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Abstract

We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton–Jacobi,
“viscous” Hamilton–Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate
“periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homoge-
nization.
© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this note we prove that the effective nonlinearities arising in the stochastic homogenization of Hamilton–Jacobi,
“viscous” Hamilton–Jacobi and nonlinear uniformly elliptic pde can be approximated almost surely by the effective
nonlinearities of appropriately chosen “periodizations” of the equations. We also establish an error estimate in settings
for which a rate of convergence is known for the stochastic homogenization.

To facilitate the exposition, state (informally) our results in the introduction and put everything in context, we be-
gin by recalling the basic stochastic homogenization results for the class of equations we are considering here. The
linear uniformly elliptic problem was settled long ago by Papanicolaou and Varadhan [30,31] and Kozlov [19], while
general uniformly variational problems were studied by Dal Maso and Modica [16,17] (see also Zhikov, Kozlov, and
Oleı̆nik [35]). Nonlinear, nonvariational problems were considered only relatively recently. Souganidis [33] and Reza-
khanlou and Tarver [32] considered the stochastic homogenization of convex and coercive Hamilton–Jacobi equations.
The homogenization of viscous Hamilton–Jacobi equations with convex and coercive nonlinearities was established
by Lions and Souganidis [24,25] and Kosygina, Rezakhanlou, and Varadhan [20]. These equations in spatio-temporal
media were studied by Kosygina and Varadhan [21] and Schwab [34]. A new proof for the homogenization yielding
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convergence in probability was found by Lions and Souganidis [26], and the argument was extended to almost sure
by Armstrong and Souganidis [5] who also considered unbounded environments satisfying general mixing assump-
tions. Later Armstrong and Souganidis [6] put forward a new argument based on the so-called metric problem. The
convergence rate for these problems was obtained, first in the framework of Hamilton–Jacobi equations by Arm-
strong, Cardaliaguet and Souganidis [1] and later extended to the viscous Hamilton–Jacobi case by Armstrong and
Cardaliaguet [2], while Matic and Nolen [27] obtained variance estimates for a special class of first-order problems.
All the above results assume that the Hamiltonians are convex and coercive. The only known result for stochastic
homogenization of noncoercive Hamilton–Jacobi equations was obtained by Cardaliaguet and Souganidis [14] for
the so-called G-equation (also see Nolen and Novikov [28] who considered the same in dimension d = 2 and un-
der additional structure conditions). The stochastic homogenization of fully nonlinear uniformly elliptic second-order
equations was established by Caffarelli, Souganidis, and Wang [12] and Caffarelli and Souganidis [10] obtained a
rate of convergence in strongly mixing environments. Armstrong and Smart extended in [3] the homogenization result
of [12] to some nonuniformly elliptic setting and, recently, improved the convergence rate in [4]. The results of [12,10]
were extended to spatio-temporal setting by Lin [23].

The problem considered in this paper—approximation of the homogenized effective quantities by the effective
quantities for periodic problems—is a classical one. Approximation by periodic problems as a way to prove random
homogenization was used first in [31] for linear uniformly elliptic problems and later, in the context of random walks
in random environments, by, for example, Lawler [22] and Guo and Zeitouni [18]. The approach of [31] can be seen
as a particular case of the “principle of periodic localization” of Zhikov, Kozlov, and Oleı̆nik [35] for linear, elliptic
problems. Bourgeat and Piatnitski [8] gave the first convergence estimates for this approximation, while Owhadi [29]
proved the convergence for the effective conductivity. As far as we know the results in this paper are the first for
nonlinear problems and provide a complete answer to this very natural question.

We continue with an informal discussion of the results. Since the statements and arguments for the Hamilton–Jacobi
and viscous Hamilton–Jacobi equations are similar here as well as in the rest of the paper we combine them under the
heading viscous Hamilton–Jacobi–Bellman equations, for short viscous HJB. Hence our presentation consists of two
parts, one for viscous HJB and one for fully nonlinear second-order uniformly elliptic problems. We begin with the
former and continue with the latter.

Viscous Hamilton–Jacobi–Bellman equations We consider viscous HJB equations of the form

−ε tr

(
A

(
x

ε
,ω

)
D2uε

)
+ H

(
Duε,

x

ε
,ω

)
= 0, (1.1)

with the possibly degenerate elliptic matrix A = A(y,ω) and the Hamiltonian H = H(p,y,ω) stationary ergodic with
respect to ω and, moreover, H convex and coercive in p and A the “square” of a Lipschitz matrix. Precise assumptions
are given in Section 2. Under these conditions, Lions and Souganidis [25] proved that almost sure homogenization
holds. This means that there exists a convex and coercive Hamiltonian H , which we call the ergodic constant, such that
the solution uε = uε(x,ω) of (1.1), subject to appropriate boundary conditions, converges, as ε → 0, locally uniformly
and almost surely to the solution u of the deterministic equation, with the same boundary conditions, H(Du) = 0.

A very useful way to identify the effective Hamiltonian H(p) is to consider the approximate auxiliary problem

δvδ − tr
(
A(x,ω)D2vδ

) + H
(
Dvδ + p,x,ω

) = 0 in R
d, (1.2)

which admits a unique stationary solution vδ(·,ω), often refer to as an “approximate corrector”. It was shown in [24]
that, for each p ∈R

d , c > 0 and almost surely in ω, as δ → 0,

sup
y∈Bc/δ

∣∣δvδ(y,ω) + H(p)
∣∣ → 0. (1.3)

If A and H in (1.1) are replaced by L-periodic in y maps AL(·,ω) and HL(·,·,ω), the effective Hamiltonian HL(·,ω)

is, for any (p,ω) ∈ R
d × Ω , the unique constant HL(p,ω) for which the problem

−tr
(
AL(x,ω)D2χ

) + HL(Dχ + p,x,ω) = HL(p,ω) in R
d, (1.4)

has a continuous, L-periodic solution χ . In the context of periodic homogenization, (1.4) and χ are called respectively
the corrector equation and corrector. Without any periodicity, for the constant in (1.4) to be unique, it is necessary for χ
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to be strictly sublinear at infinity. As it was shown by Lions and Souganidis [24], in general it is not possible to find
such solutions. The nonexistence of correctors is the main difference between the periodic and the stationary ergodic
settings, a fact which leads to several technical difficulties as well as new qualitative behaviors.

A natural question is whether it is possible to come up with AL and HL such that, as L → ∞, HL(·,ω) converges
locally uniformly in p and almost surely in ω to H . For this it is necessary to choose AL and HL carefully. The
intuitive idea, and this was done in the linear uniformly elliptic setting [8,29,35], is to take AL = A and HL = H

in [−L/2,L/2)d and then to extend them periodically in R
d . Unfortunately, such obvious as well as simple choice

cannot work for viscous HJB equations for two reasons. The first one is that (1.4), with the appropriate boundary/initial
conditions, does not have a solution unless AL and HL are at least continuous, a property that is not satisfied by the
simple choice described above. The second one, which is more subtle, is intrinsically related to the convexity and
the coercivity of the Hamiltonian. Indeed it turns out that viscous HJB equations are very sensitive to large values
of the Hamiltonian. As a consequence, the HL’s must be substantially smaller than H at places where H and HL

differ.
To illustrate the need to come up with suitable periodizations, we discuss the elementary case when A ≡ 0

and H(p,x,ω) = |p|2 − V (x,ω) with V stationary, bounded and uniformly continuous. This is one of the
very few examples for which the homogenized Hamiltonian is explicitly known for some values of p. Indeed
H(0) = infx∈Rd V (x,ω), a quantity which is independent on ω in view of the stationarity of V and the assumed
ergodicity. If HL(p,x,ω) = |p|2 − VL(x,ω), with VL is L-periodic, then HL(0,ω) = infx∈Rd VL(x,ω). It fol-
lows that VL cannot just be any regularized truncation of V (·,ω), since it must satisfy, in addition, the condition
infx∈Rd VL(x,ω) → infx∈Rd V (x,ω) as L → ∞. To illustrate further this restriction, let us naively define VL in
[−(L − 1)/2, (L − 1)/2)d as a smooth interpolation between VL = V in [−(L − 1)/2, (L − 1)/2)d and VL = 0
on ∂[−L/2,L/2)d , and extend VL periodically. Then this approximation would not always be suitable for the approx-
imation because it implies HL(0,ω) � 0 whatever the map V is.

