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Abstract

We consider a radially symmetric free boundary problem with logistic nonlinear term. The spatial environment is assumed
to be asymptotically periodic at infinity in the radial direction. For such a free boundary problem, it is known from [7] that a
spreading-vanishing dichotomy holds. However, when spreading occurs, only upper and lower bounds are obtained in [7] for the
asymptotic spreading speed. In this paper, we investigate one-dimensional pulsating semi-waves in spatially periodic media. We
prove existence, uniqueness of such pulsating semi-waves, and show that the asymptotic spreading speed of the free boundary
problem coincides with the speed of the corresponding pulsating semi-wave.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We are interested in the evolution of the positive solution u(t, r) (r = |x|, x ∈ R
N , N � 1), governed by the

following diffusive logistic equation with a free boundary:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − d�u = u
(
α(r) − β(r)u

)
, t > 0, 0 < r < h(t),

ur(t,0) = 0, u
(
t, h(t)

) = 0, t > 0,

h′(t) = −μur

(
t, h(t)

)
, t > 0,

h(0) = h0, u(0, r) = u0(r), 0 � r � h0,

(1.1)
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where �u = urr + N−1
r

ur ; r = h(t) is the free boundary to be determined; h0, μ and d are given positive constants;
u0 ∈ C2([0, h0]) is positive in [0, h0) and u′

0(0) = u0(h0) = 0; the functions α(r) and β(r) are positive and satisfy the
following conditions:⎧⎪⎨

⎪⎩
(i) α, β ∈ Cν0

([0,∞)
)

for some ν0 ∈ (0,1),

(ii) there exist positive L-periodic functions a and b in Cν0(R) such that

limr→+∞
(∣∣α(r) − a(r)

∣∣ + ∣∣β(r) − b(r)
∣∣) = 0.

(1.2)

Problem (1.1) may be viewed as describing the spreading of a new or invasive species with population density
u(t, |x|) over an N -dimensional habitat, which is radially symmetric, heterogeneous and asymptotically space-
periodic near infinity in the radial direction. The initial function u0(|x|) stands for the population in its early stage of
introduction. Its spreading front is represented by the free boundary |x| = h(t), which is a sphere ∂Bh(t) with radius
h(t) growing at a speed proportional to the gradient of the population density at the front: h′(t) = −μur(t, h(t)).
(A deduction of this condition based on ecological considerations can be found in [6].) The coefficient functions
α(|x|) and β(|x|) represent the intrinsic growth rate of the species and its intra-specific competition respectively, and
d is the random diffusion rate.

Problem (1.1) was studied recently in [7], and when α, β are positive constants and the space dimension is one,
this problem was considered earlier in [10]. In both cases, it was shown that a unique solution pair (u,h) exists, with
u(t, r) > 0 and h′(t) > 0 for t > 0 and 0 � r < h(t), and a spreading-vanishing dichotomy holds, namely, a spatial
barrier r = R∗ exists, such that either

• Spreading: the free boundary breaks the barrier at some finite time (i.e., h(t0) � R∗ for some t0 � 0), and then
the free boundary goes to infinity as t → ∞ (i.e., limt→∞ h(t) = ∞), and the population spreads to the entire
space and stabilizes at its positive steady-state, or

• Vanishing: the free boundary never breaks the barrier (h(t) < R∗ for all t > 0), and the population vanishes
(limt→∞ u(t, r) = 0).

Moreover, when spreading occurs, it follows from Theorem 3.6 of [7] that

lim inf
t→∞

h(t)

t
� k∗, lim sup

t→∞
h(t)

t
� k∗

for some positive constants k∗ and k∗ determined by the pairs (α∞, β∞) and (α∞, β∞), respectively, where

α∞ := lim inf
r→∞ α(r), β∞ := lim sup

r→∞
β(r),

α∞ := lim sup
r→∞

α(r), β∞ := lim inf
r→∞ β(r).

It follows that if both limr→∞ α(r) and limr→∞ β(r) exist, then limt→∞ h(t)
t

= k exists, and one may regard k as
the asymptotic spreading speed.

The main purpose of this paper is to show that under condition (1.2), limt→∞ h(t)
t

also exists, and we will use
pulsating semi-waves (to be defined below) induced by (1.1) to determine this limit. These semi-waves are solutions
of the one-dimensional problem{

ut − duxx = u
[
a(x) − b(x)u

]
, t ∈R, −∞ < x < h(t),

u
(
t, h(t)

) = 0, h′(t) = −μux

(
t, h(t)

)
, t ∈R.

(1.3)

Asymptotic spreading in spatially periodic environment based on Cauchy problem models has received extensive
study recently. The spreading speed in such models is usually determined by the so called pulsating fronts, whose
existence, uniqueness and other properties have been investigated by many authors; see [1–5,12,14,16,22] and the
references therein for more details. In particular, a pulsating front of the reaction diffusion equation

ut − duxx = u
[
a(x) − b(x)u

]
, (t, x) ∈ R

2, (1.4)

is a solution to this equation of the form u(t, x) = Ψ (x − ct, x), where c (the speed) is a positive constant and the
function Ψ (ξ, x) (the profile) is L-periodic in x; moreover, limt→−∞ u(t, x) = 0, limt→+∞ u(t, x) is the unique
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positive steady state of (1.4). It can be shown that u(t, x) is strictly increasing in t . Let us also observe that u(t +
L
c
, x) = u(t, x − L).
By a well-known result of Berestycki, Hamel and Roques [5], there is a minimal speed c∗ > 0 such that for each

c � c∗, (1.4) has a pulsating front with average speed c, and no pulsating front exists with average speed c < c∗.
Moreover, it is well known (see [2,13,22]) that this minimal average speed c∗ is the spreading speed for the Cauchy
problem

vt − dvxx = v
[
a(x) − b(x)v

]
, x ∈ R, t > 0; v(0, x) = v0(x), x ∈R,

where the initial function v0(x) is nonnegative with nonempty compact support.
In contrast to (1.4), we will show that there is only one average speed C = C(μ) for which (1.3) has a pulsating

semi-wave, and such a semi-wave is unique up to translations in t (see Theorem 1.2). Moreover, as mentioned above,
this average speed is the spreading speed for the free boundary model (1.1) when spreading happens (Theorem 1.3).
Furthermore, we will show that as μ → ∞, C(μ) increases to c∗ (Theorem 4.2).

We now describe our results more precisely. Our definition below for pulsating semi-waves to (1.3) is motivated
by the notion of pulsating fronts, and ideas in [18,21].

Definition 1.1. We call (u(t, x), h(t)) a pulsating semi-wave of (1.3) if it solves (1.3) and

(i) u(t, x) = U(h(t), h(t) − x) > 0 for t ∈ R, x < h(t),
(ii) there exists T > 0 such that h′(t) is a positive T -periodic function and h(t + T ) − h(t) = L,

(iii) U(τ, ξ) ∈ C1,2(R× [0,+∞)) is L-periodic in τ .

It will become clear below that C := L/T is the (average) speed of the semi-wave. Let us also observe that
u(t + T ,x) = u(t, x − L).

Theorem 1.2. Problem (1.3) always has a pulsating semi-wave (ũ, h̃). The pulsating semi-wave is unique up to
translations in t . Furthermore, limt→±∞ h̃(t)/t = L/T , ũt (t, x) > 0, and ũ(t, x) → φ(x) as t → +∞ uniformly in
any interval of the form (−∞,M], M ∈R, where φ is the unique positive solution of

−dφxx = φ
[
a(x) − b(x)φ

]
, x ∈R

1.

Note that the existence and uniqueness of φ is a consequence of Theorem 2.3 of [11]; more general results can be
found in [4,20]. Using Theorem 1.2, we can deduce the following result on the asymptotic spreading speed determined
by (1.1).

Theorem 1.3. Suppose that (1.2) holds, (u,h) is the unique solution of (1.1) and limt→∞ h(t) = ∞; then

lim
t→∞

h(t)

t
= L/T , where L/T is the average speed of the semi-wave in Theorem 1.2.

We remark that Theorem 1.3 only gives the asymptotic speed of the free boundary |x| = h(t). However, from its
proof, one sees that for any σ ∈ (0, a/b), where a = minr a(r) and a = maxr b(r), the set {x: u(x, t) > σ } expands
to R

N with asymptotic speed L/T . Therefore this agrees with the spreading speed in the usual sense.
The existence part of Theorem 1.2 will be proved in Section 2, while Section 3 is devoted to the proof of the rest of

Theorem 1.2 as well as some further basic properties of the pulsating semi-wave. The proof of Theorem 1.3 is given
in Section 4, where we also show that the spreading speed L/T increases strictly in μ, and as μ → ∞, the spreading
speed converges to c∗, which is the minimal speed of the pulsating fronts to (1.4).

This paper is a sequel to [9], where the time-periodic case of the free boundary problem was considered. It turns
out that very different techniques have to be used to handle the space-periodic case, though some ideas in the time-
periodic case can be borrowed. Similarly to the approach in [9], we prove the existence of a pulsating semi-wave via
a fixed point argument. However, the techniques here are completely new. The proof for uniqueness of the pulsating
semi-wave is based on ideas introduced in [9], with considerable changes in the arguments. In [23], independently,
(1.3) and its corresponding initial value problem are investigated by a completely different method, which is based on
the approach developed in [12].
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Our analysis in this paper carries over easily when the logistic nonlinearity u[α(r) − β(r)u] is replaced by a more
general Fisher–KPP type function f (r,u), which is smooth and satisfies

(i) f (r,0) ≡ 0, f (r, q(r)) ≡ 0, where q(r) is bounded from above and below by positive constants,
(ii) limr→∞[f (r,u) − g(r,u)] = 0 locally uniformly in u ∈ [0,∞), with g periodic in r ,

(iii) f (r,u)/u is strictly decreasing in u, for every r � 0.

With care, one could further extend the results to the case that d�u is replaced by div(d(|x|)∇u), and μ is replaced
by μ(r), with suitable conditions on d(r) and μ(r).

2. Existence of pulsating semi-waves

We use Cν
L(R) to denote the set of all L-periodic Cν functions and suppose that p,a, b ∈ Cν

L(R) for some ν ∈
(0,1), with both a and b positive. In order to prove the existence of a pulsating semi-wave, we consider the following
problem{

p(τ)(Uτ + Uξ) − dUξξ = U
[
a(τ − ξ) − b(τ − ξ)U

]
, (τ, ξ) ∈ R× (0,∞),

U(τ,0) = 0, τ ∈ R.
(2.1)

The relationship between (2.1) and (1.3) is given in the following result.

Proposition 2.1. If (2.1) has a positive solution U(τ, ξ) which is L-periodic in τ , and satisfies μUξ (τ,0) ≡ p(τ) > 0
for τ ∈R, then (u(t, x), h(t)) given by

u(t, x) = U
(
h(t), h(t) − x

)
, t =

h(t)∫
0

1

p(τ)
dτ (2.2)

is a pulsating semi-wave to (1.3).

Proof. Clearly

1 = h′(t) 1

p(h(t))
, i.e., h′(t) = p

(
h(t)

)
.

We calculate to obtain

ut − duxx = h′(t)(Uτ + Uξ) − dUξξ

= p
(
h(t)

)[
Uτ

(
h(t), h(t) − x

) + Uξ

(
h(t), h(t) − x

)] − dUξξ

= U
[
a(x) − b(x)U

]
= u

[
a(x) − b(x)u

]
,

and

h′(t) = p
(
h(t)

) = μUξ

(
h(t),0

) = −μux

(
t, h(t)

)
.

It is evident that u(t, h(t)) = U(h(t),0) = 0.
It remains to show that h′(t) is T -periodic for some T > 0 and h(T )−h(0) = L. We prove that h′(t) is T -periodic

with

T :=
L∫

0

ds

p(s)
.

