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Abstract

This paper is concerned with stability analysis of asymptotic profiles for (possibly sign-changing) solutions vanishing in finite
time of the Cauchy–Dirichlet problems for fast diffusion equations in annuli. It is proved that the unique positive radial profile
is not asymptotically stable, and moreover, it is unstable for the two-dimensional annulus. Furthermore, the method of stability
analysis presented here will be also applied to exhibit symmetry breaking of least energy solutions.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let us consider the Cauchy–Dirichlet problem for the Fast Diffusion Equation (FDE for short),

∂t

(|u|m−2u
) = �u in Ω × (0,∞), (1)

u = 0 on ∂Ω × (0,∞), (2)

u(·,0) = u0 in Ω, (3)

where 2 < m < 2∗ := 2N/(N − 2)+ and Ω is an annulus AN(a, b),

Ω = AN(a, b) := {
x ∈R

N : a < |x| < b
}
, (4)

with N � 2 and 0 < a < b. By putting w = |u|m−2u, Eq. (1) is transformed to a usual form,

∂tw = �
(|w|m′−2w

)
in Ω × (0,∞),
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where m′ denotes the Hölder conjugate of m, i.e., m′ = m/(m − 1) ∈ (1,2). FDEs arise in the studies of plasma
physics, kinetic theory of gases, solid state physics (see [2,4] and also [20]) and so on. There are many contributions
to the fast diffusion equation (see [3,5–9,13,16,21]).

From here to the end of Section 3, Ω is assumed to be any bounded smooth domain in R
N . According to the

celebrated work of Berryman and Holland [3], every solution u = u(x, t) of (1)–(3) vanishes at a finite time t∗ = t∗(u0)

with the rate of (t∗ − t)
1/(m−2)
+ , and moreover, such a vanishing solution u = u(x, t) has an asymptotic profile φ = φ(x)

as the limit

φ(x) := lim
t↗t∗

(t∗ − t)−1/(m−2)u(x, t) (5)

(see also [16,21]). Each asymptotic profile φ is characterized as a nontrivial solution of the Dirichlet problem for the
Emden–Fowler equation (or Lane–Emden equation) with the constant cm := (m − 1)/(m − 2) > 0,

−�φ = cm|φ|m−2φ in Ω, (6)

φ = 0 on ∂Ω, (7)

which is the Euler–Lagrange equation of the energy functional,

J (u) := 1

2

∫
Ω

∣∣∇u(x)
∣∣2

dx − cm

m

∫
Ω

∣∣u(x)
∣∣m dx for u ∈ H 1

0 (Ω).

Moreover, the set of all asymptotic profiles of solutions for (1)–(3) coincides with the set S of all nontrivial solutions
for (6), (7) (see [1] for more details). We also refer the reader to [13] and [7] for more detailed analysis of the
convergences (5) to asymptotic profiles.

In [1], the authors introduced the notions of (asymptotic) stability and instability of asymptotic profiles for FDEs
(see Definition 3.4 in Section 3) and also provided the following criteria (see Theorems 3.5 and 3.6 in Section 3 for
more details):

• Each least energy solution φ of (6), (7) is (resp., asymptotically) stable in the sense of asymptotic profiles for
FDEs, if φ is isolated from the other least energy (resp., sign-definite) solutions. In particular, if φ is a unique
positive solution, then it is asymptotically stable.

• All sign-changing solutions are not asymptotically stable profiles. Moreover, they are unstable, if they are isolated
from the other profiles having lower energies.

These criteria enable us to determine the (asymptotic) stability and the instability of profiles in many cases. For
instance, when Ω is a ball in R

N , due to Gidas, Ni and Nirenberg [14], the Dirichlet problem (6), (7) admits the
unique positive solution φ, which is radially symmetric. Then from the stability criteria stated above, φ turns out
to be asymptotically stable. As for the one-dimensional case, all the nontrivial solutions of (6), (7) are completely
classified as follows: unique positive and negative solutions are asymptotically stable and all sign-changing solutions
are unstable.

However, the stability criteria described above do not necessarily cover all situations. Indeed, when Ω is an annulus,
the Dirichlet problem (6), (7) admits a unique positive radial solution; however, it does not take the least energy among
nontrivial solutions (the least energy is attained by another positive solution without radial symmetry), provided that
the annulus is sufficiently thin (see [11]). Such a positive radial solution is beyond the scope of the foregoing stability
criteria.

The main purpose of this paper is to investigate the stability of the positive radial profile for FDEs in the annulus.
As a by-product, we shall also exhibit symmetry breaking of least energy solutions for the Emden–Fowler equation
(6), (7) in annuli by applying an argument developed here for the stability analysis of asymptotic profiles for FDEs.
Symmetry breaking of least energy solutions for (6), (7) in annuli has already been observed by Coffman [11], Li [17]
and Byeon [10], provided that the thickness of the annulus is sufficiently thin. Our method of proof can provide a
quantitative sufficient condition on the thickness of annuli for symmetry breaking.

The content of this paper is the following. Section 2 provides preliminary facts on the variational analysis of the
Emden–Fowler equation. Basic formulations of our stability analysis will be reviewed in Section 3. The main results
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are given in Section 4, where we shall prove that the unique radial profile is not asymptotically stable, and moreover
it is unstable when N = 2.

Notation. The positive part of each number r ∈ R is denoted by (r)+, i.e., (r)+ := max{r,0}. We denote the
Lp(Ω)-norm by ‖ · ‖p and the H 1

0 (Ω)-norm by ‖ · ‖1,2, which is defined by

‖u‖1,2 := ‖∇u‖2 =
(∫

Ω

|∇u|2 dx

)1/2

.

When Ω is an annulus AN(a, b) := {x ∈ R
N : a < |x| < b}, we denote by L2

r (Ω) the set of all radial functions,
u(x) = u(|x|), in L2(Ω) equipped with the norm,

‖u‖L2
r (Ω) :=

( b∫
a

u(r)2rN−1 dr

)1/2

.

Furthermore, we denote by H 1
0,r (Ω) the set of all radial functions in H 1

0 (Ω).

2. Variational analysis of the Emden–Fowler equation

In this section, we summarize notation and definitions related to the variational analysis of the Dirichlet prob-
lem (6), (7) for later use. Let us first define the Lagrangian functional J : H 1

0 (Ω) → R by

J (u) := 1

2
‖∇u‖2

2 − cm

m
‖u‖m

m for u ∈ H 1
0 (Ω),

whose critical points solve (6), (7) in the distribution sense. We denote by S the set of all nontrivial solutions of (6),
(7), i.e., nontrivial critical points of J . Moreover, a solution u is called a least energy solution if it minimizes J among
all the nontrivial solutions of (6), (7). As will be explained in Proposition 2.1 below, every least energy solution is sign-
definite. Throughout this paper, a least energy solution is always supposed to be positive without any loss of generality.