Here we show that it is possible to choose periodic AL and HL so that the ergodic constant HL(p,ω) converges,
as L → +∞ to H(p) locally uniformly in p and almost surely in ω. One direction of the convergence is based on the
knowledge of homogenization, while the other relies on the construction of subcorrectors (i.e., subsolutions) to (1.4)
using approximate correctors for the original system. We also provide an error estimate for the convergence provided
a rate is known for the homogenization, which is the case for “i.i.d. environments” [1,2].

Fully nonlinear, uniformly elliptic equations We consider fully nonlinear uniformly elliptic equations of the form

F

(
D2uε,

x

ε
,ω

)
= 0. (1.5)

Following Caffarelli, Souganidis and Wang [12], it turns out that there exists a uniformly elliptic F , which we
call again the ergodic constant of the homogenization, such that the solution of (1.5)—complemented with suitable
nonoscillatory boundary conditions—converges, as ε → 0 and almost surely, to the solution of F(D2u) = 0 with the
same boundary behavior.

Although technically involved, this setting is closer to the linear elliptic one. Indeed we show that the effective
equation FL of any (suitably regularized) uniformly elliptic (with constants independent of L) periodization of F

converges almost surely to F . The proof relies on a combination of homogenization and an Alexandroff–Bakelman–
Pucci (ABP) estimate-type argument. We also give an error estimate for the difference |FL(P,ω) − F(P )|, again
provided we know rates for the stochastic homogenization like the one’s established in [10] and [4].

1.1. Organization of the paper

In the remainder of the introduction we introduce the notations and some of the terminology needed for the rest
of the paper, discuss the general random setting and record the properties of an auxiliary cut-off function we will be
using to ensure the regularity of the approximations. The next two sections are devoted to the viscous HJB equations.
In Section 2 we introduce the basic assumptions and state and prove the approximation result. Section 3 is about
the rate of convergence. The last two sections are about the elliptic problem. In Section 4 we discuss the assump-
tions and state and prove the approximation result. The rate of convergence is the topic of the last section of the
paper.
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1.2. Notation and conventions

The symbols C and c denote positive constants which may vary from line to line and, unless otherwise indicated,
depend only on the assumptions for A, H and other appropriate parameters. We denote the d-dimensional Euclidean
space by R

d , N is the set of natural numbers, Sd is the space of d×d real valued symmetric matrices, and Id is the d×d

identity matrix. For each y = (y1, . . . , yd) ∈ R
d , |y| denotes the Euclidean length of y, |y|∞ = maxi |yi | its l∞-length,

‖X‖ is the usual l2-norm of X ∈ Sd and 〈·,·〉 is the standard inner product in R
d . If E ⊆R

d , then |E| is the Lebesgue
measure of E and Int(E), E and convE are respectively the interior, the closure and the closure of the convex hull
of E. We abbreviate almost everywhere to a.e. We use �(K) for the number of points of a finite set K. For r > 0, we
set B(y, r) := {x ∈ R

d : |x − y| < r} and Br := B(0, r). For each z ∈ R
d and R > 0, QR(z) := z + [−R/2,R/2)d

in R
d and QR := QR(0). We say that a map is 1-periodic, if it is periodic in Q1. The distance between two subsets

U,V ⊆ R
d is dist(U,V ) = inf{|x − y|: x ∈ U, y ∈ V }. If f : E → R then oscE f := supE f − infE f . The sets of

functions on a set U ⊆ R
d which are Lipschitz, have Lipschitz continuous derivatives and are smooth functions that

are written respectively as C0,1(U), C1,1(U) and C∞(U). The set of α-Hölder continuous functions on R
d is C0,α and

‖u‖ and [uL]0,α denote respectively the sup-norm and α-Hölder seminorm. When we need to denote the dependence
of these last quantities on a particular domain U we write ‖u‖U and [uL]0,α;U . The Borel σ -field on a metric space M

is B(M). If M = R
d , then B = B(Rd). Given a probability space (Ω,F,P), we write a.s. or P-a.s. to abbreviate

almost surely.
Throughout the paper, all differential inequalities are taken to hold in the viscosity sense. Readers not familiar with

the fundamentals of the theory of viscosity solutions may consult standard references such as [7,15].

1.3. The general probability setting

Let (Ω,F,P) be a probability space endowed with a group (τy)y∈Rd of F-measurable, measure-preserving trans-
formations τy : Ω → Ω . That is, we assume that, for every x, y ∈R

d and A ∈ F,

P
[
τy(A)

] = P[A] and τx+y = τx ◦ τy. (1.6)

Moreover, the group (τy)y∈Rd is assumed to be ergodic, that is, if for A ∈ F,

τy(A) = A for all y ∈ R
d, then either P[A] = 0 or P[A] = 1. (1.7)

A map f : M ×R
d × Ω → R, with M either Rd or Sd , which is measurable with respect to B(M) ⊗B⊗F is called

stationary if, for every m ∈ M,y, z ∈R
d and ω ∈ Ω ,

f (m,y, τzω) = f (m,y + z,ω).

Given a random variable f : M × R
d × Ω → R, for each E ∈ B, let G(E) be the σ -field on Ω generated by the

f (m,x, ·) for x ∈ E and m ∈ M . We say that the environment is “i.i.d.”, if there exists D > 0 such that, for all
V,W ∈B,

if dist(V ,W) � D then G(V ) and G(W) are independent. (1.8)

We say that the environment is strongly mixing with rate φ : [0,∞) → [0,∞), if limr→∞ φ(r) = 0 and

if dist(V ,W) � r then sup
A∈G(V ), B∈G(W)

∣∣P[A ∩ B] − P[A]P[B]∣∣ � φ(r). (1.9)

Recall that “i.i.d.” and strongly mixing environments are ergodic.

1.4. An auxiliary function

To avoid repetition we summarize here the properties of an auxiliary cut-off function we use in all sections to
construct the periodic approximations. We fix η ∈ (0,1/4) and choose a 1-periodic smooth ζη : Rd → [0,1] so
that

ζη = 0 in Q1−2η, ζη = 1 in Q1\Q1−η, ‖Dζη‖� c/η and
∥∥D2ζη

∥∥� c/η2. (1.10)

To simplify the notation we often omit the dependence of ζη on η.
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2. Approximations for viscous HJB equations

We introduce the hypotheses and we state and prove the approximation result.

2.1. The hypotheses

The Hamiltonian H : Rd × R
d × Ω → R is assumed to be measurable with respect to B ⊗ B ⊗ F. We write

H = H(p,y,ω) and we require that, for every p,y, z ∈R
d and ω ∈ Ω ,

H(p,y, τzω) = H(p,y + z,ω). (2.1)

We continue with the structural hypotheses on H . We assume that H is, uniformly in (y,ω), coercive in p, that is
there exist constants C1 > 0 and γ > 1 such that

C−1
1 |p|γ − C1 �H(p,x,ω)� C1|p|γ + C1, (2.2)

and, for all (y,ω),

the map p → H(p,y,ω) is convex. (2.3)

The last assumption can be relaxed to level-set convexity at the expense of some technicalities but we are not pursuing
this here.

