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Abstract

Let Ω be a bounded domain in R
2 with smooth boundary. In this paper we are concerned with the existence of critical points for

the supercritical Trudinger–Moser trace functional∫
∂Ω

ekπ(1+μ)u2
(0.1)

in the set {u ∈ H 1(Ω):
∫
Ω(|∇u|2 + u2) dx = 1}, where k � 1 is an integer and μ > 0 is a small parameter. For any integer k � 1

and for any μ > 0 sufficiently small, we prove the existence of a pair of k-peaks constrained critical points of the above problem.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω be a bounded domain in R
2 with smooth boundary, and let H 1(Ω) be the Sobolev space, equipped with the

norm

‖u‖ =
(∫

Ω

(|∇u|2 + u2)dx

) 1
2

.

Let α be a positive number, the Trudinger–Moser trace inequality states that

Cα(Ω) = sup
u∈H 1(Ω), ‖u‖�1

∫
∂Ω

eα|u|2
{� C < +∞, if α � π,

= +∞, if α > π
(1.1)

✩ The research of the second author has been partly supported by Fondecyt Grant 1120151 and CAPDE-Anillo ACT-125, Chile.
* Corresponding author.

E-mail addresses: shbdeng65@gmail.com (S.-B. Deng), mmusso@mat.puc.cl (M. Musso).
0294-1449/$ – see front matter © 2013 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.anihpc.2013.10.002

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2013.10.002
http://www.elsevier.com/locate/anihpc
mailto:shbdeng65@gmail.com
mailto:mmusso@mat.puc.cl
http://dx.doi.org/10.1016/j.anihpc.2013.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2013.10.002&domain=pdf


60 S.-B. Deng, M. Musso / Ann. I. H. Poincaré – AN 32 (2015) 59–95
[1,2,6,7,18,22,23]. Let us mention that the early works [6,7] do not include the case when the constant in (1.1) is
exactly π . For (1.1) there is a loss of compactness at the limiting exponent α = π . Despite of that, it has been proven
in [28] that the supremum Cπ(Ω) is attained by a function u ∈ H 1(Ω) with

∫
Ω

[|∇u|2 + u2] = 1, for any bounded
domain Ω in R

2, with smooth boundary. Also, for any α ∈ (0,π), the supremum Cα(Ω) is finite and it is attained.
But the exponent α = π is critical in the sense that for any α > π , Cα(Ω) = ∞. See also [8,16,17] for generalizations.

The aim of this paper is to study the existence of critical points of the Trudinger–Moser trace functional

Eα(u) =
∫

∂Ω

eαu2
, (1.2)

constrained to functions

u ∈ M = {u ∈ H 1(Ω): ‖u‖2 = 1
}

(1.3)

in the supercritical regime

α > π.

In view of the results described above, we will be interested in critical points other than global supremum. As far as
we know, no results are known in the literature concerning existence of critical points for the Trudinger–Moser trace
constrained problem in the supercritical regime. Nevertheless, much more is known for the corresponding Trudinger–
Moser functional.

Let us recall that the Trudinger–Moser inequality in dimension 2 states that

sup
u∈H 1

0 (Ω), ‖∇u‖2�1

∫
Ω

eμ|u|2 dx

{� C < +∞, if μ� 4π,

= +∞, if μ > 4π.
(1.4)

Here again Ω is a bounded domain of R2, with smooth boundary. We refer the reader to [25,23,27,29] for the first
works on problem (1.4), and to [3,4] for some more recent contributions. For problem (1.4) there is a loss of compact-
ness at the limiting exponent μ = 4π [21]. Despite of this loss of compactness, the supremum

sup
u∈H 1

0 (Ω), ‖∇u‖2�1

∫
Ω

e4π |u|2 dx

is attained for any bounded domain Ω ⊂ R
2. This was proven first in the seminal work [5] for the ball Ω = B1(0)

(see also an alternative proof in [10]). In [26] the result was proven for domains Ω which are small perturbation of the
ball. The general result in dimension 2 was proven by Flucher in [14], and Lin [20] extended it for the corresponding
Trudinger–Moser inequality for general domain of RN , with N > 2.

Concerning the supercritical regime for the Trudinger–Moser functional, namely

Iμ(u) =
∫
Ω

eμ|u|2 dx, u ∈ H 1
0 (Ω), ‖∇u‖2

2 = 1, with μ > 4π, (1.5)

some results are known. In the works [26] and [15] it has been proven that a local maxima and saddle point solutions
in the supercritical regime μ ∈ (4π,μ0) for the functional (1.5) do exist, for some μ0 > 4π .

Our first result is an extension of the existence of a local maxima for the Trudinger–Moser trace functional in the
supercritical regime α ∈ (π,α0). Namely, a local maximizer for problem (1.2)–(1.3) exists when the value of α is
slightly to the right of π .

Theorem 1.1. Let Ω be a bounded domain in R
2. Then there exists α0 > π , such that for any α ∈ (0, α0), there exists

a function uα ∈ M which locally maximizes of Eα on M .

This result is proved in Section 2.
Much more is known for problem (1.5) and μ > 4π . Recently in [12] (see also [11]), the authors obtained several

results concerning critical points for problem (1.5) also in a very supercritical regime. They found general conditions
on the domain Ω under which there is a critical point for Iμ(u) with

∫ |∇u|2 dx = 1 when μ ∈ (4πk,μk), for any

Ω
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integer k � 1 and for some μk slightly bigger than 4πk. In particular, for any bounded domain Ω , they found a critical
point for Iμ(u) with

∫
Ω

|∇u|2 dx = 1 when μ ∈ (4π,μ1), for some μ1 > 4π . The L∞-norm of this solution converges
to ∞ as μ → 4π and its mass is concentrated, in some proper sense, as μ → 4π , around a point in the interior of Ω .
On the other hand, if Ω has a hole, namely it is not simply connected, they proved the existence of a critical point
for Iμ(u) with

∫
Ω

|∇u|2 dx = 1 also in the supercritical range μ ∈ (8π,μ2), for some μ2 > 8π . Again in this case,
the L∞-norm of these solutions converges to ∞ as μ → 8π , but now its mass concentrates, as μ → 8π , around two
distinct points inside Ω . Furthermore, if Ω is an annulus, taking advantage of the symmetry, a critical point for Iμ(u)

with
∫
Ω

|∇u|2 dx = 1 and μ ∈ (4πk,μk) does exist. In this latter case, the L∞-norm of the solution converges to ∞
as μ → 4πk and its mass concentrates, as μ → 4πk, around k points distributed along the vertices of a proper regular
polygon with k sides lying inside Ω .

The second result of this paper establishes the counterpart of the above situation for the Trudinger–Moser trace
functional in the supercritical regime: we will show the existence of critical points for Eα constrained to M , for
α ∈ (kπ,αk), for any k � 1 integer and for some αk slightly to the right of kπ . We next describe our result.

Let G(x,y) be the Green’s function of the problem⎧⎨
⎩

−�xG(x, y) + G(x,y) = 0, x ∈ Ω;
∂G(x, y)

∂νx

= 2πδy(x), x ∈ ∂Ω,
(1.6)

and H its regular part defined as

H(x,y) = G(x,y) − 2 log
1

|x − y| . (1.7)

Our second result reads as follows.

Theorem 1.2. Let Ω be any bounded domain in R
2 with smooth boundary. Fix a positive integer k � 1. Then there

exists αk > kπ such that for α ∈ (kπ,αk), the functional Eα(u) restricted to M has at least two critical points u1
α

and u2
α . Furthermore, for any i = 1,2 there exist numbers mi

j,α > 0 and points ξ i
j,α ∈ ∂Ω , for j = 1, . . . , k such that

lim
α→kπ

mi
j,α = mi

j ∈ (0,∞), (1.8)

ξ i
j,α → ξ i

j ∈ ∂Ω, with ξ i
j 	= ξ i

l for j 	= l, as α → kπ (1.9)

and

ui
α(x) =

√
α − kπ

α

k∑
j=1

[
mi

j,αG
(
x, ξ i

j,α

)+ o(1)
]
, i = 1,2, (1.10)

where o(1) → 0 uniformly on compact sets of Ω̄ \ {ξ i
1, . . . , ξ

i
k}, as α → kπ . In particular, (ξ i,mi) = (ξ i

1, . . . , ξ
i
k,

mi
1, . . . ,m

i
k) in (∂Ω)k × (0,∞)k , for i = 1,2, are two distinct critical points for the function

fk(ξ,m) = 2

k

[
2

k∑
j=1

m2
j log
(
2m2

j

)− k∑
j=1

m2
jH(ξj , ξj ) −

∑
i 	=j

mimjG(ξi, ξj )

]
.

Moreover, for any i = 1,2, for any δ > 0 small, for any j = 1, . . . , k,

sup
x∈B(ξ i

j ,δ)

ui
α(x) → +∞ as α → kπ. (1.11)

There are two important differences between the result stated in Theorem 1.2 and the corresponding result obtained
in [12] for the Trudinger–Moser functional (1.5). A first difference is that for problem (1.2)–(1.3) existence of critical
points in the range α ∈ (kπ,αk) is guaranteed in any bounded domain Ω with smooth boundary, at any integer level k.
No further hypothesis on Ω is needed, unlike the Trudinger–Moser case (1.5). The second difference is that, we do find
two families of critical points for problem (1.2)–(1.3) when α ∈ (kπ,αk), and not only one as in the Trudinger–Moser
case (1.5).
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In recent years a very successful method has been developed for studying elliptic equations in critical or supercrit-
ical regimes. The main idea is to try to guess the form of the solution (using the shape of the “standard bubble”), then
linearize the equation at this approximate solution and use a Lyapunov–Schmidt reduction to arrive at a reduced finite
dimensional variational problem, whose critical points yield actual solutions of the equation. In this paper we use this
method to study problem (1.2)–(1.3) in the supercritical regime. We explain this in Section 3, where we also provide
the proof of Theorem 1.2. Some technical results are postponed to Section 4 and Section 5.

Let us just mention that through out the paper, C will always denote an arbitrary positive constant, independent
of λ, whose value changes from line to line.

2. The local maximizer: proof of Theorem 1.1

We set

E(u) =
∫

∂Ω

eu2
, (2.1)

and

Mα = {u ∈ H 1(Ω): ‖u‖2 = α
}
. (2.2)

We note that by the obvious scaling property, finding critical points of Eα on M (see (1.2) and (1.3)) is equivalent
to finding critical points of E on Mα (see (2.1) and (2.2)). In this section, we study the local maximizer for the
functional E constrained on the set Mα with α in the right neighborhood of π .

We start with the following Lion’s type lemma. The proof is quite standard, but we reproduce it here for complete-
ness.

Lemma 2.1. Let um be a sequence of functions in H 1(Ω) with ‖um‖ = 1. Suppose that um ⇀ u0 weakly in H 1(Ω).
Then either

(i) u0 = 0,

or

(ii) there exists α > π such that the family eu2
m is uniformly bounded in Lα(∂Ω).

In particular, in case (ii), we have that∫
∂Ω

eπu2
m →

∫
∂Ω

eπu2
0 as m → ∞.

Proof. Since ‖um‖ = 1 and um ⇀ u0 weakly in H 1(Ω), we have∫
Ω

(∇um∇u0 + umu0) →
∫
Ω

(|∇u0|2 + u2
0

)
as m → ∞.

Thus we find that

lim
m→∞‖um − u0‖2 = lim

m→∞

{∫
Ω

[∣∣∇(um − u0)
∣∣2 + (um − u0)

2]}

= lim
m→∞

{
‖um‖2 − 2

∫
Ω

(∇um∇u0 + umu0) + ‖u0‖2
}

= 1 − ‖u0‖2.

Assume u0 	= 0. Take p ∈ (1, 1
1−‖u0‖2 ), and choose q1 and q2 such that 1 < pq1 < 1

‖um−u0‖2 and 1
q1

+ 1
q2

= 1. By
Hölder inequality we have
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∫
∂Ω

eπpu2
m =
∫

∂Ω

eπp(um−u0+u0)
2 =
∫

∂Ω

eπp[(um−u0)
2+2(um−u0)u0+u2

0]

=
∫

∂Ω

eπp[(um−u0)
2+2umu0−u2

0] �
∫

∂Ω

eπp[(um−u0)
2+2umu0]

=
∫

∂Ω

eπp(um−u0)
2
e2πpumu0 �

( ∫
∂Ω

eπpq1(um−u0)
2
) 1

q1
( ∫

∂Ω

e2πpq2umu0

) 1
q2

.

We now recall that

π = sup

{
θ : sup

u∈H 1(Ω), ‖u‖�1

∫
∂Ω

eθu2
dσ < ∞

}
, (2.3)

see for instance [2,6,7,18]. Hence, given the choice of p and q1, we get that there exists a constant C, independent
of m, such that∫

∂Ω

eπpq1(um−u0)
2
< C.

On the other hand, Young’s inequality implies that 2|umu0| � ε2u2
m + 1

ε2 u2
0, with ε > 0 small. Then from (2.3), we

have ∫
∂Ω

e2πpq2umu0 <

∫
∂Ω

e
πpq2[ε2u2

m+ 1
ε2 u2

0] =
∫

∂Ω

eπpq2ε
2u2

me
πpq2

1
ε2 u2

0 < C

by choosing ε so that pq2ε
2 < 1. Here again C is a constant, independent of m. Thus, we have that there exists

α = pπ > π such that the family eu2
m is uniformly bounded in Lα(∂Ω).

We shall now show that∫
∂Ω

eπu2
m →

∫
∂Ω

eπu2
0 as m → ∞. (2.4)

Indeed, let l be a positive number and p > 1. We have∣∣∣∣
∫

∂Ω

eπu2
m −

∫
∂Ω∩{|um|�l}

eπu2
m

∣∣∣∣=
∣∣∣∣

∫
∂Ω∩{|um|>l}

eπu2
m

∣∣∣∣� 1

l
2(p−1)

p

∫
∂Ω

eπu2
mu

2(p−1)
p

m

� 1

l
2(p−1)

p

( ∫
∂Ω

eπpu2
m

) 1
p
( ∫

∂Ω

u2
m

) p−1
p

� C

l
2(p−1)

p

.