The Nehari manifold N associated with J is defined by

N := {
u ∈ H 1

0 (Ω) \ {0}: 〈
J ′(u),u

〉
H 1

0 (Ω)
= 0

}
= {

u ∈ H 1
0 (Ω) \ {0}: ‖∇u‖2

2 = cm‖u‖m
m

}
,

and then, N includes S by definition. Furthermore, we find by the definitions of J and N that

‖∇u‖2
2 = cm‖u‖m

m = 2m

m − 2
J (u) for u ∈N . (8)

Now, let us define the Rayleigh quotient,

R(u) := ‖∇u‖2
2

‖u‖2
m

for u ∈ H 1
0 (Ω) \ {0}. (9)

Then R(u) has a positive lower bound in H 1
0 (Ω) \ {0} by the Sobolev imbedding. For any u ∈ H 1

0 (Ω) \ {0}, there
exists a unique constant c > 0 such that cu ∈ N . Moreover, R(cu) = R(u) for all c > 0. Therefore it holds that

inf
{
R(u): u ∈ H 1

0 (Ω) \ {0}} = inf
{
R(u): u ∈N

}
> 0. (10)

The following proposition is well known.

Proposition 2.1 (Variational properties of least energy solutions). The following (i)–(iii) are equivalent:

(i) u is a least energy solution of (6), (7),
(ii) u is a minimizer of J over N ,

(iii) u is a minimizer of R over N .

Furthermore, every least energy solution is sign-definite.
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3. Stability analysis of asymptotic profiles

In this section, we briefly review related materials on the stability analysis of asymptotic profiles of vanishing
solutions for (1)–(3). Throughout this paper, we are concerned with solutions of (1)–(3) defined by

Definition 3.1 (Solutions of FDEs). A function u : Ω × (0,∞) → R is said to be a solution for (1)–(3) if the following
conditions are all satisfied:

• u ∈ C([0, T ];H 1
0 (Ω)) and |u|m−2u ∈ C1([0, T ];H−1(Ω)) for all T > 0.

• It follows that

〈(|u|m−2u
)′
(t), φ

〉
H 1

0
+

∫
Ω

∇u(x, t) · ∇φ(x)dx = 0 for all t ∈ (0,∞) and φ ∈ H 1
0 (Ω),

where 〈·,·〉H 1
0

denotes the duality pairing between H 1
0 (Ω) and its dual space H−1(Ω) and ′ = d/dt .

• u(·,0) = u0.

We denote by t∗(u0) the extinction time of the unique solution u = u(x, t) of (1)–(3) for each initial data u0 and
simply write t∗ if no confusion can arise. Then t∗(·) can be regarded as a functional defined on H 1

0 (Ω), and moreover,
t∗(u0) is positive and finite for any u0 �≡ 0 and t∗(0) = 0.

The asymptotic profile of a vanishing solution u = u(x, t) is defined in the following:

Definition 3.2 (Asymptotic profiles). Let u0 ∈ H 1
0 (Ω) \ {0} and let u = u(x, t) be a solution for (1)–(3) vanishing at

a finite time t∗ > 0. A function φ ∈ H 1
0 (Ω) is called an asymptotic profile (or a profile, if no confusion arises) of u if

there exists an increasing sequence tn → t∗ such that

lim
tn→t∗

∥∥(t∗ − tn)
−1/(m−2)u(tn) − φ

∥∥
1,2 = 0.

The following transformation is useful to investigate asymptotic profiles of vanishing solutions u = u(x, t)

for (1)–(3):

v(x, s) = (t∗ − t)−1/(m−2)u(x, t) and s = log
(
t∗/(t∗ − t)

)
. (11)

Then a limit of v(·, sn) as sn → ∞ (equivalently, tn ↗ t∗) is an asymptotic profile of u(x, t). Moreover, (1)–(3) is
rewritten in terms of v as

∂s

(|v|m−2v
) = �v + cm|v|m−2v in Ω × (0,∞), (12)

v = 0 on ∂Ω × (0,∞), (13)

v(·,0) = v0 in Ω, (14)

where cm and v0 are given by

cm := m − 1

m − 2
> 0 and v0 := t∗(u0)

−1/(m−2)u0. (15)

Here multiplying (12) by ∂sv and integrating this over Ω , one can obtain

d

ds
J
(
v(s)

)
� 0 for a.e. s > 0, (16)

which implies that the function s �→ J (v(s)) is non-increasing (see Section 1 or Section 2 for the definition of J ), that
is, J becomes a Lyapunov functional.

The following proposition is concerned with the existence of asymptotic profiles and their characteristics (see [3,
16,21] and also [1] for its proof).
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Proposition 3.3 (Asymptotic profiles). Assume that 2 < m < 2∗. Let u be a solution of (1)–(3) with u0 ∈ H 1
0 (Ω) \ {0}.

Then for any increasing sequence tn → t∗, there exist a subsequence (n′) of (n) and a solution φ ∈ H 1
0 (Ω)\{0} of (6),

(7) such that

lim
tn′→t∗

∥∥(t∗ − tn′)−1/(m−2)u(tn′) − φ
∥∥

1,2 = 0,

equivalently,

lim
sn′→∞

∥∥v(sn′) − φ
∥∥

1,2 = 0

with a function v(·) and a sequence (sn) given by the transformation (11).

In [1], the authors introduced the notions of stability and instability of asymptotic profiles for vanishing solutions
of (1)–(3), and moreover, they actually performed stability analysis of profiles. An asymptotic profile φ is said to be
stable, if the rescaled function (t∗ − t)−1/(m−2)u(x, t) of any solution u = u(x, t) of (1)–(3) with the extinction time t∗
will stay within an arbitrarily small neighborhood of φ whenever the initial data u(x,0) = u0(x) lies in a sufficiently
small neighborhood of φ. Moreover, φ is said to be unstable, if it is not stable. By virtue of the transformation (11),
these notions of stability and instability for asymptotic profiles can be translated to those for stationary solutions
of (12)–(14). Then we have to pay attention to the fact that, due to the relation (15), the initial data v0 of v = v(x, s)

must lie on the set,

X := {
t∗(u0)

1/(m−2)u0: u0 ∈ H 1
0 (Ω) \ {0}}

= {
v0 ∈ H 1

0 (Ω) \ {0}: t∗(v0) = 1
}

(see Proposition 6 of [1]), even though u0 can be taken from the whole of the energy space H 1
0 (Ω). We notice that if

v0 ∈ X , then the corresponding solution v of (12)–(14) stays in X for all t � 0 (see Proposition 5 of [1]). Hence X is
an invariant set, and therefore, (12)–(14) generates a dynamical system in X . Moreover, all the nontrivial stationary
solutions belong to X . It was also proved in [1] that X is an unbounded surface surrounding the origin in H 1

0 (Ω) and
homeomorphic to the unit sphere of H 1

0 (Ω) (see Proposition 10 of [1]).
Now, the (asymptotic) stability and instability of asymptotic profiles are defined as follows (see [1]):

Definition 3.4 (Stability and instability of profiles). Let φ ∈ H 1
0 (Ω) \ {0} be an asymptotic profile of a vanishing

solution for (1)–(3), equivalently, φ is a nontrivial solution of (6), (7).

