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Abstract

In this paper we consider the equation

(E) −�u + a(x)u = |u|p−1u in R
N,

where N � 2, p > 1, p < 2∗ − 1 = N+2
N−2 , if N � 3. During last thirty years the question of the existence and multiplicity of

solutions to (E) has been widely investigated mostly under symmetry assumptions on a. The aim of this paper is to show that,
differently from those found under symmetry assumption, the solutions found in [6] admit a limit configuration and so (E) also
admits a positive solution of infinite energy having infinitely many ‘bumps’.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Dans ce papier nous considérons l’équation

(E) −�u + a(x)u = |u|p−1u en R
N,

où N � 2, p > 1, p < 2∗ − 1 = N+2
N−2 , si N � 3. Pendant les trente dernières années la question de l’existence et de la multiplicité

de solutions d’(E) a été largement examinée surtout conformément aux suppositions de symétrie sur a. Le but de ce papier est de
montrer que, différemment de ceux trouvés conformément à la supposition de symétrie, les solutions trouvées dans [6] admettent
une configuration de limite et donc (E) admet aussi une solution positive d’énergie infinie ayant une infinité de ‘bumps’.
© 2013 Elsevier Masson SAS. All rights reserved.

MSC: 35J20; 35J60; 35Q55

Keywords: Variational methods; Solutions with infinitely many bumps; Schrödinger equation

✩ Work supported by the Italian national research project “Metodi variazionali e topologici nello studio di fenomeni non lineari”.
* Corresponding author.

E-mail addresses: cerami@poliba.it (G. Cerami), donato.passaseo@unisalento.it (D. Passaseo), solimini@poliba.it (S. Solimini).
0294-1449/$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.anihpc.2013.08.008

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2013.08.008
http://www.elsevier.com/locate/anihpc
mailto:cerami@poliba.it
mailto:donato.passaseo@unisalento.it
mailto:solimini@poliba.it
http://dx.doi.org/10.1016/j.anihpc.2013.08.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2013.08.008&domain=pdf


24 G. Cerami et al. / Ann. I. H. Poincaré – AN 32 (2015) 23–40
1. Introduction

In this paper we consider the equation

(E) −�u + a(x)u = |u|p−1u in R
N,

where N � 2, p > 1, p < 2∗ − 1 = N+2
N−2 , if N � 3, and the potential a(x) is a positive function that is not required to

enjoy symmetry.
During the past years there has been a considerable amount of research on this kind of questions; the interest comes,

essentially, from two reasons: their specific mathematical difficulties, that make them challenging to the researchers,
and, moreover, the fact that equations as (E) arise naturally in several branches of mathematical physics. Indeed
the solutions of (E) can be seen as stationary states (corresponding to solitary waves) in nonlinear equations of the
Klein–Gordon type

∂2ϕ

∂t2
− �ϕ + (

a(x) + ω2)ϕ − |ϕ|p−2ϕ = 0 (1)

and of Schrödinger type

i
∂ϕ

∂t
− �ϕ + (

a(x) + ω2)ϕ − |ϕ|p−2ϕ = 0 (2)

(where ϕ = ϕ(t, x)) is a complex function defined on R×R
N .

Let us consider, for instance, Eq. (1): it corresponds to the Lagrangian density

L(ϕ) = −1

2
|ϕt |2 + 1

2
|∇ϕ|2 + 1

2

(
a(x) + ω2)|ϕ|2 − 1

p
|ϕ|p.

Thus, looking for a solitary wave, of the standing wave form, means searching solutions ϕ(x, t) = eiωtu(x), with
u : RN → R, hence one is led exactly to the equation considered in (E). Analogously searching for stationary states
of (2) leads again to (E).

Furthermore, we recall that, besides the above mentioned problems, equations like (E), which are also called
Euclidean scalar field equations, appear in several other context of physics: nonlinear optics, laser propagations,
constructive field theory, etc.

During last thirty years the question of the existence and multiplicity of solutions to (E) has been widely investi-
gated and most results have been obtained under symmetry assumptions on a. However, some considerable progress
has been performed also in the case in which a(x) is not required to fulfill symmetry properties. We just mention
that, formerly, the existence of a positive solution has been shown in [7,1,2], while the existence of infinitely many
changing sign solutions has been proven in [5].

We refer the interested reader either to [4] or to [6] for a more detailed description of the development of the
researches as well as a quite exhaustive list of references.

Very recently, an answer to the question of the existence of infinitely many positive solutions to (E) has been given
in [6] where the following result has been proved:

Theorem 1. Let assumptions

(h1) a(x) → a∞ > 0 as |x| → ∞,
(h2) a(x)� a0 > 0, ∀x ∈ R

N ,

(h3) a ∈ L
N/2
loc (RN),

(h4) ∃η̄ ∈ (0,
√

a∞ ): lim|x|→+∞(a(x) − a∞)eη̄|x| = +∞

be satisfied.
Then there exists a positive constant, A=A(N, η̄, a0, a∞) ∈R, such that, when∣∣a(x) − a∞

∣∣
N/2,loc := sup

y∈RN

∣∣a(x) − a∞
∣∣
LN/2(B1(y))

<A,

equation (E) has infinitely many positive solutions belonging to H 1(RN).
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The solutions, whose existence is asserted in Theorem 1, are multi-bump functions. The claim is proved just
showing, by purely variational methods, that, for all k ∈ N \ {0}, there exists a solution of (E) which belongs to a
special class consisting of functions having exactly k bumps.

The aim of this paper is to show that (E) admits also a positive solution of infinite energy having infinitely many
‘bumps’.

In order to be more precise about our achievement we need to introduce some notation.
We denote by w(x) ∈ H 1(RN) the ground state solution of the limit equation

(E∞) −�u + a∞u = |u|p−1u in R
N.

For all function u ∈ H 1(RN) and for fixed δ, we set

uδ(x) := (u − δ)+(x)

and

uδ(x) := u(x) − uδ(x)

and we call uδ(x) the emerging part of u above δ, uδ(x) the submerged part of u under δ.
Fixing δ and ρ, we say that u ∈ H 1(RN) is emerging around the k points x1, x2, . . . , xk (in k balls of radius ρ)

if

uδ(x) =
k∑

i=1

uδ
i (x)

where for all i ∈ {1,2, . . . , k}, uδ
i � 0, uδ

i 
≡ 0, uδ
i ∈ H 1

0 (Bρ(xi)), Bρ(xi) ∩ Bρ(xj ) = ∅ if i 
= j .
Now our result can be stated as follows:

Theorem 2. Let assumptions of Theorem 1 be satisfied.
Then there exists a solution of (E), ū ∈ H 1

loc(R
N), which is emerging around an unbounded sequence of points

(x̄n)n, x̄n ∈R
N (x̄n 
= x̄m for m 
= n).