From the above relation, we conclude that∫
∂Ω

eπu2
m � |∂Ω|eπl2 + C

l
2(p−1)

p

.

Hence dominated convergence theorem implies (2.4).
Suppose now that eu2

m is not bounded in Lα(∂Ω) for any α > π . Using Stokes theorem, for α > π we have∫
∂Ω

eαu2
m dσ =

∫
Ω

div
(
eαu2

m
)
dx � C

∫
Ω

|∇um||um|eαu2
m dx

� C

(∫
Ω

|∇um|2 dx

) 1
2
(∫

Ω

|um|q dx

) 1
q
(∫

Ω

eβu2
m dx

) α
β

where q > 1 satisfies 1 + 1 + α = 1 with β > 2π . Then we get that
∫

eβu2
m dx is unbounded for all β > 2π .
2 q β Ω
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Observe now that we can assume that
∫
Ω

um dx = 0, since otherwise we set ūm = um − 1
|Ω|
∫
Ω

um dx and obtain∫
Ω

um dx = 0. We can also assume that
∫
Ω

|∇um|2 = 1. Furthermore, by Poincaré inequality, (um) is bounded in
H 1(Ω), and also (|um|) is bounded in H 1(Ω). Hence there exists u ∈ H 1(Ω) such that |um| ⇀ u0 weakly in H 1(Ω).
We claim that

lim
m→∞

∫
Ω

∣∣∇(um − η)+
∣∣2 dx = 1, ∀η > 0. (2.5)

By contradiction, assume there exists η > 0 such that limm→∞
∫
Ω

|∇(um−η)+|2 dx 	= 1. Define γ = infm
∫
Ω

|∇(um−
η)+|2 dx < 1 and choose a sufficiently small ε > 0 such that α′ := 2π

γ+ε
> 2π . Let us recall that

2π = sup

{
θ : sup

u∈H 1(Ω),
∫
Ω |∇u|2�1,

∫
Ω u=0

∫
Ω

eθu2
dx < ∞

}
(2.6)

(see [2,6,7,28]). From (2.6), there exists a positive constant C such that

∫
Ω

e
α′[(|um|−η)+− 1

|Ω|
∫
Ω(|um|−η)+]2

dx =
∫
Ω

e
2π[ (|um|−η)+− 1|Ω|

∫
Ω(|um|−η)+

√
γ+ε

]2

dx < C,

where we use the fact that
∫
Ω

|∇ (um−η)+√
γ+ε

|2 dx < 1.

Define dm = 1
|Ω|
∫
Ω

(|um| − η)+. Choosing ε′ > 0 small such that α̃ := α′
1+ε′ > 2π , and by Young’s inequality,

u2
m � (η + dm)2 + 2(η + dm)

[(|um| − η
)+ − dm

]+ [(|um| − η
)+ − dm

]2
�
(
1 + ε′)[(|um| − η

)+ − dm

]2 +
(

1

ε′ + 1

)
(η + dm)2.

Thus, since there dm = O(1) as m → ∞,∫
Ω

eα̃u2
m dx =

∫
Ω

e
α′

1+ε′ u
2
m dx � C1

∫
Ω

e
α′[(|um|−η)+− 1

|Ω|
∫
Ω(|um|−η)+]2

dx � C2,

for some positive constants C1 and C2. This is a contradiction, thus (2.5) holds.
Set vm = min{|um|, η}, then vm is bounded in H 1(Ω) and, up to subsequence, we have that vm ⇀ v. Observe now

that |um| = vm + (|um| − η)+, and

1 =
∫
Ω

|∇um|2 �
∫
Ω

∣∣∇|um|∣∣2 dx =
∫
Ω

|∇vm|2 dx +
∫
Ω

∣∣∇(|um| − η
)+∣∣2 dx.

Therefore (2.5) implies that
∫
Ω

|∇vm|2 dx → 0 as m → ∞, so v is constant. On the other hand,

lim
m→∞

∫
Ω

|∇vm|2 dx = lim
m→∞

∫
Ω∩{|um|�η}

∣∣∇|um|∣∣2 dx = 0.

This implies that |{x: |um| � η}| → 0 as m → ∞. By Fatou Lemma,∣∣{x: u0 � η}∣∣� lim inf
m→∞

∣∣{x: |um| � η
}∣∣= 0,

then |{x: u0 � η}| = 0 for any η > 0. Hence we get u0 = 0. �
We denote β := supu∈Mπ

E(u) = supu∈M Eπ(u). A direct consequence of the previous lemma is the following

Proposition 2.1. Let um be a bounded sequence in H 1(Ω) with ‖um‖ = 1. Suppose that um ⇀ u0 weakly in H 1(Ω).
Suppose Eπ(um) → β with β > |∂Ω|. Then there exists α > π such that the family eu2

m is uniformly bounded in
Lα(∂Ω). In particular Eπ(um) → Eπ(u0) and u0 	= 0.
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Proof. Suppose eu2
m is unbounded in Lα(∂Ω) for all α > π , and assume the supremum of Eπ on M is not attained.

Then by Lemma 2.1, we have that u0 = 0, which is impossible because Eπ(um) → β > |∂Ω|. �
Let Kπ be the set defined by

Kπ = {u ∈ M: Eπ(u) = β
}
.

Lemma 2.2. The set Kπ is compact.

Proof. Let {um} ⊂ Kπ be such that um ⇀ u0 weakly in H 1(Ω), then by Proposition 2.1,

Eπ(um) → Eπ(u0).

Moreover, ‖u0‖� ‖um‖ = 1, then

Eπ(u0) � Eπ

(
u0

‖u0‖
)
� sup

v∈M

Eπ(v) = β.

Then we get Eπ(u0) = β , and ‖u0‖ = 1, hence um → u0 strongly in H 1(Ω), hence Kπ is compact. �
The property of Kπ of being compact implies that the family of norm-neighborhoods

Nε = {u ∈ M
∣∣ ∃v ∈ Kπ : ‖u − v‖ < ε

}
constitutes a basic neighborhood for Kπ in M .

Lemma 2.3. For sufficiently small ε > 0, one has

sup
N2ε\Nε

Eπ < β = sup
Nε

Eπ . (2.7)

Proof. We argue by contradiction. We suppose that there is a sequence um ∈ N2ε \ Nε such that Eπ(um) → β . Then
we have um ∈ H 1(Ω) with ‖um‖2 = 1. Up to subsequence, we can assume that um ⇀ u0 weakly in H 1(Ω). By the
definition of N2ε , there is zm ∈ Kπ such that ‖zm − um‖ < 2ε. By the compactness of Kπ , we have that zm → z

strongly, with z ∈ Kπ , and z satisfies

−�z + z = 0 in Ω,
∂z

∂ν
= πzez2∫

∂Ω
z2ez2 on ∂Ω.

By the maximum principle, we have z ∈ L∞(Ω).
By the lower-semi continuity, we have ‖z − u0‖� 2ε. Then∥∥∥∥z − u0

‖u0‖
∥∥∥∥� ‖z − u0‖ +

∥∥∥∥u0 − u0

‖u0‖
∥∥∥∥= ‖z − u0‖ + 1 − ‖u0‖� 4ε.

Thus u0‖u0‖ ∈ N4ε , and so Eπ(u0) � Eπ(
u0‖u0‖ ) � β . If Eπ(u0) = β then ‖u0‖ = 1, and um → u0. On the other hand,

our assumption implies that u0 /∈ Nε , thus u0 does not belong to Kπ and u0 cannot be relatively maximal. Thus we
necessarily get Eπ(u0) < β .

Set wm = um − zm + z, so we have wm ⇀ u0 weakly in H 1(Ω). Since

eπ |wm|2 = eπ |um−zm+z|2 � e2π |um−zm|2e2π |z|2

= e
2π‖um−zm‖2(

um−zm‖um−zm‖ )2
e2π |z|2 � e

8πε2(
um−zm‖um−zm‖ )2

e2π |z|2 .

Choosing ε small such that 16ε2 � 1, then from (2.3) we have that eπ |wm|2 is uniformly bounded in L2(∂Ω), as
m → ∞. Thus limm→∞ Eπ(wm) = Eπ(u0). On the other hand, we have wm − um → 0 strongly in H 1(Ω). By
uniform local continuity of Eπ , and compactness of Kπ , we obtain that Eπ(wm) − Eπ(um) → 0, and Eπ(u0) = β .
This is a contradiction. �
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Lemma 2.4. There exists α∗ > π , ε > 0 such that for all α ∈ [π,α∗), then we have

(i) sup
N2ε\Nε

Eα < sup
Nε

Eα. (2.8)

(ii) βα := supNε
Eα is achieved in Nε .

(iii) Kα = {u ∈ Nε | Eα(u) = βα} is compact.

Proof. (i) Since Kπ is compact, there is a neighborhood N of Kπ such that, for any ς > 0 there exists δ′ > 0 such
that for all |α − π | < δ then |Eα(u) − Eπ(u)| � ς , for all u ∈ N . Choose ε > 0 such that (2.7) holds and Nε ⊂ N ,
then (2.8) will be valid for all α in a small neighborhood of π .

(ii) For such α, let um ∈ Nε be a maximizing sequence of Eα , that is, Eα(um) → βα and let vm ∈ Kπ satisfy
‖um − vm‖ � ε. We may assume that vm → v strongly in H 1(Ω) with v ∈ L∞, and um → u weakly in H 1(Ω). Set
wm = um − vm + v, as in the proof of Lemma 2.3, we obtain that for ε > 0 small, α in a neighborhood of π we have
that

Eα(wm) → Eα(u), Eα(um) − Eα(wm) → 0 as m → ∞.

Then Eα(u) = βα . Moreover, by the lower-semi continuity, we have ‖v − u‖� ε. Then∥∥∥∥v − u

‖u‖
∥∥∥∥� ‖v − u‖ +

∥∥∥∥u − u

‖u‖
∥∥∥∥= ‖v − u‖ + 1 − ‖u‖� 2ε.

We get that u
‖u‖ ∈ N̄2ε and Eα( u

‖u‖ ) � βα . Furthermore, since ‖u‖ � 1, we can get Eα( u
‖u‖ ) � Eα(u) and ‖u‖ = 1. It

implies that u ∈ M , that is u ∈ Nε and βα is attained. Moreover, um → u strongly in H 1(Ω).
(iii) As in the proof of (ii), if um ∈ Kα , we may assume that um ⇀ u weakly in H 1(Ω), we then get u ∈ Kα , that

is Kα is compact. �
Proof of Theorem 1.1. From (2.3), we have that supMα

E is achieved for α < π . Moreover, since supu∈Mπ
E(u) >

|∂Ω|, from Lemma 2.4 we have that for α sufficiently close to π , then E has relative maximizers on Mα . �
3. The proof of Theorem 1.2

In this section, we consider critical points of functional E(u) constrained on the set Mα (which is equivalent to
consider critical points of Eα(u) constrained on the set M with α = kπ(1 + μ), where μ > 0 small). We define a
critical point of Eα constrained on M to be a solution of the following problem{−�u + u = 0 in Ω;

∂u

∂ν
= λueu2

on ∂Ω,
(3.1)

where

λ = α∫
∂Ω

u2eu2 = kπ(1 + μ)∫
∂Ω

u2eu2 . (3.2)

In this section we shall prove the existence of solutions to problem (3.1)–(3.2) with the properties described in
Theorem 1.2. In fact, we will construct a solution to (3.1)–(3.2) of the form

u = U + φ, (3.3)

where U is the principal part while φ represents a lower order correction. In what follows we shall first describe
explicitly the function U(x). The definition of this function depends on several parameters: some points ξ on the
boundary of Ω and some positive numbers m. Next we find the correction φ so that U + φ solves our problem in a
certain projected sense (see Proposition 3.1). Finally we select proper points ξ and numbers m in the definition of U

to get an exact solution to problem (3.1)–(3.2).
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To define the function U , first we introduce the following limit problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�w = 0 in R
2+;

∂w

∂ν
= ew on ∂R2+;∫

∂R2+

ew < ∞.

(3.4)

A family solution to (3.4) is given by

wt,μ(x) = wt,μ(x1, x2) = log
2μ

(x1 − t)2 + (x2 + μ)2
, (3.5)

where t ∈R and μ > 0 are parameters. See [19,24,30]. Set

wμ(x) := w0,μ(x) = log
2μ

x2
1 + (x2 + μ)2

. (3.6)

Let ξ1, . . . , ξk be k distinct points on the boundary and m1, . . . ,mk be k positive numbers. We assume there exists
a sufficiently small but fixed number δ > 0 such that

|ξi − ξj | > δ for i 	= j, δ < mj <
1

δ
. (3.7)

For notational convenience through out the paper we will use the notation

(ξ,m) = (ξ1, . . . , ξk,m1, . . . ,mk).

For any j = 1, . . . , k, we define εj to be the positive numbers given by the relation

2λm2
j

(
log

1

ε2
j

+ 2 log
(
2m2

j

))= 1. (3.8)

Since the parameters mj satisfy assumption (3.7), it follows that limλ→0 εj = 0. Define moreover μj to be the positive
constants given by

log(2μj ) = −2 log
(
2m2

j

)+ H(ξj , ξj ) +
∑
i 	=j

mim
−1
j G(ξi, ξj ). (3.9)

Using once more assumption (3.7), we get that there exist two positive constants c and C, such that c � μj � C, as
λ → 0.

We define the function U in (3.3) to be given by

U(x) = √
λ

k∑
j=1

mj

[
uj (x) + Hj(x)

]
, (3.10)

where

uj (x) = log
1

|x − ξj − εjμjν(ξj )|2 , (3.11)

ν(ξj ) denoting the unit outer normal to ∂Ω at the point ξj , and where Hj is a correction term given as the solution
of ⎧⎨

⎩
−�Hj + Hj = −uj in Ω;
∂Hj

∂ν
= 2εjμj e

uj − ∂uj

∂ν
on ∂Ω.