(i) φ is said to be stable, if for any ε > 0 there exists δ > 0 such that any solution v of (12), (13) satisfies

sup
s∈[0,∞)

∥∥v(s) − φ
∥∥

1,2 < ε,

whenever v(0) ∈ X and ‖v(0) − φ‖1,2 < δ.
(ii) φ is said to be unstable, if φ is not stable.

(iii) φ is said to be asymptotically stable, if φ is stable, and moreover, there exists δ0 > 0 such that any solution v

of (12), (13) satisfies

lim
s↗∞

∥∥v(s) − φ
∥∥

1,2 = 0,

whenever v(0) ∈ X and ‖v(0) − φ‖1,2 < δ0.

Here we stress that the positivity of solution is not supposed in this frame. Let us recall the stability criteria obtained
in [1].

Theorem 3.5 (Stability of profiles). Let φ be a least energy solution of (6), (7).

(i) If φ is isolated in H 1(Ω) from all the other least energy solutions of (6), (7), then it is a stable profile.
0
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(ii) If φ is isolated in H 1
0 (Ω) from all the other sign-definite solutions of (6), (7), then it is an asymptotically stable

profile. Especially, if (6), (7) has a unique positive solution, it is asymptotically stable.

When Ω is a ball, a positive solution is unique and it becomes radially symmetric, due to Gidas, Ni and Niren-
berg [14]; hence it is asymptotically stable by (ii) of Theorem 3.5. The following theorem is concerned with the
instability of sign-changing profiles (see [1]).

Theorem 3.6 (Instability of profiles). Let ψ be a sign-changing solution of (6), (7).

(i) ψ is not asymptotically stable.
(ii) If ψ is isolated in H 1

0 (Ω) from all nontrivial solutions w of (6), (7) satisfying J (w) < J(ψ), then ψ is an unstable
profile.

The following proposition (see [1] for more details) played an important role to prove the stability criteria above,
and moreover, it will be employed in later sections as well.

Proposition 3.7 (Properties of t∗(·) and X ). The following (i)–(iii) hold.

(i) The functional t∗(·) is continuous in H 1
0 (Ω).

(ii) It holds that t∗(φ) = 1 for any nontrivial solution φ of (6), (7).
(iii) Let v be a solution of (12)–(14). If v0 ∈ X , then v(s) ∈ X for all s � 0. Moreover, for any sequence sn → ∞,

a subsequence of v(sn) converges to a nontrivial solution of (6), (7) strongly in H 1
0 (Ω).

4. Main results

In this section, we state main results. Hereafter, let Ω be an annulus AN(a, b) defined by (4). Dancer [12] consid-
ered a domain having a small hole, in particular, an annulus AN(a, b) which is close to a ball, that is, (b − a)/a is
large enough. Then he proved the next result.

Proposition 4.1. Let Ω = AN(a, b). If the ratio (b − a)/a is large enough, then (6), (7) has a unique positive solution
and it is radially symmetric.

Roughly speaking, Proposition 4.1 says that if the hole in the annulus is small enough, or equivalently, the shell is
thick enough, then a positive solution is unique. Combining Theorem 3.5 and Proposition 4.1, we obtain

Proposition 4.2. Let Ω = AN(a, b). If (b − a)/a is large enough, then the unique positive radial asymptotic profile
is asymptotically stable.

Let us consider the opposite case where (b − a)/a is small, that is, the hole in the annulus is large enough, or
equivalently the shell is thin. A positive radial solution φ = φ(r) with r = |x| of (6), (7) in AN(a, b) becomes a
solution of the following two point boundary value problem:

φ′′ + N − 1

r
φ′ + cmφm−1 = 0 in (a, b), (17)

φ(a) = φ(b) = 0, (18)

where φ′ = dφ/dr . The next result is valid for any 0 < a < b, which has been proved by Ni [19].

Proposition 4.3 (Existence and uniqueness of positive radial solution). Let Ω = AN(a, b). Then (6), (7) has a unique
positive radial solution φ.

We explain the difference between Propositions 4.1 and 4.3. Proposition 4.3 says that a solution is unique in the
class of positive radial solutions. On the other hand, Proposition 4.1 asserts that a solution is unique in the class of
positive (possibly non-radial) solutions if (b − a)/a is large enough.

Our first main result is as follows.
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Theorem 4.4. Let Ω = AN(a, b) and assume that

Ca,b :=
(

b

a

)(N−3)+(
b − a

πa

)2

<
m − 2

N − 1
. (19)

Then the unique positive radial asymptotic profile φ is not asymptotically stable.

Since (N − 3)+ = max{N − 3,0}, the constant Ca,b stands for Ca,b = (b/a)N−3((b − a)/πa)2 if N � 4 and
Ca,b = ((b − a)/πa)2 if N = 2,3. Theorem 4.4 means that if the ratio of the thickness b − a of the shell to the inside
diameter a is small enough, the positive radial profile φ is not asymptotically stable.

Remark 4.5 (Sign-changing profiles). It has already been proved in [1] that sign-changing profiles are not asymptoti-
cally stable (see Theorem 3.6). Hence all radial profiles are not asymptotically stable.

Our method to prove Theorem 4.4 is based on the comparison between the global least energy and the radial least
energy. Therefore it gives us the next result as a by-product.

Corollary 4.6 (Symmetry breaking of least energy solutions). Under assumption (19), a least energy solution of (6),
(7) with Ω = AN(a, b) is not radially symmetric.

As stated in Introduction, symmetry breaking of least energy solutions for (6), (7) in annuli has already been proved
by Coffman [11], Li [17] and Byeon [10], provided that the thickness of the annulus is sufficiently thin. However, our
result can provide a quantitative sufficient condition on the thickness of annuli.

For N = 2, we obtain a stronger assertion than Theorem 4.4.

Theorem 4.7 (Instability of positive radial profiles). Let N = 2 and Ω = A2(a, b). If (b − a)/a is small enough, then
the unique positive radial asymptotic profile φ is unstable.

5. Proof of Theorem 4.4 and Corollary 4.6

In this section, we shall prove Theorem 4.4 and Corollary 4.6. Our method of proof is based on the next lemma.

Lemma 5.1. Let φ be a nontrivial solution of (6), (7) and let (φε) be a sequence in H 1
0 (Ω) such that

φε → φ strongly in H 1
0 (Ω) as ε → 0 (20)

and

J (cφε) < J (φ) for any ε ∈ (0, ε0) and c > c0 (21)

with some constants c0 ∈ (0,1) and ε0 > 0. Then φ is not asymptotically stable in the sense of asymptotic profiles for
FDEs.