Indeed, from

t =
h(t)∫

ds

p(s)
and t + T =

h(t+T )∫
ds

p(s)

0 0
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we obtain

T =
h(t+T )∫
h(t)

ds

p(s)
.

Since p(τ) is L-periodic and positive, we have

T =
L∫

0

ds

p(s)
=

h(t)+L∫
h(t)

ds

p(s)
.

Hence

h(t+T )∫
h(t)

ds

p(s)
=

h(t)+L∫
h(t)

ds

p(s)
,

which implies that

h(t + T ) = h(t) + L, h′(t + T ) = h′(t).

Thus (u(t, x), h(t)) is indeed a pulsating semi-wave of (1.3). �
Let us note that the pulsating semi-wave given by (2.2) satisfies h(0) = 0. It is easily seen that for any fixed t0 ∈ R,

(u(t + t0, x), h(t + t0)) is also a pulsating semi-wave to (1.3). It will be shown that the pulsating semi-wave is unique
subject to this kind of time shifts.

To prove the existence of a function pair (p(τ),U(τ, ξ)) such that (2.1) holds and p(τ) = μUξ (τ,0), we break
the argument into two major steps. In step one, we show that for any given positive p ∈ Cν

L(R), (2.1) has a unique
maximal nonnegative solution Up which is L-periodic in τ . This defines a mapping T : p → μU

p
ξ (·,0). In the second

step, we show that T has a fixed point p∗, and thus obtain the required solution pair (p∗,Up∗
).

In order to apply suitable fixed point theorems to the operator T , it is convenient to consider nonnegative p, but
h(t) is not well defined for such p. To avoid this difficulty, we use a perturbation approach. For small ε > 0, we
replace the original problem (2.1) by{

pε(τ )(Uτ + Uξ) − dUξξ = U
[
a(τ − ξ) − b(τ − ξ)U

]
, (τ, ξ) ∈ R× (0,+∞),

U(τ,0) = 0, τ ∈ R,
(2.3)

where

pε(τ ) = max
{
p(τ), ε

}
.

We will show that (2.3) has a unique maximal nonnegative solution Up,ε(τ, ξ) that is L-periodic in τ , and the operator
T ε : p → μU

p,ε
ξ (·,0) has a fixed point pε . Moreover, we will show that there exists δ > 0 such that pε � δ for all

small ε. Hence (pε,Upε,ε) solves the original unperturbed problem when ε ∈ (0, δ], and Upε,ε is a positive solution.

2.1. Existence of Up,ε

In this subsection we show that for any p ∈ Cν
L(R) and ε > 0, (2.3) has a maximal nonnegative solution Up,ε . We

also determine exactly when this solution is positive. To this end, we need the following eigenvalue problem{
LεU = λa(τ − ξ)U, (τ, ξ) ∈R

2,

where LεU = pε(τ )(Uτ + Uξ) − dUξξ .
(2.4)

Proposition 2.2. The following conclusions hold:
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(1) For any nonnegative p ∈ Cν
L(R), and ε > 0, α ∈ R, there exists a unique λ(α,p, ε) ∈ R with corresponding

positive function φα,p,ε = φα,p,ε(τ, ξ) ∈ C1,2(R × R), which is L-periodic both in τ and ξ , such that (λ,U) =
(λ(α,p, ε), eαξφα,p,ε) satisfies (2.4).

(2) Let

λ1(p, ε) = sup
{
λ ∈R: ∃φ ∈ C1,2(R×R),φ(τ, ξ) is positive

and L-periodic in τ, and Lεφ � λa(τ − ξ)φ
}
.

Then there is a unique α0 ∈R such that λ1(p, ε) = λ(α0,p, ε). Moreover, α0 > 0.
(3) Suppose λ = λ̃(l,p, ε) is the principal eigenvalue of the eigenvalue problem{LεU = λa(τ − ξ)U, (τ, ξ) ∈R× (0, l),

U(τ, ξ) = U(τ + L,ξ), U(τ,0) = U(τ, l) = 0.
(2.5)

Then λ̃(l,p, ε) decreases to λ1(p, ε) as l → +∞.
(4) λ̃(l,p, ε) is continuous in (l,p, ε) and λ(α,p, ε) is continuous in (α,p, ε), where l, ε > 0, α ∈ R and p ∈ Cν

L(R).
(5) λ(α,p, ε) is concave in α.

Proof. All the conclusions here follow from the main results of [19], except that we need to prove that α0 > 0 in
conclusion (2). By conclusions (4) and (5), λ(α,p, ε) is continuous and concave in α. Moreover, it is obvious that
λ(0,p, ε) = 0 (with corresponding φ0,p,ε a positive constant). Hence, we only need to prove that there is some α′ > 0
such that λ(α′,p, ε) = 0. To show this, due to the uniqueness of the principal eigenvalue proved in [19], it suffices
to find a positive function φ0(τ, ξ) which is L-periodic in τ , and a positive number α′, such that U0 := eα′ξφ0(τ, ξ)

satisfies LεU0 = 0. We now look for such a function φ0 of the special form φ0(τ, ξ) = ψ(τ). Then LεU0 = 0 reduces
to {

pε(τ )ψ ′(τ ) + [
pε(τ )α′ − d

(
α′)2]

ψ(τ)
}
eα′ξ = 0.

Hence

ψ ′ = α′
[

d

pε(τ )
α′ − 1

]
ψ.

Since ψ(τ) is L-periodic, we have

α′
L∫

0

d

pε(τ )
dτ = L,

which implies α′ > 0. Clearly

ψ(τ) = exp
∫

α′
[

dα′

pε(τ )
− 1

]
dτ > 0.

This completes our proof. �
We also need the following auxiliary logistic problem

pε(τ )(Uτ + Uξ) − dUξξ = U
[
a(τ − ξ) − b(τ − ξ)U

]
, (τ, ξ) ∈ R

2. (2.6)

The following result is contained in [20].

Proposition 2.3. Problem (2.6) has a positive solution Up,ε = Up,ε(τ, ξ) which is L-periodic both in τ and ξ if
and only if λ(0,p, ε) < 1. Moreover, for any nonnegative L-periodic continuous initial function ψ = ψ(ξ) 
≡ 0,
the solution of (2.6) with U(0, ξ) = ψ(ξ), denoted by U(τ, ξ,ψ), satisfies limτ→+∞ |U(τ, ξ,ψ) − Up,ε(τ, ξ)| = 0
uniformly for ξ ∈ R.

Remark 2.4. If p(τ) � ε for τ ∈ R, then by the transformation in Proposition 2.1, u(t, x) = Up,ε(h(t), h(t) − x) is a
positive entire solution of (1.4), which is L-periodic in x and

∫ L

0 1/p(τ) dτ -periodic in t . Hence it must coincide with
φ(x), the unique positive periodic solution of −duxx = u[a(x) − b(x)u], x ∈R.
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Now, we are ready to show the main result of this subsection.

Proposition 2.5. The following conclusions hold:

(1) For any fixed p ∈ Cν
L(R) and any positive constant ε, problem (2.3) admits a maximal nonnegative L-periodic in

τ solution Up,ε = Up,ε(τ, ξ) in the sense that any other nonnegative L-periodic in τ solution is bounded from
above by Up,ε . Furthermore, Up,ε ≡ 0 if and only if λ1(p, ε)� 1.

(2) For any p ∈ Cν
L(R) and ε > 0 with λ1(p, ε) < 1, Up,ε is the unique positive L-periodic in τ solution of (2.3).

Moreover, limξ→+∞ |Up,ε(τ, ξ) − Up,ε(τ, ξ)| = 0 uniformly for τ ∈R.

Proof. First, we make use of some simple facts whose easy proof can be found in Step 1 of the proof of Proposition 2.1
in [9]. Suppose that ul is the unique positive solution of{−duξξ = u(a − bu) in (0, �),

u(0) = 0, u(�) = ∞,
(2.7)

where

a = max
r

a(r), b = min
r

b(r),

and u∞ is the limit of ul as l → +∞. Then u∞ = u∞(ξ) � maxa/minb, and for every constant M � 1, Mu∞
is a supersolution of (2.3). By a sweeping argument, any L-periodic in τ solution of (2.3) is bounded from above
by supu∞.

Let us now prove conclusion (1). When λ1(p, ε)� 1, by Proposition 2.2, there is some α0 > 0 such that λ1(p, ε) =
λ(α0,p, ε). It is easily seen that the corresponding function eα0ξφα0,p,ε and its product with any positive constant are
L-periodic in τ supersolutions of (2.3). Suppose that (2.3) has a positive L-periodic in τ solution U . Then by the
boundedness of U , we can suppose that Meα0ξφα0,p,ε(τ, ξ) � U(τ, ξ) on R× [0,+∞). We may assume that M > 0
is the minimal constant such that the above inequality holds. Since α0 > 0, the equality must hold at some (τ0, ξ0) in
the above inequality. But the strong maximum principle shows that it is impossible. Hence the maximal nonnegative
L-periodic solution Up,ε is identically 0 when λ1(p, ε)� 1.

In the remaining case λ1(p, ε) < 1, by Proposition 2.2, there is some large l such that λ̃(l,p, ε) < 1. Suppose that
φ̃l,p,ε > 0 is the corresponding eigenfunction of (2.5) normalized by max φ̃l,p,ε = 1. Then for any sufficiently small
constant γ ,

ψ(τ, ξ) =
{

γ φ̃l,p,ε(τ, ξ − l), τ ∈ R, ξ ∈ [l,2l],
0, τ ∈ R, ξ ∈R \ [l,2l]

is a subsolution of (2.3). Therefore, we can find a maximal positive L-periodic in τ solution Up,ε in the order interval
[ψ,u∞]. Since any positive solution of (2.3) is bounded from above by u∞, Up,ε is the maximal positive solution.

Finally we prove conclusion (2). Let ψ(τ, ξ) be defined as above, with l = kL for some large positive integer k, so
that it is an L-periodic in τ subsolution of (2.3) for small γ . For each nonnegative integer i we define

ψi(τ, ξ) = ψ(τ, ξ − ikL).

It is easily seen that ψi is a subsolution of (2.3). Let U = U(τ, ξ) be a positive L-periodic in τ solution of (2.3). For
each i � 0, there exists σi ∈ (0,1) such that U(τ, ξ) > σiψi(τ, ξ) for τ ∈ R and ξ � 0. For any σ ∈ [σi,1], σψi is a
subsolution of (2.3). We claim that U(τ, ξ) > σψi(τ, ξ) for all τ ∈ R, ξ � 0 and σ ∈ [σi,1]. Otherwise, there exists
σ∗ ∈ (σi,1] and (τ∗, ξ∗) ∈ (0,L] × ((i + 1)kL, (i + 2)kL) such that

U(τ, ξ)� σ∗ψi(τ, ξ) for τ ∈R, ξ � 0; U(τ∗, ξ∗) = σ∗ψi(τ∗, ξ∗).
We may then apply the strong maximum principle to conclude that U ≡ σ∗ψi , a contradiction. This proves the claim,
which implies in particular,

U(τ, ξ) > ψi(τ, ξ) for τ ∈ R, ξ � 0. (2.8)

Let {ξi} be an arbitrary sequence increasing to +∞ as i → +∞, and define Ui(τ, ξ) = U(τ, ξ + ξi). By applying
standard Lp theory (see [17]) to the equation satisfied by Ui and Sobolev embedding (see Lemma 3.3 in [15]), one sees
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that by passing to a subsequence, Ui → Ǔ as i → ∞ locally uniformly in R
2, and Ǔ is L-periodic in τ . Moreover,

if we write ξi = niL + ξ̃i with ξ̃i ∈ [0,L), and assume that ξ̃i → ξ̃0, then Ǔ(τ, ξ − ξ̃0) solves (2.6). Furthermore,
due to (2.8), we always have sup(τ,ξ)∈R2 Ǔ (τ, ξ − ξ̃0) � γ . Therefore, Ǔ (τ, ξ − ξ̃0) is a positive L-periodic in τ

solution of (2.6). Hence Ǔ (τ, ξ − ξ̃0) ≡ Up,ε(τ, ξ). Clearly the above discussion implies that limξ→+∞ |U(τ, ξ) −
Up,ε(τ, ξ)| = 0 uniformly for τ ∈R.