(3.12)

Arguing as in Lemma 3.1 in [9], one can show that the maximum principle allows a precise asymptotic description of
the functions Hj , namely we have that
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Hj(x) = H(x, ξj ) + O
(
εσ
j

)
for 0 < σ < 1 (3.13)

uniformly in Ω , as λ → 0. Recall that H is the regular part of the Green’s function, as defined in (1.6). Therefore, the
function U can be described as follows

U(x) = √
λ

k∑
j=1

mj

[
G(x, ξj ) + O

(
εσ
j

)]
(3.14)

uniformly on compact sets of Ω̄ \ {ξ1, . . . , ξk}, as λ → 0. On the other hand, if we consider a region close to ξj , for
some j fixed, say for |x − ξj | < δ, with sufficiently small but fixed δ, we can rewrite

U(x) = √
λmj

(
wj(x) + log ε−2

j + βj + θ(x)
)
, (3.15)

where

wj(x) = wμj

(
x − ξj

εj

)
= log

2μj

|y − ξ ′
j − μjν(ξ ′

j )|2
, y = x

εj

, ξ ′
j = ξj

εj

, (3.16)

and

βj = −log(2μj ) + H(ξj , ξj ) +
∑
i 	=j

m−1
j miG(ξj , ξi), θ(x) = O

(|x − ξj |
)+ k∑

j=1

O
(
εα
j

)
.

Define on the boundary ∂Ω the error of approximation

R := f (U) − ∂U

∂ν
. (3.17)

Here and in what follows f denotes the nonlinearity

f (ũ) = λũeũ2
.

The choice we made of μj in (3.9) and of εj in (3.8) gives that in the region |x − ξj | < δ, the error of approximation
can be described as follows

R = mj

√
λ
{(

1 + 2λm2
j

(
wj + O(1)

))
e
λm2

j w2
j
(
1 + O(λwj )

)− 1
}
ε−1
j ewj , (3.18)

where wj is defined in (3.16). Indeed, for x ∈ ∂Ω with |x − ξj | < δ, we have that

λ− 1
2 f (U) = λ

[
mj

(
wj(x) + log ε−2

j + βj + θ(x)
)]

e
λ[mj (wj (x)+log ε−2

j +βj +θ(x))]2

=
(

λmj

(
log

1

ε2
j

+ βj

)
+ λmj

(
wj + O(1)

))

× e
λm2

j (log 1
ε2
j

+βj )2

e
2λm2

j (log 1
ε2
j

+βj )wj

e
2λm2

j (log 1
ε2
j

+βj )θ(x)

e
λm2

j (wj +θ(x))2

= λmj

(
log

1

ε2
j

+ βj

)(
1 +
(

log
1

ε2
j

+ βj

)−1(
wj + O(1)

))

× e
λm2

j (log 1
ε2
j

+βj )2

e
2λm2

j (log 1
ε2
j

+βj )wj

e
2λm2

j (log 1
ε2
j

+βj )θ(x)

e
λm2

j (wj +θ(x))2

= 1

2mj

(
1 + 2λm2

j

(
wj + O(1)

))
e

1
2 (log 1

ε2
j

+βj )

ewj eθ(x)e
λm2

j (wj +θ(x))2

= 1

2mj

ε−1
j eβj /2(1 + 2λm2

j

(
wj + O(1)

))
ewj eθ(x)e

λm2
j w2

j
(
1 + O(λ)wj

)
thanks to the definition of εj in (3.8). On the other hand, in the same region, we have

λ− 1
2
∂U

∂ν
= ∂

∂ν

[
mj

(
wj(x) + log ε−2

j + βj + θ(x)
)]= mjε

−1
j ewj +

k∑
O
(
ε2
j

)
as λ → 0.
j=1



S.-B. Deng, M. Musso / Ann. I. H. Poincaré – AN 32 (2015) 59–95 69
The definition of μj in (3.9) allows to match at main order the two terms ∂Ũ
∂ν

and f (Ũ) in the region under consider-
ation, since we easily get that

λ− 1
2 f (Ũ) = mj

(
1 + 2λm2

j

(
wj + O(1)

))
ε−1
j ewj e

λm2
j w2

j
(
1 + O(λwj )

)
.

These facts imply the validity of expansion (3.18). Let us now observe that a direct computation shows that R(x) ∼
λ

3
2 ε−1

j ewj (x) in the region |x − ξj | = O(λ); while, in the region |x − ξj | > δ for all j , we have that |R(x)| � Cλ
3
2 , for

some positive constant C. We thus conclude that the error of approximation satisfies the global bound

|R| � Cλ
3
2 ρ(x),

where

ρ(x) :=
k∑

j=1

ρj (x)χBδ(ξj )(x) + 1.

Here χBδ(ξj ) is the characteristic function on Bδ(ξj ) ∩ ∂Ω and

ρj (x) := 1

2λm2
j

{(
1 + 2λm2

j

(
wj + O(1)

))
e
λm2

j w2
j
(
1 + O(λwj )

)− 1
}
ε−1
j ewj .

From now on, let us write

ρj (x) = cγj

{(
1 + 1

γj

(wj + 1)

)(
1 + 1

γj

(
1 + |wj |

))
e

w2
j

2γj − 1

}
ε−1
j ewj , (3.19)

where γj = log ε−2
j . We define the L∞-weight norm

‖h‖∗,∂Ω = sup
x∈∂Ω

ρ(x)−1
∣∣h(x)

∣∣. (3.20)

We thus have the validity of the following key estimate for the error term R

‖R‖∗,∂Ω � Cλ
3
2 . (3.21)

Up to this point, we have defined a function U , whose expression depends on ξ1, . . . , ξk points on ∂Ω , and depends
on m1, . . . ,mk positive numbers. These points and numbers satisfy the bounds (3.7). We next describe the problem
that the function φ in (3.3) solves.

Define in R
2+ = {(x1, x2): x2 > 0} the functions

z0j (x1, x2) = 1

μj

− 2
x2 + μj

x2
1 + (x2 + μj )2

, z1j (x1, x2) = −2
x1

x2
1 + (x2 + μj )2

.

It has been shown in [9] that these functions are all the bounded solutions to the linearized equation around wμj
(3.6)

associated to problem (3.4), that is they are the only bounded solutions to

�ψ = 0 in R
2+, − ∂ψ

∂x2
= e

wμj ψ on ∂R2+. (3.22)

For ξj ∈ ∂Ω , we define Fj : Bδ(ξj ) → O to be a diffeomorphism, where O is an open neighborhood of the origin
in R

2+ such that Fj (Ω ∩ Bδ(ξj )) =R
2+ ∩O, Fj (∂Ω ∩ Bδ(ξj )) = ∂R2+ ∩O. We can select Fj so that it preserves area.

Define

Zij (x) = zij

(
ε−1
j Fj (x)

)
, i = 0,1, j = 1, . . . , k. (3.23)

Next, let us consider a large but fixed number R0 > 0 and a nonnegative radial and smooth cut-off function χ with
χ(r) = 1 if r < R0 and χ(r) = 0 if r > R0 + 1, 0 � χ � 1. Then set

χj (x) = ε−1χ
(
ε−1Fj (x)

)
. (3.24)
j j
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The problem we solve is the following: given ξ1, . . . , ξk and m1, . . . ,mk satisfying the bounds (3.7), find a function φ

and numbers cij such that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−�(U + φ) + (U + φ) = 0 in Ω;
∂(U + φ)

∂ν
= λ(U + φ)e(U+φ)2 + √

λ
∑
i=0,1

k∑
j=1

cijχjZij on ∂Ω;
∫
Ω

χjZijφ = 0 for i = 0,1, j = 1, . . . , k.

(3.25)

Consider the norm

‖φ‖∞ = sup
x∈Ω

∣∣φ(x)
∣∣.

In [13], we have the following result.

Proposition 3.1. Let δ > 0 be a small but fixed number and assume the points ξ1, . . . , ξk ∈ ∂Ω and the numbers
m1, . . . ,mk satisfy (3.7). Furthermore we assume that εj and μj are given by (3.8) and (3.9). Then there exist positive
numbers λ0 and C, such that for any 0 < λ < λ0, there is a unique solution φ = φ(λ, ξ,m), cij = cij (λ, ξ,m) to (3.25).
Moreover,

‖φ‖∞ � Cλ
3
2 , |cij | � Cλ. (3.26)

Furthermore, function φ and constant cij are C1 with respect to (ξ,m), and we have

‖Dξ,mφ‖∞ � Cλ
3
2 , |Dξ,mcij | � Cλ. (3.27)

We will sketch the proof in Section 4, leaving some technical details to Appendix A.
Assuming for the moment the validity of the statement in the above proposition, we observe that U + φ is an exact

solution to problem (3.1), if there exists a proper choice of λ, of the points ξj and the parameters mj , such that

λ = kπ(1 + μ)∫
∂Ω

(U + φ)2e(U+φ)2 and cij = 0 for all i, j, (3.28)

or equivalently∫
Ω

[∣∣∇(U + φ)
∣∣2 + (U + φ)2]dx = kπ(1 + μ) and cij = 0 for all i, j. (3.29)

In order to solve (3.29), we are in the need of understanding the asymptotic expansion, as λ → 0, of
∫
Ω

[|∇(U +
φ)|2 + (U + φ)2]dx in terms of the localization of the points ξ and the values of the parameters m. Next proposition
contains this result, together with the asymptotic expansion of

∫
∂Ω

e(U+φ)2
, as λ → 0, again in terms of ξ and m.

Proposition 3.2. Under the conditions of Proposition 3.1, assume that εj and μj are given by (3.8) and (3.9). Fur-
thermore, we assume that λ is a free parameter. Then, as λ → 0, we have∫

Ω

[∣∣∇(U + φ)
∣∣2 + (U + φ)2]dx = kπ

{
1 + λfk(ξ,m) + λ2Θλ(ξ,m)

}
(3.30)

where

fk(ξ,m) = 2

k

[
2

k∑
m2

j log
(
2m2

j

)− k∑
m2

jH(ξj , ξj ) −
∑

mimjG(ξi, ξj )

]
. (3.31)
j=1 j=1 i 	=j



S.-B. Deng, M. Musso / Ann. I. H. Poincaré – AN 32 (2015) 59–95 71
Moreover, as λ → 0,∫
∂Ω

e(U+φ)2 = |∂Ω| + 4π

k∑
j=1

m2
j + λ

k∑
j=1

m2
j

[
c̃ +
∫

∂Ω

G2(x, ξj )

]
+ λ2Θλ(ξ,m), (3.32)

where c̃ is a positive constant. In (3.31) and (3.32) the function Θλ(ξ,m)(x) denotes a generic smooth function,
uniformly bounded together with its derivatives, as λ → 0, for (ξ,m) satisfying (3.7). In (3.31) and (3.32), G is the
Green’s function defined in (1.6) and H its regular part, as defined in (1.7).

Next proposition will suggest how to solve problem in (3.29).

Proposition 3.3. Under the conditions of Proposition 3.1, let R be the set of points (ξ,m) satisfying (3.7). Then there
exist μ0 > 0 and a subregion R′ of R such that for all 0 < μ < μ0 and for all (ξ,m) ∈ R′, there exists a function
λ = λ(μ, ξ,m) such that∫

Ω

[∣∣∇(U + φ)
∣∣2 + (U + φ)2]dx = kπ(1 + μ) for all μ > 0, μ → 0. (3.33)

Moreover, λ is a smooth function of the free parameter μ, of the points ξ1, . . . , ξk and of the parameters m1, . . . ,mk .
Furthermore, λ → 0 as μ → 0 for points ξ1, . . . , ξk and parameters m1, . . . ,mk belonging to R′. With this definition
of λ, we have that the function φ and the constants cij are C1 with respect to (ξ,m). We finally have that

Dξ,mE(U + φ) = 0 �⇒ cij = 0 for all i, j. (3.34)

See (2.1) for the definition of E.

The proofs of Proposition 3.2 and of Proposition 3.3 are postponed to Section 5.
Given the choice of λ defined through formula (3.33), for all μ > 0 small, Proposition 3.3 gives that U + φ is a

solution to problem (3.1)–(3.2) if we can find (ξ,m) to be a critical point of the function

I(ξ,m) := E(U + φ). (3.35)

We have now all the elements to give the

Proof of Theorem 1.2. Let D be the open set such that

D̄ ⊂ {(ξ,m) ∈ (∂Ω)k ×R
k+: ξi 	= ξj , ∀i 	= j

}
.

Let U(x) be defined as in (3.10), and φ(x) be the solution of problem (3.25), whose existence and properties are stated
in Proposition 3.1. Proposition 3.3 gives that

u(x) = U(x) + φ(x)

is a solution to problem (3.1)–(3.2) if we can find (ξ,m) to be a critical point of the function

I(ξ,m) := E(U + φ).

From (3.33) and (3.30), we have

λfk(ξ,m) + λ2Θλ(ξ,m) = μ (3.36)

where

fk(ξ,m) = 2

k

[
2

k∑
j=1

m2
j log
(
2m2

j

)− k∑
j=1

m2
jH(ξj , ξj ) −

∑
i 	=j

mimjG(ξi, ξj )

]
.

In (3.36), Θλ(ξ,m)(x) denotes a smooth function, uniformly bounded together with its derivatives, as λ → 0, for
(ξ,m) satisfying (3.7). Make the change of variables sj = m2. So we write, with abuse of notation,
j
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fk(ξ, s) = 2

k

[
2

k∑
j=1

sj log(2sj ) −
k∑

j=1

sjH(ξj , ξj ) −
∑
i 	=j

√
sisjG(ξi, ξj )

]
.

Fix ξ . Observe that the function s → fk(ξ, s) has a unique zero, namely there exists a unique s̄ = (s̄1(ξ), . . . , s̄k(ξ)) ∈
R

k+ satisfying fk(ξ, s̄) = 0. We have the following properties:

(i) s̄j is a C1 function with respect to ξ defined in (∂Ω)k ;
(ii) There is a positive constant c0, independent of the points ξ , such that s̄j � c0 for each j = 1, . . . , k;

(iii) s̄j → +∞ as |ξi − ξj | → 0 for some i 	= j ;
(iv) Define

M+ = {(ξ, s) ∈ (∂Ω)k ×R
k+: s1s2 · · · sk 	= 0, fk(ξ, s) > 0

}
.

Then (ξ, (1 + r)s̄) ∈ M+ for r > 0 small.