Proof. Set v0,ε := t∗(φε)
−1/(m−2)φε ∈ X and cε := t∗(φε)

−1/(m−2). By (20) and Proposition 3.7, we have t∗(φε) →
t∗(φ) = 1 and v0,ε → φ strongly in H 1

0 (Ω) as ε → 0. Moreover, cε is sufficiently close to 1 for ε > 0 small enough.
Choose ε1 ∈ (0, ε0) such that cε > c0 for all ε ∈ (0, ε1). Then it follows from (21) that

J (v0,ε) = J (cεφε) < J (φ) for all ε ∈ (0, ε1).

Let vε(s) be the solution of (12)–(14) with the initial data v0,ε . Since s �→ J (vε(s)) is non-increasing, vε(s) cannot
converge to φ whereas v0,ε is sufficiently close to φ. This shows that φ is not asymptotically stable. �

To construct perturbed functions φε in Lemma 5.1, we introduce the N -dimensional polar coordinate:

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

...
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xi = r sin θ1 · · · sin θi−1 cos θi (for i = 3, . . . ,N − 1),

...

xN = r sin θ1 · · · sin θN−2 sin θN−1

for r ∈ (a, b), θi ∈ [0,π] for i = 1,2, . . . ,N − 2 and θN−1 ∈ [0,2π). In what follows, we write

θ = (θ1, θ2, . . . , θN−1), dθ = dθ1 dθ2 . . . dθN−1.

We define Θ by the set of θ ∈ R
N−1 satisfying θi ∈ [0,π] for 1 � i � N − 2 and θN−1 ∈ [0,2π) if N � 3 and put

Θ = [0,2π) if N = 2.
Let φ(r) be the unique positive solution of (17), (18). Then we define φε : Ω →R with ε ∈ (0,1) by

φε(x) = σε(θ1)φ(r) for x = x(r, θ) ∈ Ω (22)

with the function

σε(θ1) = 1 + ε cos θ1 for θ ∈ Θ, ε ∈ (0,1). (23)

Remark 5.2 (Well-definedness of φε). Each function φε(x) is well defined in Ω . In the polar coordinate, when θ1 = 0,
the point (r,0, θ2, . . . , θN−1) for any θ2, . . . , θN−1 corresponds to the common point (x1 . . . , xN) = (r,0, . . . ,0).
Therefore φε(r,0, θ2, . . . , θN−1) should be independent of θ2, . . . , θN−1. This fact holds for θ1 = π also. In the same
reason, φε(r, θ1, . . . , θN−1) with θi = 0,π should be independent of θi+1, . . . , θN−1. Moreover, φε should be 2π

periodic in θN−1. Our definition of φε obeys these rules and φε(x) is well defined.

Proposition 5.3 (Decrease of energy by perturbations). Under the same assumptions as in Theorem 4.4, there exist
c0 ∈ (0,1) and ε0 ∈ (0,1] such that J (cφε) < J (φ) for any ε ∈ (0, ε0) and c > c0.

Proof. Here and henceforth, if n > m, we mean
∑m

i=n ai = 0 and
∏m

i=n ai = 1 for any sequence (ai). From the
N -dimensional polar coordinate transformation, it follows that

|∇φε|2 =
∣∣∣∣∂φε

∂r

∣∣∣∣
2

+
N−1∑
j=1

1

r2
∏j−1

i=1 sin2 θi

∣∣∣∣∂φε

∂θj

∣∣∣∣
2

= σε(θ1)
2φ′(r)2 + ε2 sin2 θ1

φ(r)2

r2
.

Moreover, the Jacobian of this transformation is given by

∂(x1, x2, . . . , xN−1, xN)

∂(r, θ1, . . . , θN−2, θN−1)
= rN−1 Jac(θ) with Jac(θ) =

N−2∏
i=1

sinN−1−i θi .

For any c > 0, we derive

J (cφε) = c2

2

(∫
Θ

σε(θ1)
2 Jac(θ) dθ

) b∫
a

φ′(r)2rN−1 dr + c2

2
ε2μN

b∫
a

φ(r)2rN−3 dr

− cm

m
cm

(∫
Θ

σε(θ1)
m Jac(θ) dθ

) b∫
a

φ(r)mrN−1 dr (24)

with the constant

μN :=
∫

sin2 θ1 Jac(θ) dθ .
Θ
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To compute μN , we use the formula

π∫
0

sinj t dt =
√

πΓ ((j + 1)/2)

Γ ((j + 2)/2)
,

where Γ (·) denotes the Gamma function. Since in the definition of μN the intervals of integrations are [0,π] for θi

with i �N − 2 and [0,2π ] for θN−1, it holds that

μN = 2πN/2Γ ((N + 1)/2)

Γ ((N + 2)/2)Γ ((N − 1)/2)
= 2πN/2

Γ (N/2)
· N − 1

N
,

where we have used the relation Γ (n + 1) = nΓ (n).
For φ (and any radial solutions), by (8), we have

b∫
a

φ′(r)2rN−1 dr = cm

b∫
a

φ(r)mrN−1 dr = 2m

m − 2

J (φ)

ωN

. (25)

Here ωN denotes the surface area of the unit sphere of RN , i.e.,

ωN :=
∫
Θ

Jac(θ) dθ = 2πN/2

Γ (N/2)
. (26)

Then we also have the relation,

μN = N − 1

N
ωN. (27)

Observe that (π/(b − a))2 is the first eigenvalue of the problem

−u′′ = λu in (a, b), u(a) = u(b) = 0.

Therefore it holds that

(
π/(b − a)

)2
b∫

a

u(r)2 dr �
b∫

a

u′(r)2 dr,

for any u ∈ H 1
0 (a, b). Using this inequality, we have, for N � 3,

b∫
a

φ(r)2rN−3 dr � bN−3((b − a)/π
)2

b∫
a

φ′(r)2 dr

� Ca,b

b∫
a

φ′(r)2rN−1 dr, (28)

with the constant Ca,b > 0 given by (19). The inequality above is still valid for N = 2. Using (25) and (28), we derive
from (24) that

J (cφε) �
{∫

Θ

(
c2

2
σε(θ1)

2 − cm

m
σε(θ1)

m

)
Jac(θ) dθ + c2

2
ε2μNCa,b

}
× 2m

m − 2

J (φ)

ωN

. (29)

We shall show that the right hand side of (29) is less than J (φ) for sufficiently small ε > 0 and c close to 1. For
any s > −1, there exists a constant δ ∈ (0,1) by the Taylor theorem such that

(1 + s)m = 1 + ms + m(m − 1)
(1 + δs)m−2s2.
2
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Let α > 0 be slightly less than 1 and it will be determined later on. Then one can choose ε0 = ε0(α) ∈ (0,1) so small
that (1 − ε0)

m−2 � α. Hence it follows by δ ∈ (0,1) that

(1 + δs)m−2 � (1 − ε0)
m−2 � α if |s| < ε0. (30)

Putting s = ε cos θ1 for an arbitrary ε ∈ (0, ε0), we have

(1 + ε cos θ1)
m � 1 + mε cos θ1 + m(m − 1)

2
αε2 cos2 θ1. (31)

Then we find that

c2

2
σε(θ1)

2 − cm

m
σε(θ1)

m � c2

2
− cm

m
+ (

c2 − cm
)
ε cos θ1 +

(
c2

2
− m − 1

2
cmα

)
ε2 cos2 θ1.