It remains to show the uniqueness of U . We follow a standard argument. If there is another positive L-periodic in
τ solution Ũ 
≡ U , then from the conclusion proved above, we have

lim
ξ→+∞

U(τ, ξ)

Ũ(τ, ξ)
= 1 uniformly in τ ∈ R. (2.9)

Moreover, by the Hopf boundary lemma, Uξ(τ,0) and Ũξ (τ,0) are bounded away from 0 and ∞ for all τ ∈ R.
Therefore there is some M ∈ (0,1) such that Ũ (τ, ξ) � MU(τ, ξ) on R×[0,+∞), and we may assume that M takes
the maximal value such that this inequality holds (we may interchange U and Ũ to guarantee M < 1). Due to (2.9),

either Ũ (τ0, ξ0) = MU(τ0, ξ0) at some τ0 ∈ R, ξ0 ∈ (0,+∞) or ∂Ũ
∂ξ

(τ0,0) = M ∂U
∂ξ

(τ0,0), and the strong maximum

principle then implies Ũ ≡ MU . But M < 1 implies that MU is not a solution of (2.3). This contradiction completes
our proof. �

We may now define the mapping T ε on Cν
L(R) by T ε(p) = μU

p,ε
ξ (·,0).

2.2. T ε has a fixed point

We are going to use Schauder’s fixed point theorem to conclude that T ε has a fixed point.

Lemma 2.6. T ε is completely continuous on Cν
L(R).

Proof. First, we show that for any positive δ ∈ (0,1), the norm of U
p,ε
ξ (·,0) in Cδ

L(R) can be controlled by ‖p‖C0
L(R)

when all other parameters are fixed.
Set

s = f (τ) :=
τ∫

0

βε(t) dt, V (s, ξ) := Up,ε
(
f −1(s), ξ

)

where βε(t) = 1
pε(t)

. Then V (s, ξ) is periodic in s with period
∫ L

0 βε(t) dt , and is a positive solution of{
Vs + pε

(
f −1(s)

)
Vξ − dVξξ = V

[
a
(
f −1(s) − ξ

) − b
(
f −1(s) − ξ

)
V

]
, s ∈R, ξ > 0,

V (s,0) = 0, s ∈R.
(2.10)

Since 0 � V � u∞ � maxa/minb, we can apply the Lp estimates (see, for example, Theorem 7.15 of [17]) to (2.10)
to conclude that ‖V (s0 + ·,·)‖

W
1,2
q ([0,1]×[0,l]) � C for all s0 ∈R, q > 1, l > 0 and some constant C depending only on

‖p‖C0
L(R), l and q . By Sobolev embedding (see, e.g. Lemma 3.3 of [15]), we obtain, for every δ ∈ (0,1),∥∥V (s0 + ·,·)∥∥

C
1+δ

2 ,1+δ
([0,1]×[0,l]) � Cδ,l ∀s0 ∈ R.

Therefore, we have

|Up,ε
ξ (t1,0) − U

p,ε
ξ (t2,0)|

|t1 − t2|δ = |Vξ (f (t1),0) − Vξ (f (t2),0)|
|f (t1) − f (t2)|δ · |f (t1) − f (t2)|δ

|t1 − t2|δ
� C

∣∣βε(·)
∣∣δ
C0

L(R)
� Cε−δ.

This implies that, for any M > 0, {Up,ε
ξ (·,0): ‖p‖Cν

L(R) � M} is bounded in Cδ
L(R) for some δ ∈ (ν,1), and hence it

is pre-compact in Cν (R). This proves that T ε maps any bounded set of Cν (R) into a pre-compact set in this space.
L L
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Moreover, if pn → p0 in Cν
L(R), then by compactness, by passing to a subsequence, Upn,ε(t, x) → Ũp0,ε(t, x) in

C
1+ν

2 ,1+ν

loc (R × [0,+∞)), where Ũp,ε is some nonnegative L-periodic in τ solution of (2.3) with p = p0. It follows
that U

pn,ε
ξ (·,0) → Ũ

p0,ε
ξ (·,0) in Cν

L(R). What we need to show is that Ũp0,ε is just Up0,ε . If λ1(p0, ε) � 1, then 0
is the unique nonnegative L-periodic in τ solution of (2.3), and our conclusion holds. If λ1(p0, ε) < 1, we can find a
sufficiently small constant γ independent of pn such that

ψn(τ, ξ) =
{

γ φ̃l,pn,ε(τ, ξ), τ ∈R, ξ ∈ [0, l],
0, τ ∈R, ξ ∈ (l,+∞)

is a subsolution of (2.3) with p = pn, where ‖φ̃l,pn,ε‖C0(R×[0,l]) = 1. It follows that Upn,ε � ψn and hence

‖Upn,ε‖C0(R×[0,+∞)) � γ > 0, which infers ‖Ũp0,ε‖C0(R×[0,+∞)) > 0. Thus Ũp0,ε ≡ Up0,ε . This shows that T ε

is continuous. �
In order to use Schauder’s fixed point theorem to prove the existence of a fixed point of T ε , we look for an invariant

set of T ε which is bounded, closed and convex. In the proof of Proposition 2.5, we have shown that Up,ε(τ, ξ) �
u∞(ξ) on R× [0,+∞) for any p ∈ Cν

L(R). We note that Up,ε(τ,0) = u∞(0) = 0.

Lemma 2.7. There exists M = Mε > 0 such that Eε := {p ∈ Cν
L(R): ‖p‖Cν

L(R) �M, 0 � p(τ) � μ(u∞)′(0)∀τ ∈ R}
is an invariant set of T ε .

Proof. First, for any p ∈ Cν
L(R), 0 � U

p,ε
ξ (τ,0) � (u∞)′(0). Moreover, for p(·) ∈ Ẽ := {p ∈ Cν

L(R): 0 � p(τ) �
μ(u∞)′(0) ∀τ ∈ R}, ‖p‖∞ � μ(u∞)′(0), and from (2.3) we see, by standard Lp theory for parabolic equations
(see [17]) that {Up,ε} has a bound in W

1,2
q ([0,L] × [0,1]) (∀q > 1) that is independent of p ∈ Ẽ. By Sobolev

embedding we know that {Up,ε} has a bound in C
1+ν

2 ,1+ν([0,L] × [0,1]) (ν ∈ (0,1)) that is independent of p ∈ Ẽ.
Therefore {Up,ε

ξ (·,0): p ∈ Ẽ} is bounded in Cν
L(R), say ‖Up,ε

ξ (·,0)‖Cν
L(R) � Mε for all p ∈ Ẽ. Define Eε := {p ∈

Ẽ: ‖p‖Cν
L(R) � Mε}. Then clearly Eε is invariant under T ε . �

Thus by Schauder’s fixed point theorem we obtain

Proposition 2.8. For any ε > 0, T ε has a fixed point p̄ε in Eε .

2.3. p̄ε(τ ) � ε for all small ε > 0

Proposition 2.9. There is some ε0 > 0 such that p̄ε0(τ ) > ε0 on R and hence for p = p̄ε0 , (2.1) has a positive

L-periodic in τ solution Up̄ε0 ,ε0 such that p̄ε0(τ ) = μU
p̄ε0 ,ε0
ξ (τ,0).

Proof. We only need to show that lim infε→0 minτ∈R p̄ε(τ ) > 0. We use two steps to prove this conclusion.
Step 1. We show that lim infε→0 ‖p̄ε‖C0

L(R) > 0.
Recall that

a = mina, a = maxa, b = minb, b = maxb.

First, we can find some δ0 small and l0 > 0 large such that for each δ ∈ (0, δ0] and l � l0, the problem

−dU ′′ + δU ′ = U [a − bU ] in (0, l), U(0) = U ′(l) = 0

has a unique positive solution Ul , and Ul satisfies U ′
l (ξ ) > 0 in [0, l). (The existence follows from a simple upper

and lower solution argument, and the uniqueness is a consequence of the concavity of the nonlinearity. The fact that
U ′

l > 0 in [0, l) follows from Ul(a − bUl) > 0 in [0, l) and U ′
l (l) = 0.)

Define U(ξ) = Ul(ξ) in [0, l] and U(ξ) = Ul(2l − ξ) for ξ ∈ (l,2l], and δ(ξ) = δ sgn(l − ξ). Then it is easily seen
that U is a weak solution of

−dU ′′ + δ(ξ)U ′ = U(a − bU) in (0,2l), U(0) = U(2l) = 0. (2.11)
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If p(τ) < δ in R, then clearly p(τ)U ′(ξ) � δ(ξ)U ′(ξ) in [0,2l] for all τ . It follows easily from the comparison
principle that Up,ε(τ, ξ) �U(ξ) for all τ ∈ R and ξ ∈ [0,2l]. Hence U

p,ε
ξ (τ,0)� U ′(0) for all τ .

If lim infε→0 ‖p̄ε‖C0
L(R) = 0, then we can find some ε0 < min{δ,U ′(0)} such that p̄ε0(τ ) < min{δ,μU ′(0)} for

all τ . This and Up̄ε0 ,ε0(τ, ξ) � U(ξ) on R × [0,+∞) imply that μU
p̄ε0 ,ε0
ξ (τ,0) � μU ′(0) > p̄ε0(τ ), contradicting

p̄ε0(τ ) = μU
p̄ε0 ,ε0
ξ (τ,0).

Step 2. We show that lim infε→0 minτ∈R p̄ε(τ ) > 0. Suppose by way of contradiction that this limit is 0. We are
going to derive a contradiction. Since 2θ := lim infε→0 ‖p̄ε‖Cν

L(R) > 0, for every small ε > 0, there is some τε ∈ [0,L]
such that p̄ε(τε) = θ . Set

s = fε(τ ) :=
τ∫

τε

βε(t) dt with βε(t) = 1

max{p̄ε(t), ε} .

It is easy to check that f −1
ε (0) = τε , p̄ε(f −1

ε (0)) = θ , and if the function g(τ) is L-periodic then g(f −1
ε (s)) is periodic

with period Sε := ∫ L

0 βε(t) dt .
Denote

V ε(s, ξ) := Up̄ε,ε
(
f −1

ε (s), ξ
)
, qε(s) = p̄ε

(
f −1

ε (s)
)
,

and

ηε
1(s, ξ) = a

(
f −1

ε (s) − ξ
)
, ηε

2(s, ξ) = b
(
f −1

ε (s) − ξ
)
.

Then V ε(s, ξ) is a positive solution of{
Us + max

{
qε(s), ε

}
Uξ − dUξξ = U

[
ηε

1(s, ξ) − ηε
2(s, ξ)U

]
, (s, ξ) ∈ R× (0,∞),

U(s,0) = 0, U(s, ξ) = U(s + Sε, ξ), (s, ξ) ∈ R× (0,∞).
(2.12)

Moreover,

qε(s) = μV ε
ξ (s,0) ∀s ∈R.

Let εn → 0 be such that minτ∈R p̄εn(τ ) → 0. Then from

0 � qεn � μ
(
u∞)′

(0), a � η
εn

1 � a, b � η
εn

2 � b

we see that, by passing to a subsequence,

qεn → q weakly in L2(K1), η
εn

1 → η1 and η
εn

2 → η2 weakly in L2(K1 × K2),

for every compact set K1 ⊂ R and every compact set K2 ⊂ [0,∞). Clearly

0 � q � μ
(
u∞)′

(0), a � η1 � a, b � η2 � b.