Moreover ū and (x̄n)n have the following properties:

lim
n→∞ min

{|x̄n − x̄m|: m ∈ N, m 
= n
} = +∞, (3)

lim
n→∞ ū(x + x̄n) = w(x) uniformly on all compact subsets of RN. (4)

We remark that, while the multi-bump solutions obtained in Theorem 1 have a variational characterization, solu-
tion ū is obtained as limit, as k → +∞, of a sequence (uk)k of multi-bump solutions to (E) given by Theorem 1.
The reason of the success of our procedure is strongly related to the nature of the solutions uk . Actually, a k-bump
solution is obtained first minimizing the action functional on sets of functions emerging around a fixed k-tuple of
points of RN , then considering the maxima of the minima when the k-tuples vary in a suitable subset of RN . In this
argument the role played by the ‘slow decay’ assumption on a(x) is basic, because the attractive effect of a(x), due
to assumption (h4), is dominating on the repulsive disposition, due to the maximization procedure, of positive masses
with respect to each other and makes the bumps not to escape at infinity.

So, relation (3) is just a consequence of the above described situation and indicates the bumps of ū rarefy, as the
distance from the origin increases, giving rise to a quite new phenomenon. Indeed, for instance, multi-bump positive
solutions, obtained under assumptions of radial symmetry on a(x) in [8], clearly do not converge as the number of
the bumps increases, on the contrary the solutions are built in such a way that the bumps, as their number increases,
spread out, going far away from each other and far away from the origin in a uniform way.

The paper is organized as follows: in Section 2 the variational framework of the paper is introduced and some
useful facts as well as some results contained in [6] are collected; Section 3 contains some preliminary estimates;
Section 4 is devoted to the proof, subdivided in several steps, of Theorem 2.
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2. Notation, variational framework and useful facts

Throughout the paper we make use of the following notation:

• Given a measurable subset D of RN , |D| denotes its Lebesgue measure.
• When D is open, H 1(D) denotes the closure of C∞(D) with respect to the norm

‖u‖D :=
[∫

D

(|∇u|2 + u2)dx

]1/2

;

the norm in H 1(RN) is denoted by ‖ · ‖.
• Lp(D), 1 � p �+∞, denotes the Lebesgue space with norm | · |p,D

|u|p,D :=
[∫

D

|u|p dx

]1/p

;

the norm in Lp(RN) is denoted by | · |p .
• Br(x), when x belongs to a metric space X, denotes the open ball of X having radius r and centered at x.
• L

p

loc(R
N), 1 � p < +∞, and H 1

loc(R
N) denote the sets of functions u such that ∀x ∈ R

N there exists an open set
D �R

N , so that x ∈ D and u|D ∈ Lp(D), respectively, u|D ∈ H 1(D).
• Given any function u : RN → R, suppu denotes its support (defined as in [3, Sec. 4]); if u and v are real valued

functions defined in D ⊆ R
N , we denote, as usual, by u ∨ v and u ∧ v the functions defined by (u ∨ v)(x) :=

max(u(x), v(x)) and (u ∧ v)(x) := min(u(x), v(x)) for all x ∈ D.
• C, c, c̃, ĉ, ci denote various positive constants.

The variational functionals, related to problems (P ) and (P∞), are denoted respectively by I and I∞ and are
defined in H 1(RN) as

I (u) = 1

2

∫
RN

(|∇u|2 + a(x)u2)dx − 1

p + 1

∫
RN

|u|p+1 dx,

and

I∞(u) = 1

2

∫
RN

(|∇u|2 + a∞u2)dx − 1

p + 1

∫
RN

|u|p+1 dx.

The following lemma contains some known facts about (P∞), see f.i. [4].

Lemma 3. (P∞) has a positive, ground state, solution w, unique up to translation, radially symmetric, decreasing
when the radial coordinate increases and such that

lim|x|→+∞
∣∣Djw(x)

∣∣|x|N−1
2 e

√
a∞|x| = dj > 0, dj ∈ R, j = 0,1. (5)

In what follows we use the notation

m∞ := I∞(w) and wy(x) := w(x − y); (6)

moreover, we set

α(x) := a(x) − a∞.

In the rest of the paper, according to [6], the real numbers δ > 0 and ρ > 0 are fixed in such a way that

δ < min
{
w(0)/3,1, (a0/p)1/(p−1), a

1/(p−1)
/2,

[
a∞ − η̄2]1/(p−1)} (7)
0
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and

w(x) < δ, ∀x ∈ R
N \ Bρ/2(0).

Considering the sets Kk , k ∈ N \ {0} defined as

Kk =
{
R

N when k = 1;
{(x1, . . . , xk) ∈ (RN)k: |xi − xj |� 3ρ, i, j = 1,2, . . . , k, i 
= j} when k > 1,

(8)

we set, for all (x1, . . . , xk) ∈Kk ,

Sx1,...,xk
= {

u ∈ H 1(
R

N
)
: u emerging around x1, x2, . . . , xk and I ′(u)

[
uδ

i

] = 0, βi(u) = 0, ∀i = 1,2, . . . , k
}
,

where

βi(u) = 1

|uδ
i |22

∫
RN

(x − xi)
(
uδ

i (x)
)2

dx

is a barycenter type map.
The arguments developed in [6] show that Theorem 1 can be completed in the following way:

Theorem 4. Let the assumptions of Theorem 1 be satisfied. Then, for all k ∈ N \ {0}, there exists (at least) one
solution ūk of (E) which is emerging around k points (x̄k

1 , . . . , x̄k
k ) ∈Kk .

Moreover, ūk is found as a critical point of I and is characterized as

I (ūk) = min
S

x̄k
1 ,...,x̄k

k

I (u) = max
Kk

min
Sx1,...,xk

I (u).

Furthermore, setting d(x) = dist(x, [supp(ūk)
δ ∪ suppα−]), the relation

0 < (ūk)δ(x) < Cδe−η̄d(x) (9)

holds, with C > 0 depending only on η̄, a∞, N .

For what follows it is useful to remark that, for all u ∈ H 1(RN), emerging around k points x1, . . . , xk , the func-
tional I can be written as

I (u) = I (uδ) + Jδ

(
uδ

) = I (uδ) +
k∑

i=1

Jδ

(
uδ

i

)

where the functional Jδ is defined, for all v belonging to H 1(RN) and having compact support, as

Jδ(v) = 1

2

∫
RN

(|∇v|2 + a(x)v2)dx +
∫
RN

a(x)δv dx

− 1

p + 1

∫
supp v

(
δ + |v|)p+1

dx + 1

p + 1
δp+1|suppv|.

Next lemmas describe some important features of the functionals I and Jδ , as well as the nature of the ‘natural
nonsmooth constraint’ I ′(u)[uδ

i ] = 0, i = 1, . . . , k, imposed to the functions belonging to the sets Sx1,...,xk
.

Lemma 5. Let assumptions (h1), (h2) and (h3) be satisfied. The functional I is coercive, convex and, hence, weakly
lower semicontinuous on the set

H := {
u ∈ H 1(

R
N

)
:

∣∣u(x)
∣∣ � δ, ∀x ∈ R

N
}
.
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Proof. Because of the choice (7) of δ, for any function u ∈H we have

I (u) = 1

2

∫
RN

(|∇u|2 + a(x)u2)dx − 1

p + 1

∫
RN

|u|p+1 dx

� 1

2

∫
RN

|∇u|2 dx + a0

(
1

2
− 1

p + 1

) ∫
RN

u2 dx > 0, (10)

thus the assertion follows. �
Lemma 6. Let assumptions (h1), (h2) and (h3) be satisfied. For all u ∈ H 1(RN) such that uδ 
= 0, the function
Iu : [0,+∞) →R defined as

Iu(t) = I
(
uδ + tuδ

)
has a unique maximum point tu ∈ (0,+∞).