Proof of (i). Since f (ξ, s̄) = 0, and for j fixed,

∂sj fk(ξ, s)|s=s̄ = 2

k

{
2 log(2s̄j ) + 2 −

[
H(ξj , ξj ) − 1

2

∑
i 	=j

√
s̄i/s̄jG(ξi, ξj )

]}
.

Then

∇sfk(ξ, s̄) · s̄ = ∂s1fk(ξ, s̄)s̄1 + · · · + ∂skfk(ξ, s̄)s̄k = 4

k

k∑
j=1

s̄j > 0. (3.37)

Thus we get ∇sfk(ξ, s)|s=s̄ 	= 0. The implicit function theorem implies the validity of (i).
Proof of (ii). According to the definition of s̄, we know that

2

k

k∑
j=1

s̄j

[
2 log(2s̄j ) − H(ξj , ξj ) −

∑
i 	=j

√
s̄i

s̄j
G(ξi, ξj )

]
= 0.

It yields that

2 log(2s̄j ) − H(ξj , ξj ) =
∑
i 	=j

√
s̄i

s̄j
G(ξi, ξj ) > 0.

So

s̄j >
1

2
e

H(ξj ,ξj )

2 .

Then we get (ii).
Proof of (iii). Since G(ξi, ξj ) → +∞ if |ξi − ξj | → 0, for some i 	= j , if we suppose that s̄l is bounded, for some l,

then the relation fk(ξ, s̄) = 0 would provide a contradiction. This proves (iii).
Proof of (iv). For r > 0 small, by the Taylor expansion, from (3.37) we have

fk

(
ξ, (1 + r)s̄

)= fk(ξ, s̄) + [∂s1fk(ξ, s̄)s̄1 + · · · + ∂skfk(ξ, s̄)s̄k
]
r + o(r)

= 4

k
r

k∑
j=1

s̄j + o(r) > 0. (3.38)

Making the change of variable, define s = (1 + r)s̄ with r > 0 small, we have (ξ, (1 + r)s̄) ∈ M+.
Thanks to the above properties, we conclude that relation (3.36) defines λ as a function of the free parameter μ and

(ξ, s). More precisely,

λ = μ

fk(ξ, (1 + r)s̄)
+ μ2

fk(ξ, (1 + r)s̄)3
Θλ(ξ, s) (3.39)

where Θλ(ξ, s) is a smooth function, uniformly bounded together with its derivatives, as λ → 0.
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Taking (3.39) into (3.32), we get that

I
(
ξ, (1 + r)s̄

)= |∂Ω| + 4(1 + r)π

k∑
j=1

s̄j + μ

∑k
j=1 s̄j [c̃ + ∫

∂Ω
G2(x, ξj )]

fk(ξ, (1 + r)s̄)
+
(

μ

fk(ξ, (1 + r)s̄)

)2

Θμ(ξ, s)

= |∂Ω| + 4(1 + r)π

k∑
j=1

s̄j + μ

∑k
j=1 s̄j [c̃ + ∫

∂Ω
G2(x, ξj )]

4
k
r
∑k

j=1 s̄j
+ μΘμ(ξ, s), (3.40)

where Θμ(ξ, s) is a smooth function, uniformly bounded together with its derivatives, as μ → 0.
We claim that, given δ > 0, for all μ > 0 small enough, the function

ϕμ(ξ, s̄, r) := |∂Ω| + 4π

k∑
j=1

s̄j + 4rπ

k∑
j=1

s̄j + μ

∑k
j=1 s̄j [c̃ + ∫

∂Ω
G2(x, ξj )]

4
k
r
∑k

j=1 s̄j

has a critical point in the region |ξi − ξj | > δ for i 	= j , ξj ∈ ∂Ω , and δ
√

μ < r < δ−1√μ, with value |∂Ω| +
4π
∑k

j=1 s̄j +O(
√

μ), as μ → 0, in the region considered. By construction, the critical point situation is stable under

proper small C1 perturbation of ϕμ: to be more precise, any function ψ such that ‖ψ −ϕμ‖∞ +‖∇ψ −∇ϕμ‖∞ � Cμ

in the region considered, also has a critical point. This fact will conclude the proof of Theorem 1.2.
Observe that the function

r �→ ϕμ(ξ, s̄, r) := |∂Ω| + 4π

k∑
j=1

s̄j + 4rπ

k∑
j=1

s̄j + μ

∑k
j=1 s̄j [c̃ + ∫

∂Ω
G2(x, ξj )]

4
k
r
∑k

j=1 s̄j

has a critical point r̄ given by

r̄ =
√∑k

j=1 s̄j [c̃ + ∫
∂Ω

G2(x, ξj )]
4

√
π√
k

∑k
j=1 s̄j

√
μ,

which is a nondegenerate minimum, since

∂2
rrϕμ(ξ, s̄, r) = μ

∑k
j=1 s̄j [c̃ + ∫

∂Ω
G2(x, ξj )]

2
k

∑k
j=1 s̄j

1

r3
> 0.

Inserting the value of r̄ in ϕμ, in the new variables ξ ∈ (∂Ω)k , we get

Φ(ξ) := I
(
ξ, (1 + r̄)s̄

)

= |∂Ω| + 4π

k∑
j=1

s̄j + 2
√

kπ

√√√√√ k∑
j=1

s̄j

[
c̃ +
∫

∂Ω

G2(x, ξj )

]√
μ + μΘμ(ξ, s)

= |∂Ω| + 4π

k∑
j=1

s̄j + O(
√

μ) as μ → 0

for ξ ∈ Ω̂k = {(ξ1, . . . , ξk) ∈ (∂Ω)k: ξi 	= ξj if i 	= j}.
Next we show that functional Φ(ξ) has at least two critical points. Let C0 be a component of ∂Ω . Let Λ : S1 → C0

be a continuous bijective function that parametrizes C0. Set

Ω̃k = {(ξ1, . . . , ξk) ∈ Ck
0 : |ξi − ξj | > δ for i 	= j

}
.

The function Φ is C1, bounded from below in Ω̃k , and from (iii) we have

Φ(ξ) = Φ(ξ1, . . . , ξk) → +∞ as |ξi − ξj | → 0 for some i 	= j.

Hence, since δ is arbitrarily small, Φ has an absolute minimum cm in Ω̃k .
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On the other hand, using the Ljusternik–Schnirelmann theory, we get that Φ has at least two distinct points in Ω̃k .
Let cat(Ω̃k) be the Ljusternik–Schnirelmann category of Ω̃k relative to Ω̃k , which is the minimum number of closed
and contractible sets in Ω̃k whose union covers Ω̃k . We will estimate the number of critical points for Φ by cat(Ω̃k).

Claim: cat(Ω̃k) > 1.
Indeed, by contradiction, suppose that cat(Ω̃k) = 1. This means that Ω̃k is contractible in itself, namely there exist

a point ξ0 ∈ Ω̃k and a continuous function Γ : [0,1] × Ω̃k → Ω̃k , such that, for all ξ ∈ Ω̃k ,

Γ (0, ξ) = ξ, Γ (1, ξ) = ξ0.

Define f : S1 → Ω̃k to be the continuous function given by

f (ξ̄ ) = (Λ(ξ̄),Λ
(
e2πi 1

k ξ̄
)
, . . . ,Λ

(
e2πi k−1

k ξ̄
))

.

Let η : [0,1] × S1 → S1 be the well-defined continuous map given by

η(t, ξ̄ ) = Λ−1 ◦ π1 ◦ Γ
(
t, f (ξ̄ )

)
,

where π1 is the projection on the first component. The function η is a contraction of S1 to a point and this gives
a contradiction, then claim follows.

Therefore we have that cat(Ω̃k) � 2 for any k � 1. Define

c = sup
C∈Ξ

inf
ξ∈C

Φ(ξ)

where

Ξ = {C ⊂ Ω̃k: C closed and cat(C) � 2
}
.

Then by Ljusternik–Schnirelmann theory we obtain that c is a critical level.
If c 	= cm, we conclude that Φ has at least two distinct critical points in Ω̃k . If c = cm, there is at least one set C

such that cat(C) � 2, where the function Φ reaches its absolute minimum. In this case we conclude that there are
infinitely many critical points for Φ in Ω̃k .

Thus we obtain that the function Φ has at least two distinct critical points in Ω̃k , denoted say by ξ1, ξ2. Hence, for
μ sufficiently small, the function I(ξ, s) has two distinct points (ξ1

μ, s1
μ) and (ξ2

μ, s2
μ) close respectively to (ξ1, (1 +

r̄(ξ1))s̄(ξ1)) and to (ξ2, (1 + r̄(ξ2))s̄(ξ2)). This implies the existence of a solution to our problem of the form U +φ.
Finally, let us remark that (1.10) holds as a direct consequence of the construction of U and of the fact that φ is a
smaller perturbation. This ends the proof of the theorem. �
4. Proof of Proposition 3.1

The proof of Proposition 3.1 is based on a fixed point argument and the invertibility property of the following linear
problem: Given h ∈ L∞(∂Ω), find a function φ and constants cij such that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−�φ + φ = 0 in Ω;

L(φ) = h +
∑
i=0,1

k∑
j=1

cijχjZij on ∂Ω;
∫
Ω

χjZijφ = 0 for i = 0,1, j = 1, . . . , k.

(4.1)

We shall prove the validity of the following

Proposition 4.1. Let δ > 0 be a small but fixed number and assume we have ξ1, . . . , ξk ∈ ∂Ω and m1, . . . ,mk with

|ξi − ξj | � δ, ∀i 	= j, δ < mj <
1

δ
. (4.2)

Then there exist positive numbers λ0 and C such that, for any 0 < λ < λ0 and any h ∈ L∞(∂Ω), there is a unique
solution φ ≡ Tλ(h), and cij ∈ R to (4.1). Moreover,

‖φ‖∞ � C‖h‖∗,∂Ω. (4.3)
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The proof of this result is postponed to Appendix A.
The result of Proposition 4.1 implies that the unique solution φ = Tλ(h) of (4.1) defines a continuous linear map

form the Banach space C∗ of all functions h in L∞(∂Ω) for which ‖h‖∗,∂Ω < ∞ into L∞, with norm bounded
uniformly in λ.

Lemma 4.1. The operator Tλ is differentiable with respect to the variables ξ1, . . . , ξk on ∂Ω satisfying (4.2), and
m1, . . . ,mk , one has the estimate∥∥DξTλ(h)

∥∥∞ � C‖h‖∗,∂Ω,
∥∥DmTλ(h)

∥∥∞ � C‖h‖∗,∂Ω (4.4)

for a given positive C, independent of λ, and for all λ small enough.

Proof. Differentiating Eq. (4.1), formally Z := ∂ξsl
φ, for all s, l, should satisfy in Ω the equation

−�Z + Z = 0 in Ω,

and on the boundary ∂Ω

L(Z) = −∂ξsl

(
k∑

j=1

ε−1
j ewj

)
φ +

∑
i=0,1

k∑
j=1

cij ∂ξsl
(χjZij ) +

∑
i=0,1

k∑
j=1

dijZijχj

with dij = ∂ξsl
cij , and the orthogonality conditions now become∫

Ω

ZijχjZ = 0 if s 	= j,

∫
Ω

ZisχsZ = −
∫
Ω

∂ξsl
(Zisχs)φ.

We consider the constants αab , a = 0,1, b = 1, . . . , k, defined as

αab

∫
Ω

χ2
b |Zab|2 =

∫
Ω

∂ξsl
(Zabχb)φ, for a = 0,1, b = 1, . . . , k.

Define

Z̃ = Z +
∑

a=0,1

k∑
b=1

αabχbZab.

We then have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�Z̃ + Z̃ = f1 in Ω;

L(Z̃) = h1 +
∑
i=0,1

k∑
j=1

dijZijχj on ∂Ω;
∫
Ω

χjZij Z̃ = 0 for i = 0,1, j = 1, . . . , k,

where

f1 =
∑

a=0,1

k∑
b=1

αab

(−�(χbZab) + χbZab

)
,

h1 = −∂ξsl

(
k∑

ε−1
j ewj

)
φ +

∑ k∑
cij ∂ξls

(Zijχj ) +
∑ k∑

αabL(χbZab).
j=1 i=0,1 j=1 a=0,1 b=1
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Hence, using the result of Lemma A.1 we have that

‖Z̃‖∞ � C
(‖h1‖∗,∂Ω + ‖f1‖∗∗,Ω

)
.

By the definition of αab , we get |αab|� C‖φ‖∞. Since ‖φ‖∞ � C‖h‖∗,∂Ω , |cij | � C‖h‖∗,∂Ω we obtain that

‖Z̃‖∞ � C‖h‖∗,∂Ω.

Hence we get∥∥∂ξsl
Tλ(h)

∥∥∞ � C‖h‖∗,∂Ω for all s, l.

Analogous computation holds true if we differentiate with respect to mj . �
We are now in the position to prove Proposition 3.1.

Proof of Proposition 3.1. In terms of the operator Tλ defined in Proposition 4.1, problem (3.25) becomes

φ = Tλ

(
R + N(φ)

) := A(φ), (4.5)

where R is defined in (3.17). For a given number γ > 0, let us consider the region

Fγ := {φ ∈ C(Ω̄): ‖φ‖∞ � γ λ
3
2
}
.

From Proposition 4.1, we get∥∥A(φ)
∥∥∞ � C

[‖R‖∗,∂Ω + ∥∥N(φ)
∥∥∗,∂Ω

]
.

An involved but direct computation shows that∥∥∥∥∥f ′(Ũ) −
k∑

j=1

ε−1
j ewj

∥∥∥∥∥∗,∂Ω

� Cλ
3
2 (4.6)

and ∥∥f ′′(Ũ )
∥∥∗,∂Ω

� C. (4.7)

From (3.21), (4.6) and (4.7), from the definition of N(φ) in (4.5), namely

N(φ) := f (Ũ + φ) − f (Ũ) − f ′(Ũ )φ +
[
f ′(Ũ) −

k∑
j=1

ε−1
j ewj

]
φ, (4.8)

it follows that∥∥A(φ)
∥∥∞ � C

(
λ

3
2 + ‖φ‖2∞ + λ‖φ‖∞

)
.