Substitute the inequality above into (29) and use the inequality c2/2 − cm/m � (m − 2)/2m for all c � 0. Moreover,
observe that the integral of cos θ1 Jac(θ) over Θ vanishes, because

∫ π

0 cos θ1 sinN−2 θ1 dθ1 = 0. Then we derive

J (cφε) � J (φ) + mc2ε2

(m − 2)ωN

ζ(c)J (φ). (32)

Here ζ(c) is given by

ζ(c) := {
1 − (m − 1)cm−2α

}
νN + μNCa,b (33)

with

νN :=
∫
Θ

cos2 θ1 Jac(θ) dθ = ωN − μN = ωN

N
, (34)

where we have used (27). From (27) again, we note

ζ(c) = ωN

N

{
(N − 1)Ca,b + 1 − (m − 1)cm−2α

}
.

Now, we choose α, c0, ε0 in the following way. Assumption (19) is rewritten as (N − 1)Ca,b < m − 2. First, we
determine α ∈ (0,1) slightly less than 1 such that

(N − 1)Ca,b < (m − 1)α − 1.

Next, we take ε0 ∈ (0,1] satisfying (30). Finally, we choose c0 ∈ (0,1) slightly less than 1 such that

(N − 1)Ca,b < (m − 1)cm−2
0 α − 1.

Then ζ(c) < 0 for all c > c0. Thus we conclude that J (cφε) < J (φ) for all c > c0 and ε ∈ (0, ε0). This completes the
proof. �
Proof of Theorem 4.4. Let φε be as in (22). Then all the assumptions of Lemma 5.1 are satisfied. Hence the unique
positive radial asymptotic profile φ is not asymptotically stable. �
Remark 5.4 (Stability analysis under nonnegativity). The positive radial asymptotic profile φ remains to be not
asymptotically stable, even though we further impose the nonnegativity of initial data, v(0) � 0, in Definition 3.4
(i.e., the definition of X is replaced by {v0 ∈ H 1

0 (Ω) \ {0}: v0 � 0, t∗(v0) = 1}). Indeed, the perturbed functions
φε(x) = σε(θ1)φ(r) are positive in Ω for all ε ∈ (0,1), and hence, so are initial data v0,ε in the proof above. More-
over, the positivity will be also conserved by the fast diffusion flow.

Proof of Corollary 4.6. Let φε be as in (22) and vε(s) be as in the proof of Lemma 5.1. By (iii) of Proposition 3.7, we
choose a diverging sequence sn ↗ ∞ such that vε(sn) converges to a certain limit ψ in H 1

0 (Ω). Then J (ψ) < J(φ)

and ψ is a positive solution of (6), (7). Since φ takes the least energy among all radial nontrivial solutions, the limit ψ

(and hence, every least energy solution) is not radially symmetric. �
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6. Proof of Theorem 4.7

We have proved that the unique positive radial profile φ is not asymptotically stable. In this section, we further
prove the instability of φ for the two-dimensional case, N = 2. To this end, we shall verify that φ is isolated from the
other asymptotic profiles with a certain partial symmetry and employ the compactness and the symmetry-preservation
of fast diffusion flow.

The polar coordinate is written as

x1 = r cos θ, x2 = r sin θ.

Here another type of perturbation with partial symmetry is applied to the radial profile φ = φ(r). Define φk,ε : Ω → R

for ε > 0 and k ∈ N by

φk,ε(x) = σk,ε(θ)φ(r) for x = x(r, θ) ∈ Ω (35)

with

σk,ε(θ) = 1 + ε coskθ for θ ∈ [0,2π).

Then the new functions φk,ε have k-fold symmetry, i.e., φk,ε is invariant under the rotation θ �→ θ + 2π/k, since
σk,ε(θ + 2π/k) = σk,ε(θ). As in the proof of Proposition 5.3, one can prove the following proposition by noting that
the gradient and the Jacobian are computed as

|∇φk,ε|2 =
∣∣∣∣∂φk,ε

∂r

∣∣∣∣
2

+ 1

r2

∣∣∣∣∂φk,ε

∂θ

∣∣∣∣
2

,
∂(x1, x2)

∂(r, θ)
= r.

Proposition 6.1 (Decrease of energy by k-fold symmetric perturbations). Let N = 2, Ω = A2(a, b) and let k be a
positive integer. Assume that

k2
(

b − a

πa

)2

< m − 2. (36)

Then there exist c0 ∈ (0,1) and ε0 ∈ (0,1] such that J (cφk,ε) < J (φ) for any ε ∈ (0, ε0) and c > c0.

In what follows, we work in function spaces with finite rotational symmetries. Let G be a subgroup of the orthogo-
nal group O(2). We call Ω a G invariant domain if g(Ω) = Ω for g ∈ G, where g(Ω) denotes the image of Ω under
the orthogonal transformation g ∈ G. A function u : Ω → R is said to be G invariant if u(gx) = u(x) for all g ∈ G

and x ∈ Ω . Moreover, we define

H 1
0 (Ω,G) := {

u ∈ H 1
0 (Ω): u(gx) = u(x) for g ∈ G

}
.

The following proposition holds for general N .

Proposition 6.2 (Symmetry-preservation of fast diffusion flow). Let G be a subgroup of O(N). Let v be the unique
solution of (12)–(14) with an initial data v0. If v0 is G invariant, then so is v(s) = v(·, s) for each s > 0.

Proof. Since −� and the map u �→ |u|m−2u are G equivariant, i.e., each g ∈ G and these operators are commutative,
we find that gv(x, s) := v(g−1x, s) also solves (12), (13) with v0 replaced by gv0(x) := v0(g

−1x). Here we recall
that v0 is G invariant and the solution of (12)–(14) is unique. Hence gv coincides with v for any g ∈ G. Therefore
v(s) = v(·, s) is G invariant for all s > 0. �

For a positive integer k, we set

Gk := {
g(2πj/k): j = 0,1,2, . . . , k − 1

}
with

g(θ) :=
(

cos θ −sin θ

sin θ cos θ

)
.
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Then we remark that φk,ε given by (35) is Gk invariant. Put

S(Gk) := S ∩ H 1
0 (Ω,Gk).