Lemma 7. Let assumptions (h1), (h2) and (h3) be satisfied. Let k ∈ N \ {0} and (x1, . . . , xk) belong to (RN)k . Let
u ∈ H 1(RN) be a function emerging around the points x1, . . . , xk , then for all j ∈ {1, . . . , k} the function

t → I

(
uδ +

∑
i 
=j

uδ
i + tuδ

j

)

has a unique maximum point t
j
u ∈ (0,+∞).

Lemma 8. Let assumptions (h1), (h2) and (h3) be satisfied. Then, for all k ∈N \ {0}, for all (x1, . . . , xk) ∈ Kk , for all
i ∈ {1, . . . , k},

u ∈ Sx1,...,xk
�⇒

{
I (u) > 0,

Jδ

(
uδ

i

)
> 0.

(11)

For the proofs of the above lemmas we refer the reader to [6].
We also remark that the proof of Lemma 6 shows uδ + tuu

δ is the only point in the half line {uδ + tuδ: t ∈ (0,+∞)},
for which

I ′(uδ + tuu
δ
)[

uδ
] = 0.

Analogously, Lemma 7 gives, for u emerging around x1, . . . , xk , that, for any j ∈ {1,2, . . . , k}, in the half line {uδ +∑
i 
=j uδ

i + tuδ
j : t ∈ (0,+∞)} there is just one point uδ + ∑

i 
=j uδ
i + t

j
uuδ

j , for which

I ′
(

uδ +
∑
i 
=j

uδ
i + t

j
uuδ

j

)[
uδ

j

] = 0.

Given any u ∈ H 1(RN) such that uδ 
= 0, we call uδ + tuu
δ the projection of u on the set {u ∈ H 1(RN): I ′(u)[uδ] =

0} and we set ϑ(u) := tu.
Analogously, if u ∈ H 1(RN) is emerging around k points we call uδ + ∑

i 
=j uδ
i + t

j
uuδ

j the projection of u on the

set {u ∈ H 1(RN): I ′(u)[uδ
j ] = 0} and we set ϑj (u) := t

j
u .

Remark 1. We point out that, when a(x) = a∞, the definition of Sx1,...,xk
still makes sense and Lemmas 6, 7 and 8

hold. In this case we use the notation S∞
x1,...,xk

. Moreover, for all u ∈ H 1(RN), uδ 
= 0, we denote by uδ + ϑ∞(u)uδ ,

the projection of u on the set {u ∈ H 1(RN): (I∞)′(u)[uδ] = 0}, and, when u is emerging around k points, uδ +∑
i 
=j uδ

i + ϑ∞
j (u)uδ

j denotes the projection of u on the set {u ∈ H 1(RN): (I∞)′(u)[uδ
j ] = 0}.

We close this section by a lemma, whose proof can be found in [6], that gives useful information about the set of
the projections (on the constraint I ′(u)[uδ] = 0) of the family of ground state solutions of (P∞).

Lemma 9. Let assumptions (h1), (h2) and (h3) be satisfied. Then {ϑ(wy): y ∈ R
N } is a bounded set.
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3. Preliminary estimates

For all k ∈ N \ {0} and for all (x1, . . . , xk) ∈Kk , we put

μ(x1, . . . , xk) := min
{
I (u): u ∈ Sx1,...,xk

};
Mx1,...,xk

= {
u ∈ Sx1,...,xk

: I (u) = μ(x1, . . . , xk)
};

μk = max
Kk

μ(x1, . . . , xk) = max
Kk

min
Sx1,...,xk

I (u).

Lemma 10. Let assumptions (h1), (h2), (h3) and (h4) be satisfied. Let (x1, . . . , xk) ∈ Kk and u ∈ Mx1,...,xk
. Then,

setting d(x) = dist(x, [suppuδ ∪ suppα−]), relation

0 < uδ(x) < Cδe−η̄d(x) (12)

holds, with C > 0 depending only on η̄, a∞, N .

The proof of the above lemma can be found in [6, Lemma 3.4].

Lemma 11. Let assumptions (h1), (h2), and (h3) be satisfied. Let (xn)n, xn ∈ R
N be a sequence such that

limn→+∞ |xn| = +∞ and let vn ∈ Mxn , then

I (vn)� m∞ + o(1). (13)

Proof. Let us consider w̃n = (wxn)δ + ϑ(wxn)(wxn)
δ (wxn as defined in (6)), then we have w̃n ∈ Sxn and, by using

Lemma 6 and Remark 1, we get

μ(xn) = I (vn) � I (w̃n) = I∞(w̃n) + 1

2

∫
RN

α(x)
(
w̃n(x)

)2
dx

� I∞(w) + 1

2

∣∣∣∣
∫
RN

α(x)
(
w̃n(x)

)2
dx

∣∣∣∣
� m∞ + 1

2

[
max

(
1, ϑ(wxn)

)]2
∣∣∣∣
∫
RN

α(x)
(
wxn(x)

)2
dx

∣∣∣∣. (14)

Now, for all ε > 0 an r = r(ε) > 0 can be found so that α(x) < ε as |x| > r ; hence, for large n, the relation∣∣∣∣
∫
RN

α(x)
(
wxn(x)

)2
dx

∣∣∣∣� sup
Br (0)

(
wxn(x)

)2
∣∣∣∣

∫
Br (0)

α(x) dx

∣∣∣∣ + ε

∫
RN

(
w(x)

)2
dx

� C̄ε, (15)

holds, because supBr (0) wxn(x) −−−−−→
n→+∞ 0. Then, since by Lemma 9, supϑ(wxn) ∈ R, (13) follows combining (14)

and (15). �
Lemma 12. Let assumptions (h1), (h2), and (h3) be satisfied. Let ((xn

1 , . . . , xn
k ))n be a sequence of k-tuples belonging

to Kk such that

lim
n→+∞

(
xn

1 , . . . , xn
k

) = (x1, . . . , xk).

Then

lim
n→+∞μ

(
xn

1 , . . . , xn
k

) = μ(x1, . . . , xk). (16)
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Proof. Let us consider un ∈ Mxn
1 ,...,xn

k
and u ∈ Mx1,...,xk

. Set, for all n,

ûn(x) := (
ûn(x)

)
δ
+

k∑
i=1

ϑi(ûn)(ûn)
δ
i (x)

where, for all i ∈ {1, . . . , k},
(ûn)

δ
i (x) = uδ

i

(
x + xi − xn

i

)
and (ûn)δ is the unique positive minimizer for the minimization problem

min

{
I (u): u ∈ H 1(

R
N

)
, |u| � δ, u = δ on

k⋃
i=1

supp(ûn)
δ
i

}
.

We remark that such a minimizer exists and is unique; indeed the same argument of Lemma 5 shows that the func-
tional I is coercive and convex on the convex set {u ∈ H 1(RN): |u| � δ, u = δ on

⋃k
i=1 supp(ûn)

δ
i }.