We then get that A(Fγ ) ⊂ Fγ for a sufficiently large but fixed γ and all small λ. Moreover, for any φ1, φ2 ∈ Fγ , one
has ∥∥N(φ1) − N(φ2)

∥∥∗,∂Ω
� C
[(

max
i=1,2

‖φi‖∞
)

+ λ
]
‖φ1 − φ2‖∞.

In fact, using directly (4.8),

N(φ1) − N(φ2) = f (Ũ + φ1) − f (Ũ + φ2) − f ′(Ũ )(φ1 − φ2) +
[
f ′(Ũ) −

k∑
j=1

ε−1
j ewj

]
(φ1 − φ2)

=
1∫

0

(
d

dt
f
(
Ũ + φ2 + t (φ1 − φ2)

))
dt − f ′(Ũ)(φ1 − φ2) +

[
f ′(Ũ) −

k∑
j=1

ε−1
j ewj

]
(φ1 − φ2)

=
1∫ (

f ′(Ũ + φ2 + t (φ1 − φ2)
)− f ′(Ũ )

)
dt (φ1 − φ2) +

[
f ′(Ũ) −

k∑
j=1

ε−1
j ewj

]
(φ1 − φ2).
0
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Thus, for a certain t∗ ∈ (0,1), and s ∈ (0,1)

∣∣N(φ1) − N(φ2)
∣∣� C

[∣∣f ′(Ũ + φ2 + t∗(φ1 − φ2)
)− f ′(Ũ )

∣∣+
(

f ′(Ũ ) −
k∑

j=1

ε−1
j ewj

)]
‖φ1 − φ2‖∞

� C

[∣∣f ′′(Ũ + sφ2 + t∗(φ1 − φ2)
)∣∣(‖φ1‖L∞(Ω) + ‖φ2‖∞

)

+
[
f ′(Ũ) −

k∑
j=1

ε−1
j ewj

]]
‖φ1 − φ2‖∞.

Thanks to (4.6), (4.7) and the fact that ‖φ1‖∞,‖φ2‖∞ → 0 as λ → 0, we conclude that∥∥N(φ1) − N(φ2)
∥∥∗,∂Ω

� C
[‖φ1‖∞ + ‖φ2‖∞ + λ

]‖φ1 − φ2‖∞.

Then we have∥∥A(φ1) − A(φ2)
∥∥∞ � C

∥∥N(φ1) − N(φ2)
∥∥∗,∂Ω

� C
[

max
i=1,2

‖φi‖∞ + λ
]
‖φ1 − φ2‖∞.

Thus the operator A has a small Lipschitz constant in Fγ for all small λ, and therefore a unique fixed point of A exists
in this region.

We shall next analyze the differentiability of the map (ξ,m) = (ξ1, . . . , ξk,m1, . . . ,mk) �→ φ. Assume for instance
that the partial derivative ∂ξsl

φ exists, for s = 1, . . . , k, l = 1,2. Since φ = Tλ(N(φ) + R), formally we have that

∂ξsl
φ = (∂ξsl

Tλ)
(
N(φ) + R

)+ Tλ

(
∂ξsl

N(φ) + ∂ξsl
R
)
.

From (4.4), we have∥∥∂ξsl
Tλ

(
N(φ) + R

)∥∥∞ � C
∥∥N(φ) + R

∥∥∗,∂Ω
� Cλ

3
2 .

On the other hand,

∂ξsl
N(φ) = [f ′(Ũ + φ) − f ′(Ũ) − f ′′(Ũ )φ

]
∂ξsl

Ũ + ∂ξsl

(
∂Zij

∂ν
−
[

k∑
j=1

ε−1
j ewj

])
φ

+ [f ′(Ũ + φ) − f ′(Ũ)
]
∂ξsl

φ +
(

f ′(Ũ) −
[

k∑
j=1

ε−1
j e

wμj

])
∂ξsl

φ.

Then,∥∥∂ξsl
N(φ)

∥∥∗,∂Ω
� C
{‖φ‖2∞ + λ‖φ‖∞ + ‖φ‖∞‖∂ξsl

φ‖∞ + λ‖∂ξsl
φ‖∞
}
.

Since ‖∂ξsl
R‖∗,∂Ω � λ

3
2 , Proposition 4.1 guarantees that

‖∂ξsl
φ‖∞ � Cλ

3
2

for all s, l. Analogous computation holds true if we differentiate with respect to mj . Then, the regularity of the
map (ξ,m) �→ φ can be proved by standard arguments involving the implicit function theorem and the fixed point
representation (4.5). This concludes proof of the proposition. �
5. Proofs of Proposition 3.2 and of Proposition 3.3

5.1. Proof of Proposition 3.2

Proof. Let us write

U(x) =
k∑

Uj (x), with Uj (x) = √
λmj

[
uj (x) + Hj(x)

]

j=1
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where uj and Hj are given by (3.11) and (3.12). We observe that Uj satisfies⎧⎨
⎩

−�Uj(x) + Uj (x) = 0 in Ω;
∂Uj (x)

∂ν
= 2

√
λmjεjμj e

uj (x) on ∂Ω.
(5.1)

We have∫
Ω

[∣∣∇(U + φ)
∣∣2 + (U + φ)2]= ∫

Ω

(|∇U |2 + U2)+ ∫
Ω

[
2(∇U∇φ + Uφ) + (|∇φ|2 + φ2)] := Ia + Ib. (5.2)

For Ia , we have

Ia =
k∑

j=1

∫
Ω

(|∇Uj |2 + U2
j

)+∑
i 	=j

∫
Ω

(∇Ui∇Uj + UiUj ) := Ia,1 + Ia,2. (5.3)

Multiplying (5.1) by Uj and integrating on Ω , by (3.13) we find

Ia,1 =
k∑

j=1

2
√

λmjεjμj

∫
∂Ω

euj (x)Uj (x) =
k∑

j=1

2λm2
j εjμj

∫
∂Ω

euj (uj + Hj)

=
k∑

j=1

2λm2
j

∫
∂Ω

εjμj

|x − ξj − εjμjν(ξj )|2
(

log
1

|x − ξj − εjμjν(ξj )|2 + H(x, ξj ) + O
(
εσ
j

))

=
k∑

j=1

2λm2
j

∫
∂Ωεj μj

1

|y − ν(0)|2
[

log
1

|y − ν(0)|2 + H(ξj , ξj ) − 2 log(εjμj ) + O
(
εσ
j

)]

where Ωεj μj
= Ω−ξj

εj μj
. Using the following facts

∫
∂Ωεj μj

1

|y − ν(0)|2 = π + O
(
εσ
j

)
,

∫
∂Ωεj μj

1

|y − ν(0)|2 log
1

|y − ν(0)|2 = −2π log 2 + O
(
εσ
j

)
,

and the definition of εj given in (3.8), we obtain

Ia,1 =
k∑

j=1

2λm2
j

[−2π log 2 + πH(ξj , ξj ) − 2π log(εjμj ) + O
(
εσ
j

)]

= kπ + 2πλ

k∑
j=1

m2
j

[
H(ξj , ξj ) − 2 log

(
2m2

j

)− 2 log(2μj ) + O
(
εα
j

)]
. (5.4)

Multiplying (5.1) by Ui and integrating on Ω , we find

Ia,2 =
∑
i 	=j

∫
∂Ω

2
√

λmjεjμj e
uj (x)Ui(x) = 2

∑
i 	=j

λmimjεjμj

∫
∂Ω

euj (ui + Hi)

= 2
∑
i 	=j

λmimj

∫
∂Ωεj μj

1

|y − ν(0)|2
[

log
1

|ξj − ξi + εjμjy − εiμiν(ξi)|2 + Hi(εjμjy + ξj )

]

= 2πλ
∑

mimj

[
G(ξi, ξj ) + O

(
εi log

1

εi

+ εj log
1

εj

)
+ O
(
εσ
i + εσ

j

)]
. (5.5)
i 	=j
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Thus from (5.3), (5.4), (5.5) and the definition of μj given in (3.9) we get

∫
Ω

(|∇U |2 + U2)= kπ

{
1 + λfk(ξ,m) +

k∑
j=1

εj log
1

εj

Θλ(ξ,m)

}
(5.6)

where fk is the function defined in (3.31) and Θλ(ξ,m) is a smooth function, uniformly bounded as λ → 0, in the
region for (ξ,m) satisfying (3.7). This is an estimate in the C0-sense. For C1-closeness, the derivatives in ξ and in m,
by the same argument of C0-estimate, we have

Dξ

(∫
Ω

(|∇U |2 + U2))= kπλDξ

(
fk(ξ,m)

)+ k∑
j=1

εj log
1

εj

Θλ(ξ,m), (5.7)

Dm

(∫
Ω

(|∇U |2 + U2))= kπλDm

(
fk(ξ,m)

)+ k∑
j=1

εj log
1

εj

Θλ(ξ,m), (5.8)

where Θ(ξ,m) is uniformly bounded, as λ → 0, in the region for (ξ,m) satisfying (3.7). From the choice of εj

in (3.8), we note that εj log 1
εj

= o(λ3).

On the other hand, for Ib given in (5.2), we have

Ib � 2

∣∣∣∣
∫
Ω

[∇(U + φ)∇φ + (U + φ)φ
]∣∣∣∣.

Multiplying (3.25) by φ and integrating on Ω , we find∫
Ω

[∇(U + φ)∇φ + (U + φ)φ
]= λ

∫
∂Ω

(U + φ)e(U+φ)2
φ.

By (3.26) we have ‖φ‖∞ � Cλ
3
2 for some fixed constant C independent of λ, and using a Taylor expansion, we find

λ

∫
∂Ω

(U + φ)e(U+φ)2
φ � λ‖φ‖∞

∣∣∣∣
∫

∂Ω

(U + φ)e(U+φ)2
∣∣∣∣� Cλ

5
2

∣∣∣∣
∫

∂Ω

UeU2
∣∣∣∣+ Cλ4.

Since, for some δ > 0 small, we write

∫
∂Ω

UeU2 =
k∑

j=1

∫
∂Ω∩B(ξj ,δ

√
εj )

UeU2 +
∫

∂Ω\⋃k
j=1 B(ξj ,δ

√
εj )

UeU2 := Ic + Id,

where ∫
∂Ω∩B(ξj ,δ

√
εj )

UeU2 =
∫

∂Ω∩B(ξj ,δεj |log εj |)
UeU2 +

∫
∂Ω∩(B(ξj ,δ

√
εj )\B(ξj ,δεj |log εj |))

UeU2 := Ic,1 + Ic,2.

From (3.8) and (3.15), for x close to point ξj , we have U = √
λmj (wj + 1

2λm2
j

+ O(1)) and eU2 = 2m2
j ε

−1
j ewj (1 +

O(λ)), where wj is defined in (3.16). Hence,

Ic,1 = 2
√

λm3
j ε

−1
j

∫
∂Ω∩B(ξj ,δεj |log εj |)

(
wj + 1

2λm2
j

+ O(1)

)
ewj
(
1 + O(λ)

)

= 2
√

λm3
j

∫
∂Ω−ξj
ε μ

∩B(0,
δ|log εj |

μ
)

(
log

2μ−1
j

|y − ν(0)|2 + 1

2λm2
j

+ O(1)

)
2

|y − ν(0)|2
(
1 + O(λ)

)
.

j j j
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Moreover,

|Ic,2| � C
√

λ

δε
− 1

2
j∫

δ|log εj |

1

r2
e

log2 r

γ 2
j r dr = C

√
λ

R2+
γ 2
j
4∫

R1+log γ 2
j

e
−2t+ 4t2

γ 2
j dt � C

√
λ

R2+
γ 2
j
4∫

R1+log γ 2
j

e−t dt = O
(
λ

3
2
)
.

For Id , since in the region ∂Ω \⋃k
j=1 B(ξj , δ

√
εj ), the function U(x) satisfies U(x) = √

λ[∑k
j=1 mjG(x, ξj ) +

o(1)], with o(1) → 0 as λ → 0, we then have

Id =
∫

∂Ω\⋃k
j=1 B(ξj ,δ

√
εj )

UeU2 = √
λ

k∑
j=1

mj

∫
∂Ω

G(x, ξj )

[
1 + λ

(
k∑

j=1

mjG(x, ξj )

)2](
1 + o(1)

)

= √
λ

k∑
j=1

mj

∫
∂Ω

G(x, ξj )
(
1 + o(1)

)
.

Thanks to above facts, we obtain

Ib = λ3Θλ(m, ξ) (5.9)

with Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7), as λ → 0. Therefore,
from (5.2), (5.6) and (5.9) we obtain that estimate (3.30) holds in the C0-sense.

Next let us show the C1-closeness in estimate (3.30). From (3.25) and (3.27) we have

Dξ

(∫
Ω

(∣∣∇(U + φ)
∣∣2 + (U + φ)2))= 2

∫
Ω

[∇(U + φ)∇(∂ξU + ∂ξφ) + (U + φ)(∂ξU + ∂ξφ)
]

= 2
∫

∂Ω

∂(U + φ)

∂ν
(∂ξU + ∂ξφ) = 2

∫
∂Ω

∂U

∂ν
∂ξU + λ2Θλ(m, ξ) (5.10)

where Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7), as λ → 0, here we use the

facts ‖∂ξφ‖∞ � Cλ
3
2 and

∫
∂Ω

∂U
∂ν

� C
√

λ. On the other hand, we note that −�U + U = 0 in Ω , hence

Dξ

(∫
Ω

(|∇U |2 + U2))= 2
∫
Ω

[∇U∇∂ξU + U∂ξU ] = 2
∫

∂Ω

∂U

∂ν
∂ξU. (5.11)

From (5.7), (5.10) and (5.11), we obtain the C1-closeness in estimate (3.30)

Dξ

(∫
Ω

(∣∣∇(U + φ)
∣∣2 + (U + φ)2))= kπλDξ

(
fk(ξ,m)

)+ λ2Θλ(ξ,m), (5.12)

and by the same argument, we have

Dm

(∫
Ω

(∣∣∇(U + φ)
∣∣2 + (U + φ)2))= kπλDm

(
fk(ξ,m)

)+ λ2Θλ(ξ,m), (5.13)

where Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7), as λ → 0.
Finally, let us evaluate

∫
∂Ω

e(U+φ)2
. By a Taylor expansion, we find∫

∂Ω

e(U+φ)2 =
∫

∂Ω

eU2 + λ2Θλ(m, ξ). (5.14)

We write∫
∂Ω

eU2 =
k∑

j=1

∫
∂Ω∩B(ξj ,δ

√
εj )

eU2(x) +
∫

∂Ω\⋃k
B(ξj ,δ

√
εj )

eU2(x) := Ie + If . (5.15)
j=1
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Since ∫
∂Ω∩B(ξj ,δ

√
εj )

eU2(x) =
∫

∂Ω∩B(ξj ,δεj |log εj |)
eU2(x) +

∫
∂Ω∩(B(ξj ,δ

√
εj )\B(ξj ,δεj |log εj |))

eU2(x) := Ie,1 + Ie,2.

