar , so β(r) � J (τ−jwk) = J (wk) and as was
shown preceding Proposition 2.18, J (wk) < c. Now we have:

Proposition A.10. limr→0 β(r) = c.
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So as not to delay the exposition, we postpone the proof of Proposition A.10 until Section 7.3.
Now we are ready to state Theorem A.12. Choose r± so that β(r±) > c/2. According to (A.8), this also means that

|m±| are sufficiently large. The functions w+ and τ kw− satisfy, respectively, the r+, r− inequalities in the definition
of Yk . Therefore for any large k, wk belongs to Yk , so

0 � ck = inf
u∈Yk

J (u) � J (wk) < c. (A.11)

Theorem A.12. There is a constant, K > 0, such that for any k ∈N with k � K ,

• J attains its minimum ck on Yk .
• Any minimizer, uk , lies in the interior of Yk and is a classical solution of (1.1).
• As k → ∞, ‖uk − wk‖L∞(N ) → 0.
• For any a ∈R,

‖uk − w+‖W 1,2(Na) → 0,
∥∥τ−kuk − w−

∥∥
W 1,2(Na)

→ 0 as k → ∞.

Theorem A.12 implies Proposition 2.18. Indeed, item 1 follows since uk is in the interior of Yk . If uk � v � wk ,
then v ∈ Yk , so J (v) � ck giving the second item. The third was shown prior to the statement of Proposition 2.18 and
the remaining item is copied verbatim.

For the proof of Theorem A.12, Proposition 6.27 from [25] which is useful for cutting and pasting arguments will
be needed.

Proposition A.13. Let σ > 0 and M > 0. There exists an �0 = �0(σ,M) > 0 with the property that whenever u ∈ W
and J (u) � M , then any interval of length larger than �0 contains an integer, i, such that

‖u − u−‖
L2(Ni+3

i−2 )
� σ or ‖u − u+‖

L2(Ni+3
i−2 )

� σ. (A.14)

Thus if u is also a solution of (1.1), by Lemma A.1,

‖u − u−‖
C2,α(Ni+2

i−1 )
� Cσ or ‖u − u+‖

C2,α(Ni+2
i−1 )

� Cσ. (A.15)

Proof of Theorem A.12. Arguing as in the proof of Theorem 6.8 of [25], (a) there is a uk ∈ Yk such that J (uk) = ck ,
(b) uk is a solution of (1.1) except possibly in the integral constraint regions, and (c) u− < uk < u+. To prove item 2,
we will show that there is strict inequality in the two integral constraints for large k:

ρ
(
τm+uk

)
< r+, ρ

(
τm−+k

)
< r− (A.16)

and therefore by a standard elliptic regularity argument, uk is a solution of (1.1) in the corresponding constraint regions
and therefore in all of N .

The arguments being the same, the first inequality (A.16) will be proved. Note that uk is a solution of (1.1) in
N

m−+k−3
m++3 . Since J (uk) is bounded independently of k, by Proposition A.13, for any σ > 0 and sufficiently large k,

there is i ∈ Z with

m+ + 3 � i � m− + k − 3

such that one of the following inequalities hold:

‖uk − u−‖
C2,α(Ni+2

i−1 )
� Cσ, (A.17)

‖uk − u+‖
C2,α(Ni+2

i−1 )
� Cσ. (A.18)

We claim that (A.18) holds. Indeed, suppose that (A.17) is satisfied. By the choice of r±, there is a δ > 0 such that
β(r+) + β(r−) > c + δ. The function, uk , can be modified in Ni+1

i to obtain two functions φ± ∈W such that

φ+|Ni = uk, φ+|Ni+1 = u−, φ−|Ni+1 = uk, φ−|Ni = u−,
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and φ± are linear in x1 in Ni+1
i . Then for large k,∣∣J (uk) − J (φ+) − J (φ−)

∣∣ � δ. (A.19)

Since τ−m+φ+ ∈ Ar , τ−(m−+k)φ− ∈ Ar , by Proposition A.10 and (A.19), we have

J (uk) � J (φ−) + J (φ+) − δ � β(r+) + β(r−) − δ > c. (A.20)

But for large k, this is contrary to limk→∞ J (uk) = c. Thus (A.18) holds.
Next we similarly modify uk in Ni+1

i to obtain ψ± ∈ Γ± such that:

ψ+|Ni = uk, ψ+|Ni+1 = u+, ψ−|Ni+1 = uk, ψ−|Ni = u+, (A.21)

and for any δ > 0 and large k,∣∣J (uk) − J (ψ+) − J (ψ−)
∣∣ � δ. (A.22)

Since J (ψ±) � c± and J (uk) → c as k → ∞, (A.22) shows∣∣J (ψ±) − c±
∣∣ � δ (A.23)

for large k. But if ρ(τ−m+uk) = r+, then τ−m+ψ+ ∈ Γ ∗+. Hence, by Proposition A.9,

J (ψ+) � c∗+ > c+. (A.24)

If δ is small enough, (A.23) and (A.24) are contradictory. Thus item 2 of Theorem A.12 is proved.
The limit results remain. To get item 3, let σ > 0 and let k and i be such that (A.18) holds. Define ψ± ∈ Γ± as in

(A.21). Choose δ > 0. If k is sufficiently large, (A.23) holds. Let ε ∈ (0,min(r+, r−)). Possibly making δ still smaller,
by Proposition 2.6, there are functions U± ∈ M± such that ‖U± − ψ±‖W 1,2(Tj ) � ε for all j ∈ Z. For j � i − 1,
ψ+ = uk on Tj . Therefore

‖uk − U+‖L2(Tj ) � ε (A.25)

for all j � i − 1. Since v+ does not satisfy the integral constraint at m+, it can be assumed that U+ � w+. But
ψ+ � w+, so if U+ satisfies (A.25), so does w+. Thus

‖uk − w+‖L2(Tj ) � ε, j < i. (A.26)

Then by Lemma A.1,

‖uk − w+‖C2,α(Tj ) � Cε, j < i − 1. (A.27)

Now either wk = w+ or wk lies between w+ and uk . Therefore in either event, by (A.27),

‖uk − wk‖L∞(Ni) � ‖uk − w+‖L∞(Ni) � Cε. (A.28)

A similar argument beginning with ψ− also yields (A.28) in Ni+2. Finally by (A.18), we have

‖uk − wk‖L∞(Ni+2
i−1 )

� ‖uk − u+‖
L∞(Ni+2

i−1 )
� Cσ. (A.29)

Combining these estimates for uk − wk yields item 3.
It remains to prove item 4. By Corollary A.5, there is a solution, U , of (1.1) such that along a subsequence,

uk → U in C2
loc. By (A.26), U = w+. Moreover the uniqueness of the limit function, w+, implies the entire sequence,

uk , converges to w+ in C2
loc. Choose b so that b + 1 � min(a,m+). Then as k → ∞, uk → w+ in C2(Na+1

b ). Hence
for large k,

τw+ � v+ < uk < w+ in Na+1
b . (A.30)

Suppose that (A.30) holds in Na+1. Then Lemma A.6 shows uk → w+ in W 1,2(Na) and the first part of item 4 is
proved. The second follows in a similar fashion.

To verify (A.30) for Na+1, suppose uk � v+ somewhere in Na+1. Then uk �≡ max(uk, v+) ≡ Ψk on Na+1. Ex-
tend Ψk to N via Ψk = uk on Na+1. Then Ψk ∈ Yk so J (Ψk) � J (uk). If J (Ψk) = J (uk), Ψk is a solution of (1.1) with
Ψk � uk . But Ψk = uk in Na+1

b so by the Maximum Principle, Ψk ≡ uk , a contradiction. Hence J (Ψk) > J(uk). We
will show that this last inequality is impossible.
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Set Ok = {x ∈ Nb | v+(x) > uk(x)}. By the minimality property of v+, JOk
(uk) � JOk

(v+). On the other hand, uk

also has a minimality property in Nb so JOk
(uk) � JOk

(v+). Consequently JOk
(uk) = JOk

(v+). But then,

J (Ψk) = JOk
(v+) + JN \Ok

(uk) = J (uk),

a contradiction and (A.30) is proved. �
A.3. Proof of Proposition A.10

Let δ > 0 be small. Choose any w ∈ Ar such that J (w) � β + δ. Since w ∈ W and J (w) < ∞, we have
‖w − u−‖W 1,2(Ti )

→ 0 as |i| → ∞. Hence for large i we can glue w to u− in T±i to obtain v ∈ Ar such that v = u−
in N−i ∪ Ni and J (v) � β + 2δ. Observe that JNi−i

has a minimizer, u, in
{
z ∈ Ar

∣∣ z|N−i∪Ni
= u−

}
.