The required regularity of H is that, for all x, y,p, q ∈ R
d and ω ∈ Ω ,∣∣H(p,x,ω) − H(p,y,ω)

∣∣� C1
(|p|γ + 1

)|x − y| (2.4)

and ∣∣H(p,x,ω) − H(q,x,ω)
∣∣� C1

(|p|γ−1 + |q|γ−1 + 1
)|p − q|. (2.5)

Next we discuss the hypotheses on A : Rd ×Ω → Sd . We assume that, for each (y,ω) ∈ R
d × Ω , there exists a d × k

matrix Σ = Σ(y,ω) (for some integer k ∈ N) such that

A(y,ω) = Σ(y,ω)ΣT (y,ω). (2.6)

The matrix Σ is supposed to be measurable with respect to B ⊗ F and stationary, that is for any y, z ∈ R
d and

ω ∈ Ω ,

Σ(y, τzω) = Σ(y + z,ω). (2.7)

It is clear that (2.6) and (2.7) yield that A is degenerate elliptic and stationary.
We also assume that Σ is Lipschitz continuous with respect to the space variable, i.e., for all x, y ∈ R

d and
ω ∈ Ω ,∣∣Σ(x,ω) − Σ(y,ω)

∣∣� C1|x − y|. (2.8)

To simplify statements, we write

(2.1), (2.2), (2.3), (2.4) and (2.5) hold, (2.9)

and

(2.6), (2.7) and (2.8) hold. (2.10)

We denote by H = H(p) the averaged Hamiltonian corresponding to the homogenization problem for H and A. We
recall from the discussion in the introduction that H(p) is the a.s. limit, as δ → 0, of −δvδ(0,ω), where vδ is the
solution to (1.2). Note (see [25]) that, in view of (2.3), H is convex. Moreover (2.2) yields (again see [25])

C−1
1 |p|γ − C1 � H(p) � C1|p|γ + C1. (2.11)
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2.2. The periodic approximation

Fix η > 0 and let ζη be a smooth cut-off function satisfying (1.10). For (p, x,ω) ∈R
d × QL × Ω we set

AL,η(x,ω) =
(

1 − ζη

(
x

L

))
A(x,ω)

and

HL,η(p, x,ω) =
(

1 − ζη

(
x

L

))
H(p,x,ω) + ζη

(
x

L

)
H0(p),

where, for a constant C2 > 0 to be defined below,

H0(p) = C−1
2 |p|γ − C2.

Then we extend AL,η and HL,η to R
d ×R

d × Ω by periodicity, i.e., for all (x,p) ∈ R
d , ω ∈ Ω and ξ ∈ Z

d ,

HL,η(p, x + Lξ,ω) = HL,η(p, x,ω) and AL,η(x + Lξ,ω) = AL,η(x,ω).

To define C2, let us recall (see [25]) that (2.9) yields a constant C3 � 1 such that, for any ω ∈ Ω , p ∈ R
d and δ ∈ (0,1),

the solution vδ of (1.2) satisfies ‖Dvδ + p‖∞ � C3(|p| + 1). Then we choose C2 so large that, for all p ∈ R
d ,

C−1
2

(
C3

(|p| + 1
))γ − C2 � C−1

1 |p|γ − C1.

In view of (2.2), (2.11) and the previous discussion on vδ , we have

H0
(
Dvδ + p

)
� H(p) and H0(p) � H(p), (2.12)

and, in addition, uniformly in (y,ω),

HL,η(p, y,ω) is coercive in p with a constant that depends only on C1. (2.13)

2.3. The approximation result

Let HL,η = HL,η(p,ω) be the averaged Hamiltonian corresponding to the homogenization problem for HL,η

and AL,η . We claim that, as L → +∞, HL,η is a good a.s. approximation of H .

Theorem 2.1. Fix η > 0 and assume (1.7), (2.9) and (2.10). There exists a constant C > 0 such that, for all p and
a.s.,

lim sup
L→+∞

HL,η(p,ω)� H(p) � lim inf
L→+∞HL,η(p,ω) + C

(|p|γ + 1
)
η.

In general it does not seem possible to let η → 0 simultaneously with L → +∞ in the above statement. However,
it is a simple application of the discussion of Section 3, that under suitable assumptions on the random media, it is
possible to choose η = ηn → 0 as Ln → +∞ in such a way that

lim
n→+∞HLn,ηn(p) = H(p).

2.4. The proof of Theorem 2.1

From now on, to simplify the notation, we drop the dependence of the various quantities with respect to η and
simply write HL, AL and HL for HL,η , AL,η and HL,η .

The proof is divided into two parts which are stated as two separate lemmata. The first is the upper bound, which
relies on homogenization and only uses the fact that H = HL in QL(1−2η). The second is the lower bound. Here the
specific construction of HL plays a key role.
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Lemma 2.2 (The upper bound). Assume (1.7), (2.9) and (2.10). There exists C > 0 that depends only on C1 such that,
for all p ∈ R

d and a.s.,

H(p) � lim inf
L→+∞HL(p,ω) + C

(|p|γ + 1
)
η.

Proof. Choose ω ∈ Ω for which homogenization holds (recall that this is the case for almost all ω) and fix p ∈ R
d .

Let χ
p
L be a corrector for the L-periodic problem, i.e., a continuous, L-periodic solution of (1.4). Without loss of

generality we assume that χ
p
L(0,ω) = 0. Moreover, since HL is coercive, there exists (see [25]) a constant C3, which

depends only on C1, such that ‖Dχ
p
L + p‖∞ � C3(|p| + 1).

Define Φ
p
L(x,ω) := L−1χ

p
L(Lx,ω). It follows that the Φ

p
L’s are 1-periodic, Lipschitz continuous uniformly in L,

since ‖DΦ
p
L + p‖∞ � C3(|p| + 1), and uniformly bounded in R

d , since Φ
p
L(0,ω) = 0. Moreover,

−L−1 tr
(
AL(Lx,ω)D2Φp

) + HL

(
DΦ

p
L + p,Lx,ω

) = HL(p,ω) in R
d .

Since HL = H and AL = A in QL(1−2η), we also have

−L−1 tr
(
A(Lx,ω)D2Φ

p
L

) + H
(
DΦ

p
L + p,Lx,ω

) = HL(p,ω) in Int(Q1−2η).

Let Ln → +∞ be such that HLn(p,ω) → lim infL→+∞ HL(p,ω). The equicontinuity and equiboundedness of the
Φ

p
L’s yield a further subsequence, which for notational simplicity we still denote by Ln, such that the Φ

p
Ln

’s converge

uniformly in R
d to a Lipschitz continuous, 1-periodic map Φp :Rd →R. Note that, by periodicity∫

Q1

DΦp = 0. (2.14)

Since homogenization holds for the ω at hand, by the choice of the subsequence, we have both in the viscosity and
a.e. sense that

H
(
DΦp + p

) = lim inf
L→+∞HL(p,ω) in Int(Q1−2η). (2.15)

It then follows from (2.14), the convexity of H and Jensen’s inequality that

H(p) �
∫
Q1

H
(
DΦp + p

)
.

Using the bound on ‖DΦp‖ together with (2.11) and (2.15), we get∫
Q1

H
(
DΦp + p

)
�

∫
Q1−2η

H
(
DΦp + p

) + C1
(∥∥DΦp + p

∥∥γ

∞ + 1
)|Q1\Q1−2η|

� (1 − 2η)d lim inf
L→+∞HL(p,ω) + C

(|p|γ + 1
)
η,

and, after employing (2.11) once more,

H(p) � lim inf
L→+∞HL(p,ω) + C

(|p|γ + 1
)
η. �

To state the next lemma recall that, for any δ > 0 and p ∈R
d , vδ(·,ω;p) solves (1.2).

Lemma 2.3 (The lower bound). Assume (2.9) and (2.10). For any K > 0, there exists C > 0 such that, for all p ∈ BK ,
L = 1/δ � 1 and ε > 0,{

ω ∈ Ω: sup
y∈Q1/δ

∣∣δvδ(y,ω;p) + H(p)
∣∣ � ε

}
⊂

{
ω ∈ Ω: HL(p,ω) − H(p) � Cε

η

}
.
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Proof. Fix ω ∈ Ω such that

sup
y∈Q1/δ

∣∣δvδ(y,ω;p) + H(p)
∣∣ � ε, (2.16)

and let ξ : Rd →R be a smooth 1-periodic map such that

ξ = 1 in Q1−η, ξ = 0 in Q1\Q1−η/2, ‖Dξ‖∞ � Cη−1 and
∥∥D2ξ

∥∥∞ � Cη−2.

Recall that L = 1/δ, define

ΨL(x,ω) := ξ

(
x

L

)
vδ(x,ω;p) −

(
1 − ξ

(
x

L

))
H(p)

δ
in QL

and extend ΨL(·,ω) periodically (with period L) over Rd .
The goal is to estimate the quantity −tr(AL(x,ω)D2ΨL) + HL(DΨL + p,x,ω). In what follows we argue as if

ΨL were smooth, the computation being actually correct in the viscosity sense.
Observe that, if x ∈ QL, then

DΨL(x,ω) = ξ

(
x

L

)
Dvδ(x,ω;p) + 1

L
Dξ

(
x

L

)(
vδ(x,ω;p) + H(p)

δ

)
.