Now, we have that ûn ∈ Sxn
1 ,...,xn

k
and

lim sup
n→+∞

μ
(
xn

1 , . . . , xn
k

) = lim sup
n→+∞

I (un) � lim
n→+∞ I (ûn) = I (u) = μ(x1, . . . , xk). (17)

On the other hand, we set

ũn(x) = (ũn)δ(x) +
k∑

i=1

ϑi(ũn)(ũn)
δ
i (x),

where, for all i ∈ {1, . . . , k},
(ũn)

δ
i (x) = (un)

δ
i

(
x + xn

i − xi

)
and (ũn)δ is the unique positive minimizer for the minimization problem

min

{
I (u): u ∈ H 1(

R
N

)
, |u| � δ, u = δ on

k⋃
i=1

supp(ũn)
δ
i

}
.

Then we obtain ũn ∈ Sx1,...,xk
and

I (u) � I (ũn), lim
n→+∞

(
I (ũn) − I (un)

) = 0.

Thus

μ(x1, . . . , xk) � lim inf
n→+∞μ

(
xn

1 , . . . , xn
k

)
holds and, together with (17), gives (16). �
Lemma 13. Let assumptions (h1), (h2), (h3) and (h4) be satisfied, let (x1, . . . , xk) ∈ Kk ; then a point y ∈ R

N exists
so that (x1, . . . , xk, y) ∈Kk+1 and

μ(x1, . . . , xk) + m∞ < μ(x1, . . . , xk, y). (18)

Proof. The argument of this proof is similar to that used in Proposition 4.4 of [6], however we repeat it here in order
to make the paper more self-contained.

Let us consider yn = σnτ , with σn ∈R, σn −−−−−→
n→+∞ +∞, τ ∈ R

N , |τ | = 1 and set

Σn =
{
x ∈ R

N :
σn

2
− 1 < (x · τ) <

σn

2
+ 1

}
.

For large n ∈N, (x1, . . . , xk, yn) ∈ Kk+1; then we take un ∈ Mx1,...,xk,yn ; un can be written as
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un(x) = (un)δ(x) +
k∑

i=1

(un)
δ
i (x) + (un)

δ
k+1(x),

where (un)
δ
i and (un)

δ
k+1 are the emerging parts of un around xi and yn respectively. We remark that

supp(un)
δ
i ⊂ Bρ(xi); βi(un) = 0, ∀i ∈ {1, . . . , k}

and

supp(un)
δ
k+1 ⊂ Bρ(yn); βk+1(un) = 0;

moreover, for large n, we can assume that

k⋃
i=1

Bρ(xi) ⊂
{
x ∈ R

N : (x · τ) <
σn

2
− 1

}
,

Bρ(yn) ⊂
{
x ∈R

N : (x · τ) >
σn

2
+ 1

}
.

Let us define vn(x) = χn(x)un(x), where χn ∈ C∞(RN, [0,1]), χn(x) = χ(|(x · τ) − σn

2 |) and χ ∈ C∞(R+, [0,1]) is
a function such that χ(t) = 0 if t � 1/2, χ(t) = 1 if t � 1. Let us evaluate I (vn):

I (vn) = I (χnun)

= 1

2

∫
RN

[|χn∇un + un∇χn|2 + a(x)(χnun)
2]dx − 1

p + 1

∫
RN

|χnun|p+1 dx

= 1

2

∫
RN

χ2
n

[|∇un|2 + a(x)u2
n

]
dx + 1

2

∫
RN

|∇χn|2u2
n dx

+ 1

4

∫
RN

∇χ2
n∇u2

n dx − 1

p + 1

∫
RN

(un)
p+1 dx + 1

p + 1

∫
RN

(
1 − χ

p+1
n

)
(un)

p+1 dx

� μ(x1, . . . , xk, yn) + c̄1

∫
Σn

(
(un)δ

)2
dx + c̄2

∫
Σn

(
(un)δ

)p+1
dx

� μ(x1, . . . , xk, yn) + O
(
e−η̄σn

)
, (19)

where last inequality is obtained using the exponential decay of un (see Lemma 10) and observing that, by (h4), for
large n, suppα− ∩ Σn = ∅.

On the other hand,

I (vn) = I
(
vI
n

) + I
(
vII
n

)
, (20)

where

vI
n(x) =

{
0 if (x · τ) � σn

2 − 1
2 ,

χn(x)(un)δ(x) + ∑k
i=1(un)

δ
i if (x · τ) < σn

2 − 1
2

and

vII
n (x) =

{
0 if (x · τ)� σn

2 + 1
2 ,

χn(x)(un)δ(x) + (un)
δ
k+1(x) if (x · τ) > σn

2 + 1
2 .

By definition, vI
n ∈ Sx1,...,xk

, thus

I
(
vI
n

)
� μ(x1, . . . , xk). (21)
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Analogously, vII
n ∈ Syn ; hence, considering the function ṽn ∈ S∞

yn
defined as ṽn(x) = (vII

n )δ(x) + ϑ∞(vII
n )(vII

n )δ(x),
we get, for large n,

I
(
vII
n

)
� I (ṽn) = I∞(ṽn) + 1

2

∫
RN

α(x)
(
ṽn(x)

)2
dx

� m∞ + 1

2

[ ∫
Bρ(yn)

α(x)
(
ṽn(x)

)2
dx − sup

B σn
2

(0)

(
ṽn(x)

)2
∫

supp α−

∣∣α(x)
∣∣dx

]
.

Now, by assumption (h4), suppα− is bounded; moreover, by maximum principle,

sup
B σn

2
(0)

(
ṽn(x)

)2 � sup
∂B σn

2
(0)

(
ṽn(x)

)2
.

Thus, taking into account that, for large n, ∂Bσn
2

(0) ∩ suppα− = ∅, and using Lemma 10, we get

I
(
vII
n

)
� m∞ + 1

2

∫
Bρ(yn)

α(x)
(
ṽn(x)

)2
dx − O

(
e−η̄σn

)
. (22)

Therefore, combining (19), (20), (21) and (22), we obtain

μ(x1, . . . , xk, yn) � μ(x1, . . . , xk) + m∞ + 1

2

∫
Bρ(yn)

α(x)
(
ṽn(x)

)2
dx − O

(
e−η̄σn

); (23)

but, for large n,

1

2

∫
Bρ(yn)

α(x)
(
ṽn(x)

)2
dx − O

(
e−η̄σn

)
> 0,

because assumption (h4) implies α(x) and
∫
Bρ(yn)

α(x)(ṽn(x))2 dx decay more slowly than e−η̄σn . Therefore (18)
follows. �
Lemma 14. Let (ūk)k be a sequence of solutions to (E) obtained as described in Theorem 4. For all real number
r > 0, let us denote by ν(ūk, r) the number of points around which ūk is emerging and that are contained in Br(0).

Then, for all h ∈N there exist a real number rh > 0 and a number kh ∈N such that ν(ūk, rh) � h, for all k > kh.