From (3.8), (3.9), (3.15) and definition of βj , we have

Ie,1 =
∫

∂Ω∩B(ξj ,δεj |log εj |)
eU2(x) = ε−1

j e
βj
2

∫
∂Ω∩B(ξj ,δεj |log εj |)

ewj eθ(x)e
λm2

j [w2
j +2wj θ(x)+θ2(x)]

= 2m2
j

∫
∂Ω−ξj
εj μj

∩B(0,
δ|log εj |

μj
)

2

|y − ν(0)|2
(
1 + O(λ)

)= 4πm2
j

(
1 + O(λ)

)
, (5.16)

with Θλ(m, ξ) a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7), as λ → 0. Moreover,

|Ie,2| � C

δε
− 1

2
j∫

δ|log εj |

1

r2
e

log2 r

γ 2
j r dr = C

R2+
γ 2
j
4∫

R1+log γ 2
j

e
−2t+ 4t2

γ 2
j dt � C

R2+
γ 2
j
4∫

R1+log γ 2
j

e−t dt = O(λ). (5.17)

Furthermore, we have

If =
∫

∂Ω\⋃k
j=1 B(ξj ,δ

√
εj )

eU2 =
∫

∂Ω\⋃k
j=1 B(ξj ,δ

√
εj )

[
1 + λ

k∑
j=1

m2
jG

2(x, ξj )

](
1 + o(1)

)

= |∂Ω| + λ

k∑
j=1

m2
j

∫
∂Ω

G2(x, ξj ) + λ2Θλ(m, ξ) (5.18)

with |∂Ω| denotes the measure of domain ∂Ω , and Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m)

satisfying (3.7), as λ → 0. Then from (5.14)–(5.18) we get that estimate (3.32) holds true in C0-sense.

On the other hand, by a Taylor expansion and the facts ‖φ‖∞ � Cλ
3
2 and

∫
∂Ω

U � C
√

λ, we have

Dξ

( ∫
∂Ω

e(U+φ)2
)

= 2
∫

∂Ω

eU2
U∂ξU + λ2Θλ(m, ξ) = Dξ

( ∫
∂Ω

eU2
)

+ λ2Θλ(m, ξ),

and

Dm

( ∫
∂Ω

e(U+φ)2
)

= Dm

( ∫
∂Ω

eU2
)

+ λ2Θλ(m, ξ)

with Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (3.7), as λ → 0. Then we obtain
the C1-closeness in (3.32) by the same way as in the proof of C1-closeness in (3.30). �
5.2. Proof of Proposition 3.3

Proof. Define the set

R′ = {(ξ,m) ∈ R: fk(ξ,m) 	= 0
}
.

From Proposition 3.2, replacing expansion (3.30) into (3.33), we see that (3.33) gives

λfk(ξ,m) + λ2Θλ(ξ,m) = μ. (5.19)

In R′, (5.19) defines λ as a function of μ, ξ and m, which is smooth in (ξ,m) in the region R′. Furthermore, as μ → 0,
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λ = μ

fk(ξ,m)
+ μ2

f 3
k (ξ,m)

Θμ(ξ,m)

with Θμ(m, ξ) is a function, uniformly bounded with its derivatives, as μ → 0.
Assume now (3.33), we shall prove (3.34). Let us denote ∂ by the partial derivative with respect to mj for any

j = 1, . . . , k, or the partial derivative with respect to ξj1 for j = 1, . . . , k. By a direct computation we have

J ′(U + φ)
[
∂(U + φ)

]= 1

2
∂

(∫
Ω

(∣∣∇(U + φ)
∣∣2 + (U + φ)2))− λ

2
∂

( ∫
∂Ω

e(U+φ)2
)

.

From (3.33) we have that ∂(
∫
Ω

(|∇(U + φ)|2 + (U + φ)2)) = 0. Thus ∂(
∫
∂Ω

e(U+φ)2
) = 0 if and only if J ′(U +

φ)[∂(U + φ)] = 0. Let us now rewrite

1√
λ

(U + φ)(ξ,m)(x) = mlvl

(
x − ξl

εl

)
+ 1

2λml

for some l = 1, . . . , k, with

vl(y) := wμl
(y) +

k∑
j=1

(
O
(|εly + ξl − ξj |

)+ O
(
ε2
j

))
for |y| � δ

εl

.

Since U + φ is the solution of (3.25), then vl satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�vl + ε2
l

(
vl + 1

2λm2
l

)
= 0 in Ωl;

∂vl

∂ν
− (1 + 2λm2

l vl

)
evl eλm2

l v
2
l

= m−1
l εl

∑
i=0,1

k∑
j=1

cij ε
−1
j χ

(
Fj (εly + ξl − ξj )

εj

)
zij

(
Fj (εly + ξl − ξj )

εj

)
on ∂Ωl,

where Ωl = Ω−ξl

εl
. For any l, we define

Il(vl) = 1

2

∫
Ωl

[
|∇vl |2 + ε2

l

(
vl + 1

2λm2
l

)2]
−
∫

∂Ωl

evl eλm2
l v

2
l .

We observe that

J ′(U + φ)
[
∂(U + φ)

]= λm2
l I

′
l (vl)[∂vl]

and

λm2
l I

′
l (vl)[∂vl] = λmlεl

∑
i=0,1

k∑
j=1

( ∫
∂Ωl

ε−1
j χ

(
Fj (εly + ξl − ξj )

εj

)
zij

(
Fj (εly + ξl − ξj )

εj

)
∂vl dy

)
cij .

Now, fix i and j , we compute the coefficient in front of cij , we choose l = j , ∂vl = Dms vl(y), and obtain∫
∂Ωl

ε−1
j χ

(
Fj (εly + ξl − ξj )

εj

)
zij

(
Fj (εly + ξl − ξj )

εj

)
Dms vl(y) dy

=
∫

∂Ωl

ε−1
j χ(y)zij (y)Dms

[
wμj

(y) +
k∑

j=1

(
O
(|εj y|)+ O

(
ε2
j

))]
dy

= ∂μj

∂ms

∫
∂R2

z2
0j (y) dy

(
1 + o(1)

)
.

+
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Thus we conclude that for any s = 1,2, . . . , k, we have

J ′(U + φ)
[
∂ms (U + φ)

]= λmlεl

k∑
j=1

∂μj

∂ms

∫
∂R2+

z2
0j (y) dy c0j

(
1 + o(1)

)
.

Similarly, we get that for all s, l

J ′(U + φ)
[
∂ξs1(U + φ)

]= λmlεl

[
k∑

j=1

(
∂μj

∂ξs1

∫
∂R2+

z2
0j (y) dy

)
c0j +

( ∫
∂R2+

z2
1s(y) dy

)
c1s

](
1 + o(1)

)
.

Thus, we can conclude that J ′(U + φ)[∂(U + φ)] = 0, that is Dξ,mE(U + φ) = 0 then we have the following sys-
tem [

k∑
j=1

∂μj

∂ms

c0j

](
1 + o(1)

)= 0, s = 1,2, . . . , k, (5.20)

[
A

k∑
j=1

∂μj

∂ξs1
c0j + c1s

](
1 + o(1)

)= 0 for all s, (5.21)

for some fixed constant A, with o(1) small in the sense of the L∞-norm as λ → 0. Then (3.34) follows if we show
that the matrix

∂μj

∂ms
of dimension k × k is invertible in the region for (ξ,m) satisfying (3.7). Indeed, this fact implies

unique solvability of (5.20). Inserting this in (5.21) we get unique solvability of (5.21).
Consider the definition of the μj , in terms of mj ’s and points ξj given in (3.7). These relations correspond to the

gradient DmF(m, ξ) of the function F(m, ξ) defined as follows

F(m, ξ) = 1

2

k∑
j=1

m2
j

[−2 log
(
2m2

j

)− log(2μj ) + 2 + H(ξj , ξj )
]+∑

i 	=j

mimjG(ξi, ξj ).

We set sj = m2
j , then the above function can be written as follows

F(s, ξ) = 1

2

k∑
j=1

sj
[−2 log(2sj ) − log(2μj ) + 2 + H(ξj , ξj )

]+∑
i 	=j

√
sisjG(ξi, ξj ).

This function is strictly convex function of the parameters sj , for parameters sj uniformly bounded and uniformly
bounded away from 0 and for points ξj in Ω uniformly far away from each other and from the boundary. For this

reason, the matrix ( ∂2F
∂si∂sj

) is invertible in the range of parameters and points we are considering. Thus, by the implicit

function theorem, relation (3.9) defines a diffeomorphism between μj and mj . This fact gives the invertibility of

(
∂μj

∂ms
). Thus we finish the proof of Proposition 3.3. �

Appendix A

This section is devoted to the proof of Proposition 4.1. The proof of this result is based on the a priori estimate for
solutions to the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−�φ + φ = f in Ω;

L(φ) = h +
∑
i=0,1

k∑
j=1

cijχjZij on ∂Ω;
∫

χjZijφ = 0 for i = 0,1, j = 1, . . . , k.

(A.1)
Ω
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Define

‖f ‖∗∗,Ω := sup
x∈Ω

(
k∑

j=1

εσ
j

(1 + |x − ξj − εjμjν(ξj )|)2+σ
+ 1

)−1∣∣f (x)
∣∣ (A.2)

where 0 < σ < 1.

Lemma A.1. Under the assumptions of Proposition 4.1, if φ is a solution of (A.1) for some h ∈ L∞(∂Ω) and for
some f ∈ L∞(Ω) with ‖h‖∗,∂Ω,‖f ‖∗∗,Ω < ∞ and cij ∈ R, then

‖φ‖∞ � C
[‖h‖∗,∂Ω + ‖f ‖∗∗,Ω

]
, (A.3)

|cij | � C
(‖h‖∗,∂Ω + ‖f ‖∗∗,Ω

)
, ∀i = 0,1, j = 1, . . . , k

hold for C independent of λ.

Proof. We will carry out the proof of the a priori estimate (A.3) by contradiction. We assume then the existence of
sequences λn → 0, points ξn

j ∈ ∂Ω and numbers mn
j , μn

j which satisfy relations (4.2) and (3.9), functions hn, fn with
‖hn‖∗,∂Ω,‖fn‖∗∗,Ω → 0, φn with ‖φn‖∞ = 1, constants cij,n,

−�φn + φn = fn in Ω, (A.4)

L(φn) = hn +
2∑

i=0

k∑
j=1

cij,nZijχj on ∂Ω, (A.5)

∫
Ω

Zijχjφn = 0 for all i, j. (A.6)

We will prove that in reality under the above assumption we must have that φn → 0 uniformly in Ω̄ , which is a con-
tradiction that concludes the result of the lemma.

Passing to a subsequence we may assume that the points ξn
j approach limiting, distinct points ξ∗

j in ∂Ω . We claim

that φn → 0 in C1 local sense on compacts of Ω̄ \ {ξ∗
1 , . . . , ξ∗

k }. Indeed, let us observe that fn → 0 locally uniformly
in Ω̄ , away from the points ξj . Away from the ξ∗

j ’s we have then −�φn + φn → 0 uniformly on compact subsets on

Ω̄ \ {ξ∗
1 , . . . , ξ∗

k }. Since φn is bounded it follows also that passing to a further subsequence, φn approaches in C1 local
sense on compacts of Ω̄ \ {ξ∗

1 , . . . , ξ∗
k } a limit φ∗ which is bounded and satisfies −�φ∗ + φ∗ = 0 in Ω \ {ξ∗

1 , . . . , ξ∗
k }.

Furthermore, observe that far from {ξ∗
1 , . . . , ξ∗

k }, hn → 0 locally uniformly on ∂Ω \ {ξ∗
1 , . . . , ξ∗

k } and so we also have
∂φn

∂ν
→ 0 on ∂Ω \ {ξ∗

1 , . . . , ξ∗
k }. Hence φ∗ extends smoothly to a function which satisfies −�φ∗ + φ∗ = 0 in Ω , and

∂φ∗
∂ν

= 0 on ∂Ω . We conclude that φ∗ = 0, and the claim follows.
For notational convenience, we shall omit the explicit dependence on n in the rest of the proof. We shall next show

that

|cij | � C
(‖φ‖∞ + ‖h‖∗,∂Ω + ‖f ‖∗∗,Ω

)
. (A.7)

Multiplying the first equation of (A.1) by Zij and integrating over B(ξj , δ), we find

∑
l=0,1

clj

∫
∂Ω∩B(ξj ,δ)

χjZljZij = −
∫

∂Ω∩B(ξj ,δ)

hZij +
∫

∂Ω∩B(ξj ,δ)

L(Zij )φ −
∫

Ω∩∂B(ξj ,δ)

∂φ

∂ν
Zij

+
∫

Ω∩B(ξj ,δ)

(−�Zij + Zij )φ −
∫

Ω∩B(ξj ,δ)

f Zij . (A.8)

Having in mind that φn → 0 in C1-sense in Ω ∩ ∂B(ξj , δ), we have that
∫
Ω∩∂B(ξj ,δ)

∂φ
∂ν

Zij → 0 as λ → 0. Further-
more, a direct computation shows that
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∫
∂Ω∩B(ξj ,δ)

χjZljZij = Miδli + o(1) as λ → 0 (A.9)

where Mi is some universal constant and δli = 1 if i = l, and = 0 if i 	= l. On the other hand, we have that

∫
∂Ω∩B(ξj ,δ)

(
∂Zij

∂ν
−
[

k∑
j=1

ε−1
j ewj

]
Zij

)
φ +

∫
Ω∩B(ξj ,δ)

(−�Zij + Zij )φ � C‖φ‖∞ (A.10)

and ∣∣∣∣
∫
Ω

f Zij

∣∣∣∣� C‖f ‖∗∗,Ω . (A.11)

In fact, estimate (A.11) is a direct consequence of the definition of the ‖ · ‖∗∗,Ω -norm. Let us prove the validity
of (A.10). Recall that in Ω ∩ B(ξj , δ), we have that Zij (x) = zij (ε

−1
j Fj (x)), where Fj is chosen to preserve area

(see (3.23)). Performing the change of variables y = ε−1
j Fj (x), we get that∫

Ω∩B(ξj ,δ)

(−�Zij + Zij )φ = (1 + o(1)
) ∫
R

2+∩B(0, δ
εj

)

(
Lzij + ε2

j zij

)
φ̃ (A.12)

where φ̃(y) = φ(F−1
j (εj y)) and L is a second order differential operator defined as follows

L = −� + O
(
εj |y|)∇2 + O(εj )∇ in R

2+ ∩ B

(
0,

δ

εj

)
. (A.13)

Hence∣∣∣∣
∫

Ω∩B(ξj ,δ)

(−�Zij + Zij )φ

∣∣∣∣� C‖φ‖∞.