Hence, in view of (2.16),∣∣∣∣DΨL(x,ω) − ξ

(
x

L

)
Dvδ(x,ω;p)

∣∣∣∣� Cε

ηLδ
= Cε

η
. (2.17)

Note that ΨL = vδ in QL(1−η) while ζ(·/L) = 1 in QL\QL(1−η). It then follows from the definition of AL and HL

that, when x ∈ QL,

−tr
(
AL(x,ω)D2ΨL

) + HL(DΨL + p,x,ω)

=
(

1 − ζ

(
x

L

))[−tr
(
A(x,ω)D2ΨL

) + H(DΨL + p,x,ω)
] + ζ

(
x

L

)
H0(DΨL + p)

=
(

1 − ζ

(
x

L

))[−tr
(
A(x,ω)D2vδ

) + H
(
Dvδ + p,x,ω

)] + ζ

(
x

L

)
H0(DΨL + p). (2.18)

We now estimate each term in the right-hand side of (2.18) separately. For the first, in view of (1.2) and (2.16), we
have

−tr
(
A(x,ω)D2vδ

) + H
(
Dvδ + p,x,ω

) = −δvδ(x,ω) � H(p) + ε,

while for the second we use (2.17), the convexity of H0 and the Lipschitz bound on vδ to find

H0(DΨL + p)� H0

(
ξ

(
x

L

)
Dvδ + p

)
+ Cε

η

� ξ

(
x

L

)
H0

(
Dvδ + p

) +
(

1 − ξ

(
x

L

))
H0(p) + Cε

η
,

and, in view of (2.12), deduce that

H0(DΨL + p)� H(p) + Cε

η
.

Combining the above estimates we find (recall that η ∈ (0,1))

−tr
(
AL(x,ω)D2ΨL

) + HL(DΨL + p,x,ω)� H(p) + Cε

η
. (2.19)

Since ΨL is L-periodic subsolution for the corrector equation associated to AL and HL, the classical comparison of
viscosity solutions [7] yields

HL(p,ω)� H(p) + Cε/η. �
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We are now ready to present

Proof of Theorem 2.1. In view of Lemma 2.2, we only have to show that

lim sup
L→+∞

HL(p,ω)� H(p). (2.20)

Fix p ∈ R
d , let vδ be the solution to (1.2), and recall that, in view of (1.3), a.s. in ω ∈ Ω , for any ε > 0, there exists

δ = δ(ω) such that, if δ ∈ (0, δ),

sup
y∈Q1/δ

∣∣δvδ(y,ω;p) + H(p)
∣∣ � ε.

For such an ω, Lemma 2.3 implies that, for L = 1/δ,

HL(p,ω)� H(p) + Cε/η.

Letting first L → +∞ and then ε → 0 yields (2.20). �
3. Error estimate for viscous HJB equations

Here we show that it is possible to quantify the convergence of HL,η(·,ω) to H . For this we assume that we have
an algebraic rate of convergence for the solution vδ = vδ(x,ω;p) of (1.2) towards the ergodic constant H(p), that is

we suppose that there exists a ∈ (0,1) and, for each K > 0 and m > 0, a map δ → c
K,m
1 (δ) with limδ→0 c

K,m
1 (δ) = 0

such that

P

[
sup

(y,p)∈Qδ−m×BK

∣∣δvδ(y, ·;p) + H(p)
∣∣ > δa

]
� c

K,m
1 (δ); (3.1)

notice that (3.1) implies that the convergence of δvδ(y, ·;p) in balls of radius δ−m is not slower than δa .
A rate of convergence like (3.1) is shown to hold for Hamilton–Jacobi equations in [1] and for viscous HJB in [2]

under some additional assumptions on H and the environment. The first assumption, which is about the shape of the
level sets of H , is that, for every p,y ∈R

d and ω ∈ Ω ,

H(p,y,ω)� H(0,0,ω).

As explained in [1], from the point of view of control theory, the fact that there is a common p0 for all ω at
which H(·,0,ω) has a minimum provides “some controllability”. No generality is lost by assuming p0 = 0 and
ess supω∈Ω H(0,0,ω) = 0, which in turn implies that minH = 0.

As far as the environment is concerned, (3.1) is known to hold for “i.i.d.” environments and under an additional
condition on H . Indeed it was shown in [1] that the δvδ’s may converge arbitrarily slowly for p’s in the flat zone of H ,
that is the set {p ∈ R

d : H(p) = minH }. For Hamilton–Jacobi equations, that it is when A ≡ 0, a sufficient condition
(see [1]) for (3.1) is the existence of constants θ > 0 and c > 0 such that

P
[
H(0,0, ·) > −λ

]
� cλθ ,

while (see [2]) for viscous HJB equations the above condition has to be strengthened in the following way: there exist
θ > 0 and c > 0 such that, for (p, x,ω) ∈R

d ×R
d × Ω and p ∈ B1,

H(p,x,ω)� c|p|θ .
In both cases, the function c

K,m
1 is of the form

c
K,m
1 (δ) = Cδ−r exp

(−Cδ−b
)
,

where r , C and b are positive constants depending on A, H , K and m.
The periodic approximation AL,η and HL,η is the same as in the previous section except that now η → 0 as

L → +∞. The rate at which η → 0 depends on the assumption on the medium. As before the smooth 1-periodic ζη

satisfies (1.10).
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We choose ηL → 0 and, to simplify the notation, we write

ζL(x) := ζηL

(
x

L

)
.

Note that ζL is now L-periodic. We also use the notation AL, HL and HL for AL,ηL
, HL,ηL

and HL,ηL
respectively.

The result is:

Theorem 3.1. Assume (2.9), (2.10) and (3.1) and set ηL = L
− a

4(a+1) . For any K > 0, there exists a constant C > 0
such that, for L� 1,

P

[
sup

|p|�K

∣∣H(p) − HL(p, ·)∣∣ > CL
− a

4(a+1)

]
� 2c

C,2(a+1)
1

(
L

− 1
2(a+1)

)
.

The main idea of the proof, which is reminiscent to the approach of Capuzzo Dolcetta and Ishii [13] and [1], is that
|H(p) − HL(p, ·)| can be controlled by |δvδ(z,ω;p′) + H(p′)|. The later one is estimated by the convergence rate
assumption (3.1). As in the proof of Theorem 2.1 we prove separately the bounds from below and above. Since the
former is a straightforward application of Lemma 2.3, here we only present the details for the latter.

3.1. Estimate for the upper bound

We state the upper bound in the following proposition.

Proposition 3.2. For any K > 0, there exists C > 0 such that, for any L� 1, λ ∈ (0,1] and δ > 0,{
ω ∈ Ω: sup

p∈BK

[
H(p) − HL(p,ω)

]
> λ + C

(
ηL + L− 1

4 δ− 1
2
)}

⊂
{
ω ∈ Ω: inf

(z,p′)∈QL×BC

[−δvδ
(
z,ω;p′) − H

(
p′)] < −λ

}
.

Proof. Fix p ∈ BK and let χ
p
L be a continuous, L-periodic solution of the corrector equation (1.4); recall that χ

p
L is

Lipschitz continuous with Lipschitz constant L = L(K).
Set ε = 1/L and consider wε(x) := εχL(x

ε
) which solves

−ε tr

(
AL

(
x

ε
,ω

)
D2wε

)
+ HL

(
Dwε + p,

x

ε
,ω

)
= HL(p,ω) in R

d .

Note that wε is 1-periodic and Lipschitz continuous with constant L. Moreover, in view of the definition of AL

and HL,

−ε tr

(
A

(
x

ε
,ω

)
D2wε

)
+ H

(
Dwε + p,

x

ε
,ω

)
= HL(p,ω) in Q1−2ηL

. (3.2)

Fix γ > 0 to be chosen later and consider the sup-convolution wε,γ of wε which is given by

wε,γ (x,ω) := sup
y∈Rd

(
wε(y,ω) − 1

2γ
|y − x|2

)
.

Note that wε,γ is also 1-periodic and, by the standard properties of the sup-convolution [7,15], ‖Dwε,γ ‖∞ �
‖Dwε‖∞ � L.

The main step of the proof is the following lemma which we prove after the end of the ongoing proof.