Proof. We argue by contradiction and we assume that there exist h ∈ N and sequences (rn)n, rn ∈ R
+ \ 0, (kn)n ∈ N,

such that rn → +∞, kn → +∞ as n → +∞, and ν(ūkn , rn) < h for all n ∈ N.
Let us denote by (x̄n

1 , . . . , x̄n
kn

) the points around which the solution ūkn is emerging. Passing, if necessary, to a
subsequence, we can assume that, for some j < h,

x̄n
i −−−−−→

n→+∞ x̄i , ∀i � j,

while ∣∣x̄n
i

∣∣ −−−−−→
n→+∞ +∞, ∀i > j.

Let y ∈ R
N be a point, whose existence is proved by Lemma 13, such that

μ(x̄1, . . . , x̄j ) + m∞ < μ(x̄1, . . . , x̄j , y). (24)

To get a contradiction we intend to show that the relations

lim sup
n→+∞

[
μ

(
x̄n

1 , . . . , x̄n
kn

) − μ
(
x̄n
j+2, . . . , x̄

n
kn

)]
� μ(x̄1, . . . , x̄j ) + m∞ (25)

and
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lim
n→+∞

[
μ

(
x̄n

1 , . . . , x̄n
j , y, x̄n

j+2, . . . , x̄
n
kn

) − μ
(
x̄n
j+2, . . . , x̄

n
kn

)] = μ(x̄1, . . . , x̄j , y) (26)

hold true. Indeed from (24), (25) and (26) relation

μ
(
x̄n

1 , . . . , x̄n
kn

)
< μ

(
x̄n

1 , . . . , x̄n
j , y, x̄n

j+2, . . . , x̄
n
kn

)
follows for large n, in contradiction to

μkn = I (ūkn) = μ
(
x̄n

1 , . . . , x̄n
kn

)
.

To prove (25) let us choose

vn ∈ Mx̄n
j+1

, zn ∈ Mx̄n
1 ,...,x̄n

j
, sn ∈ Mx̄n

j+2,...,x̄
n
kn

,

and remark that by Lemmas 11 and 12 respectively, we have

I (vn)� m∞ + o(1), (27)

I (zn) = μ(x̄1, . . . , x̄j ) + o(1). (28)

Let us consider now, for all n, zn ∨ vn ∨ sn; then zn ∨ vn ∨ sn ∈ Sx̄n
1 ,...,x̄n

kn
and

I (ukn) � I (zn ∨ vn ∨ sn)

= I (zn) + I (vn) + I (sn) − I (zn ∧ vn) − I
(
(zn ∨ vn) ∧ sn

)
.

Hence, taking into account that zn ∧ vn � δ and (zn ∨ vn) ∧ sn � δ together Lemma 5 imply I (zn ∧ vn) > 0 and
I ((zn ∨ vn) ∧ sn) > 0, and using (27), (28) and (16) we get

μ
(
x̄n

1 , . . . , x̄n
kn

) = I (ukn) < I (zn) + I (vn) + I (sn)

� μ(x̄1, . . . , x̄j ) + μ
(
x̄n
j+2, . . . , x̄

n
kn

) + m∞ + o(1),

from which (25) follows.
In order to prove (26), we first argue as for proving (25). We consider

ũn ∈ Mx̄n
1 ,...,x̄n

j ,y,x̄n
j+2,...,x̄

n
kn

, ṽn ∈ Mx̄n
1 ,...,x̄n

j ,y, sn ∈ Mx̄n
j+2,...,x̄

n
kn

;
then, observing that sn ∨ ṽn ∈ Sx̄n

1 ,...,x̄n
j ,y,x̄n

j+2,...,x̄
n
kn

and sn ∧ ṽn � δ, and using Lemma 12, we obtain

μ
(
x̄n

1 , . . . , x̄n
j , y, x̄n

j+2, . . . , x̄
n
kn

) = I (ũn) � I (sn ∨ ṽn)

< I (sn) + I (ṽn) = μ(x̄1, . . . , x̄j , y) + μ
(
x̄n
j+2, . . . , x̄

n
kn

) + o(1),

from which we deduce

lim sup
n→+∞

[
μ

(
x̄n

1 , . . . , x̄n
j , y, x̄n

j+2, . . . , x̄
n
kn

) − μ
(
x̄n
j+2, . . . , x̄

n
kn

)]
� μ(x̄1, . . . , x̄j , y). (29)

To prove the reverse inequality, we argue analogously to Lemma 13. We set

σn := min
{∣∣x̄n

i

∣∣: i = j + 2, . . . , kn

}
thus σn −−−−−→

n→+∞ +∞ and we can assert that, for large n,

k⋃
i=j+2

Bρ(x̄i) ⊂R
N \ Bσn

2 +1(0),

j⋃
i=1

Bρ(x̄i) ∪ Bρ(y) ⊂ Bσn
2 −1(0).

We define ûn(x) = χn(x)ũn(x), where χn(x) = χ(|x| − σn

2 ) and χ ∈ C∞(R+, [0,1]) is a function such that χ(t) = 0
if |t |� 1/2, χ(t) = 1 if |t | � 1, and we evaluate I (ûn(x)). By computations analogous to those of (19) we obtain



34 G. Cerami et al. / Ann. I. H. Poincaré – AN 32 (2015) 23–40
I
(
ûn(x)

) = I
(
χnũn(x)

)
� μ

(
x̄n

1 , . . . , x̄n
j , y, x̄n

j+2, . . . , x̄
n
kn

) + C1

∫
B σn

2 +1(0)\B σn
2 −1(0)

(
(ũn)δ

)2
dx

+ C2

∫
B σn

2 +1(0)\B σn
2 −1(0)

(
(ũn)δ

)p+1
dx

� μ
(
x̄n

1 , . . . , x̄n
j , y, x̄n

j+2, . . . , x̄
n
kn

) + O
(
e−η̄σn

)
. (30)

On the other hand ûn(x), for large n, can be written as ûn(x) = ẑn(x) + žn(x), with

ẑn(x) =
{

0 if |x|� σn

2 − 1
2 ,

χn(x)(ũn)δ(x) + (ũn)
δ(x) if |x| < σn

2 − 1
2

and

žn(x) =
{

0 if |x|� σn

2 + 1
2 ,

χn(x)(ũn)δ(x) + (ũn)
δ(x) if |x| > σn

2 + 1
2 .

Hence

I (ûn) = I (ẑn) + I (žn) � μ
(
xn

1 , . . . , xn
j , y

) + μ
(
xn
j+2, . . . , x

n
kn

)
. (31)

Combining (30) and (31), and passing to the limit, we get the desired inequality

lim inf
n→+∞

[
μ

(
xn

1 , . . . , xn
j , y, xn

j+2, . . . , x
n
kn

) − μ
(
xn
j+2, . . . , x

n
kn

)]
� lim

n→+∞
[
μ

(
xn

1 , . . . , xn
j , y

) − O
(
e−ησn

)] = μ(x1, . . . , xj , y)

that, together (29), gives (26). �
4. Proof of Theorem 2

This section is devoted to the proof, divided in three propositions, of Theorem 2. Proposition 15 is the main step in
which the existence of a solution to (E) having infinitely many bumps is shown. Propositions 16 and 17 are devoted
to prove relations (3) and (4) respectively.