Moreover, applying Lp estimates to the equation of V εn we find that {V εn} is bounded in W
1,2
p (K1 × K2) (∀p > 1)

with compact sets K1 and K2 as described above. Therefore by Sobolev embedding we may assume, by passing to a

subsequence, that V εn → V in C
1+ν

2 ,1+ν

loc (R× [0,+∞)) with 0 < ν < 1. It follows that qε(s) = μV ε
ξ (s,0) converges

to q(s) in Cν
loc(R) along ε = εn. Letting n → ∞ in the equation for V εn we find that V is a nonnegative weak solution

of {
Vs + q(s)Vξ − dVξξ = V

[
η1(s, ξ) − η2(s, ξ)V

]
, (s, ξ) ∈R× (0,∞),

V (s,0) = 0, s ∈R.
(2.13)

We also have

q(s) = μVξ (s,0), 0 � V (s, ξ) � u∞(ξ) � a/b ∀s ∈R, ∀ξ � 0.

Since V ε
ξ (0,0) = p̄ε(f −1(0)) = θ , we have Vξ (0,0) = θ > 0. Therefore by the strong maximum principle V must be

a positive solution. We consider the following two cases:
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Case 1. {Sεn} is bounded. Without loss of the generality, suppose that limn→∞ Sεn = L̃ < +∞. In this case,
q(s), η1(s, ξ), η2(s, ξ) and V (s, ξ) are all L̃-periodic in s. Since V is a positive solution of (2.13), the Hopf lemma
implies that Vξ (s,0) � σ0 > 0 for all s ∈ [0, L̃]. Hence V

εn

ξ (s,0) � σ0/2 for all s ∈ R and all large n, and thus
p̄εn(τ ) = μV

εn

ξ (fεn(τ ),0) � μσ0/2 for all τ and all large n, contradicting the choice of εn.
Case 2. {Sεn} is unbounded. Without loss of the generality, suppose that limn→∞ Sεn = +∞. Since

Sε∫
0

qε(s) ds =
Sε∫

0

p̄ε
(
f −1

ε (s)
)
ds �

Sε∫
0

1

βε(f
−1
ε (s))

ds ≡ L,

we deduce that
∞∫

0

q(s) ds � L.

Applying Lp estimates to (2.13) we easily see that ‖V (s0 +·,·)‖
C

1+ν
2 ,1+ν

([0,1]×[0,1]) is uniformly bounded with respect

to s0 ∈ R. It follows that 0 � q(s) = μVξ (s,0) is uniformly continuous in s. Hence from
∫ ∞

0 q(s) ds < +∞ we can
conclude that q(s) → 0 as s → +∞.

Recall that U is the unique positive solution of (2.11). Let s0 > 0 be chosen such that q(s) < δ for s � s0. Then
choose σ > 0 such that σU(ξ) � V (s0, ξ) for ξ ∈ [0,2l]. Since

q(s)Uξ (ξ) � δ(ξ)Uξ (ξ) ∀ξ ∈ [0,2l],
we find that Ũ = σU satisfies

Ũs + q(s)Ũξ − dŨξξ � Ũ
[
η1(s, ξ) − η2(s, ξ)Ũ

] ∀(s, ξ) ∈R× (0,∞).

Clearly Ũ (0) = 0 = V (s,0), Ũ (2l) = 0 < V (s,2l) and Ũ (ξ) � V (s0, ξ) for all ξ ∈ (0,2l). Hence we can apply the
comparison principle to conclude that V (s, ξ) � Ũ (ξ) for all s � s0 and ξ ∈ [0,2l]. It follows that

Vξ (s,0) � Ũξ (0) > 0 ∀s � s0.

On the other hand,

Vξ (s,0) = μ−1q(s) → 0 as s → ∞.

This contradiction completes our proof. �
3. Uniqueness of the pulsating semi-wave and other basic properties

If (u(t, x), h(t)) is a pulsating semi-wave to (1.3), then (U(τ, ξ),p(τ)) given by

U(τ, ξ) = u
(
h−1(τ ), τ − ξ

)
, p(τ) = −μux

(
h−1(τ ), τ

)
solves (2.1) and p(τ) = μUξ (τ,0) ∈ Cν

L(R) is positive. So

h′(t) = p
(
h(t)

)
� min

τ∈R p(τ) > 0, and lim
t→±∞h(t) = ±∞.

Hence, due to the L-periodicity of p(τ), we have

lim
t→∞

h(t)

t
= L

( L∫
0

ds

p(s)

)−1

.

Recalling that h′(t) is T -periodic with T = ∫ L

0
ds

p(s)
, we obtain

lim
t→∞h(t)/t = L/T .
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3.1. Uniqueness

To prove the uniqueness of the pulsating semi-wave, we let (u1, h1) and (u2, h2) be pulsating semi-waves of (1.3),
and (U1,p1), (U2,p2) be the corresponding pairs defined above. We have

lim
t→∞

hi(t)

t
= ci := L

( L∫
0

ds

pi(s)

)−1

, i = 1,2.

We will show below that c1 
= c2 leads to a contradiction, and c1 = c2 implies (u1(t, x), h1(t)) ≡ (u2(t + t1, x), h2(t +
t1)) for some t1 ∈ R. Such a strategy has been successfully used in [9] for the time-periodic case. Here we show that
with adequate modifications, the strategy also works for the space-periodic case.

Theorem 3.1. Let (u1, h1) and (u2, h2) be two pulsating semi-waves of (1.3). Then (u1(t, x), h1(t)) ≡ (u2(t +
t1, x), h2(t + t1)) for some t1 ∈R.

Proof. After suitable translations in t , we may assume that h1(0) = h2(0) = 0. We now define (Ui,pi) (i = 1,2) as
above. Then

t =
hi(t)∫
0

ds

pi(s)
, i = 1,2,

and

lim
t→∞

hi(t)

t
= ci := L/Ti, Ti :=

L∫
0

ds

pi(s)
, i = 1,2.

We will show that c1 = c2 implies (u1, h1) ≡ (u2, h2), and c1 
= c2 leads to a contradiction. This will be done in
three steps below, with the above two facts proved in Steps 1 and 2 respectively, under the assumption of a fact to be
proved in Step 3.

Step 1. c1 = c2 implies (u1, h1) ≡ (u2, h2).
Since c1 = c2, we have T1 = T2. For convenience of notation we write T1 = T2 = T . Then h̃(t) := h1(t) − h2(t)

is a T -periodic function satisfying h̃(0) = h̃(T ) = 0. If h̃ ≡ 0, then clearly p1 ≡ p2 > 0, which implies U1 ≡ U2

by applying Proposition 2.5 with ε > 0 sufficiently small (so that p1
ε = p1), and hence u1 ≡ u2, as we wanted. If

h̃ 
≡ 0, we are going to derive a contradiction. In such a case, C0 := maxt∈R h̃(t) > 0. For each σ ≥ 0 we define
h̃σ (t) := h1(t) − h2(t + σ) and Cσ = maxt∈R h̃σ (t). It is easily seen that Cσ is strictly decreasing in σ and there
exists a unique σ0 > 0 such that Cσ0 = 0. Therefore by shifting t to t + σ0 in (u2(t, x), h2(t)), we may assume that,
for some t0 ∈ [0, T ),

h1(t) � h2(t) ∀t ∈R, h1(t0 + nT ) = h2(t0 + nT ), n = 0,±1,±2, . . . .

Hence
d

dt
h1(t0 + nT ) = d

dt
h2(t0 + nT ). (3.1)

To derive a contradiction, we consider the function W(t, r) := u2(t, x)−u1(t, x) for (t, x) ∈ D := {(t, x) ∈R
2: t ∈R,

x ∈ (−∞, h1(t))}. Then clearly W(t, r) �, 
≡ 0 on ∂D with W(t0, h
1(t0)) = 0. We will show in Step 3 that this implies

W > 0 in D, and Wx(t0, h
1(t0)) < 0, that is

u1
x

(
t0, h

1(t0)
)
> u2

x

(
t0, h

2(t0)
)
, which leads to

d

dt
h1(t0) <

d

dt
h2(t0),

a contradiction to (3.1). Thus the conclusion of Step 1 will follow if we can show that

Wx

(
t0, h

1(t0)
)
< 0.

This will be done in Step 3 below.
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Step 2. c1 
= c2 leads to a contradiction.
Without loss of generality, we assume that c1 > c2. Then

lim
t→±∞

h1(t)

t
= c1 > lim

t→±∞
h2(t)

t
= c2. (3.2)

This implies that the curves x = h1(t) and x = h2(t) have an intersection point (t0, x0) with a smallest t0 value,
namely

h1(t) < h2(t) for t < t0, h1(t0) = h2(t0) = x0.

It follows that
d

dt
h1(t0) �

d

dt
h2(t0). (3.3)

Define W(t, r) := u2(t, x) − u1(t, x) for (t, x) ∈ D0 := {(t, x) ∈ R
2: t ∈ (−∞, t0], x ∈ (−∞, h1(t))}. Then

W > 0 on ∂D0 \ {(t, x): t = t0} and W(t0, x0) = W(t0, h
1(t0)) = 0. By Step 3 below, we have W > 0 in D0 and

Wx(t0, x0) < 0, which implies that

d

dt
h1(t0) <

d

dt
h2(t0).

But this is in contradiction to (3.3). This completes the proof of the conclusion in Step 2, except that it remains to
prove Step 3.

Step 3. Let W be as in Steps 1 and 2, then W > 0 in D and D0 respectively, and Wr(t0, h
1(t0)) < 0.

We consider the case in Step 1 first. Let us recall that, by Proposition 2.3 and Remark 2.4, for i = 1,2, ui(t, x) →
φ(x) uniformly as hi(t) − x → +∞. Moreover, ui(t, x) > 0 in D and ui

x(t, h
i(t)) = −U1

ξ (hi(t),0) < 0 for all t ∈ R,

with Ui
ξ (h

i(t),0) periodic in t (of period Ti ). Hence we can find a positive constant c0 > 0 such that u2(t, x) �
c0u

1(t, x) in D.
Define

c∗ := sup
{
c > 0: u2(t, x) � cu1(t, x) in D

}
.

We clearly have c∗ � c0 > 0. Since ui(t, x) → φ(x) as hi(t) − x → +∞, we also have c∗ � 1. Thus 0 < c∗ � 1 and

W ∗(t, x) := u2(t, x) − c∗u1(t, x) � 0 in D.

Using 0 < c∗ � 1, we easily deduce from the equations for (ui, hi) that{
W ∗

t − dW ∗
xx + c(t, x)W ∗ � 0, t ∈R, x < h1(t),

W ∗(t, h1(t)
)
�, 
≡ 0, t ∈R,

(3.4)

where c(t, x) = −a(x) + b(x)[u2(t, x) + c∗u1(t, x)]. Thus we can apply the strong maximum principle to (3.4) to
conclude that the nonnegative function W ∗ is positive in D. Since W ∗(t0, h1(t0)) = W(t0, h

1(t0)) = 0, the Hopf
lemma infers that W ∗

x (t0, h
1(t0)) < 0. If we can show that c∗ = 1, then W ∗ = W and the required fact is proved.