Lemma 3.3. There exists a sufficiently large constant C > 0 with the property that, for any κ > 0 and any ω ∈ Ω , if

inf
(z,p′)∈Q ×B

[−δvδ
(
z,ω;p′) − H

(
p′)]� −λ, (3.3)
L 2L
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then, for a.e. x ∈ Qr with r = 1 − 2ηL − (C + L)(γ + ( ε
δκ

)
1
2 ),

H
(
Dwε,γ (x) + p

)
� HL(p,ω) + λ + C

(
1

γ
+ κ

)(
ε +

(
ε

δκ

) 1
2
)

. (3.4)

We complete the ongoing proof. Jensen’s inequality yields, after integrating (3.4) over Qr ,

H

(
r−d

∫
Qr

Dwε,γ (x) dx + p

)
� r−d

∫
Qr

H
(
Dwε,γ (x) dx + p

)

� HL(p,ω) + λ + C

(
1

γ
+ κ

)(
ε +

(
ε

δκ

) 1
2
)

.

The 1-periodicity of wε,γ yields
∫
Q1

Dwε,γ = 0, and therefore∣∣∣∣ 1

rd

∫
Qr

Dwε,γ

∣∣∣∣ � 1

rd

(∣∣∣∣
∫
Q1

Dwε,γ

∣∣∣∣ + ∥∥Dwε,γ
∥∥∞|Q1\Qr |

)

� C(1 − r) = C

(
ηL + γ +

(
ε

δκ

) 1
2
)

,

with the last equality following from the choice of r . Hence

H(p) � HL(p,ω) + λ + C

(
ηL + γ + ε

γ
+ κε +

(
ε

δκ

) 1
2
(

1

γ
+ κ + 1

))
.

Choosing κ = (εδ)− 1
3 γ − 2

3 and γ = ε
1
4 δ− 1

2 and recalling that ε = L−1, we find

H(p) � HL(p,ω) + λ + C
(
ηL + L− 1

4 δ− 1
2
)
. (3.5)

The claim now follows. �
Next we present

Proof of Lemma 3.3. Let x ∈ Int(Qr) be a differentiability point of wε,γ . Recall that wε,γ is Lipschitz continuous
with Lipschitz constant L and, hence, a.e. differentiable. Then there exists a unique y ∈R

d such that

y → wε(y,ω) − 1

2γ
|y − x|2 has a maximum at y (3.6)

and

Dwε,γ (x) = y − x

γ
and |y − x| � Lγ. (3.7)

Recall that κ > 0 is fixed. For σ > 0 small, consider the map Φ :Rd ×R
d × Ω →R

Φ(y, z,ω) := wε(y,ω) − εvδ

(
z

ε
,ω; y − x

γ
+ p

)
− |y − x|2

2γ
− κ

2
|y − y|2 − |y − z|2

2σ

and fix a maximum point (yσ , zσ ) of Φ .
Note that wε,γ as well as all the special points chosen above depend on ω. Since this plays no role in what follows,

to keep the notation simple we omit this dependence.
Next we derive some estimates on |yσ − zσ | and |yσ − y|. The Lipschitz continuity of vδ(·,ω; y−x

γ
+ p) yields

|yσ − zσ | � Cσ. (3.8)

Using this last observation as well as the fact that (yσ , zσ ) is a maximum point of Φ and ‖vδ‖∞ � C/δ, we get
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wε(y,ω) − C
ε

δ
− |y − x|2

2γ
� Φ(y, y) � Φ(yσ , zσ ) � wε(yσ ,ω) + C

ε

δ
− |yσ − x|2

2γ
− κ

2
|yσ − y|2,

while, in view of (3.6), we also have

wε(yσ ,ω) − |yσ − x|2
2γ

� wε(y,ω) − |y − x|2
2γ

.

Putting together the above inequalities yields

|yσ − y|� C

(
ε

δκ

) 1
2

. (3.9)

In particular, (3.7), the choice of r and the fact that x ∈ Int(Qr) imply that

y ∈ Int(Q
1−2ηL−C( ε

δκ
)

1
2
) and yσ ∈ Q1−2ηL

.

At this point, for the convenience of the reader, it is necessary to recall some basic notation and terminology from
the theory of viscosity solutions (see [15]). Given a viscosity upper semicontinuous (resp. lower semicontinuous)
sub-solution (resp. super-solution) u of F(D2u,Du,u, x) = 0 in some open subset U of R

d , the lower-jet (resp.
upper-jet) J2,+u(x) (resp. J2,−u(x)) at some x ∈ U consists of (X,p) ∈ Sd × R

d that can be used to evaluate the
equation with the appropriate inequality. For example if u is a sub-solution of F(D2u,Du,u, x) = 0 in U and (X,p) ∈
J2,+u(x), then F(X,p,u(x), x) � 0.

Now we use the maximum principle for semicontinuous functions (see [15]). Since (yσ , zσ ) is a maximum point
of Φ , for any η > 0, there exist Yσ,η,Zσ,η ∈ Sd such that(

Yσ,η,
yσ − x

γ
+ yσ − zσ

σ
+ κ(yσ − y)

)
∈ J2,+wε(yσ ,ω),

(
Zσ,η,

yσ − zσ

σ

)
∈ J2,−vδ

(
zσ

ε
,ω

)
,

and (
Yσ 0

0 1
ε
Zσ,η

)
� Mσ,η + ηM2

σ,η, (3.10)

where

Mσ,η =
( 1

σ
Id − 1

σ
Id

− 1
σ
Id

1
σ
Id

)
+

(
( 1
γ

+ κ)Id 0

0 0

)
. (3.11)

Evaluating the equations for wε and vδ at yσ ∈ Q1−2ηL
and zσ ∈R

d respectively we find

−ε tr

(
A

(
yσ

ε
,ω

)
Yσ,η

)
+ H

(
yσ − x

γ
+ yσ − zσ

σ
+ κ(yσ − y) + p,

yσ

ε
,ω

)
� HL(p,ω) (3.12)

and

δvδ

(
zσ

ε
,ω; y − x

γ
+ p

)
− tr

(
A

(
zσ

ε
,ω

)
Zσ,η

)
+ H

(
yσ − zσ

σ
+ y − x

γ
+ p,

zσ

ε
,ω

)
� 0. (3.13)

Multiplying (3.10) by the positive matrix(
Σ(

yσ

ε
,ω)

Σ(zσ

ε
,ω)

)(
Σ(

yσ

ε
,ω)

Σ(zσ

ε
,ω)

)T

,

and taking the trace, in view of (3.11), we obtain

tr

(
A

(
yσ

ε
,ω

)
Yσ,η

)
− 1

ε
tr

(
A

(
zσ

ε
,ω

)
Zσ,η

)

� 1

σ

∥∥∥∥Σ

(
yσ

ε
,ω

)
− Σ

(
zσ

ε
,ω

)∥∥∥∥2

+
(

1

γ
+ κ

)∥∥∥∥Σ

(
yσ

ε
,ω

)∥∥∥∥2

+ η tr

(
M2

σ,η

(
Σ(

yσ

ε
,ω)

Σ(zσ

ε
,ω)

)(
Σ(

yσ

ε
,ω)

Σ(zσ

ε
,ω)

)T )
.

Recalling that Σ satisfies (2.8) and using (3.8), we get
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tr

(
A

(
yσ

ε
,ω

)
Xσ,η

)
− 1

ε
tr

(
A

(
zσ

ε
,ω

)
Yσ,η

)

� C

σε2
|yσ − zσ |2 + C

(
1

γ
+ κ

)
+ ηC(σ)� C

(
σ

ε2
+ 1

γ
+ κ

)
+ ηC(σ). (3.14)

Note that C(σ) actually depends also on all the other parameters of the problem but, and this is important, is indepen-
dent of η.

Next we use that H satisfies (2.4), (2.5). From (3.8) and (3.9) it follows

H

(
yσ − x

γ
+ yσ − zσ

σ
+ κ(yσ − y) + p,

yσ

ε
,ω

)
− H

(
yσ − zσ

σ
+ y − x

γ
+ p,

zσ

ε
,ω

)

�−C

( |yσ − y|
γ

+ κ|yσ − y| + |yσ − zσ |
ε

)
� −C

((
ε

δκ

) 1
2
(

1

γ
+ κ

)
+ σ

ε

)
. (3.15)

We estimate the difference between (3.12) and (3.13), using (3.14) and (3.15), to find

−δvδ

(
zσ

ε
,ω; y − x

γ
+ p

)
� HL(p,ω) + C

(
σ

ε
+ ε

γ
+ κε +

(
ε

δκ

) 1
2
(

1

γ
+ κ

)
+ σ

ε

)
+ ηεC(σ).