Proposition 15. Let assumptions of Theorem 2 hold.
Then there exists a solution of (E), ū ∈ H 1

loc(R
N), having infinitely many emerging parts around an unbounded

sequence (x̄n)n of points of RN , such that |x̄n − x̄m|� 3ρ if n 
= m.

Proof. Let (ūk)k be a sequence of solutions to (E) obtained as described in Theorem 4.
Lemma 14 states that, for all h ∈ N, rh ∈ R

+ \ {0} and kh ∈ N exist so that ν(ūk, rh) � h, for all k > kh. On the
other hand, since the points around which any ūk is emerging have interdistances greater or equal than 3ρ, a number
H(� h) exists so that ν(ūk, rh) � H , for all k ∈ N. Thus, limh→+∞ rh = +∞ and, without any loss of generality, we
can assume rh � rh+1, for all h ∈N.

Therefore, we can build, for all h, a subsequence (ūh
kn

)n of (ūk)k in such a way that

∀h ∈ N,
(
ūh+1

kn

)
n

is a subsequence of
(
ūh

kn

)
n
,

∀h ∈ N, ∀n ∈N, ν
(
ūh

kn
, rh

) = ĥ, h � ĥ � H,

and for all h ∈ N, the sequences of ĥ-tuples ((x̄n
1 )h, . . . , (x̄n

ĥ
)h)n, consisting of the ĥ points around which ūh

kn
is

emerging and that are contained in Brh(0), are converging as n goes to +∞.



G. Cerami et al. / Ann. I. H. Poincaré – AN 32 (2015) 23–40 35
Let us now consider the sequence (vn)n, where

vn := ūn
kn

.

By construction, (vn)n is a subsequence of (ūh
kn

)n for all h; moreover the sequences of points, around which the
functions of (vn)n are emerging, are converging as n goes to infinity and their limit points have interdistances greater
or equal than 3ρ and make up an unbounded numerable subset of RN , we denote it by L.

Our aim is to show that ‖vn‖Brh
(0) is bounded for all h ∈ N. Indeed, if this is true, considering that rh −−−−−→

h→+∞ +∞
and that, for all n, vn solves (E), we can infer that, up to a subsequence, (vn)n uniformly converges on every compact
set of RN and that the limit function is a solution of (E) which has at least h emerging parts around points belonging
to B̄rh(0).

Since L is numerable, we can set L = {x̄n: n ∈ N}, where x̄n 
= x̄m if n 
= m. Since |x̄n| −−−−−→
n→+∞ +∞, L ∩

B
rh+ 4

3 ρ
(0) is finite and, by definition of (vn)n, it contains at least h points. Thus, we can assume

L ∩ B
rh+ 4

3 ρ
(0) = {x̄1, . . . , x̄h̄}, h̄� h,

and we set

Dh := Brh(0) \
h̄⋃

i=1

B 4
3 ρ

(x̄i).

Now, vn(x), for all n, is a solution of (E) on Dh and, for large n, the distance between Dh and the points around
which vn is emerging is greater than some ρ̄ > ρ. Hence, for large n, 0 � vn(x) � δ in Dh, (|vn|q,Dh

)n with q � 1,
is bounded and, as a consequence of the fact that vn solves (E), (vn)n turns out to be bounded in H 1(Dh) and, by
standard regularity results, in C1+ε(B 5

3 ρ
(x̄i) \ B̄ 4

3 ρ
(x̄i)) for all i ∈ {1, . . . , h̄}.

To complete the argument let us now show that (vn)n is bounded in H 1(B 5
3 ρ

(x̄i)), for all i ∈ {1, . . . , h̄}. To this end

we argue by contradiction. We assume that for some j ∈ {1, . . . , h̄}, (‖vn‖B 5
3 ρ

(x̄j ))n is not bounded and we consider,

for all n, the function zn ∈ H 1(RN) such that �zn = 0 in B 4
3 ρ

(x̄j ) \ B̄ρ(x̄n
j ) and

zn(x) =
{

vn, ∀x /∈ B(4/3)ρ(x̄j ),

ϑn(v1(x + x̄1
j − x̄n

j ))δ, ∀x ∈ B̄ρ(x̄n
j )

where ϑn ∈R
+ \ {0} denotes, for all n, ϑj (v1(x + x̄1

j − x̄n
j )). We remark that x̄n

j −−−−−→
n→+∞ x̄j implies (ϑn)n is bounded;

moreover, by definition, zn is emerging around the same points of vn. We also point out that (zn)n is bounded in
H 1(B 5

3 ρ
(x̄j )), because (vn)n is bounded in C1+ε(B 5

3 ρ
(x̄j ) \ B̄ 4

3 ρ
(x̄j )).

Thus, we easily infer the sequence ‖(vn)δ‖B 5
3 ρ

(x̄j ) is bounded. Indeed, in the opposite case we would have

lim
n→+∞

(
I (vn) − I (zn)

)
� lim

n→+∞

(
1

2

∫
B 5

3 ρ
(x̄j )

∣∣∇(vn)δ
∣∣2

dx + a0

(
1

2
− 1

p + 1

) ∫
B 5

3 ρ
(x̄j )

(
(vn)δ

)2
dx − C

)

= +∞
and, by the max–min characterization of vn,

I (zn) � I (vn),

that is impossible.
Therefore, up to a subsequence,∥∥(vn)

δ
j

∥∥
B 5

3 ρ
(x̄j )

−−−−−→
n→+∞ +∞

must be true. Consequently,∣∣(vn)
δ
j

∣∣
p+1,B 5 ρ

(x̄j )
−−−−−→
n→+∞ +∞
3
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has to hold too, because otherwise we would deduce

lim
n→+∞

(
I (vn) − I (zn)

)
� lim

n→+∞ c
∥∥(vn)

δ
j

∥∥2
B 5

3 ρ
(x̄j )

− C = +∞,

that is not consistent with I (vn) � I (zn). However, neither

sup
n∈N

∥∥(vn)
δ
j

∥∥
B 5

3 ρ
(x̄j )

/
∣∣(vn)

δ
j

∣∣
p+1,B 5

3 ρ
(x̄j )

< +∞ (32)

nor, up to a subsequence,

lim
n→+∞

∥∥(vn)
δ
j

∥∥
B 5

3 ρ
(x̄j )

/
∣∣(vn)

δ
j

∣∣
p+1,B 5

3 ρ
(x̄j )

= +∞ (33)

can be true. Indeed, (32) brings to conclude

lim
n→+∞Jδ

(
(vn)

δ
j

) = −∞

which is impossible, being Jδ((vn)
δ
j ) > 0 for all n ∈N. From (33) we would deduce

lim
n→+∞Jδ

(
(vn)

δ
j

) = lim
n→+∞ max

t>0
Jδ

(
t (vn)

δ
j

)

= lim
n→+∞ max

t>0
Jδ

(
t

(vn)
δ
j

|(vn)
δ
j |p+1,B 5

3 ρ
(x̄j )

)
� lim

n→+∞Jδ

(
(vn)

δ
j

|(vn)
δ
j |p+1,B 5

3 ρ
(x̄j )

)

� lim
n→+∞

[
c̄1

‖(vn)
δ
j‖2

B 5
3 ρ

(x̄j )

|(vn)
δ
j |2p+1,B 5

3 ρ
(x̄j )