Here we recall that S denotes the set of nontrivial solutions of (6), (7). The set S(Gk) is not empty, because the
positive radial solution φ belongs to it.

In what follows, K stands for the largest positive integer k satisfying (36). Then we have the following alterna-
tive:

(A) For some k ∈ {1,2, . . . ,K}, φ is isolated in H 1
0 (Ω) from the other solutions in S(Gk).

(B) For all k ∈ {1,2, . . . ,K}, φ is an accumulation point of S(Gk) in H 1
0 (Ω).

Lemma 6.3 (Case (A)). If (A) holds, then φ is unstable.

Proof. By (A), there exists a constant δ > 0 such that

B(φ, δ) ∩ S(Gk) = {φ}, (37)

where B(φ, δ) := {u ∈ H 1
0 (Ω): ‖u − φ‖1,2 < δ}. Let φk,ε be as in (35). Set v0,ε := t∗(φk,ε)

−1/(m−2)φk,ε and cε :=
t∗(φk,ε)

−1/(m−2). Then v0,ε belongs to H 1
0 (Ω,Gk) ∩ X . Since φk,ε → φ strongly in H 1

0 (Ω) and cε → 1 as ε → 0,
v0,ε converges to φ strongly in H 1

0 (Ω). Let c0 and ε0 be constants given by Proposition 6.1 and choose ε1 ∈ (0, ε0)

such that cε > c0 for all ε ∈ (0, ε1). Then by Proposition 6.1, one can assure that

J (v0,ε) = J (cεφk,ε) < J (φ) for all ε ∈ (0, ε1).

Now, let ε ∈ (0, ε1) be fixed and let vε be the unique solution of (12)–(14) with the initial data v0,ε . We claim that∥∥vε(s) − φ
∥∥

1,2 � δ for all s > S with some S > 0. (38)

Indeed, if this claim is false, then there exists a sequence sn → ∞ such that vε(sn) ∈ B(φ, δ). By (iii) of Proposi-
tion 3.7, the solution vε(sn) converges to a nontrivial stationary solution ψε along a subsequence. Hence ψε ∈ B(φ, δ).
Moreover, since v0,ε is Gk invariant, so is vε(s) by Proposition 6.2. Thus we have ψε ∈ S(Gk). Since J (vε(·)) is non-
increasing, we have J (ψε) � J (v0,ε) < J (φ). Thus ψε �= φ. Still, this contradicts (37). Consequently, (38) holds with
the constant δ independent of ε, and therefore, φ is unstable. �

In view of Lemma 6.3, to prove the instability of φ, it is enough to remove the possibility of (B). To do so, we
investigate the eigenvalue problem for the linearized operator −� − cm(m − 1)φm−2,{−� − cm(m − 1)φm−2}u = λu in Ω, (39)

u = 0 on ∂Ω. (40)

The two-dimensional Laplacian in polar coordinates is written as

� = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.

Here we look for eigenfunctions in the separable form u(x) = v(r)w(θ). Then (39) is converted into

−wθθ

w
= r2

v

{
vrr + 1

r
vr + cm(m − 1)φm−2v + λv

}
. (41)

Since w is 2π periodic, we have a nonnegative integer j such that −wθθ/w = j2. If j = 0, then w is constant; if
j � 1, then w is a linear combination of cos jθ and sin jθ . Moreover, the radial part v solves{

−�r − cm(m − 1)φm−2 + j2

r2

}
v = λv in (a, b), (42)

v(a) = v(b) = 0, (43)
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where �r is given by

�r := d2

dr2
+ 1

r

d

dr
.

For each fixed j � 0, by the Sturm–Liouville theory, the problem above has eigenvalues λ1,j < λ2,j < · · · and the
corresponding (normalized) eigenfunctions v1,j , v2,j , . . . , which forms a complete orthonormal system in L2

r (Ω).
Here L2

r (Ω) denotes the set of all radial functions in L2(Ω) (see Notation of Section 1). Therefore λi,j (i � 1, j � 0)
cover all the eigenvalues of (39), (40), and moreover, the system{

1√
2π

vi,0(r)

}
,

{
1√
π

vi,j (r) cos jθ

}
,

{
1√
π

vi,j (r) sin jθ

}

(for i, j = 1,2,3, . . .) is a complete orthonormal system in L2(Ω).

Lemma 6.4 (Case (B)). Assume that (B) holds. Then there exists a common multiple j of all natural numbers up to K

(i.e., {k ∈ N: k � K}) such that the eigenvalue problem (42), (43) with j has a zero eigenvalue λ = 0.

To prove the lemma above, we check the signs of the first and second eigenvalues μ1, μ2 for the linearized problem
in the radial form,{−�r − cm(m − 1)φm−2}u = μu in (a, b), (44)

u(a) = u(b) = 0. (45)

Lemma 6.5 (Signs of eigenvalues). It holds that μ1 < 0 < μ2.

This lemma will be proved after proving Theorem 4.7. Let us give a proof of Lemma 6.4.

Proof of Lemma 6.4. Let 1 � k � K be fixed. By (B), there exists a sequence (φn) in S(Gk) \ {φ} converging to φ

strongly in H 1
0 (Ω). Then (φn) converges also in C1(Ω) by the elliptic regularity theorem. We put un := (φn − φ)/

‖φn − φ‖∞ and f (t) = cm|t |m−2t . Then un solves

−�un = f (φn) − f (φ)

φn − φ
un in Ω, un = 0 on ∂Ω.

Since the right hand side is bounded in L∞(Ω), the elliptic regularity theorem guarantees that un is bounded in
W 2,p(Ω) for all 1 � p < ∞. By the compact imbedding W 2,p(Ω) ↪→ C1(Ω) for large p, a subsequence of (un)

converges in C1(Ω) to a limit u∞, which solves{−� − cm(m − 1)φm−2}u∞ = 0 in Ω, u∞ = 0 on ∂Ω.

Moreover, ‖u∞‖∞ = 1 because ‖un‖∞ = 1. Since un is Gk invariant, u∞ belongs to H 1
0 (Ω;Gk) (this fact will be

used later). Thus (39), (40) has a zero eigenvalue, i.e., λi,j = 0 with some i, j , and then, we denote by vi,j (r) the
eigenfunction of (42), (43) corresponding to λi,j = 0. Then it holds that j � 1. Indeed, if j = 0, then (42) with j = 0
coincides with (44) and therefore λi,j = 0 becomes an eigenvalue of (44), (45). This contradicts Lemma 6.5. Thus
j � 1.

For V ∈ C[a, b], we denote by μk(−�r + V ) the k-th eigenvalue of{−�r + V (r)
}
u = μu in (a, b), u(a) = u(b) = 0.

Since j � 1, we use Lemma 6.5 again to get

μ2
(−�r − cm(m − 1)φm−2 + j2/r2) > μ2

(−�r − cm(m − 1)φm−2) > 0.