Finally the choice of ω (recall (3.3)) implies

H

(
y − x

γ
+ p

)
� HL(p,ω) + λ + C

(
σ

ε
+ ε

γ
+ κε +

(
ε

δκ

) 1
2
(

1

γ
+ κ

)
+ σ

ε

)
+ ηεC(σ).

We now let η → 0 and then σ → 0 to obtain

H

(
y − x

γ
+ p

)
� HL(p,ω) + λ + C

(
ε

γ
+ κε +

(
ε

δκ

) 1
2
(

1

γ
+ κ

))
.

Using (3.7), we may now conclude (3.4) holds. �
3.2. The full estimate

Combining Proposition 3.2 and Lemma 2.3 yields the full estimate.

Proof of Theorem 3.1. Recall that ηL = L
− a

4(a+1) and choose δ = L
− 1

2(a+1) and λ = δa = L
− a

2(a+1) . Then Proposi-
tion 3.2 implies that, for L� 1,

P

[
sup

p∈BK

(
H(p) − HL(p, ·)) > CL

− a
4(a+1)

]
� P

[
inf

(z,p′)∈QL×BC

(−δvδ
(
z, ·;p′) − H

(
p′)) < −δa

]
.

Then (3.1) gives

P

[
sup

p∈BK

(
H(p) − HL(p, ·)) > CL

− a
4(a+1)

]
� c

C,2(a+1)
1

(
L

− 1
2(a+1)

)
.

Similarly Lemma 2.3 implies, for L� 1, that{
ω ∈ Ω: sup

p∈BK

(
HL(p,ω) − H(p)

)
>

Cλ

ηL

}
⊂

{
ω ∈ Ω: sup

(y,p)∈QL×BK

∣∣δvδ(y,ω;p) + H(p)
∣∣ > λ

}
.

Since λ/ηL = L
− a

4(a+1) , using (3.1) we get

P

[
sup

p∈BK

(
HL(p, ·) − H(p)

)
> CL

− a
4(a+1)

]
� P

[
sup

(y,p)∈QL×BK

∣∣δvδ(y, ·;p) + H(p)
∣∣ > δa

]
� c

C,2(a+1)
1

(
L

− 1
2(a+1)

)
.

Combining both estimates gives the result. �



584 P. Cardaliaguet, P.E. Souganidis / Ann. I. H. Poincaré – AN 32 (2015) 571–591
4. Approximations of fully nonlinear uniformly elliptic equations

We introduce the hypotheses and state and prove the approximation result. We remark that our arguments extend
to nonlinear elliptic equations which include gradient dependence at the expense of some additional technicalities.

4.1. The hypotheses

The map F : Sd ×R
d × Ω → R is B(Sd) ⊗B⊗ F is measurable and stationary, that is, for all X ∈ Sd , x, y ∈ R

d

and ω ∈ Ω ,

F(X,y, τzω) = F(X,y + z,ω). (4.1)

We continue with the structural hypotheses on F . We assume that it is uniformly elliptic uniformly in ω, that is there
exist constants 0 < λ < Λ such that, for all X,Y ∈ Sd with Y � 0, x ∈ R

d and ω ∈ Ω ,

−Λ‖Y‖ � F(X + Y,x,ω) − F(X,x,ω) � −λ‖Y‖, (4.2)

and bounded, that is there exists C > 0 such that

sup
ω∈Ω

∣∣F(0,0,ω)
∣∣� C. (4.3)

Note that, in view of (4.1) and (4.2), for each R > 0, there exists C = C(R,λ,Λ,C) > 0 such that

sup
‖X‖�R, y∈Rd , ω∈Ω

∣∣F(X,y,ω)
∣∣ � C. (4.4)

The required regularity on F is that there exists ρ : [0,∞) → [0,∞) such that limr→0 ρ(r) = 0 and, for all x, y ∈R
d ,

σ > 0, P,X,Y ∈ Sd satisfying(
X 0
0 −Y

)
� 3

σ

(
Id −Id

−Id Id

)
,

F (X + P,x,ω) − F(Y + P,y,ω)� ρ

( |x − y|2
σ

+ |x − y|
)

. (4.5)

To simplify the statements, we write

(4.1), (4.2), (4.3) and (4.5) hold. (4.6)

4.2. The periodic approximation

Let ζη : Rd → [0,1] be a smooth, 1-periodic satisfying (1.10), choose ηL → 0 and, to simplify the notation, write
ζL(x) := ζηL

( x
L
).

For (X,x,ω) ∈ Sd × QL × Ω we set

FL(X,x,ω) = (
1 − ζL(x)

)
F(X,x,ω) + ζL(x)F0(X),

where F0 ∈ C(Sd) is a space independent and uniformly elliptic map with the same ellipticity constants as F . Then
we extend FL to be an L-periodic map in x, that is, for all (X,x,ω) ∈ Sd ×R

d × Ω and all ξ ∈ Z
d ,

FL(X,x + Lξ,ω) = FL(X,x,ω).

Note that, in view of the choice of F0,

FL satisfies (4.6). (4.7)

4.3. The approximation result

Let F = F(·) and FL = FL(·,ω) be the averaged nonlinearities (ergodic constants) that correspond to the homog-
enization problem for F and FL(·,ω). We claim that, as L → ∞, FL(·,ω) is an a.s. good approximation of F .
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Theorem 4.1. Assume (1.7) and (4.6). For any P ∈ S(Rd) and a.s. in ω,

lim
L→+∞FL(P,ω) = F(P ). (4.8)

Proof. Fix P ∈ Sd with ‖P‖ � K , ω ∈ Ω for which the homogenization holds and let χL be an L-periodic corrector
for FL(P,ω), that is a continuous solution to

FL

(
D2χL + P,x,ω

) = FL(P,ω) in R
d .

Without loss of generality we assume that χL(0) = 0.
The rescaled function vL(x) := L−2χL(Lx) is 1-periodic and solves

FL

(
D2vL + P,Lx,ω

) = FL(P,ω) in R
d .

Lemma 4.2 below (its proof is presented after the end of the ongoing one) implies the existence of α ∈ (0,1) and
C > 0 depending only λ, Λ, d and C in (4.3) so that

osc(vL)� C and [vL]0,α � C. (4.9)

Note that, by the definition of FL(P,y,ω),

F
(
D2vL + P,Lx,ω

) = FL(P ) in Q1−2ηL
,

while, since FL is uniformly elliptic,

−M+(
D2vL + P

)
� F(P,Lx,ω) − FL(P ) in R

d

and

−M−(
D2vL + P

)
� F(P,Lx,ω) − FL(P ) in R

d ,

where M+ and M− are the classical Pucci extremal operators associated with the uniform ellipticity constants λ/d

and Λ—see [9] for the exact definitions.
Let Ln → ∞ be such that FLn(P,ω) → lim supL→+∞ FL(P,ω). Using (4.9) we find a further subsequence (still

denoted in the same way) and a 1-periodic v ∈ C0,α(Rd) such that the vLn ’s converge uniformly to v. In view of the
results of [12] about stochastic homogenization, v solves

F
(
D2v + P

) = lim sup
L→+∞

FL(P,ω) in Int(Q1), (4.10)

while the stability of solutions also gives, for CP = supx∈Rd |F(P,x,ω)| + ess supω∈Ω lim supL→+∞ |FL(P,ω)|,
−M+(

D2v
)
� CP and − M−(

D2v
)
�−CP in R

d .

Let B := ⋃
z∈Zd ∂Q1(z). In view of (4.10), the periodicity of v implies that

F
(
D2v + P

) = lim sup
L→+∞

FL(P,ω) in R
d\B. (4.11)

Let x be a minimum point of v and, for σ ∈ (0,1) fixed, consider the map w(x) := v(x) + σ |x − x|2 and its convex
envelope Γ (w). Since w is a subsolution to

−M+(
D2w

) = −M+(
D2v + 2σId

)
� C′

P := CP + 2σΛ,

it follows (see [9]) that Γ (w) is C1,1 with ‖D2Γ (w)‖∞ � C.
Let E be the contact set between w and its convex envelope, i.e.,

E := {
x ∈ Int(B1/4): w(x) = Γ (w)(x)

}
.