− 1

p + 1

∫
B 5

3 ρ
(x̄j )

(
δ + (vn)

δ
j

|(vn)
δ
j |p+1,B 5

3 ρ
(x̄j )

)p+1

− c̄2

]

= +∞, (34)

that implies

lim
n→+∞

[
I (vn) − I (zn)

] = +∞,

contradicting I (zn) � I (vn). Consequently, (vn)n is bounded in H 1(B 5
3 ρ

(x̄i)) for all i ∈ {1, . . . , h̄} and the proof is

complete. �
Proposition 16. Let ū ∈ H 1

loc(R
N) be a solution of (E), having infinitely many emerging parts around an unbounded

sequence of points (x̄n)n of RN , as stated in Proposition 15. Then

lim
n→+∞ min

{|x̄n − x̄m|: m ∈ N, m 
= n
} = +∞. (35)

Proof. The argument is carried out by contradiction. We assume false the statement; therefore we can assert the
existence of two subsequences (bn)n and (b̄n)n of (x̄n)n such that, for all n, b̄n 
= bn and (|b̄n − bn|)n is bounded.

Let us fix R > ρ. Then, by definition of ū, for all n a kn exists so that

I (ūkn) = μkn, sup
BR(bn)∪BR(b̄n)

|ūkn − ū| < 1

n
(36)

and ūkn is a solution of (E) emerging around kn points (x̄n
1 , . . . , x̄n

kn
). As a consequence of (36) the distances between

two points around which ūkn is emerging and the points bn and b̄n, respectively, must go to zero as n → +∞. Without
any loss of generality, we can assume

lim
n→+∞

∣∣x̄n
1 − bn

∣∣ = 0; lim
n→+∞

∣∣x̄n
2 − b̄n

∣∣ = 0.

By Lemma 13, for all n ∈ N there exists yn ∈R
N such that the relation
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μ
(
yn, x̄

n
2 , . . . , x̄n

kn

)
> μ

(
x̄n

2 , . . . , x̄n
kn

) + m∞ (37)

holds. Now, if we show that

lim sup
n→+∞

[
μ

(
x̄n

1 , . . . , x̄n
kn

) − μ
(
x̄n

2 , . . . , x̄n
kn

)]
< m∞, (38)

we are done, because combining (36), (37) and (38) we obtain, for large n,

μkn = I (ūkn) = μ
(
x̄n

1 , . . . , x̄n
kn

)
< μ

(
yn, x̄

n
2 , . . . , x̄n

kn

)
� μkn

which is impossible.
The argument for proving (38) is analogous to that of Proposition 5.1 of [6], nevertheless we include it here to

make the paper self-contained.
We set w1,n := w(x − x̄n

1 ) and we consider the projection of it on the constraint I ′(u)[uδ] = 0 that is w̃1,n :=
(w1,n)δ + ϑ(w1,n)(w1,n)

δ . Let sn(x) belong to Mx̄n
2 ,...,x̄n

kn
. Then

w̃1,n ∈ Sx̄n
1
, w̃1,n ∨ sn ∈ Sx̄n

1 ,...,x̄n
kn

and

μx̄n
1 ,...,x̄n

kn
= I (ūkn) � I (w̃1,n ∨ sn)

� I (w̃1,n) + I (sn) − I (w̃1,n ∧ sn) = μx̄n
2 ,...,x̄n

kn
+ I (w̃1,n) − I (w̃1,n ∧ sn). (39)

Now, from the argument of (14) and (15) of Lemma 11, we have

I (w̃1,n) � m∞ + o(1). (40)

On the other hand

(w̃1,n ∧ sn)δ = (w1,n ∧ sn)δ = w1,n ∧ sn,

and, since (|x̄n
1 − x̄n

2 |)n is bounded, a γ ∈R
+ exists so that, for all n,

supp(sn)
δ
2 ⊂ Bρ

(
x̄n

2

) ⊂ Bρ+γ

(
x̄n

1

)
,

thus we infer

I (w̃1,n ∧ sn) � a0

(
1

2
− 1

p + 1

) ∫
RN

(w1,n ∧ sn)
2 dx

� C

∫
supp(sn)δ2

(
w1,n(x)

)2
dx � C

(
inf

Bρ+γ (0)
w

)2∣∣supp(sn)
δ
2

∣∣. (41)

Clearly, (39), (40) and (41) give (38) once the relation

lim inf
n→+∞

∣∣supp(sn)
δ
2

∣∣ > 0 (42)

is proved. Arguing by contradiction, we assume

lim inf
n→+∞

∣∣supp(sn)
δ
2

∣∣ = 0.

Then, we deduce that ‖(sn)δ2‖/|(sn)δ2|p+1 cannot be bounded. Otherwise, in fact, up to a subsequence, the contrasting
relations:

(sn)
δ
2

|(sn)δ2|p+1
⇀ s̄ weakly in H 1(

R
N

)
,

(sn)
δ
2

|(sn)δ2|p+1
→ s̄ strongly in Lp+1(

R
N

)
,

s̄(x) = 0 a.e. in R
N,

would be true simultaneously.
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Therefore, up to a subsequence, we have

lim
n→+∞

‖(sn)δ2‖
|(sn)δ2|p+1

= +∞,

and, consequently, arguing as in (34) we get

lim
n→+∞Jδ

(
(sn)

δ
2

) = +∞. (43)

Now, set

ŝn(x) :=
[
(sn)δ +

kn∑
i=3

(sn)
δ
i

]
∨ w̃2,n,

where w2,n(x) = w(x − x̄n
2 ), w̃2,n = (w2,n)δ + ϑ(w2,n)(w2,n)

δ ∈ Sx̄n
2
. Then ŝn ∈ Sx̄n

2 ,...,x̄n
kn

and, since sn ∈ Mx̄n
2 ,...,x̄n

kn
,

I (sn) � I (ŝn). (44)

On the other hand, considering (43) and observing that, similarly to (40), limn→+∞ I (w̃2,n) = m∞, we get for large n

I (ŝn) − I (sn) � I
(
(sn)δ

) +
kn∑

i=3

Jδ

(
(sn)

δ
i

) + I (w̃2,n) −
[
I
(
(sn)δ

) +
kn∑

i=2

Jδ

(
(sn)

δ
i

)]

= I (w̃2,n) − Jδ

(
(sn)

δ
2

)
< 0

that contradicts (44). Thus (42) holds true and the proof is complete. �
Proposition 17. Let ū ∈ H 1

loc(R
N) and (x̄n)n be as in Proposition 16. Then

lim
n→+∞ ū(x + x̄n) = w(x) (45)

uniformly on all compact sets K ⊂R
N .