On the other hand, we observe that, after a possible rotation, we can assume that ∇Fj (ξj ) = I . Hence, using again the
change of variables y = ε−1

j Fj (x), we get∫
∂Ω∩B(ξj ,δ)

L(Zij )φ = (1 + o(1)
) ∫
∂R2+∩B(0, δ

εj
)

(
B(zij ) − W̃zij

)
b(y)φ̃ (A.14)

where W̃ (y) = εjW(F−1
j (εj y)) with W(x) =∑k

j=1 ε−1
j ewj , and b(y) is a positive function, coming from the change

of variables, which is uniformly positive and bounded as λ → 0. Furthermore B is a differential operator of order one
on ∂R2+. In fact, we have that

B = − ∂

∂y2
+ O
(
εj |y|)∇ on ∂R2+ ∩ B

(
0,

δ

εj

)
. (A.15)

On the other hand, since

W(x) = ε−1
j

2μjε
2
j

|x − ξj − εjμjν(ξj )|2
(

1 +
∑
l 	=j

εlεjO(1)

)

we get

W̃ (y) = 2μj

y2 + μ2
+
∑ εα

l

(1 + |y|) on ∂R2+ ∩ B

(
0,

δ

εj

)
, (A.16)
1 j l
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for some 0 < α < 1. Thus we can conclude that∣∣∣∣
∫

∂Ω∩B(ξj ,δ)

L(Zij )φ

∣∣∣∣� C‖φ‖∞.

This shows the validity of (A.10).
We shall now estimate the term

∫
∂Ω

hZij . Using the definition of the ‖ · ‖∗,∂Ω -norm, we observe that∣∣∣∣
∫

∂Ω

hZij

∣∣∣∣=
∫

∂Ω

ρ(x)−1|h|ρ(x)Zij � ‖h‖∗,∂Ω

∫
∂Ω

ρ(x)Zij

= ‖h‖∗,∂Ω

∫
∂Ω

(
k∑

l=1

ρlχBδ(ξl)(x) + 1

)
Zij

� C‖h‖∗,∂Ω

k∑
l=1

∫
∂Ω∩Bδ(ξl)

γl

{(
1 + wl + 1

γl

)(
1 + 1 + |wl |

γl

)
e

w2
l

2γl − 1

}
ε−1
l ewl

+ C‖h‖∗,∂Ω

∫
∂Ω\⋃k

l=1 Bδ(ξl)

Zij . (A.17)

Since Zij are uniformly bounded, as λ → 0, in ∂Ω \ ⋃k
l=1 Bδ(ξl), we just need to estimate

∫
∂Ω∩Bδ(ξj )

γj {(1 +
wj +1

γj
)(1 + 1+|wj |

γj
)e

w2
j

2γj − 1}ε−1
j ewj . Recall that the functions wj are defined as

wj(x) = log
2μj

|y − ξ ′
j − μjν(ξ ′

j )|2
,

with y = x
εj

, ξ ′
j = ξj

εj
, and γj = −2 log εj . We decompose ∂Ω ∩ Bδ(ξj ) into the union of ∂Ω ∩ B δ

γj

(ξj ) and ∂Ω ∩
(Bδ(ξj ) \ B δ

γj

(ξj )). We write

∫
∂Ω∩Bδ(ξj )

γj

{(
1 + wj + 1

γj

)(
1 + 1 + |wj |

γj

)
e

w2
j

2γj − 1

}
ε−1
j ewj

=
∫

∂Ω∩B δ
γj

(ξj )

γj

{(
1 + wj + 1

γj

)(
1 + 1 + |wj |

γj

)
e

w2
j

2γj − 1

}
ε−1
j ewj

+
∫

∂Ω∩(Bδ(ξj )\B δ
γj

(ξj ))

γj

{(
1 + wj + 1

γj

)(
1 + 1 + |wj |

γj

)
e

w2
j

2γj − 1

}
ε−1
j ewj

= L1 + L2. (A.18)

Using the change of variables εj y = x − ξj , we have

L1 =
∫

∂Ωεj
∩B δ

γj εj

(0)

γj

{(
1 + w̄j + 1

γj

)(
1 + 1 + |w̄j |

γj

)
e

w̄2
j

2γj − 1

}
ew̄j

and
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L2 =
∫

∂Ωεj
∩(B δ

εj

(0)\B δ
γj εj

(0))

γj

{(
1 + w̄j + 1

γj

)(
1 + 1 + |w̄j |

γj

)
e

w̄2
j

2γj − 1

}
ew̄j

where Ωεj
= Ω−ξj

εj
and

w̄j = log
2μj

|y − μjν(0)|2 .

First we estimate L1:

L1 =
∫

∂Ωεj
∩B δ

γj εj

(0)

γj

{(
1 + w̄j + 1

γj

)(
1 + 1 + |w̄j |

γj

)
e

w̄2
j

2γj − 1

}
ew̄j

� C

∫
∂Ωεj

∩B δ
γj εj

(0)

ew̄j = C

∫
∂Ωεj

∩B δ
γj εj

(0)

1

|y − μjν(0)|2

� C

μj∫
μj − δ

γj εj

1

r2
dr � C.

On the other hand, using the fact that w̄j = −2 log r + O(1) with r = |y − μjν(0)|, the term L2 can be estimated as
follows

L2 =
∫

∂Ωεj
∩(B δ

εj

(0)\B δ
γj εj

(0))

γj

{(
1 + w̄j + 1

γj

)(
1 + 1 + |w̄j |

γj

)
e

w̄2
j

2γj − 1

}
ew̄j

� C

∫
∂Ωεj

∩(B δ
εj

(0)\B δ
γj εj

(0))

γj e

w̄2
j

2γj
γj + w̄j

γj

ew̄j � C

δ
εj∫

δ
γj εj

1

r2
e

(log r)2

|log εj | (γj − 2 log r) dr

� C

log δ
εj∫

log δ
γj εj

e−t e
t2

|log εj | (γj − t) dt � C

log δ
εj∫

log δ
γj εj

e−σ t (γj − t) dt � C

for some positive σ . Therefore we get∣∣∣∣
∫

∂Ω

hZij

∣∣∣∣� C‖h‖∗,∂Ω. (A.19)

Thus, from (A.8)–(A.19) we find the validity of (A.7).
We now conclude our argument by contradiction to prove (A.3). From (A.7), we have that cij,n is bounded, thus

we may assume that cij,n → cij as n → ∞.
Let us fix R > 0 large sufficiently but fixed. By the maximum principle and the Hopf Lemma we find that,

max
Ω̄\⋃k

j=1 BRεj
(ξj,n)

|φn| = max
Ω̄\⋃k

j=1 ∂BRεj
(ξj,n)

|φn|.

Thus, from ‖φn‖∞ = 1, we can find that there is some fixed j0 ∈ {1,2, . . . , k} such that

max
Ω̄∩∂BRεj

(ξj0,n)

|φn| = 1. (A.20)

0
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Set Ωεj0
= Ω−ξj0,n

εj0,n
, and consider

φ̂n(z) = φn(ξj0,n + εj0,nz), ĥn(z) = hn(ξj0,n + εj0,nz),

f̂n(z) = fn(ξj0,n + εj0,nz), Ẑij (z) = Zij (ξj0,n + εj0,nz).

Then

−�φ̂n(z) + ε2
j0

φ̂n(z) = ε2
j0

fn(z) in Ωεj0
,

∂φ̂n

∂ν
− εj0

[
k∑

j=1

ε−1
j ewj

]
φ̂n = εj0 ĥn +

∑
i=0,1

k∑
j=1

εj0cij,nχj Ẑij on ∂Ωεj0
.

Then by elliptic estimate φ̂n (up to subsequence) converges uniformly on compact sets to a nontrivial solution φ̂ 	= 0
of the problem⎧⎪⎨

⎪⎩
�φ = 0 in R

2+;
∂φ

∂ν
− 2μj

x2
1 + μ2

j

φ = 0 on ∂R2+.

By the nondegeneracy result [9], we conclude that φ̂ is a linear combination of z0j and z1j . On the other hand, we can
take the limit in the orthogonality relation and we find that

∫
∂R2+ χφ̂zij = 0 for i = 0,1. This contradicts the fact that

φ̂ 	≡ 0. This ends the proof of the lemma. �
Proof of Proposition 4.1. In proving the solvability of (4.1), we may first solve the following problem: for given
h ∈ L∞(∂Ω), with ‖h‖∗,∂Ω bounded, find φ ∈ L∞(Ω) and dij ∈ R, i = 0,1, j = 1, . . . , k such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�φ + φ =
∑
i=0,1

k∑
j=1

dijχjZij in Ω;

∂φ

∂ν
−
[

k∑
j=1

ε−1
j ewj

]
φ = h on ∂Ω;

∫
Ω

χjZijφ = 0 for i = 0,1, j = 1, . . . , k.

(A.21)

First we prove that for any φ, dij solution to (A.21) the bound

‖φ‖∞ � C‖h‖∗,∂Ω (A.22)

holds. In fact, by Lemma A.1, we have

‖φ‖∞ � C

(
‖h‖∗,∂Ω +

∑
i=0,1

k∑
j=1

εj |dij |
)

(A.23)

and therefore it is enough to prove that εj |dij | � C‖h‖∗,∂Ω .
Fix an integer j . To show that εj |dij | � C‖h‖∗,∂Ω , we shall multiply Eq. (A.21) against a test function, properly

chosen. Let us observe that, the proper test function depends whether we are considering the case i = 0 or i = 1. We

start with i = 0. We define ẑ0j (y) = h(y)z0j (y), where h(y) = log( δ
εj

)−log |y|
log δ

εj
−log R

. In fact, we recognize that �h = 0 in

B(0, δ
εj

) \ B(0,R), h = 1 on ∂B(0,R) and h = 0 on ∂B(0, δ
εj

).

Let η1 and η2 be two smooth cut-off functions defined in R
2 as

η1 ≡ 1 in B(0,R), ≡ 0 in R
2 \ B(0,R + 1)

so that
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0 � η1 � 1, |∇η1| � C

and

η2 ≡ 1 in B

(
0,

δ

4εj

)
, ≡ 0 in R

2 \ B

(
0,

δ

3εj

)

so that

0 � η2 � 1, |∇η2| � C
εj

δ
,

∣∣∇2η2
∣∣� C

(
εj

δ

)2

.

We assume that R > R0 (see (3.24)) and we define

Z̃0j (x) = η1
(
ε−1
j Fj (x)

)
Z0j (x) + (1 − η1

(
ε−1
j Fj (x)

))
η2
(
ε−1
j Fj (x)

)
ẑ0j

(
ε−1
j Fj (x)

)
, (A.24)

for x ∈ B(ξj , δ) ∩ Ω .
We multiply Eq. (A.21) against Z̃0j and we integrate by parts. We get∑

a=0,1

daj

∫
Ω

χjZaj Z̃0j =
∫
Ω

(−�Z̃0j + Z̃0j )φ +
∫

∂Ω

hZ̃0,j +
∫

∂Ω

L(Z̃0j )φ.

Observe first that, assuming R > R0, we have

daj

∫
Ω

χjZaj Z̃0j = daj

∫
Ω

χjZajZ0j = εjM0δa0daj

(
1 + o(1)

)
as λ → 0. (A.25)

Furthermore we have that∣∣∣∣
∫

∂Ω

hZ̃0j

∣∣∣∣� C‖h‖∗,∂Ω. (A.26)

We claim that

‖−�Z̃0j + Z̃0j‖∗∗,Ω � C

|log εj | , (A.27)

∥∥L(Z̃0j )
∥∥∗,∂Ω

� C

|log εj | . (A.28)

The proof of estimates (A.27) and (A.28) is postponed to the end of the appendix. Assuming for the moment the
validity of (A.27) and (A.28), from estimates (A.25)–(A.28) we conclude that

|εj d0j | � C
(‖h‖∗,∂Ω + |log εj |−1‖φ‖∞

)
. (A.29)

We shall now obtain an estimate similar to (A.29) for εj d1j . To do so, we use another test function. Indeed we multiply
Eq. (A.21) against η2Z1j and we integrate by parts. We get

∑
a=0,1

daj

∫
Ω

χjZajη2Z1j =
∫
Ω

(−�(η2Z1j ) + η2Z1j

)
φ −
∫

∂Ω

hη2Z1,j +
∫

∂Ω

L(Z1j )η2φ +
∫

∂Ω

Z1j

∂η2

∂ν
φ.