We use an indirect argument to show that c∗ = 1. Suppose by way of contradiction that 0 < c∗ < 1. Then by the
definition of c∗, for any sequence of positive numbers εn → 0, there exists (tn, xn) ∈ D such that

u2(tn, xn) �
(
c∗ + εn

)
u1(tn, xn) ∀n � 1. (3.5)

We may write tn = mnT + t̃n with mn an integer and t̃n ∈ [0, T ). Then hi(tn) = hi(t̃n) + mnL and h̃(tn) = h̃(t̃n).
By passing to a subsequence, we may assume that t̃n → t̃ ∈ [0, T ]. Then h̃(tn) = h̃(t̃n) → h̃(t̃) as n → ∞. We claim
that h1(tn) − xn has an upper bound independent of n. Otherwise by passing to a subsequence we may assume that
h1(tn) − xn → ∞ as n → ∞. Then

h2(tn) − xn � h1(tn) − xn → ∞
and hence, for i = 1,2,

ui(tn, xn) − φ(xn) → 0 as n → ∞.
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It follows from (3.5) that

lim sup
n→∞

(
1 − c∗)φ(xn)� 0.

On the other hand, there exists η0 > 0 such that φ(x) � η0 for all x ∈R. Hence

lim sup
n→∞

(
1 − c∗)φ(xn)�

(
1 − c∗)η0 > 0.

This contradiction proves our claim. Thus by passing to a subsequence we may assume that h1(tn)−xn → r̃ ∈ [0,∞).
Then

h2(tn) − xn = h1(tn) − xn − h̃(t̃n) → r̃ − h̃(t̃)

and making use of (3.5), the relationship ui(t, x) = Ui(hi(t), hi(t) − x) and

Ui
(
hi(tn), h

i(tn) − xn

) = Ui
(
hi(t̃n), h

i(tn) − xn

)
,

we deduce

U2(h2(t̃), r̃ − h̃(t̃)
)
� c∗U1(h1(t̃), r̃

)
,

that is,

W ∗(t̃ , h1(t̃) − r̃
)
� 0.

Since W ∗ > 0 in D, we necessarily have r̃ = 0, W ∗(t̃ , h1(t̃)) = 0 and W ∗
x (t̃ , h1(t̃)) < 0. By continuity we can find

positive constants ε0 and δ0 such that

W ∗
x

(
t, h1(t)

)
< −2δ0 ∀t ∈ [t̃ − ε0, t̃ + ε0].

This implies that

W ∗(tn, xn) = W ∗(t̃n, xn − mnL) � δ0
[
h1(t̃n) − xn + mnL

]
for all large n, (3.6)

with

xn − mnL = h1(t̃n) + xn − h1(tn) → h1(t̃) + r̃ = h1(t̃) as n → ∞,

due to r̃ = 0 and t̃n → t̃ . On the other hand, from u1(t, h1(t)) = 0 and u1
x(t, h

1(t)) = −(U1)x(h
1(t),0) < 0 we find

that

u1(tn, xn) = u1(t̃n, xn − mnL) �M0
[
h1(t̃n) − xn + mnL

]
for all large n,

where M0 = 2 maxt∈[0,T ] U1
x (h1(t),0). Thus for all large n, by (3.6), we have

u2(tn, xn) � c∗u1(tn, xn) + δ0
[
h1(t̃n) − xn + mnL

]
�

(
c∗ + δ0

M0

)
u1(tn, xn).

But this is in contradiction to (3.5). This proves c∗ = 1 and thus W > 0 in D and Wr(t0, h
1(t0)) < 0, as required in

Step 1.
The proof of the conclusion required in Step 2 follows a similar consideration. This time we define

c∗ := sup
{
c > 0: u2(t, x) � cu1(t, x) ∀t � t0, ∀x < h1(t)

}
.

We similarly have c∗ � c0 > 0 and c∗ � 1. Thus

W ∗(t, x) := u2(t, x) − c∗u1(t, x) � 0 ∀t � t0, ∀x � h1(t).

Using 0 < c∗ � 1 and h2(t) > h1(t) for t < t0, we easily deduce{
W ∗

t − dW ∗
xx + c(t, x)W ∗ � 0, t � t0, x < h1(t),

W ∗(t, h1(t)
)
> 0, t < t0,

(3.7)

where c(t, x) = −a(x) + b(x)[u2(t, x) + c∗u1(t, x)]. Thus we can apply the strong maximum principle to (3.7) to
conclude that the nonnegative function W ∗ is positive in D0 = {(t, x): t � t0, x < h1(t)}. Since W ∗(t0, h1(t0)) =
W(t0, h

1(t0)) = 0, the Hopf lemma infers that W ∗
x (t0, h

1(t0)) < 0. If we can show that c∗ = 1, then W ∗ = W and the
required fact is proved.
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Suppose by way of contradiction that 0 < c∗ < 1. Then by the definition of c∗, for any sequence of positive numbers
εn → 0, there exists (tn, xn) ∈ D0 such that (3.5) holds. We claim that tn has a lower bound that is independent of n.
Otherwise, by passing to a subsequence we may assume that tn → −∞ as n → ∞. Then from (3.2) we deduce
h2(tn) − xn � h2(tn) − h1(tn) → +∞ as n → ∞. It follows that

u2(tn, xn) − φ(xn) → 0 as n → ∞.

On the other hand we can show that

u1(tn, xn) � φ(xn).

To see this, we compare u1 with v(t, x) which is the unique solution of the Cauchy problem{
vt − dvxx = v

[
a(x) − b(x)v

]
, t > 0, x ∈R,

v(0, x) = M, x ∈ R,

where M > 0 is chosen such that ‖u1‖∞ < M . It is well known that v(t, x) → φ(x) as t → ∞. By the comparison
principle, we have, for any s ∈ R

1, u1(t + s, x) � v(t, x). Taking s = s0 − t we obtain u1(s0, x) � v(t, x). Letting
t → ∞ it results u1(s0, x) � φ(x), and the required inequality follows by taking (s0, x) = (tn, xn).

Thus we can use (3.5) to deduce lim supn→∞(1 − c∗)φ(xn) � 0. This contradiction proves our claim. Hence we
may assume, by passing to a subsequence, that tn → t̂ ∈ (−∞, t0]. We can now easily see that xn has a lower bound
independent of n, for otherwise we may assume that xn → −∞, which leads to hi(tn) − xn → +∞ and hence

ui(tn, xn) − φ(xn) → 0 as n → ∞,

which again implies lim supn→∞(1 − c∗)φ(xn) � 0. Thus we may assume that xn → x̂ ∈ (−∞, h1(t̂)] as n → ∞.
Letting n → ∞ in (3.5), we deduce u2(t̂ , x̂) � c∗u1(t̂ , x̂), that is W ∗(t̂ , x̂) � 0. Since W ∗ > 0 in D ∪ {(t, x): x =
h1(t), t < t0}, we necessarily have (t̂ , x̂) = (t0, h

1(t0)) and W ∗(t0, h1(t0)) = 0. By the Hopf lemma we have
W ∗

x (t0, h
1(t0)) < 0, and we can then derive a contradiction to (3.5) as before. The proof is now complete. �

3.2. Monotonicity in t

We show that if (u(t, x), h(t)) is a pulsating semi-wave, then u(t, x) is strictly increasing in t .

Theorem 3.2. Let (u(t, x), h(t)) be a pulsating semi-wave of (1.3). Then ut (t, x) > 0 for x � h(t), t ∈ R.

This theorem is a simple consequence of the following lemma, which implies ut � 0, but a simple application of
the strong maximum principle then shows ut > 0.

Lemma 3.3. Suppose that p ∈ Cν
L(R) and p(τ) > 0 in R. Let U(τ, ξ) be the maximal nonnegative L-periodic in τ

solution of (2.1). Then Uτ + Uξ � 0 in R× (0,∞).

Proof. Since p(τ) is periodic, there exists δ0 > 0 such that p(τ) � δ0 for all τ ∈ R. Therefore (2.1) and (2.3) are
the same for ε ∈ (0, δ0]. We fix such an ε in (2.3). In view of Proposition 2.5, U(τ, ξ) is either identically zero or
U(τ, ξ) > 0 in R× (0,∞). In the former case, clearly Uτ + Uξ ≡ 0.

It remains to show that Uτ + Uξ � 0 in R × (0,∞) when U > 0. Let u(t, x) = U(h(t), h(t) − x) with h(t)

determined by

h′(t) = p
(
h(t)

)
, h(0) = 0.

Then u is a positive solution to{
ut − duxx = u

[
a(x) − b(x)u

]
, t ∈R, x < h(t),

u
(
t, h(t)

) = 0, t ∈R.
(3.8)

Since ut = h′(t)(Uτ + Uξ), it suffices to show that ut � 0, or equivalently, u(t + σ,x) � u(t, x) for any σ > 0.
Fix σ > 0 and denote uσ (t, x) = u(t + σ,x). Clearly uσ satisfies (3.8) except that h(t) there should be replaced by
h(t + σ).
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We first prove that there exists M > 0 such that Muσ (t, x) � u(t, x) for x � h(t) and t ∈ R. From Proposition 2.5,
we have

lim
ξ→+∞

[
U(τ, ξ) − Up,ε(τ, ξ)

] = 0 uniformly in τ ∈ R.

By Remark 2.4 we have Up,ε(h(t), h(t) − x) ≡ φ(x), where φ is the unique positive periodic solution of

−dφxx = φ
[
a(x) − b(x)φ

]
, x ∈ R.

It follows that

lim
h(t)−x→+∞

[
u(t, x) − φ(x)

] = 0 uniformly.

Similarly

lim
h(t)−x→+∞

[
uσ (t, x) − φ(x)

] = 0 uniformly.

Therefore, for any given M0 > 1, there exists R = RM0 > 0 such that h(t) − x �R and M � M0 imply

Muσ (t, x) − u(t, x) � M0 − 1

2
φ(x) > 0. (3.9)

For h(t) − x ∈ [0,R], we have

u(t, x) = U
(
h(t), h(t) − x

)
� σ1 := max

(τ,ξ)∈[0,L]×[0,R]
U(τ, ξ) < +∞,

and

uσ (t, x) = U
(
h(t + σ),h(t + σ) − x

)
� σ2 := min

(τ,ξ)∈[0,L]×[ξ0,ξ
0]

U(τ, ξ) > 0, (3.10)

where ξ0 = inft∈R[h(t + σ) − h(t)] > 0, ξ0 = supt∈R[h(t + σ) − h(t)] + R < +∞. Therefore, if M � M0 satisfies
Mσ2 � σ1, then

Muσ (t, x) � u(t, x) for x � h(t), t ∈ R.

Define

M∗ := inf
{
M > 0: Muσ (t, x) � u(t, x) for x � h(t), t ∈R

}
.

To complete the proof of the theorem, it suffices to show that M∗ � 1.
In the following, we assume M∗ > 1 and deduce a contradiction. By definition, we have

M∗uσ u(t, x) � u(t, x) ∀x � h(t), t ∈R, (3.11)

and there exists (tn, xn) such that

xn � h(tn), (M∗ − εn)u
σ (tn, xn) � u(tn, xn), n = 1,2, . . . , (3.12)

where {εn} is a decreasing sequence converging to 0 as n → ∞. We may assume that M∗ − ε1 > 1.
Take M0 = M∗ − ε1 and M = M∗ − εn in (3.9), we obtain

(M∗ − εn)u
σ (t, x) > u(t, x) for h(t) − x � R0 := RM0, t ∈R.

It follows that

ξn := h(tn) − xn ∈ (0,R0), n = 1,2, . . . .

Write

h(tn) = knL + τn, with kn an integer and τn ∈ [0,L).

We may assume that

(τn, ξn) → (τ∞, ξ∞) ∈ [0,L] × [0,R0].
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Define

un(t, x) = u(tn + t, xn + x) for t ∈ R, xn + x < h(tn + t).

Clearly

h(tn + t) − xn = ξn + h̃n(t)

with

h̃n(t) = h(tn + t) − h(tn) =
t∫

0

p
(
h(tn + s)

)
ds =

t∫
0

p
(
h̃n(s) + τn

)
ds.