Proof. Let us fix r̄ > ρ. Then, by definition of ū, for all n, a kn ∈ N exists so that

sup
Br̄ (x̄n)

|ūkn − ū| < 1/n;

with ūkn solution of (E) emerging around kn points (x̄n
1 , . . . , x̄n

kn
). As a consequence, there exists a point around which

ūkn is emerging and whose distance from x̄n is infinitesimal as n → +∞. Without any loss of generality, we assume

lim
n→+∞

∣∣x̄n
1 − x̄n

∣∣ = 0. (46)

Moreover, from (35), the relations

lim
n→+∞

∣∣x̄n
1

∣∣ = +∞, lim
n→+∞ min

{∣∣x̄n
1 − x̄n

j

∣∣: j = 2, . . . , kn

} = +∞,

follow. Thus, setting dn = min{|x̄n
1 − x̄n

j |: j = 2, . . . , kn}, we define ξn(x) := ξ(|x− x̄n
1 |− dn

2 ) where ξ ∈ C∞(R, [0,1])
is such that ξ(t) = 0 if |t |� 1/2 and ξ(t) = 1 if |t |� 1. Since dn −−−−−→

n→+∞ +∞, for large n, we have

ξn(x)ūkn = ûn(x) + ǔn(x),

where ûn(x) ∈ Sx̄n
1
, ǔn(x) ∈ Sx̄n

2 ,...,x̄n
kn

, and

supp ûn ⊂ Bdn
2 − 1

2

(
x̄n

1

)
, supp ǔn ⊂R

N \ Bdn
2 + 1

2

(
x̄n

1

)
.

Then computations analogous to (19) and (30) bring to

I (ûn) + I (ǔn) = I (ξnūkn)� I (ūkn) + O
(
e−η̄dn

)
. (47)

Now, considering z̄n ∈ Mx̄n
1

and zn = ζ(|x − x̄n
1 | − dn

2 )z̄n(x), with ζ ∈ C∞(R, [0,1]) such that ζ(t) = 1 if |t | � 1/4,
ζ(t) = 0 if |t |� 1/2 we get
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zn ∈ Sx̄n
1
, zn + ǔn ∈ Sx̄n

1 ,...,x̄n
kn

;
I (ūkn)� I (zn) + I (ǔn) (48)

and, making again computations analogous to those in (30) and using Lemma 11,

I (zn) = I (z̄n) + O
(
e−η̄dn

)
� m∞ + o(1). (49)

Thus, combining (47), (48) and (49) we deduce

I (ûn) � I (ūkn) − I (ǔn) + o(1)� I (zn) + o(1)� m∞ + o(1). (50)

On the other hand, denoting by ũn the projection of ûn on the constraint (I ′)∞(u)[uδ] = 0, ũn(x) = (ûn)δ +
ϑ∞(ûn)(ûn)

δ , ũn belongs to S∞
x̄n

1
and by arguments quite analogous to those used to prove (22) (considering x̄n

1

instead of yn and choosing σn = |x̄n
1 |) we obtain

I (ûn) � I (ũn)� m∞ + o(1). (51)

(50) and (51) imply

lim
n→+∞ I (ûn) = m∞, (52)

that, used in (51), gives

lim
n→+∞ I (ũn) = m∞. (53)

Now, we can write (52) as

m∞ + o(1) = I (ûn) = I
(
(ûn)δ

) + Jδ

(
(ûn)

δ
)

from which, using the coercivity of I on (ûn)δ and the relation Jδ((ûn)
δ) > 0, we deduce at once that ‖(ûn)δ‖ is

bounded.
To show that ‖(ûn)

δ‖ is bounded too, we argue by contradiction and we assume that, up to a subsequence,
‖(ûn)

δ‖ −−−−−→
n→+∞ +∞. Then, we have

m∞ + o(1) � Jδ

(
(ûn)

δ
) = max

t>0
Jδ

(
t (ûn)

δ
)

= max
t>0

Jδ

(
t

(ûn)
δ

|(ûn)δ|p+1

)
� Jδ

(
(ûn)

δ

|(ûn)δ|p+1

)
� c1

(‖ûn‖2)δ

|(ûn)δ|p+1
− c2,

where c1 > 0 and c2 > 0, that implies

‖ûn‖� C1
∣∣(ûn)

δ
∣∣
p+1, C1 > 0.

Since, by Sobolev embedding, it is also true the relation∣∣(ûn)
δ
∣∣
p+1 � C2‖ûn‖, C2 > 0

where C2 is independent of n because supp(ûn)
δ ⊂ Bρ(x̄n

1 ), we obtain

Jδ

(
(ûn)

δ
)
� c3‖ûn‖2 − c4

∣∣(ûn)
δ
∣∣p+1
p+1 + c5 −−−−−→

n→+∞ −∞
that is impossible because Jδ((ûn)

δ) > 0.
Therefore, ‖(ûn)

δ‖ is bounded. Consequently the boundedness of ϑ∞(ûn) can be easily proved, hence we deduce
‖(ũn)‖ is bounded and, using (53), ϑ(ũn) −−−−−→

n→+∞ 1. We remark also that ûn(x) = ūkn in Bdn
2 −1(x̄

n
1 ), thus, in this set

it is a solution of −�u + a(x)u = up .
Let now R > 0 be a number arbitrarily fixed. Since dn −−−−−→

n→+∞ +∞, we can assert that

ūkn

(
x + x̄n

1

) = ûn

(
x + x̄n

1

)
⇀ w(x) in H 1(BR(0)

)
.

Thus, by a bootstrap argument, we deduce ūkn(· + x̄n
1 ) ∈ C1+ε(K), and (ūkn(· + x̄n

1 ))n is bounded in C1+ε(K) for
some ε > 0 and for all compact sets K ⊂ BR(0). As a consequence, in view of (46), we get the desired conclusion. �



40 G. Cerami et al. / Ann. I. H. Poincaré – AN 32 (2015) 23–40
References

[1] A. Bahri, Y.Y. Li, On a min–max procedure for the existence of a positive solution for certain scalar field equations in RN , Rev. Mat. Iberoam.
6 (1990) 1–15.

[2] A. Bahri, P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré,
Anal. Non Linéaire 14 (1997) 365–413.

[3] H. Brezis, Analyse fonctionelle. Theorie et applications, Collect. Math. Appl. Maîtrise, Masson, Paris, 1983.
[4] G. Cerami, Some nonlinear elliptic problems in unbounded domains, Milan J. Math. 74 (2006) 47–77.
[5] G. Cerami, G. Devillanova, S. Solimini, Infinitely many bound states for some nonlinear scalar field equations, Calc. Var. Partial Differ. Equ.

23 (2005) 139–168.
[6] G. Cerami, D. Passaseo, S. Solimini, Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients, Commun.

Pure Appl. Math. 66 (2013) 372–413.
[7] P.L. Lions, The concentration compactness principle in the calculus of variations, Parts I and II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire

1 (1984) 109–145, 223–283.
[8] J. Wei, S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger equations in R

N , Calc. Var. Partial Differ. Equ. 37 (2010)
423–439.

http://refhub.elsevier.com/S0294-1449(13)00116-9/bib424C69s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib424C69s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib424Cs1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib424Cs1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib42s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib43s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib434453s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib434453s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib435053s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib435053s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib504C4Cs1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib504C4Cs1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib57s1
http://refhub.elsevier.com/S0294-1449(13)00116-9/bib57s1

	Nonlinear scalar ﬁeld equations: Existence of a positive solution with inﬁnitely many bumps
	1 Introduction
	2 Notation, variational framework and useful facts
	3 Preliminary estimates
	4 Proof of Theorem 2
	References