Note that, if p ∈ Bσ/4, then there exists x ∈ E such that DΓ (w)(x) = p. Indeed, if y /∈ B1/4(x) and p ∈ Bσ/4, then
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w(y) − 〈p,y〉 � v(y) + σ |y − x|2 − 〈p,x〉 − |p||y − x|
> v(x) − 〈p,x〉 + |y − x|(σ/4 − |p|) � w(x) − 〈p,x〉.

Hence any minimum point x of w − 〈p, ·〉 must belong to B1/4(x). Then, since w(y) � w(x) + 〈p,y − x〉 for any
y ∈R

d , it follows that w(x) = Γ (w)(x) and DΓ (w)(x) = p. As a consequence we have

|Bσ/4| �
∣∣DΓ (w)(E)

∣∣ � ∫
E

det
(
D2Γ (w)

)
� C|E|.

Since B has zero measure, the above estimate shows that there exists x ∈ E\B such that w(x) = Γ (w)(x). Then, for
any y ∈R

d ,

v(y) � Γ (w)(y) − σ |y − x|2 � w(x) + 〈
DΓ (w)(x), y − x

〉 − σ |y − x|2,
with an equality at y = x.

Using φ(y) := w(x) + 〈DΓ (w)(x), y − x〉 − σ |y − x|2 as a test function in (4.11) and the fact that x /∈ B, we get

F(−2σId + P) � lim sup
L→+∞

FL(P,ω).

Letting σ → 0 gives one side of the equality (4.8). The proof of the reverse one follows in a symmetrical way. �
To complete the proof, it remains to explain (4.9). For this we note that vL is 1-periodic and, in view of (4.4),

belongs to the class S∗(λ/d,Λ,C0), where C0 = supx |F(P,x,ω)| (see [9] for the definition of S∗(λ/d,Λ,C0)).
Then (4.9) is a consequence of the classical Krylov–Safonov result about the continuity of solutions of uniformly
elliptic pde. Since we do not know an exact reference for (4.9), we present below its proof.

Lemma 4.2. Let 0 < λ < Λ and C0 > 0 be constants. There exist C = C(d,λ,Λ,d,C0) > 0 and α = α(d,λ,Λ,

d,C0) ∈ (0,1] such that, any 1-periodic u ∈ S∗(λ,Λ,C0) satisfies osc(u) � C and [u]C0,α � C.

Proof. Without loss of generality, we assume that u(0) = 0. For M � 1, let uM(x) := M−2u(Mx). Note that uM is
M−1-periodic and still belongs to S∗(λ,Λ,d,C0). The Krylov–Safonov result yields C = C(λ,Λ,d,C0) > 0 and
α = α(d,λ,Λ,d,C0) ∈ (0,1] with

[uM ]0,α;Q1 � C
(‖uM‖Q2 + 1

)
.

It follows from the 1-periodicity of u and u(0) = 0 that

[uM ]0,α;Q1 � Mα−2[u]0,α and ‖uM‖Q2 = M−2‖u‖�M−2d
1
2 [u]0,α.

Hence,

[u]0,α � CM2−α
(
M−2d

1
2 [u]0,α + 1

)
.

Choosing M so that CM−αd
1
2 = 1

2 gives a bound on [u]C0,α , from which we derive a sup bound on u. �
We remark that the proof of Theorem 4.1 shows the following fact, which we state as a separate proposition, since

it may be of independent interest.

Proposition 4.3. Let Σ ⊂ R
d be a set of zero measure and assume that u ∈ C(Rd) is a viscosity solution of the

uniformly elliptic equation F(D2u,x) = 0 in R
d\Σ . If, in addition, u ∈ S∗(λ,Λ,d,C) in R

d , for some 0 < λ < Λ,
then u is a viscosity solution of F(D2u,x) = 0 in R

d .

5. The convergence rate for nonlinear elliptic equations

Here we show that it is possible to quantify the rate of convergence of FL(·,ω) to F . As in the viscous HJB
problem, we assume that we know a rate for the convergence of the solution to the approximate cell problem to the
ergodic constant F .
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For the sake of the presentation below and to simplify the argument it is more convenient to consider, for L � 1
and P ∈ Sd , the solution vL = vL(·;P,ω) of

vL + F
(
D2vL + P,Lx,ω

) = 0 in R
d . (5.1)

Note that vL(x) := L2vL(L−1x) solves the auxiliary problem

L−2vL + F
(
D2vL + P,x,ω

) = 0 in R
d .

In view of the stochastic homogenization, it is known that the vL’s converge locally uniformly and a.s. to the unique
solution v = −F(P ) of

v + F
(
D2v + P

) = 0 in R
d .

We assume that there exist nonincreasing rate maps L → λ(L) and L → c2(L), which tend to 0 as L → +∞, such
that

P

[
sup
x∈B5

∣∣vL(x, ·) + F(P )
∣∣ > λ(L)

]
� c2(L). (5.2)

Recall that such a rate was obtained in [10] under a strong mixing assumption on the random media—see at the
beginning of the paper for the meaning of this. The recent contribution [4] shows that for “i.i.d.” environments the rate
is at least algebraic, that is λ(L) = L−a for some a ∈ (0,1).

In addition to the above assumption on the convergence rate, it also necessary to enforce the regularity condi-
tion (4.5) on F . Indeed we assume that there exists a constant C > 0 such that

(4.5) holds with ρ(r) = Cr. (5.3)

The periodic approximation of F is exactly the same as in the previous section and the result is:

Theorem 5.1. Assume (4.6), (5.2) and (5.3) and set ηL(L) = λ(L)
d

2d+1 . There exists a constant C > 0 such that, for
L� 1,

P
[∣∣−F(P ) + FL(P, ·)∣∣ > Cλ(L)

1
2d+1

]
� c2(L).

Proof. For any L � 1, let vL be the solution to (5.1) and χL an L-periodic corrector for FL(P,ω), that is a solution
to

FL

(
D2χL + P,x,ω

) = FL(P,ω) in R
d .

Without loss of generality we assume that χL(0,ω) = 0. Set wL(x,ω) := L−2χL(Lx,ω) and note that wL is
1-periodic and solves

FL

(
D2wL + P,Lx,ω

) = FL(P,ω) in R
d . (5.4)

It also follows from (4.9) that ‖wL‖ � C and [wL]0,α � C and we note that the vL’s are bounded in C0,α uniformly
with respect to L.

The main part of the proof consists in showing that, given λ > 0 and ω such that

sup
x∈B5

∣∣vL(x,ω) + F(P )
∣∣ � λ, (5.5)

one has∣∣F(P ) − FL(P,ω)
∣∣ � λ + C

(
η

1
d

L + λη−2
L

)
. (5.6)

The conclusion follows by assumption (5.2) and a suitable choice of the constant λ = λ(L).
To show (5.6), we assume that (5.5) holds and follow the proof of the convergence quantifying each step in an ap-

propriate way. To simplify the expressions we suppress the dependence on ω which is fixed throughout the argument.
Moreover, since the proof is long, we organize it in separate subsections.
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Construction of the minimum points x0 and x̂0 Let x0 be a minimum point of wL in Q1; note that since wL is
1-periodic, x0 is actually a minimum point of wL in R

d . For a, r, r0 ∈ (0,1) to be chosen below and ξ ∈ R
d , we

consider the map

Φ0
ξ (x) := wL(x) + a

2
|x − x0|2 + 〈ξ, x − x0〉.

The claim is that, if x̂0 is a minimum point of Φ0
ξ with ξ ∈ Br0 and

2r0 � ar, (5.7)

then x̂0 ∈ Br(x0). Indeed, by the definition of x̂0 and x0,

Φ0
ξ (̂x0)� Φ0

ξ (x0) = wL(x0)� wL(̂x0),

hence,
a

2
|̂x0 − x0|2 + 〈ξ, x̂0 − x0〉 � 0,

and, in view of (5.7),

|̂x0 − x0|� 2|ξ |/a � 2r0/a � r.