Moreover, un satisfies

un
t − dun

xx = un
[
a(xn + x) − b(xn + x)un

]
for x � ξn + h̃n(t) =: hn(t),

and

un
(
t, hn(t)

) ≡ 0,

with

a(xn + x) = a
(
h(tn) − ξn + x

) = a(τn − ξn + x) =: an(x),

b(xn − x) = b(τn − ξn + x) =: bn(x).

Clearly

an(x) → a∞(x) := a(τ∞ − ξ∞ + x), bn(x) → b∞(x) := b(τ∞ − ξ∞ + x)

in Cδ
L(R). Since h̃n(·) is uniformly continuous, by passing to a subsequence we may assume that h̃n(·) → ĥ(·) in

C0
loc(R). It follows that

h̃n(t) → h∞(t) :=
t∫

0

p
(
ĥ(s) + τ∞

)
ds in C1

loc(R).

We may now apply standard parabolic Lp estimates to the equation satisfied by un to conclude that, subject to passing
to a subsequence, un → u∞ locally uniformly in {(t, x): x < h∞(t), t ∈R}, and u∞ satisfies

u∞
t − du∞

xx = u∞[
a∞(x) − b∞(x)u∞]

for x < h∞(t), t ∈R.

Moreover, one may straighten the boundary x = hn(t) in the equation of un and then apply the regularity theory
to the modified equation near the straightened boundary to conclude that u∞ is smooth up to x = h∞(t), with
u∞(t, h∞(t)) ≡ 0.

Similarly, by passing to a further subsequence, uσ,n(t, x) := uσ (tn + t, xn +x) converges to some function v∞(t, x)

which satisfies{
v∞
t − dv∞

xx = v∞[
a∞(x) − b∞(x)v∞]

, x < h∞(t + σ), t ∈R,

v∞(
t, h∞(t + σ)

) = 0, t ∈ R.

By (3.11) and (3.12), we obtain

M∗v∞(t, x) � u∞(t, x) for x � h∞(t), t ∈R,

and

M∗v∞(0,0) = u∞(0,0).

By (3.10), we have v∞(0,0) � σ2 > 0. Therefore u∞ and v∞ are positive solutions, and 0 < h∞(0). Since M∗ > 1,
V ∞ := M∗v∞ satisfies

V ∞
t − dV ∞

xx � V ∞[
a∞(x) − b∞(x)V ∞]

for x � h∞(t + σ), t ∈R.
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Thus z := V ∞ − u∞ satisfies, for some bounded c(t, x),

zt − dzxx � c(t, x)z, z � 0 for x < h∞(t), t ∈R,

and z achieves its minimum 0 at (0,0). Since (0,0) is an interior point of the domain {(t, x): x < h∞(t), t ∈ R}, by
the strong maximum principle, we deduce z ≡ 0. But z is continuous and is positive on x = h∞(t) (note that h∞ is
strictly increasing). This contradiction completes our proof. �
3.3. Continuous dependence on parameters

In this subsection, we show that the pulsating semi-wave (u(t, x), h(t)), when normalized by requiring h(0) = 0,
depends continuously on (d,μ,a, b) ∈ R

2 × Cν
L(R)2.

Theorem 3.4. Suppose that, as n → ∞, (dn,μn, an, bn) → (d0,μ0, a0, b0) in R
2 × Cν

L(R)2, with d0,μ0 > 0,
a0(x), b0(x) > 0. Let (un,hn) denote the unique normalized pulsating semi-wave of (1.3), with (d,μ,a, b) =
(dn,μn, an, bn), n = 0,1,2, . . . . Then limn→∞[hn(t) − h0(t)] = 0 uniformly in R, and limn→∞[un(t, x) −
u0(t, x)] = 0 locally uniformly in {(t, x): x < h0(t), t ∈R}.

Proof. Choose positive constants A and B such that A � maxan, B � minbn for n = 0,1,2, . . . . Let v(ξ) be the
unique positive solution to

−v′′ = v(A − Bv) for ξ > 0, v(0) = 0.

Then it is well known (see [10]) that v′(ξ) > 0 and v(+∞) = A/B . We define vn(ξ) = v(ξ/
√

dn). Clearly

−dnv
′′
n = vn(A − Bvn) for ξ > 0, vn(0) = 0.

Let (Un(τ, ξ),pn(τ )) be the corresponding pair to (un(x),hn(t)), as before. Then

pn(τ)
(
Un

τ + Ûξ

) − dnU
n
ξξ = Un

[
an(τ − ξ) − bn(τ − ξ)Un

]
, (τ, ξ) ∈ R× [0,∞),

Un(τ,0) = 0, pn(τ ) = μnU
n
ξ (τ,0), τ ∈R,

and much as at the beginning of the proof of Proposition 2.5, we can use a comparison argument to conclude that
Un(τ, ξ) � vn(ξ) for τ ∈ R and ξ > 0. It follows that Un

ξ (τ,0) � v′
n(0) and hence

0 < pn(τ) � μnv
′
n(0) = μn√

dn

v′(0), n = 0,1,2, . . . .

Thus {pn} is bounded in C0
L(R). Checking the proof of Proposition 2.9 we find that there exists ε > 0 independent

of n such that pn(τ) � ε for all τ ∈ R and n = 0,1,2, . . . . Therefore, in view of 0 < Un � vn � A/B , we may
apply standard Lp theory for parabolic equations to conclude that {Un} is a bounded set in W

1,2
q ([0,L] × [0,M])

(∀q > 1,∀M > 0). By Sobolev embedding we see that {Un} is a bounded set in C
1+ν0

2 ,1+ν0([0,L] × [0,M]) with
ν0 ∈ (ν,1). Therefore by passing to a subsequence we may assume that pn(τ) = μUn

ξ (τ,0) → p̂(τ ) in Cν
L(R). By

a standard diagonal process and by passing to a further subsequence if necessary, we may assume that Un → Û in

C
ν+1

2 ,ν+1
loc ([0,L] × [0,∞)). Thus (Û , p̂) satisfies

p̂(τ )(Ûτ + Ûξ ) − d0Ûξξ = Û
[
a0(τ − ξ) − b0(τ − ξ)Û

]
, (τ, ξ) ∈R× [0,∞),

Û (τ,0) = 0, p̂(τ ) = μ0Ûξ (τ,0), τ ∈ R.

Therefore (û(t, x), ĥ(t)) defined by

û(t, x) = Û
(
ĥ(t), ĥ(t) − x

)
, t =

ĥ(t)∫
0

1

p̂(τ )
dτ

is a normalized pulsating semi-wave of (1.3) with (d,μ,a, b) = (d0,μ0, a0, b0). By uniqueness, necessarily (û, ĥ) =
(u0, h0). This implies that the entire sequence (un,hn) converges to (u0, h0) as stated in the theorem. �
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4. Spreading speed

In this section we study the spreading speed determined by (1.1) when spreading occurs. We also investigate how
this speed varies with μ.

Let (ũ, h̃) be a pulsating semi-wave of (1.3), which is unique up to a translation of t . Let the function pair (U,p)

be given by

U(τ, ξ) = ũ
(
h̃−1(τ ), τ − ξ

)
, p(τ) = −μũx

(
h̃−1(τ ), τ

)
.

Then we have

h̃′(t) = p
(
h̃(t)

)
and lim

t→∞ h̃(t)/t = L/T with T =
L∫

0

ds

p(s)
.

Let us note that the first identity in the line above implies that

h̃(t0+t)∫
h̃(t0)

ds

p(s)
= t ∀t0, t ∈ R.

This implies that if (Û , p̂) is obtained from a pulsating semi-wave which is a shift of (ũ, h̃) in t , then p̂(τ ) is identical
to p(τ + τ0) for some τ0 ∈ R. Since p(τ) is L-periodic, we find that

∫ L

0
ds

p(s)
is independent of the choice of (ũ, h̃).

Thus the quantity L/T is uniquely determined.
Our first main result of this section is the following.

Theorem 4.1. Suppose that (u,h) is the unique solution of (1.1) and limt→∞ h(t) = +∞. Then

lim
t→∞

h(t)

t
= lim

t→∞
h̃(t)

t
= L

T
. (4.1)

Proof. Fix ε > 0 small and for σ ∈ {ε,−ε}, we denote by (uσ ,hσ ) the unique pulsating semi-wave of{
ut − duxx = u

([
a(x) + σ

] − [
b(x) − σ

]
u
)
, x < h(t), t ∈R,

h′(t) = −(1 − σ)μux

(
t, h(t)

)
, u

(
t, h(t)

) = 0, t ∈ R,

normalized by hσ (0) = 0. Define

ũσ (t, x) = uσ

(
t

1 − σ
,x

)
, h̃σ (t) = hσ

(
t

1 − σ

)
.

Then {
(1 − σ)ũσ

t − dũσ
xx = ũσ

([
a(x) + σ

] − [
b(x) − σ

]
ũσ

)
, x < h̃σ (t), t ∈ R,

(h̃σ )′(t) = −μũσ
x

(
t, h̃σ (t)

)
, ũσ

(
t, h̃σ (t)

) = 0, t ∈R.

Set (
uε(t, x), hε(t)

) = (
ũε(t + C1, x), h̃ε(t + C1)

)
,(

uε(t, x), hε(t)
) = (

ũ−ε(t + C2, x), h̃−ε(t + C2)
)
.

We will show that, for all small ε > 0 and suitable C1,C2,M ∈ R,{
uε(t, r) � u(t, r) � uε(t, r) for t � M, r ∈ [

M,hε(t)
]
,

hε(t) � h(t) � hε(t) for t � M.
(4.2)

If (4.2) is proved, then we have

lim
t→∞

hε(t) � lim inf
t→∞

h(t) � lim sup
h(t) � lim

t→∞
hε(t)

.

t t t→∞ t t
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Clearly

lim
t→∞

hε(t)

t
= lim

t→∞
h−ε((t + C2)/(1 + ε))

t
= (1 + ε)−1L/Tε,

and

lim
t→∞

hε(t)

t
= lim

t→∞
hε((t + C1)/(1 − ε))

t
= (1 − ε)−1L/T ε,

where Tε = ∫ L

0
ds

pε(s)
, with pε(τ ) := −μuε

x((h
ε)−1(τ ), τ ); T ε is defined analogously from (uε, hε).

It follows that

(1 + ε)−1L/Tε � lim inf
t→∞

h(t)

t
� lim sup

t→∞
h(t)

t
� (1 − ε)−1L/T ε.

Letting ε → 0, we deduce

lim
t→∞

h(t)

t
= L

T
,

as desired.
It remains to prove (4.2). This will follow from the comparison principle by showing that (uε, hε) and (uε, hε) are

respectively upper and lower solutions to (1.1) for t � M . We break the argument below into several steps.
Step 1. For any large R = Rε > 0 satisfying

α(r) ∈
[
a(r) − ε

2
, a(r) + ε

2

]
, β(r) ∈

[
b(r) − ε

2
, b(r) + ε

2

]
∀r � R,

there exists τR > 0 such that

uε
t − d�uε � uε

[
α(r) − β(r)uε

]
, r ∈ [

τR,hε(t)
]
, (4.3)

uε
t − d�uε � uε

[
α(r) − β(r)uε

]
, r ∈ [

τR,hε(t)
]
, (4.4)

with the inequalities satisfied for all t such that hε(t) > τR and hε(t) > τR , respectively.
To prove (4.3), we note that

uε
{[

a(r) − ε
] − [

b(r) + ε
]
uε

} + ε

2
uε

� uε
[
α(r) − β(r)uε

]
for r ∈ [

R,hε(t)
]
.