Thus we conclude that

μ1
(−�r − cm(m − 1)φm−2 + j2/r2) = λi,j = 0, (46)
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which implies that i = 1 (i.e., λ1,j = 0). Moreover, one can uniquely determine j satisfying λ1,j = 0 by the strict
monotonicity of the eigenvalues in the following sense: if j < l, then

μ1
(−�r − cm(m − 1)φm−2 + j2/r2) < μ1

(−�r − cm(m − 1)φm−2 + l2/r2).
Since the limit u∞ of (un) is an eigenfunction corresponding to λ1,j , it is represented as

u∞(x) = v1,j (r)(α cos jθ + β sin jθ) for x = x(r, θ)

with some (α,β) �= (0,0). Since u∞ is Gk invariant, it is 2π/k periodic in θ , and hence, j/k must be an integer (i.e.,
j is a multiple of k).

Repeating the argument above again with k replaced by another 1 � k′ �K , we get some j ′ � 1 such that λ1,j ′ = 0
and j ′/k′ is an integer. Then it holds that j = j ′ because λ1,j = λ1,j ′ = 0. Thus j is independent of the choice of k,
and therefore, it is a common multiple of all natural numbers up to K . It completes the proof. �

We further need a couple of lemmas. The first one is related to the prime number theorem. We refer the reader to a
book of Hardy and Wright [15, Theorem 414] for its proof.

Lemma 6.6 (Estimates for LCMs). Let U(n) be the least common multiple of all natural numbers up to n. Then there
exist constants A,B > 0 such that

eAn � U(n) � eBn for all n ∈ N, n� 2.

The next lemma provides an L∞-estimate for the positive radial solution φ of (6), (7), which will be proved later
on.

Lemma 6.7 (Uniform bound for the positive radial solution). It holds that

‖φ‖m−2∞ � c−1
m π2(m−1)(b/a)m−1(b − a)−2.

We are now in a position to complete the proof of Theorem 4.7 by proving that (B) is impossible if (b − a)/a is
small enough.

Proof of Theorem 4.7. Let (b − a)/a > 0 be small enough. Recall that K is the largest integer k satisfying (36).
Hence K is also large enough. Now, we suppose on the contrary that (B) holds. Let j be the integer determined by
Lemma 6.4. Then j is a common multiple of all natural numbers up to K , and hence j � U(K). Therefore we have
j � eAK by Lemma 6.6.

We next claim that the potential −cm(m − 1)φm−2 + j2/r2 is positive when the ratio (b − a)/a is small enough.
Indeed, since K is the largest integer satisfying (36), we have

(K + 1)2
(

b − a

πa

)2

� m − 2,

which is written as

a2(b − a)−2 � π−2(m − 2)−1(K + 1)2.

Since (b − a)/a > 0 is small enough, it holds that a < b < 2a. By the inequality above together with Lemma 6.7, we
have

0 � cm(m − 1)φm−2 � (m − 1)π2(m−1)(b/a)m−1(b − a)−2 � Cb−2(K + 1)2

with the constant C := 2m+1(m − 1)(m − 2)−1π2(m−2) > 0. Thus we find, for all r ∈ (a, b),

−cm(m − 1)φm−2 + j2

r2
� b−2{−C(K + 1)2 + e2AK

}
> 0,

provided that K is large enough. Then by (46), we obtain
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0 < μ1(−�r) < μ1
(−�r − cm(m − 1)φm−2 + j2/r2) = 0,

which is a contradiction. Therefore (B) never holds. Consequently, by Lemma 6.3, we have proved Theorem 4.7. �
We finally prove Lemmas 6.5 and 6.7. For an independent interest, we prove these lemmas for general dimension N .

Instead of Lemma 6.7, we prove the next lemma.

Lemma 6.8 (Uniform bound for the positive radial solution). Let φ be the unique positive radial solution of (6), (7)
for the N -dimensional annulus. Then it holds that

‖φ‖m−2∞ � c−1
m π2(m−1)(b/a)(m−1)(N−1)(b − a)−2.

Proof. We start with estimating the Lm-norm of φ. For a radial function u = u(|x|), the Rayleigh quotient R(u) is
reduced to

R(u) = ω
(m−2)/m
N

b∫
a

∣∣u′∣∣2
rN−1 dr

( b∫
a

|u|mrN−1 dr

)−2/m

.

As in Proposition 2.1 with (10), the unique positive radial solution φ minimizes R(·) over H 1
0,r (Ω) (see Notation in

Section 1). Hence we have

R(φ) � R(u) for all u ∈ H 1
0,r (Ω) \ {0}.

Even if R is replaced by ω
−(m−2)/m
N R, the relation above remains valid. Hence hereafter we define R(u) by

R(u) :=
b∫

a

∣∣u′∣∣2
rN−1 dr

( b∫
a

|u|mrN−1 dr

)−2/m

. (47)

Choose u(r) = sin(π(r − a)/(b − a)) and compute R(u). Then an easy calculation shows

b∫
a

∣∣u′∣∣2
rN−1 dr � bN−1

b∫
a

∣∣u′∣∣2
dr = π2bN−1

2(b − a)
. (48)

By the Hölder inequality, we have

b − a

2
=

b∫
a

u2 dr �
( b∫

a

|u|m dr

)2/m

(b − a)(m−2)/m,

which implies

b∫
a

|u|mrN−1 dr � aN−1

b∫
a

|u|m dr � 2−m/2aN−1(b − a).

By these inequalities, we obtain

R(u) � π2a−2(N−1)/mbN−1(b − a)−(m+2)/m.

Since R(φ) � R(u), it follows that

R(φ) � π2a−2(N−1)/mbN−1(b − a)−(m+2)/m.

By (25), we have

R(φ) = cm

( b∫
φmrN−1 dr

)(m−2)/m

.

a
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Combining the two relations above, we find
b∫

a

φmrN−1 dr � c
−m/(m−2)
m π2m/(m−2)a−2(N−1)/(m−2)bm(N−1)/(m−2)(b − a)−(m+2)/(m−2). (49)

Now, if φ′(r) = 0, then φ′′(r) < 0 by Eq. (17). Hence the critical point of φ is unique in (a, b), and we denote it
by c. Then φ′ > 0 in (a, c) and φ′ < 0 in (c, b). Multiplying (17) by rN−1 and integrating it over (c, r), we get

rN−1φ′(r) = −cm

r∫
c

φ(ρ)m−1ρN−1 dρ for all r ∈ (c, b),

which shows

0 > φ′(r) � −cm

r∫
c

φ(ρ)m−1 dρ for all r ∈ (c, b). (50)

On the other hand, using the Hölder inequality and (49), we estimate the right hand side as
r∫

c

φ(ρ)m−1 dρ �
( r∫

c

φ(ρ)mρN−1 dρ

)(m−1)/m( r∫
c

ρ−(m−1)(N−1) dρ

)1/m

� c
−(m−1)/(m−2)
m π2(m−1)/(m−2)(b/a)(m−1)(N−1)/(m−2)(b − a)−m/(m−2).