Next we consider two cases depending on whether x̂0 ∈ Q1 or not and we let E0 denote the collection of points x̂0
which belong to Q1:

E0 := {
x̂0 ∈ Q1 ∩ Br(x0): there exists ξ ∈ Br0 such that Φ0

ξ has a minimum at x̂0
}
.

Case 1: x̂0 ∈ Q1 Note that, by the definition of x̂0, x̂0 ∈ E0 and wL is touched from below at x̂0 by a parabola of
opening a ∈ (0,1). It then follows from the Harnack inequality that wL is touched from above at x̂0 by a parabola
of opening C. This is a classical fact about uniformly elliptic second-order equations and we refer to [11] for more
details. It follows that wL is differentiable at x̂0 and, in view of the choice of x̂0 for Φ0

ξ , DwL(̂x0)+a(̂x0 −x0)+ξ = 0.
Hence ξ is determined from x̂0 by the relation ξ = Ψ 0(y) := −(DwL(̂x0) + a(̂x0 − x0)). Moreover, in view of the

above remark on the parabolas touching wL from above and below, Ψ 0 is Lipschitz continuous on E0 with a Lipschitz
constant bounded by C. We refer the reader to [11] for the details of this argument.

Case 2: x̂0 /∈ Q1 If x̂0 /∈ Q1, then there exists z ∈ Z
d such that x̂0 ∈ Q1(z). Since x̂0 ∈ Qr(x0) with x0 ∈ Q1 and

r < 1, it follows that |z|∞ = 1. Set xz := x0 − z, x̂z := x̂0 − z ∈ Q1 (note that x̂z ∈ Br(xz)) and

Φz
ξ (x) := wL(x) + a

2
|x − xz|2 + 〈ξ, x − xz〉.

In view of the periodicity of wL, x̂z is a minimum point of Φz
ξ .

Let Z := {z ∈ Z
d ; |z|∞ � 1}. It is clear that Z is a finite set and, if z ∈ Z, either |z|∞ = 1 or z = 0. Also set Ez to

be the set of points x̂z ∈ Q1 ∩ Br(xz) for which there exists ξ ∈ Br0 such that Φz
ξ has a minimum at x̂z.

Arguing as in the previous case, we see that there is a Lipschitz map Ψ z on Ez with Lipschitz constant independent
of z such that, if x̂z ∈ Ez and ξ = Ψ z(̂xz), then x̂z is a minimum of Φz

ξ .

The existence of interior minima It follows from the previous two steps that, for any ξ ∈ Br0 , there exist z ∈ Z and
x̂z ∈ Ez such that ξ = Ψ z(̂xz). Hence, using that the Ψ z’s are Lipschitz continuous uniformly for z ∈ Z, we find

|Br0 | =
∣∣∣∣⋃
z∈Z

Ψ z
(
Ez

)∣∣∣∣� �(Z)max
z

∣∣Ψ z
(
Ez

)∣∣� C max
z

∣∣Ez
∣∣.

Therefore there must exist some z ∈ Z, which we fix from now on, such that∣∣Ez
∣∣� rd

0 /C. (5.8)

We now show that, for a suitable choice of the constants, the sets Ez and Q1−3ηL
have a nonempty intersection. For

this we note that, since Ez ⊂ Br(xz) ∩ Q1, the claim holds true as soon as∣∣Ez
∣∣ + ∣∣Br(xz) ∩ Q1−3ηL

∣∣ >
∣∣Br(xz) ∩ Q1

∣∣.
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As ∣∣Br(xz) ∩ Q1
∣∣ − ∣∣Br(xz) ∩ Q1−3ηL

∣∣ = ∣∣Br(xz) ∩ (Q1\Q1−3ηL
)
∣∣� Crd−1ηL,

provided r � CηL, we conclude from (5.8), that if

rd
0 � Crd−1ηL, (5.9)

then Ez ∩ Q1−3ηL
�= ∅.

The perturbed problem From now on we assume that (5.7) and (5.9) hold and, therefore, there exist (fixed) z ∈ Z,
ξ ∈ Br0 and x̂z ∈ Q1−3ηL

∩ Br(xz) such that Φz
ξ has a minimum at x̂z. For b,σ ∈ (0,1) to be chosen below, set

Φσ (x, y) := vL(x) − wL(y) − a

2
|y − xz|2 − b

2
|y − x̂z|2 − 〈ξ, y − xz〉 − |x − y|2

2σ

= vL(x) − Φz
ξ (y) − b

2
|y − x̂z|2 − |x − y|2

2σ
,

and let (̃x, ỹ ) be a maximum point of Φσ over Q5 ×R
d . We claim that

|̃y − x̂z| � 2
(
λb−1) 1

2 and |̃y − x̃|� Cσ
1

2−α . (5.10)

Indeed, since Φσ (̃x, ỹ ) �Φσ (̂xz, x̂z) and Φz
ξ (̂xz) �Φz

ξ (ỹ ), in view of (5.5), we find

Φσ (̃x, ỹ ) � vL(̂xz) − Φz
ξ (̂xz) �−F(P ) − λ − Φz

ξ (ỹ )

� vL(̃x ) − 2λ − Φz
ξ (ỹ ),

and, therefore,

b

2
|̃y − x̂z|2 + |̃x − ỹ|2

2σ
� 2λ.

This gives the first inequality in (5.10). The maximality of x̃ in Φσ (·, ỹ ) and the Hölder regularity of vL gives the
second inequality.

If we assume that

2
(
λb−1) 1

2 � ηL, (5.11)

then, since x̂z ∈ Q1−3ηL
and (5.10) holds, it follows that ỹ belongs to Q1−2ηL

. Moreover, for σ small enough, we still
have by (5.10) that x̃ ∈ Q2. In particular, (̃x, ỹ ) is an interior maximum of Φσ in Q5 ×R

d .

The maximum principle Since (̃x, ỹ ) is an interior maximum of Φσ , the maximum principle argument already used
earlier yields X,Y ∈ Sd and px,py ∈R

d such that

(px,X) ∈ J2,+vL(̃x ), (py,Y ) ∈ J2,−wL(ỹ )

and (
X 0
0 −Y − (a + b)Id

)
� 3

σ

(
Id −Id

−Id Id

)
.

In view of (5.1) and (5.4) and since ỹ ∈ Q1−2ηL
, which yields that FL(·, ỹ ) = F(·, ỹ ), evaluating the equations

satisfied by vL and wL at x̃ and ỹ respectively we find

vL(̃x ) + F(X + P,Lx̃ ) � 0 (5.12)

and

F(Y + P,Lỹ )� FL(P,ω).
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From the uniform in x and ω Lipschitz continuity of F with respect to P , we get

F
(
Y + (a + b)Id + P,Lỹ

)
� FL(P,ω) − C(a + b).

Using (5.3) to estimate the difference between (5.12) and the above inequality, we obtain

vL(̃x ) + FL(P,ω) � C

(
L2 |̃x − ỹ|2

σ
+ L|̃x − ỹ| + a + b

)
.

Finally we use (5.5) and (5.10) to conclude that

−F(P ) + FL(P,ω) � λ + C
(
L2σα/(2−α) + Lσ 1/(2−α) + a + b

)
.

Letting σ → 0, we get

−F(P ) + FL(P,ω) � λ + C(a + b) (5.13)

provided (5.5), (5.7), (5.9) and (5.11) hold.

The choice of the constants In order for (5.11), (5.7) and (5.9) to hold, we choose respectively b = 4λη−2
L , r = 1/2,

r0 = a/4 and a = Cη
1
d

L . We then have

−F(P ) + FL(P,ω) � λ + C
(
η

1
d

L + λη−2
L

)
.

Arguing in a similar way, we can check that, under (5.5), we also have

−F(P ) + FL(P,ω) � −λ − C
(
η

1
d

L + λη−2
L

)
,

which yields (5.6).

Conclusion Combining (5.6) with the assumption (5.2) on the convergence rate, we find

P
[∣∣−F(P ) + FL(P, ·)∣∣ > λ(L) + C

(
η

1
d

L + λ(L)η−2
L

)]
� P

[
sup
x∈B5

∣∣vL(x, ·) + F(P )
∣∣ > λ(L)

]
� c2(L).

The choice of ηL(L) = (λ(L))
d

2d+1 gives the claim. �
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