Therefore, in view of the equation satisfied by uε , (4.3) will follow if we have

uε
t − d

(
uε

rr + N − 1

r
uε

r

)

� (1 + ε)uε
t − duε

rr + ε

2
uε for r ∈ [

τR,hε(t)
]
,

or equivalently,

−d
N − 1

r
uε

r � εuε
t + ε

2
uε for r ∈ [

τR,hε(t)
]
. (4.5)

From the identity uε(t, hε(t)) ≡ 0, we deduce

uε
t (t, r) + (

hε
)′
(t)uε

r (t, r) = 0 for r = hε(t).

Therefore

−uε
r (t, r) = [(

hε
)′
(t)

]−1
uε

t (t, r) > 0 for r = hε(t).

Moreover, the functions uε(t, hε(t)), uε
t (t, h

ε(t)) and uε
r (t, h

ε(t)) are periodic in t (recalling the transform u(t, x) =
U(h(t), h(t) − x)). Hence, from the uniform continuity of uε , uε

t and uε
r on (t, ξ) = (t, hε(t) − r), we can find

δ = δε > 0 such that

−uε
r (t, r) � σ0u

ε
t (t, r) for r ∈ [

hε(t) − δ,hε(t)
]
, t ∈ R,
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where σ0 = 2 maxt∈R[(hε)′(t)]−1. It follows that (4.5) holds in the range r ∈ [hε(t) − δ,hε(t)] provided that hε(t) −
δ > R1, where R1 := d(N − 1)σ0/ε.

For r ∈ (−∞, hε(t) − δ], we have uε � σ1 > 0 and |uε
r |� σ2 < +∞. Thus (4.5) holds for r ∈ [τR,hε(t)] with

τR := max

{
2d(N − 1)σ2

εσ1
,R1,R

}
.

The proof of (4.4) is similar and we omit the details.
Step 2. There exist R0 � τR and T1 > 0 such that,

hε(T1) > h(T1), hε(T1) < R0 < h(T1)

and

uε(t,R0) � u(t,R0), uε(t,R0) � u(t,R0) for t � T1.

For σ ∈ {ε,0,−ε}, let φσ (x) be the unique positive solution of

−dφxx = φ
{[

a(x) + σ
] − [

b(x) − σ
]
φ
}
, x ∈ R.

Then φσ is L-periodic and φε > φ0 > φ−ε . Hence there exists δ = δε > 0 such that

φε(x) − 2δ � φ0(x) � φ−ε(x) + 2δ, x ∈R.

Let (u(t, r), h(t)) be the unique solution of (1.1), for which spreading occurs. By Theorem 2.4 of [7], we have

lim
t→∞u(t, r) = Û(r) locally uniformly for r ∈ [0,∞),

where Û is the unique positive solution of

−d

(
U ′′ + N − 1

r
U ′

)
= U

[
a(r) − b(r)U

]
for r ∈ [0,∞).U ′(0) = 0.

For any sequence rn → ∞, write rn = mnL+ r̃n with mn an integer and r̃n ∈ [0,L), and define Un(r) = Û (rn + r).
Then by passing to a subsequence one may assume that r̃n → r∗. Applying the Lp theory to the equation of Un, and
using Sobolev embedding, one finds that by passing to a further subsequence, Un → U∗ in C1

loc(R), and U∗ satisfies

−dU ′′∗ = U∗[a(r∗ + r) − b(r∗ + r)U∗
]

in R.

A simple upper and lower solution consideration shows that U∗ > 0. Therefore necessarily U∗(r) = φ0(r∗ + r). This
implies that

lim
r→∞

[
Û (r) − φ0(r)

] = 0.

It follows that, with the above chosen δ, there exist R0 � τR and T0 > 0 such that

u(t,R0) ∈ [
φ0(R0) − δ,φ0(R0) + δ

]
for t � T0.

On the other hand, we have

lim
hε(t)−x→∞

[
uε(t, x) − φε(x)

] = 0, lim
hε(t)−x→∞

[
uε(t, x) − φ−ε(x)

] = 0.

It follows that

lim
t→∞

[
uε(t,R0) − φε(R0)

] = 0, lim
t→∞

[
uε(t,R0) − φ−ε(R0)

] = 0.

Therefore by enlarging T0 properly we may assume that

uε(t,R0) � φε(R0) − δ, uε(t,R0) � φ−ε(R0) + δ for t � T0.

Hence

uε(t,R0) � φ0(R0) + δ � u(t,R0), uε(t,R0)� φ0(R0) − δ � u(t,R0) for t � T0. (4.6)



300 Y. Du, X. Liang / Ann. I. H. Poincaré – AN 32 (2015) 279–305
Recall that

hε(t) = hε

(
t + C1

1 + ε

)
, hε(t) = h−ε

(
t + C2

1 − ε

)
,

and in the above discussion, we only used an arbitrarily fixed pair (C1,C2). Next we choose C1 and C2 to meet the
required inequalities of this step. Since uε(t, x) and uε(t, x) are both increasing in t , we find that the inequalities
in (4.6) remain valid when C1 is increased and C2 is decreased. We first choose T1 � T0 such that h(T1) > R0. We
may then increase C1 and decrease C2 properly to guarantee that

hε(T1) > h(T1), hε(T1) < R0.

This completes the proof of Step 2.
Step 3. Completion of the proof.
Since hε(T1) < R0 < h(T1), there exists T2 > T1 such that

hε(T2) = R0 < h(T2).

Therefore we can find η > 0 sufficiently small such that

R0 < hε(T2 + η) < h(T2 + η), uε(T2 + η, r) < u(T2 + η, r) for r ∈ [
R0, h

ε(T2 + η)
]
.

We may now use the conclusions in Steps 1 and 2, and apply the comparison principle (see Lemma 3.3 in [7]), to
conclude that

h(t) � hε(t), u(t, r) � uε(t, r) for r ∈ [
R0, h

ε(t)
]
, t � T2 + η.

Let V (t, r) be the unique solution of

Vt − d�V = V
[
α(r) − β(r)V

]
, r ∈ [0,∞), Vr(t,0) = 0, V (0, r) = ‖u0‖∞.

Then it is well known that limt→∞ ‖V (t, ·) − Û (·)‖L∞([0,∞)) = 0. By the comparison principle we have u(t, r) �
V (t, r) for r ∈ [0, h(t)], t > 0. It follows that lim supt→∞ u(t, r) � Û (r) uniformly for r ∈ [0,∞). Therefore, if R0
and T0 are large enough in Step 2, we have

u(t, r) � φ0(r) + δ � φε(r) − δ for r ∈ [
R0, h(t)

]
, t � T0,

where δ > 0 is as in Step 2. If C1 is sufficiently large, we can guarantee that

uε(T1, r) � φε(r) − δ � u(T1, r) for r ∈ [
R0, h(T1)

]
.

Therefore we can apply the comparison principle (see Lemma 3.2 of [7]) to conclude that

hε(t) � h(t), uε(t, r) � u(t, r) for r ∈ [
R0, h(t)

]
, t � T1.

The proof is now complete. �
Next we investigate the dependence of the spreading speed on the parameter μ. To stress this dependence, we will

write T = T (μ) and C(μ) = L/T (μ). We will prove the following result.

Theorem 4.2. C(μ) is strictly increasing in μ, and limμ→∞ C(μ) exists and equals c∗, which is the minimal speed of
the pulsating fronts for (1.4) obtained in [5].

The proof of this theorem is broken into several lemmas.

Lemma 4.3. Suppose that 0 < μ1 < μ2. Then C(μ1) < C(μ2).

Proof. Let (u1, h1) and (u2, h2) be the unique solutions of (1.1) with μ = μ1 and μ2, respectively. Suppose that
h1(∞) = ∞. By Theorem 3.5 of [8], we see that h1(t) � h2(t) for t > 0. It follows from Theorem 4.1 that C(μ1) �
C(μ2).
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It remains to show C(μ1) 
= C(μ2). Let (u1, h1) and (u2, h2) be pulsating semi-waves corresponding to (u1, h1)

and (u2, h2) respectively. By Theorem 4.1,

lim
t→∞

hi(t)

t
= C(μi), i = 1,2.

Arguing indirectly we suppose that C(μ1) = C(μ2); we are going to deduce a contradiction. We follow the argu-
ment in the proof of Theorem 3.1. As in Step 1 there, our assumption implies that h̃(t) := h1(t)−h2(t) is a T -periodic
function satisfying h̃(0) = h̃(T ) = 0. If h̃ ≡ 0, then ũ1 ≡ ũ2 and

d

dt
h1(t) = −μ1u

1
x

(
t, h1(t)

) ≡ −μ1u
2
x

(
t, h2(t)

) = μ1

μ2

d

dt
h2(t) <

d

dt
h2(t),

which is a contradiction.
If h̃ 
≡ 0, then as in Step 1 of the proof of Theorem 3.1, we can shift t in h2(t) so that, after the shift,

h1(t) � h2(t) ∀t ∈R, h1(t0 + nT ) = h2(t0 + nT ), n = 0,±1,±2, . . . .

It follows that
d

dt
h1(t0 + nT ) = d

dt
h2(t0 + nT ).

On the other hand, if we define

W(t, x) = u2(t, x) − u1(t, x) for (t, x) ∈ D := {
(t, x): t ∈ R, x < h1(t)

}
,

then the same arguments as in the proof of Theorem 3.1 yield

W(t, x) > 0 in D and Wx

(
t0, h

1(t0)
)
< 0.

It follows that

u1
x

(
t0, h

1(t0)
)
> u2

x

(
t0, h

2(t0)
)
,

or equivalently

−μ−1
1

d

dt
h1(t0) > −μ−1

2
d

dt
h2(t0),

which implies, due to μ1 < μ2,

d

dt
h1(t0) <

d

dt
h2(t0).

Again we reach a contradiction.
Since every possibility leads to a contradiction, we conclude that C(μ1) 
= C(μ2). �

Lemma 4.4. Suppose that 0 < μ1 < μ2, and (u1, h1), (u2, h2) are the unique pulsating semi-waves of (1.3) with
μ = μ1,μ2, respectively, which are normalized by h1(0) = h2(0) = 0. Then h1(t) < h2(t) for t > 0 and h1(t) > h2(t)

for t < 0.

Proof. From the previous lemma we find that

lim
t→∞

h1(t)

t
< lim

t→∞
h2(t)

t
.

Hence 0 < h1(t) < h2(t) for all large positive t , and 0 > h1(t) > h2(t) for all large negative t . Therefore there
exists a smallest t0 � 0 such that h1(t0) = h2(t0) and h1(t) < h2(t) for t > t0. We show that t0 = 0. Otherwise
t0 > 0 and due to h1(0) = h2(0) = 0, C0 := maxt∈[0,t0] h̃(t) � 0, where h̃(t) := h1(t) − h2(t). If C0 = 0 then clearly
d
dt

h1(t0) = d
dt

h2(t0). If C0 > 0 then we can shift t in h2(t) suitably to guarantee that for the shifted h2, still denoted
by h2(t), and some new t0 > 0, one has h1(t) < h2(t) for t > t0 and h1(t) � h2(t) for t ∈ [0, t0]. Hence again we have

d

dt
h1(t0) = d

dt
h2(t0), h1(t0) = h2(t0), h1(t) � h2(t) for t � 0, (4.7)

with strict inequality holding for t > t0.
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Define

W(t, x) = u2(t, x) − u1(t, x) for (t, x) ∈ D := {
(t, x): t > 0, x < h1(t)

}
.

Then we can argue as in the proof of Theorem 3.1 to conclude that

W > 0 in D and Wx

(
t0, h

1(t0)
)
< 0.