Here we have used the fact that ρ−(m−1)(N−1) � a−(m−1)(N−1). Combine the estimate above with (50), integrate it
over (c, b) and note that φ(c) = ‖φ‖∞ and φ(b) = 0. Then we get

‖φ‖∞ = φ(c) � c
−1/(m−2)
m π2(m−1)/(m−2)(b/a)(m−1)(N−1)/(m−2)(b − a)−2/(m−2),

which completes the proof. �
It remains only to prove Lemma 6.5. If Ω is a bounded convex domain in R

2, Lemma 6.5 has been proved by
Lin [18]. However, in our case, Ω = A2(a, b) is not convex. Using a similar idea to that in [18], we prove the next
lemma.

Lemma 6.9 (Negativity and nonnegativity of eigenvalues). Let μ1 and μ2 be the first and second eigenvalues of (44),
(45) with

�r = d2

dr2
+ N − 1

r

d

dr

for the N -dimensional case. Then it holds that

μ1 < 0 � μ2.

Proof. We define the Rayleigh quotient L(u) associated with (44) by

L(u) :=
b∫

a

{∣∣u′∣∣2 − cm(m − 1)φm−2u2}rN−1 dr

( b∫
a

u2rN−1 dr

)−1

. (51)

Then the first eigenvalue μ1 is negative, because we note by (25) that

μ1 = inf
{
L(u): u ∈ H 1

0,r (Ω) \ {0}}� L(φ) < 0.

Let us show that μ2 � 0. Recall that φ is a global minimizer of the Rayleigh quotient R(u) defined by (47) over
H 1

0,r (Ω) \ {0}. For u ∈ H 1
0,r (Ω) \ {0}, we define

f (t) := R(φ + tu) =
b∫ ∣∣φ′ + tu′∣∣2

rN−1 dr

( b∫
|φ + tu|mrN−1 dr

)−2/m

.

a a
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Since f (t) attains its minimum at t = 0, it follows that f ′(0) = 0 and f ′′(0) � 0. Putting

g(t) =
b∫

a

∣∣φ′ + tu′∣∣2
rN−1 dr, h(t) =

b∫
a

|φ + tu|mrN−1 dr,

we have

f ′(t) = g′h−2/m − 2

m
gh−(m+2)/mh′,

f ′′(t) = g′′h−2/m − 4

m
g′h−(m+2)/mh′ + 2(m + 2)

m2
gh−2(m+1)/m

(
h′)2 − 2

m
gh−(m+2)/mh′′.

Moreover, a direct calculation shows that

g(0) =
b∫

a

∣∣φ′∣∣2
rN−1 dr, g′(0) = 2

b∫
a

φ′u′rN−1 dr,

g′′(0) = 2

b∫
a

∣∣u′∣∣2
rN−1 dr, h(0) =

b∫
a

φmrN−1 dr,

h′(0) = m

b∫
a

φm−1urN−1 dr, h′′(0) = m(m − 1)

b∫
a

φm−2u2rN−1 dr.

By (25), we have g(0) = cmh(0). Since f ′(0) = 0, we get g′(0) = (2/m)cmh′(0). Using these relations, we have

f ′′(0) = 2

b∫
a

∣∣u′∣∣2
rN−1 dr

( b∫
a

φmrN−1 dr

)−2/m

+ 2(m − 2)cm

( b∫
a

φm−1urN−1 dr

)2( b∫
a

φmrN−1 dr

)−(m+2)/m

− 2(m − 1)cm

( b∫
a

φm−2u2rN−1 dr

)( b∫
a

φmrN−1 dr

)−2/m

.

If u is orthogonal to φm−1 in L2(Ω), i.e.,

b∫
a

φm−1urN−1 dr = 0,

then we recall f ′′(0) � 0 to get

b∫
a

∣∣u′∣∣2
rN−1 dr − cm(m − 1)

b∫
a

φm−2u2rN−1 dr � 0,

which implies that L(u) � 0 if u ⊥ φm−1. Applying the minimax principle of the second eigenvalue μ2, we have

μ2 � inf
{
L(u): u ∈ H 1

0,r (Ω), u ⊥ φm−1}� 0.

This is our desired conclusion. �
Lemma 6.10 (Positivity of the second eigenvalue). Under the same setting as in Lemma 6.9, it follows that μ2 > 0.
Hence μ1 < 0 < μ2.
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Proof. To the contrary, we assume that μ2 = 0. Let u be an eigenfunction corresponding to the second eigenvalue
μ2 = 0, that is,

u′′ + N − 1

r
u′ + cm(m − 1)φm−2u = 0 in (a, b), (52)

u(a) = u(b) = 0. (53)

By virtue of the oscillation theory for regular Sturm–Liouville problems, the second eigenfunction u has exactly one
zero in (a, b). Hence one can assume that u′(a) > 0 and u′(b) > 0 after replacing u by −u if necessary. Using (17)
and (52), we have

b∫
a

{
u
(
rN−1φ′)′ − φ

(
rN−1u′)′}

dr = cm(m − 2)

b∫
a

φm−1urN−1 dr.

Since the left hand side is zero due to the integration by parts as well as the boundary conditions, it yields that

b∫
a

φm−1urN−1 dr = 0. (54)

Put ψ(r) = rφ′(r). Applying r(d/dr) + 2 to both sides of (17), we obtain

ψ ′′ + N − 1

r
ψ ′ + cm(m − 1)φm−2ψ = −2cmφm−1. (55)

We rewrite (52) and (55) as(
rN−1u′)′ = −cm(m − 1)φm−2urN−1,(
rN−1ψ ′)′ = −2cmφm−1rN−1 − cm(m − 1)φm−2ψrN−1.

Multiplying the first equation by ψ and the second one by u and subtracting them, we get(
rN−1u′)′

ψ − (
rN−1ψ ′)′

u = 2cmφm−1urN−1.

Integrating both sides over (a, b) and using the integration by parts with (53), we obtain

[
rN−1u′ψ

]b
a

=
b∫

a

{(
rN−1u′)′

ψ − (
rN−1ψ ′)′

u
}
dr

= 2cm

b∫
a

φm−1urN−1 dr = 0,

where we have used (54). On the other hand, the left hand side is equal to[
rN−1u′ψ

]b
a

= bN−1u′(b)ψ(b) − aN−1u′(a)ψ(a) < 0,

because u′(a) > 0, u′(b) > 0, ψ(a) = aφ′(a) > 0 and ψ(b) = bφ′(b) < 0. Hence a contradiction occurs. Therefore it
holds that μ2 > 0. �
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