Then J (u) � β + 2δ and u is also a minimizer of JT0 on

S(u) = {
ψ ∈ Ar

∣∣ ψ |N0∪N1
= u

}
.

We claim there exists a constant, K > 0, independent of r , and points a, b ∈ (0,1), depending on r and u, such that
b − a > 1/2 and

‖u − u+‖W 1,2(Nb
a ) � Kr. (A.31)

This inequality implies Proposition A.10. Indeed, let ζ = (a + b)/2 and let 0 � φ(x1) � 1 be a smooth function such
that φ(x1) = 0 for x1 /∈ [a, b], φ(ζ ) = 1, and |φ′| � 4. Set u∗ = u + φ(u+ − u). Then u∗ ∈ Ar satisfies u∗ = u+ when
x1 = ζ and by (A.31), for small r ,

J
(
u∗) � J (u) + δ � β + 3δ. (A.32)

Let q− = u∗ for x1 � ζ and = u+ for x1 � ζ . Similarly let q+ = u+ for x1 � ζ and = u∗ for x1 � ζ . Then q± ∈ Γ±
and so J (u∗) = J (q−) + J (q+) � c. Thus β � c − 3δ. Since δ is arbitrary, Proposition A.10 is proved.

Next we prove (A.31). If ρ(u) < r , then u is a solution of (1.1) in N1
0 and (A.31) follows from the argument of

Lemma A.1. Thus assume that ρ(u) = r . By Lemma 2.22 of [25], there is a constant K1 > 0 such that for all z ∈W ,

JT0(z) � J (z) + K1. (A.33)

For z = u, by (A.32), J (u) � c. The form of JT0 gives a constant, M3 > 0 and independent of r such that
‖∇u‖L2(T0)

� M3. Hence there exists a constant M4 > 0 such that for any r > 0,

‖∇u − ∇u+‖L2(T0)
� M4.

Let Sa = {a} ×T
n−1. Since∫

[0,1]×Tn−1

|u − u+|2 dx = r2 and
∫

[0,1]×Tn−1

|∇u − ∇u+|2 dx � M2
4 ,

the measure of the set

B =
{
a ∈ [0,1]:

∫
Sa

|u − u+|2 dS > 4r2 or
∫
Sa

|∇u − ∇u+|2 dS > 4M2
4

}

is less than 1/2. We write dS = dx2 · · ·dxn. Hence we can find points a, b in

A = [0,1] \ B =
{
a ∈ [0,1]:

∫
Sa

|u − u+|2 dS � 4r2,

∫
Sa

|∇u − ∇u+|2 dS � 4M2
4

}

such that b − a � 1/2.
Since u is a minimizer of JT0 on the hypersurface ρ(u) = r in {w ∈ W 1,2(T0): w|∂T0 = u}, it readily follows that

there is a Lagrange multiplier, λ ∈R, such that

∇JT0(u) = −λ∇ρ2(u)
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i.e. for all χ in W
1,2
0 (T0),∫

T0

(∇u · ∇χ + Fu(x,u)χ
)
dx = −2λ

∫
T0

(u − u+)χ dx. (A.34)

We claim that λ � 0. To see this, let ζ = (u+−u)φ where 0 � φ � 1 is smooth with support in T0. Then u+εζ ∈ Ar

for 0 � ε � 1, so

J (u) � J (u + εζ ) = J (u) + 2λε

∫
T0

(u − u+)2φ dx + o(ε).

as ε → 0. Hence λ � 0.
Now (A.34) and elliptic regularity arguments imply u ∈ C2(T0) and satisfies

−�u + Fu(x,u) = −λ(u − u+)

in T0. Let ψ = u − u+. Then integrating

−ψ�ψ + ψ
(
Fu(x,u+ + ψ) − Fu(x,u+)

) = −2λψ2 � 0

over Nb
a yields

−
∫

∂Nb
a

ψ∇ψ · ν dS +
∫

Nb
a

|∇ψ |2 dx � M1

∫

Nb
a

ψ2 dx � M1r
2,

where ν = ±e1 denotes the unit outward normal vector to ∂Nb
a . Since a, b ∈ A,∣∣∣∣

∫

∂Nb
a

ψ∇ψ · ν dS

∣∣∣∣ �
∫
Sa

|ψ∇ψ |dS +
∫
Sb

|ψ∇ψ |dS � 2
√

16r2M2
4 = 8rM4.

from which (A.31) follows with K = 8M4 + M1 + 1. �
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