It follows that
d

dt
h1(t0) = −μ1u

1
x

(
t0, h

1(t0)
)
< −μ1u

2
x

(
t0, h

2(t0)
) = μ1

μ2

d

dt
h2(t0) <

d

dt
h2(t0),

a contradiction to (4.7). This proves that h1(t) < h2(t) for t > 0.
The proof for the fact that h1(t) > h2(t) for t < 0 is similar, and we omit the details. �
Set

α := sup
r�0

α(r), α := inf
r�0

α(r),

β := sup
r�0

β(r), β := inf
r�0

β(r).

By Propositions 2.1 and 2.2 in [6], for each k ∈ (0,2
√

αd), the problem

−dV ′′ + kV ′ = V (α − βV ) in (0,∞), V (0) = 0, V (∞) = α/β

has a unique positive solution Vk(x), and for each μ > 0, there exists a unique k0 = k0(μ) ∈ (0,2
√

αd) such that
μV ′

k0
(0) = k0. Moreover, k0(μ) strictly increases to 2

√
αd as μ increases to ∞.

Lemma 4.5. C(∞) := limμ→∞ C(μ) � 2
√

αd .

Proof. Denote by (u,h) the unique solution of (1.1) with (α(r), β(r)) replaced by (α,β). Since the modified problem
is set in a homogeneous environment, we could apply the result of [7] to conclude that

lim
t→∞

h(t)

t
= k0(μ) < 2

√
αd,

for any μ > 0.
By the comparison principle in [7], we deduce h(t) � h(t) and u(t, r) � u(t, r) for t > 0 and r ∈ [0, h(t)]. It

follows that C(μ) � k0(μ) < 2
√

αd for all μ > 0. Therefore C(∞) = limμ→∞ C(μ) � 2
√

αd . �
Lemma 4.6. Let (uμ,hμ) be the unique normalized pulsating semi-wave of (1.3). Then

d

dt
hμ(t) � k0(μ + 1) < 2

√
αd for all t ∈ R.

Proof. Fix an arbitrary s0 ∈R. We show that there exists t0 ∈ R such that

hμ(s0) = k0(μ + 1)s0 + t0, hμ(t) < k0(μ + 1)t + t0 for t > s0. (4.8)

Clearly this implies

d

dt
hμ(s0) � k0(μ + 1) < 2

√
αd.

Thus it suffices to prove (4.8).
Since

lim
t→±∞

hμ(t)

t
= C(μ) � k0(μ) < k0(μ + 1), (4.9)

we have, for any t0 ∈ R,
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hμ(t) < k0(μ + 1)t + t0 for all large positive t,

hμ(t) > k0(μ + 1)t + t0 for all large negative t .

Therefore there exists a minimal s = s(t0) ∈ R such that

hμ(s) = k0(μ + 1)s + t0, hμ(t) � k0(μ + 1)t + t0 ∀t > s.

We claim that strictly inequality holds, namely

hμ(t) < k0(μ + 1)t + t0 ∀t > s.

Otherwise there exists s1 > s such that hμ(s1) = k0(μ + 1)s1 + t0. It then follows that
d

dt
hμ(s1) = k0(μ + 1). (4.10)

Define D := {(t, x): t > s, x < hμ(t)} and

û(t, x) = Vk0(μ+1)

(
ĥ(t) − x

)
, ĥ(t) = k0(μ + 1)t + t0.

We note that

ûx

(
t, ĥ(t)

) = −V ′
k0(μ+1)(0) < 0,

and u
μ
x (t, hμ(t)) is negative and periodic in t . Moreover,

lim
ĥ(t)−x→∞

û(t, x) = α/β, lim
hμ(t)−x→∞

[
uμ(t, x) − φ(x)

] = 0, (4.11)

where φ(x) is the unique positive solution of −dφ′′ = φ[a(x) − b(x)φ] in R, and the limits are uniform. Moreover

α/β � φ(x) � α/β.

Therefore there exists c0 > 0 such that

û(t, x) � c0u
μ(t, x) in D.

Taking the limits along hμ(t) − x → ∞ we deduce

c0α/β � c0φ(x) � α/β.

Hence c0 � αβ
αβ

. Define

c∗ := sup
{
c > 0: û(t, x) � cuμ(t, x) in D

}
.

Then

c0 � c∗ � αβ

αβ
, and û� c∗uμ in D.

We show that c∗ � 1. Otherwise c∗ < 1 and for any positive sequence εn → 0, there exists (tn, xn) ∈ D such that

û(tn, xn) �
(
c∗ + εn

)
uμ(tn, xn), n = 1,2, . . . .

Using (4.11) we easily see that {tn} and {xn} are bounded sets in R. We may then argue as in Step 3 of the proof of
Theorem 3.1 to reach a contradiction.

Hence c∗ � 1 and

W(t, x) := û(t, x) − uμ(t, x) �, 
≡ 0 in D, W
(
s1, h

μ(s1)
) = 0.

From the equations for û and uμ we see that W satisfies, for some bounded function c(t, x),

Wt − dWxx + c(t, x)W � 0 in D.

Hence we can apply the strong maximum principle and the Hopf lemma to conclude that

W > 0 in D with Wx

(
s1, h

μ(s1)
)
< 0.

It follows that
d

dt
hμ(s1) = −μuμ

x

(
s1, h

μ(s1)
)
< μV ′

k0(μ+1)(0) < (μ + 1)V ′
k0(μ+1)(0) = k0(μ + 1).

But this contradicts (4.10). This proves our claim.



304 Y. Du, X. Liang / Ann. I. H. Poincaré – AN 32 (2015) 279–305
We now examine how s(t0) varies with t0. The property of s(t0) proved in the above claim implies that it varies
continuously with t0 ∈R. By (4.9), we see that

lim
t0→+∞ s(t0) = −∞, lim

t0→−∞ s(t0) = +∞.

Hence for each s0 ∈R, there exists t0 such that s(t0) = s0. The conclusions in (4.8) now follow from the claim. �
Lemma 4.7. C(∞) = c∗.

Proof. Let {μn} be an increasing sequence converging to ∞ as n → ∞. To simplify notations we write (un,hn) for
the unique normalized pulsating semi-wave (uμn,hμn) of (1.3) with μ = μn, and denote by (Un(τ, ξ),pn(τ )) the
corresponding pair of (un(t, x), hn(t)).

Making use of Lemma 4.6 and pn(hn(t)) = d
dt

hn(t), we obtain pn(τ) < 2
√

αd for all τ ∈ R and n� 1. Moreover,
since {μn} is increasing, by Lemma 4.4 and using suitable shifts, it is easily seen that if hn(t) = hn+1(t ′), then
d
dt

hn(t) � d
dt

hn+1(t ′). It follows that pn(τ) � pn+1(τ ) for all τ ∈R. Therefore we may assume that pn → p∗ with

p1(τ ) � p∗(τ ) � 2
√

αd, p∗(τ ) = p∗(τ + L) ∀τ ∈R.

As in the proof of Theorem 3.4, by a simple comparison consideration we see that {Un} is a bounded set in L∞(R×
[0,∞)). Therefore we may apply the Lp theory for parabolic equations to the equation of Un, much as in the proof

of Theorem 3.4, to conclude that, by passing to a subsequence, Un → U∗ in C
ν+1

2 ,ν+1
loc ([0,L]× [0,∞)), and (U∗,p∗)

satisfies

p∗(τ )
(
U∗

τ + U∗
ξ

) − dU∗
ξξ = U∗[a(τ − ξ) − b(τ − ξ)U∗), (τ, ξ) ∈R× [0,∞),

U∗(τ,0) = 0, τ ∈R.

From the identity pn(τ) = μnU
n
ξ (τ,0), we deduce

U∗
ξ (τ,0) ≡ 0.

Since U∗ � 0, the Hopf lemma infers that U∗ ≡ 0.
We now examine the sequence {(un,hn)}. Let us note that for any t0 ∈ R, (un(t + t0, x), hn(t + t0)) is also a

pulsating semi-wave to (1.3) with μ = μn. For fixed n � 1, since un(0,0) = 0, limt→∞ un(t,0) = φ(0) � α/β , and
un(t, x) is strictly increasing in t , for fixed ζ ∈ (0, α/β), there exists a unique tn > 0 such that un(tn,0) = ζ . We now
replace (un,hn) by its shift (un(t + tn, x), hn(t + tn)), and still denote it by (un,hn). Then clearly

un(0,0) = ζ > 0, hn(0) > 0 ∀n � 1.

We claim that tn → ∞ as n → ∞. Otherwise by passing to a subsequence we may assume that tn → t∗. Then from
the boundedness of { d

dt
hn} we conclude that, subject to a subsequence, hn → h∗ in C

μ
loc(R). Since ‖un‖∞ = ‖Un‖∞

has a bound independent of n, we may apply Lp theory to the equation of un to conclude that, by passing to a

subsequence, un → u∗ in C
1+ν

2 ,1+ν

loc (D), with D = {(t, x): t ∈R, x < h∗(t)}. Moreover, we have u∗(0,0) = ζ > 0. On
the other hand, by the discussion above for the corresponding pairs (Un,pn), we must have u∗ ≡ 0. This contradiction
shows that tn → ∞, as claimed.

Clearly the above proved claim implies that hn(t) → ∞ as n → ∞, uniformly for t ∈ [−M,∞) for every M > 0.
We may now once more apply the Lp theory to the equation of un to conclude that, by passing to a subsequence,

un → u∗ in C
1+ν

2 ,1+ν

loc (R2), with u∗(0,0) = ζ > 0. Moreover, u∗ satisfies

u∗
t − du∗

xx = u∗[a(x) − b(x)u∗] for (t, x) ∈R
2.

Recall that d
dt

hn(t) is Tn-periodic, with C(μn) = L/Tn, and un(t + Tn, x) = un(t, x − L). Since C(μn) → C(∞),
we obtain Tn → T ∗ := L/C(∞). It follows that

u∗(t + T ∗, x
) = u∗(t, x − L) for all (t, x) ∈R

2. (4.12)

Due to un
t (t, x) > 0, we obtain u∗

t (t, x) � 0. By the strong maximum principle, we easily see that either u∗
t > 0 or

u∗
t ≡ 0. If u∗

t ≡ 0, then necessarily u∗(t, x) = φ(x). But we have u∗(0,0) = ζ < minφ(x). Hence we necessarily have
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u∗
t (t, x) > 0. From these properties of u∗ we can now conclude that u∗ is a pulsating front of (1.4). By (4.12), the

speed of u∗ is C(∞). Therefore we must have C(∞) � c∗.
We show next that C(∞) � c∗. For this purpose, we consider the auxiliary one-dimensional free boundary problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut − duxx = u
[
a(x) − b(x)u

]
, t > 0, x ∈ (

g(t), h(t)
)
,

u
(
t, g(t)

) = 0, g′(t) = −μux

(
t, g(t)

)
, t > 0,

u
(
t, h(t)

) = 0, h′(t) = −μux

(
t, h(t)

)
, t > 0,

−g(0) = h(0) = h0, u(0, x) = u0(x), x ∈ [−h0, h0].

(4.13)

Comparing (4.13) with the same problem where (a(x), b(x)) is replaced by the constant pair (mina(x),maxb(x)),
one easily sees from [10] that for all large μ > 0, spreading occurs for (4.13). Moreover, a similar (but easier) analysis
to that of Theorem 4.12 shows that

lim
t→∞

−g(t)

t
= lim

t→∞
h(t)

t
= C(μ).

Let û(t, x) be the unique solution of the corresponding Cauchy problem to (4.13). Then by the comparison principle
we have u(t, x) < û(t, x), which implies that C(μ) is no bigger than the spreading speed determined by this Cauchy
problem. By [2] the spreading speed determined by this Cauchy problem is the minimal speed of the pulsating fronts
of (1.4), namely c∗. Therefore we have C(μ) � c∗. It follows that C(∞) � c∗. �
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