Observe first that, assuming R > R0, we have

daj

∫
Ω

χjZajη2Z1j = daj

∫
Ω

χjZajZ1j = M1δa1εj d1j

(
1 + o(1)

)
as λ → 0,

and |∫
∂Ω

hη2Z1j | � C‖h‖∗,∂Ω . Using the change of variables y = ε−1
j Fj (x), we get that∫

∂Ω

Z1j

∂η2

∂ν
φ =

∫
∂Ωε

z1j

∂η2

∂ν
φ̃

j
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where Ωεj
= Ω

εj
and φ̃(y) = φ(F−1

j (ε−1
j y)). But z1j = O( 1

1+r
) and ∇η2 = O(εj ) so |∫

∂Ω
Z1j

∂η2
∂ν

φ| � Cεj |log εj |.
Using again the change of variables y = ε−1

j Fj (x), and proceeding similarly to (A.14), (A.15) and (A.16), one gets∫
∂Ω

L(Zij )η2φ = (1 + o(1)
) ∫
∂Ωεj

[
∂zij

∂ν
− W̃zij

]
η2φ̃

where φ̃(y) = φ(F−1
j (εj y)) and b(y) is a positive function, coming from the change of variables, which is uniformly

positive and bounded as λ → 0. Observe that
∂zij

∂ν
− W̃zij = O(

εj

1+r
) + O(

εα
j

1+r2 ) for y ∈ Ωεj
and |y| < δε−1

j , and this
implies that∫

∂Ωεj

∣∣∣∣∂zij

∂ν
− W̃zij

∣∣∣∣� Cεα
j

for some 0 < α < 1. Thus we can conclude that∣∣∣∣
∫

∂Ω

L(Zij )η2φ

∣∣∣∣� Cεα
j ‖φ‖∞.

Consider once again the change of variables y = ε−1
j Fj (x). Arguing as in (A.12) and (A.13) we get that∫

Ω

(−�(η2Zij ) + η2Zij

)
φ = (1 + o(1)

) ∫
Ωεj

(−�(η2zij ) + ε2
j η2zij

)
φ̃

where φ̃(y) = φ(F−1
j (εj y)). We thus compute in y ∈ Ωε1 , with |y| < δε−1

j ,

�(η2z1j ) = �η2z1j + 2∇η2∇z1j + η2�z1j = O

(
ε2

1

1 + r

)
+ O

(
εj

1 + r

)
+ η2�z1j .

On the other hand, in this region we have −�z1j + ε2
j z1j = O(

εj

1+r2 ) + O(
ε2
j

1+r
). Thus∫

Ωεj

∣∣−�(η2zij ) + ε2
j η2zij

∣∣� Cεj |log εj |.

Summarizing all the above information, we get

|εj d1j | � C
(‖h‖∗,∂Ω + εj‖φ‖∞

)
. (A.30)

Estimates (A.29), (A.30) combined with (A.23) yield

|εj dij | � C‖h‖∗,∂Ω

which gives the validity of (A.22). Now consider the Hilbert space

H =
{
φ ∈ H 1(Ω):

∫
Ω

χjZijφ = 0, ∀i = 0,1, j = 1, . . . , k

}
,

endowed the norm ‖φ‖2
H 1 = ∫

Ω
(|∇φ|2 + φ2). Problem (A.21), expressed in a weak form, is equivalent to find φ ∈ H

such that∫
Ω

(∇φ∇ψ + φψ) −
∫

∂Ω

[
k∑

j=1

ε−1
j ewj

]
ψ =

∫
∂Ω

hψ for all ψ ∈H.

With the aid of Fredholm’s alternative guarantees unique solvability of (A.21), which is guarantees by (A.22).
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In order to solve (4.1), let Yls ∈ L∞(Ωε), dls
ij ∈R be the solution of (A.21) with h = χsZls , that is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�Yls + Yls =
∑
i=0,1

k∑
j=1

dls
ij χjZij in Ω;

∂Yls

∂ν
−
[

k∑
j=1

ε−1
j ewj

]
Yls = χsZls on ∂Ω;

∫
Ω

χjZijYls = 0 for l = 0,1, s = 1, . . . , k.

(A.31)

Then there is a unique solution Yls ∈ L∞(Ω) of (A.31), and

‖Yls‖∞ � C, εj

∣∣dls
ij

∣∣� C (A.32)

for some constant C independent of λ.
Multiplying (A.31) by Zij , and integrating by parts, we have

∑
i=0,1

k∑
j=1

∫
B(ξj ,δ)

dij,lsχj (Zij )
2 =

∫
∂B(ξj ,δ)

χsZlsZij +
∫

B(ξj ,δ)

(−�Zij + Zij )Yls

+
∫

∂B(ξj ,δ)

(
∂Zij

∂ν
−
[

k∑
j=1

ε−1
j ewj

]
Zij

)
Yls

= δilδjs

∫
∂B(ξj ,δ)

χj (Zij )
2 + o(1)

where δil , δjs are Kronecker’s delta. Then we get

d0j,0s = aδjs + o(1), d1j,1s = bδjs + o(1) (A.33)

with a, b > 0 are independent of εj . Hence the matrix D1 (or D2) with entries d0j,0s (or d1j,1s ) in invertible for
small εj and ‖D−1

i ‖� C (i = 1,2) uniformly in εj .
Now, given h ∈ L∞(∂Ω) we find φ1, dij , solution to (A.21). Define constants cls as

∑
l=0,1

k∑
s=1

clsd
ls
ij = −dij , ∀i = 0,1, j = 1, . . . , k.

The above linear system is almost diagonal, since arguing as before one can show that dls
ij = ε−1

j Miδjsδil(1 + o(1)),
as λ → 0, where Mi is a positive universal constant. Then define

φ = φ1 +
∑
l=0,1

k∑
s=1

clsYls .

A direct computation shows that φ satisfies (4.1) and furthermore

‖φ‖∞ � ‖φ1‖∞ +
∑
l=0,1

k∑
s=1

|cls |� C‖h‖∗,∂Ω +
∑
i=0,1

k∑
j=1

εj |dij |� C‖h‖∗,∂Ω

by (A.22). This finishes the proof of Proposition 4.1. �
Proof of (A.27). We shall prove

‖−�Z̃0j + Z̃0j‖∗∗,Ω � C

|log ε |
j
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where Z̃0j is defined in (A.24). Perform the change of variables y = ε−1
j Fj (x) and denote z̃0j (y) = Z̃0j (F

−1
j (εj y)).

Then −�Z̃0j + Z̃0j = (Lz̃0j + ε2
j z̃0j ), where L is defined in (A.13). We shall show that

∣∣(Lz̃0j + ε2
j z̃0j

)∣∣� C

|log εj |

[
ε2
j +

m∑
j=1

(
1 + ∣∣y − ξ ′

j

∣∣)−2−σ

]
, y ∈ Ω

εj

.

This fact implies (A.27).
Let us first consider the region where |y| < R. In this region, z̃0j = z0j . Since �z0j = 0 and since (A.13) holds,

we have that(
Lz̃0j + ε2

j z̃0j

)= O(εj ) for |y| < R. (A.34)

In the region R + 1 < |y| < δ
4εj

, we have z̃0j = hz0j . Therefore, in this region,

|�z̃0j | = 2|∇h∇z0j |� C

r3 log δ
εj

, R + 1 < r <
δ

4εj

, r = |y|.

For the other terms we find∣∣∇2z̃0j

∣∣� ∣∣∇2h
∣∣z0j + 2|∇h∇z0j | + h

∣∣∇2z0j

∣∣
= O

(
1

r2 log δ
εj

)
+ O

(
1

r3 log δ
εj

)
+ O

(
1

r3

)
, R + 1 < r <

δ

4εj

so

O
(
εj |y|)∣∣∇2z̃0j

∣∣= O

(
εj

r log δ
εj

)
+ O

(
εj

r2

)
, R + 1 < r <

δ

4εj

.

Also

|∇ z̃0j | � |∇h|z0j + h|∇z0j | = O

(
1

r log δ
εj

)
+ O

(
1

r2

)
, R + 1 < r <

δ

4εj

.

Hence(
Lz̃0j + ε2

j z̃0j

)= O

(
1

r3 log δ
εj

)
+ O

(
εj

r log δ
εj

)
+ O

(
εj

r2

)
+ ε2

j z̃0j , R + 1 < r <
δ

4εj

. (A.35)

In the region δ
4εj

< r < δ
3εj

the definition of z̃0j is z̃0j = η2hz0j . We will estimate each term of (A.13) using the

facts that ∇η2 = O(
εj

δ
), |∇2η2| = O(

ε2
j

δ2 ) and that in the considered region h = O( 1
log δ

εj

) which implies also z̃0j =
O( 1

log δ
εj

). We obtain

�z̃0j = �η2hz0j + 2∇η2∇(hz0j ) + η2�(hz0j )

= �η2hz0j + 2∇η2∇hz0j + 2∇η2∇z0j h + 2η2∇h∇z0j

= O

(
ε2
j

δ2 log δ
εj

)
+ O

(
εj

rδ log δ
εj

)
+ O

(
εj

r2δ log δ
εj

)
+ O

(
1

r3 log δ
εj

)

= O

(
ε2
j

δ2 log δ
εj

)
,

δ

4εj

< r <
δ

3εj

.

Next

∇2z̃0j = ∇2η2hz0j + 2∇η2∇(hz0j ) + η2∇2(hz0j ),
δ

4ε
< r <

δ

3ε
,

j j



S.-B. Deng, M. Musso / Ann. I. H. Poincaré – AN 32 (2015) 59–95 93
and by the above computations, for δ
4εj

< r < δ
3εj

,

∇2z̃0j = O

(
ε2
j

δ2 log δ
εj

)
+ η2
(∇2hz0j + 2∇h∇z0j + h∇2z0j

)= O

(
ε2
j

δ2 log δ
εj

)
.

Similarly, for δ
4εj

< r < δ
3εj

∇ z̃0j = ∇η2hz0j + η2∇hz0j + η2h∇z0j = O

(
εj

δ log δ
εj

)
.

This shows that

(
Lz̃0j + ε2

j z̃0j

)= O

(
ε2

δ2 log δ
εj

)
,

δ

4εj

< r <
δ

3εj

. (A.36)

Thus we only need to estimate the size of Lz̃0j + ε2
j z̃0j in the region R < r < R + 1. In this region we have z̃0j =

η1z0j + (1 − η1j )hz0j and hence

�z̃0j = �η1(1 − h)z0j − 2∇η1∇hz0j + 2∇η1∇z0j (1 − h) + η1�z0j + (1 − η1)�(hz0j )

= O

(
1

log δ
εj

)
+ η1�z0j + (1 − η1)�(hz0j ), R < r < R + 1.

First we recall that �z0j = 0 and, for R < r < R + 1,

�(hZ0j ) = 2∇h∇z0j + O(εj ) = O

(
1

log δ
εj

)
+ O(εj ).

Thus

Lz̃0j + ε2
j z̃0j = O

(
1

log δ
εj

)
, R < r < R + 1. (A.37)

This bound and (A.34), (A.35) and (A.36) imply (A.27). �
Proof of (A.28). We shall prove

∥∥L(Z̃0j )
∥∥∗,∂Ω

� C

|log εj | .

We perform the change of variables y = ε−1
j Fj (x). We already observed that we can assume that ∇Fj (ξj ) = I .

Hence,

L(Z̃0j ) = (1 + o(1)
)[

B(z̃0j ) − W̃ z̃0j

]
where z̃0j = Z̃0j (F

−1
j (εj y)) and W̃ (y) = W(F−1

j (εj y)). B is the differential operator of order one on ∂R2+, defined

in (A.15) and W̃ is described in (A.16). Thus in the region y ∈ ∂(Ω
εj

), with |y| < R, we get

B(z̃0j ) − W̃ z̃0j = O(εj ). (A.38)

Next, in the region R < |x| < R + 1 we have

∇ z̃0j = ∇(η1(1 − h)z0j + hz0j

)
= ∇η1(1 − h)z0j − η1∇hz0j + η1(1 − h)∇z0j + ∇hz0j + h∇z0j

= O

(
1

log δ

)
+ η1(1 − h)∇z0j + h∇z0j .
εj
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Since h is radial this implies

B(z̃0j ) = −h
∂z0j

∂x2
+ O

(
1

R2 log δ
εj

)
+ O

(
Rεj

log δ
εj

)
, R < |y| < R + 1, y ∈ ∂R2+.

Using (A.16) we see that

B(z̃0j ) − W̃ z̃0j = O

(
1

R2 log δ
εj

)
+ O

(
Rεj

log δ
εj

)
, R < |y| < R + 1, y ∈ ∂R2+. (A.39)

Using the fact that h has zero normal derivative on ∂R2+ we deduce

B(h̃z0j ) = −h
∂z0j

∂x2
+ O(εj r)(∇hz0j + h∇z0j )

= −h
∂z0j

∂x2
+ O

(
εj

log δ
εj

)
+ O

(
εj

r

)
, R + 1 < r <

δ

εj

. (A.40)

On the other hand, using (A.16) we have in R + 1 < r < δ
εj

B(z̃0j ) − W̃ z̃0j = O

(
εj

log δ
εj

)
+ O

(
εα
j

r

)
(A.41)

for some 0 < α < 1. Finally we consider δ
4εj

< r < δ
3εj

. Here we have z̃0j = η2hz0j and hz0j = O( 1
log δ

εj

), ∇η̄2 =
O(

εj

δ
). Using these facts, estimate (A.40) and that η2 has zero normal derivative we find

B(z̃0j ) = B(η2)hz0j + η2B(hz0j )

= O

(
ε2
j r

δ log δ
εj

)
+ O

(
1

r2

)
+ O

(
εj

log δ
εj

)
+ O

(
εj

r

)
,

δ

4εj

< r <
δ

3εj

.

From (A.16) we have

W̃ = O

(
εα
j

r

)
,

δ

4εj

< r <
δ

εj

.

Thus we conclude that for y ∈ ∂Ωεj
, δ

4εj
< r < δ

3εj

B(z̃0j ) − W̃ z̃0j = O

(
ε2
j r

δ log δ
εj

)
+ O

(
1

r2

)
+ O

(
εj

log δ
εj

)
+ O

(
εj

r

)
. (A.42)

Estimates (A.38), (A.39), (A.41) and (A.42) give the validity of (A.28). �
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